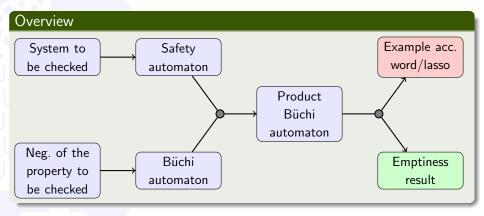


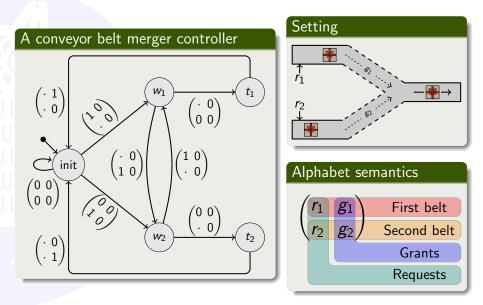
Short Accepting Lassos & Witnesses in ω -automata

Rüdiger Ehlers

Saarland University, Reactive Systems Group


LATA 2010 - May 27, 2010

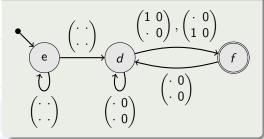
ω -automata


Basic properties

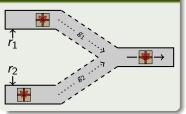
- Similar to ordinary finite automata
- Accept/reject infinite words $w \in \Sigma^\omega$
- Typical acceptance condition types: Safety, Büchi, Rabin, Streett, Muller, ...

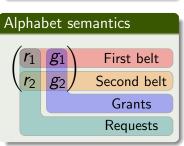
Automata theory & model checking

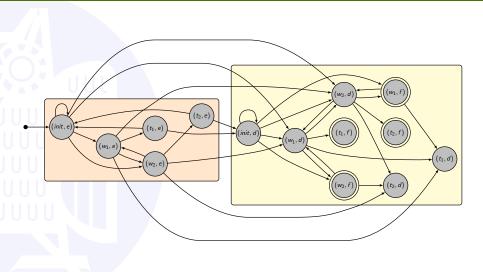
An example system



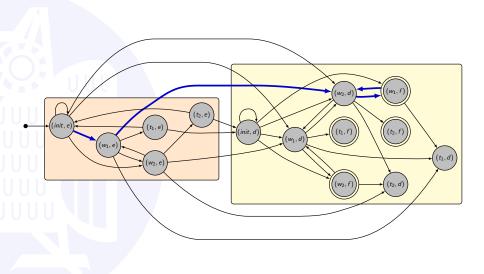
An example system

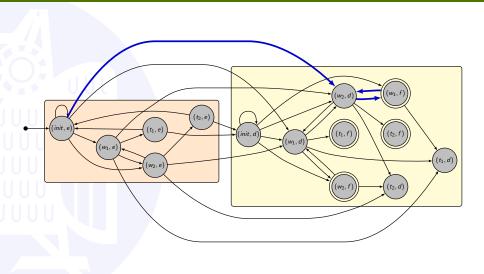

An example property


The system is starvation-free.



Setting




The product

Short lassos: an example

Short lassos: an example

Rüdiger Ehlers (SB)

Short Lassos & Witnesses

LATA 2010 – May 27, 2010

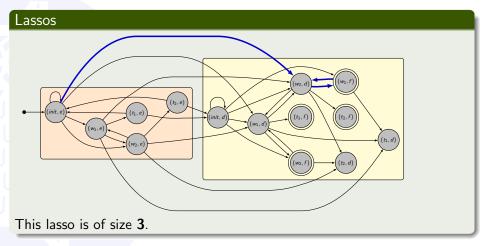
An alternative point of view – short witnesses

A different kind of counter-examples

- Often, it is enough for the designer to know one erroneous example trace of the system.
- Such a trace can often be represented in a much shorter way.

An example

The conveyor belt merger behaves incorrectly with the following input/output:


$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}^{\omega}$$

Conclusion

A "witness" is often much simpler to understand by the system designer.

Rüdiger Ehlers (SB)

Defining the size of a counter-example

Witnesses

For uw^{ω} being the witness for $u, w \in \Sigma^*$, we define the size to be |u| + |w|.

Rüdiger Ehlers (SB)

Short Lassos & Witnesses

Applications of short lassos & witnesses

Some examples:

- Model checking
- Certificates for the satisfiability of a formula in logics such as S1S
- Sanity checks of specification automata

• . . .

Consequences

It makes sense to consider this problem for all commonly used types of acceptance conditions. The main question we ask here is: what is the complexity of this problem?

Direct results on the complexity of these problems previously known

Acc. cond. type	Short lassos	Short witnesses
Safety		
Büchi	$O(Q ^2)$ [SE05]	NP-complete [KSF06]
co-Büchi		
Parity		
Rabin		
Gen. Büchi	NP-complete [CGMZ95]	
Streett		
Muller		

Implicit results on the complexity of these problems previously known

Acc. cond. type	Short lassos	Short witnesses
Safety	$O(Q ^2)$	
Büchi	$O(Q ^2)$	NP-complete
co-Büchi	in PTIME	
Parity	in PTIME	NP-complete
Rabin	in PTIME	NP-complete
Gen. Büchi	Gen. Büchi NP-complete	
Streett NP-complete		NP-complete
Muller		

All results now known

Acc. cond. type	Short lassos	Short witnesses
Safety		
Büchi		
co-Büchi	in PTIME	
Parity		NP-complete
Rabin		
Gen. Büchi		
Streett	NP-complete	
Muller		

On approximating shortest witnesses & lassos

In practice

For practical application, approximate shortest witnesses and lassos would usually suffice!

Important question: For those problems that are not in PTIME (assuming NP \neq PTIME), can they be approximated well in polynomial time?

Overview

Acc. cond. type	Short lassos
Safety	
Büchi	in PTIME
co-Büchi	
Parity	
Rabin	
Gen. Büchi	This same
Streett	This case
Muller	

Generalised Büchi & Streett

Not approximable within any constant in polynomial time (unless P=NP).

Proof idea

Reduction to the Ek-Vertex-Cover problem

Overview

Acc. cond. type	Short lassos
Safety	
Büchi	
co-Büchi	in PTIME
Parity	
Rabin	
Gen. Büchi	
Streett	
Muller	This case

The Muller case

Not approximable within $\frac{321}{320} - \epsilon$ (unless P=NP), approximable within $\lceil \log_2 |Q| \rceil$ in polynomial time.

Proof idea

Using the connection to the asymmetric metric travelling salesman problem.

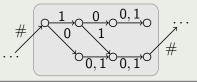
Overview

Acc. cond. type	Short witnesses
Safety	
Büchi]
co-Büchi]
Parity	NP-complete
Rabin	
Gen. Büchi	
Streett	
Muller	

The safety case

Not approximable within any polynomial function in polynomial time (unless P=NP).

Proof idea

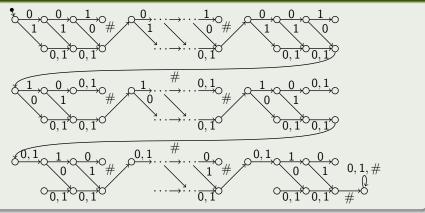

Reduction from the **satisfiability** problem using the **gap** technique.

Reduction from the SAT-problem

Idea:

- Encode potential solutions to a SAT problem as words over $\{0, 1, \#\}$
- For every clause in the SAT problem, build a block requiring that a part of the word "satisfies" the clause.
- For every clause, put k of these blocks in a line (for some $k \in \mathbb{N}$) and plug together the lines for all clauses.

Example block for the clause $\neg v_1 \lor v_2$



Shortest witness case - An example

SAT instance

$$(v_1 \lor v_2 \lor \neg v_3) \land (\neg v_1 \lor v_2) \land (\neg v_2 \lor v_3)$$

Safety automaton

Implications for practice

Counter-example generation for model checking

We can either:

- stick to the shortest lasso case (when applicable)
- try to use potentially slow techniques
- develop & use suitable heuristics

Outlook

Implications for synthesis of open systems

• Finding a small implementation satisfying a specification is a hard problem, even for safety games!

- [CGMZ95] Edmund M. Clarke, Orna Grumberg, Kenneth L. McMillan, and Xudong Zhao. Efficient generation of counterexamples and witnesses in symbolic model checking. In *DAC*, pages 427–432, 1995.
 - [KSF06] Orna Kupferman and Sarai Sheinvald-Faragy. Finding shortest witnesses to the nonemptiness of automata on infinite words. In Christel Baier and Holger Hermanns, editors, *CONCUR*, volume 4137 of *LNCS*, pages 492–508. Springer, 2006.
 - [SE05] Stefan Schwoon and Javier Esparza. A note on on-the-fly verification algorithms. In Nicolas Halbwachs and Lenore D. Zuck, editors, *TACAS*, volume 3440 of *LNCS*, pages 174–190, 2005.