AUTOMATA OVER INFINITE DATA DOMAINS:LEARNABILITY AND APPLICATIONS IN PROGRAM VERIFICATION AND REPAIR
 Hadar Frenkel

Advisors: Orna Grumberg \& Sarai Sheinvald

AUTOMATA OVER INFINITE DATA DOMAINS: LEARNABILITY AND APPLICATIONS IN PROGRAM VERIFICATION AND REPAIR
 Hadar Frenkel

Advisors: Orna Grumberg \& Sarai Sheinvald

Automata over Infinite Data Domains

- Model infinite-state system using a finite model

AUTOMATA OVER INFINITE DATA DOMAINS: LEARNABILITY AND APPLICATIONS IN PROGRAM VERIFICATION AND REPAIR
 Hadar Frenkel

Advisors: Orna Grumberg \& Sarai Sheinvald

Learnability

Learning symbolic automata (conditions for learning: L* and identification in the limit)

[Fisman, Frenkel, Zilles]

Learnability

Adapting L* algorithm for communicating programs

```
while (true)
    pass = readInput;
        while (pass \leq 999)
            pass = readInput;
        pass2 = encrypt(pass);
```


Learning symbolic automata (conditions for learning: L* and identification in the limit)

[Fisman, Frenkel, Zilles]

AUTOMATA OVER INFINITE DATA DOMAINS: LEARNABILITY AND APPLICATIONS IN PROGRAM VERIFICATION AND REPAIR

Hadar Frenkel

Advisors: Orna Grumberg \& Sarai Sheinvald

Applications in Program Verification and Repair

Bounded model-checking algorithm

[Frenkel, Grumberg, Sheinvald 17, 19]

[Fisman, Frenkel, Zilles]

Applications in Program Verification and Repair

Bounded model-checking algorithm

[Frenkel, Grumberg, Sheinvald 17, 19]

Compositional verification and

 repair algorithm```
while (true)
 pass = readInput;
 while (pass \leq 999)
 pass = readInput;
 pass2 = encrypt(pass);
```


[Frenkel, Grumberg, Pasareanu, Sheinvald 20]

[Fisman, Frenkel, Zilles]

# MODEL CHECKING SYSTEMS OVER INFINITE DATA 

Joint work with Orna Grumberg and Sarai Sheinvald
@NFM 2017, @Journal of automated reasoning 2019

## Goal

-Develop a Model checking process for systems over infinite data domains
-Using the automata-theoretic approach

## Model checking

specification



## Model checking

## specification



Verification of Systems over Infinite Data Domains


## Verification of Systems over Infinite Data Domains

- LTL cannot express the property
"every client is eventually active"



## Verification of Systems over Infinite Data Domains

- LTL cannot express the property
"every client is eventually active"

Variable LTL (VLTL) [GKS12]

- $\forall x: F$ active. $x$
- AP - finite set of (parameterized) propositions



## $\exists^{*} \mathrm{VLTL}_{\left[G \mathrm{KS}_{12}\right]}$

- VLTL with only existential quantifiers
- $G \exists x$ : send. $x$

- We are interested in verifying universal properties, the negation that describes a bad behavior is existential


## Model Checking - Infinite Data Domains



## Model Checking - Infinite Data Domains



## Model Checking - Infinite Data Domains



## Non-Deterministic Variable Büchi Automata (NVBW) [GKS ${ }_{3}$ ]

- $G \exists x$ : send. $x$
- Alphabet is parameterized propositions
- Ability to reset a variable and to assign it a new value
- As long as there is no reset - the value cannot be changed


## send. 1

## send. 1

send. 4
send. 7
send. 3
send. 9

Useful for emptiness test


## NVBW Cannot Express all $\exists^{*}$ VLTL

- $G$ ( $\exists x$ : send. $x \wedge X F$ receive. $x)$

- Increasing gaps between send. $x$, receive. $x$.
- Not enough variables and states to remember all values


## Alternating Variable Büchi Automata (AVBW)

- $G(\exists x:$ send. $x \wedge X F$ receive. $x)$



## Alternating Variable Büchi Automata (AVBW)

- $G(\exists x:$ send. $x \wedge X F$ receive. $x)$


## Easy construction

 from $\exists^{*}$ VLTL

## Alternating Variable Büchi Automata (AVBW)



## Alternating Variable Büchi Automata (AVBW)



## Alternating Variable Büchi Automata (AVBW)



## VLTL to AVBWs

$-\delta(a . x, A)=$ true if $a . x \in A \quad$ and $\delta(a . x, A)=$ false, otherwise.

- Similar to [V95]
- Special care of resets
$-\delta(\neg a \cdot x, A)=\neg \delta(a . x, A) .{ }^{4}$
$-\delta(\eta \wedge \psi, A)=\delta(\eta, A) \wedge \delta(\psi, A)$.
- $X=\operatorname{vars}(\varphi) \cup\left\{x_{p} \mid p \in \mathrm{AP}\right\}$
$-\delta(\eta \vee \psi, A)=\delta(\eta, A) \vee \delta(\psi, A)$
- $Q=\operatorname{sub}(\varphi)$
$-\delta(\mathbf{X} \eta, A)=\eta$
- Reset
- $x_{p}$ varaibles
- variables under $\exists$
$-\delta(\eta \mathrm{U} \psi, A)=\delta(\psi, A) \vee(\delta(\eta, A) \wedge \eta \cup \psi)$
$-\delta(\eta \vee \psi, A)=\delta(\eta \wedge \psi, A) \vee(\delta(\psi, A) \wedge \eta \vee \psi)$
- $x \neq y$ for $\neg a . x \in \operatorname{sub}(\varphi)$
$-\delta(\exists x \eta, A)=\delta(\eta, A)$


## Model Checking - Infinite Data Domains



## Model Checking - Infinite Data Domains



## Model Checking - Infinite Data Domains



## Model Checking - Infinite Data Domains

- Emptiness of AVBWs is undecidable
- Satisfiability problem of $\exists^{*}$ VLTL formulas is undecidable [SW14]
- $\exists^{*}$ VLTL $\equiv$ AVBW, thus
- Satisfiability problem $\equiv$ emptiness problem

Emptiness test

Alternating variable
Büchi
automaton

## Solutions



## $\exists^{*}$ VLTL Formulas with a Direct Construction to NVBW

- PNF formulas $\exists x: G$ send. $x \quad(\operatorname{send} .7)^{\omega}$
- $X, F$ formulas
- Quantifiers are at the beginning $\backslash$ next to atomic propositions $\exists x_{1}: G$ send. $x_{1} \wedge G \exists x_{2}:$ rec. $x_{2}$


## Flattening

- A formula with no negations has an equisatisfiable formula in PNF

$$
\begin{aligned}
& G(\exists x: \text { send. } x \wedge X F \text { receive. } x) \\
& \text { Always holds } \| \text { No negations } \\
& \exists x: G(\operatorname{sen} . x \wedge X F \text { receive. } x)
\end{aligned}
$$

## Translation Algorithm

- A partial algorithm for translation
- Based on the Miyano-Hayashi construction [MH84]

AND

- Take care of variables, resets
- Map variables of alternating automaton to variables of non-deterministic automaton

$$
\left(\begin{array}{c}
\left.\left\{\begin{array}{c}
\left(q_{0}, \emptyset\right) \\
\left(q_{1}, x \rightarrow z_{1}\right) \\
\left(q_{1}, x \rightarrow z_{3}\right)
\end{array}\right\},\left\{\left(q_{1}, x \rightarrow z_{1}\right)\right\}\right) \\
\operatorname{reset}\left(z_{2}\right)
\end{array}\right.
$$

## Alternating to Non-Deterministic [мняя]

- $G$ (send $\rightarrow$ XF receive)



## AVBW to NVBW

- $G \exists x: a . x \wedge X X$ b. $x$



## Incompleteness

- The empty language
- Our algorithm does not halt



## BMC Algorithm

- Based on the translation algorithm
- We are looking for a witness to non-emptiness
- Test emptiness with a partial NVBW
- Might find "more interesting" witnesses as the algorithm continues

> Partial NVBWs

## VLTL Summary

- Using alternating variable automata to model VLTL properties
- Translation algorithm from AVBWs to NVBWs
- Bounded model-checking procedure for $\exists^{*}$ VLTL
- Easy fragments for model-checking



## COMPOSITIONAL VERIFICATION AND REPAIR

Joint work with Orna Grumberg, Corina Pasareanu, and Sarai Sheinvald @TACAS 2020

## Model Checking



## Model Checking



Number of states in the system model grows exponentially with the number of components in the system



## COMPOSITIONAL VERIFICATION AND REPAIR OF C-LIKE PROGRAMS

- Model checking and repair algorithm for communicating systems
- Exploit the partition of the system into components




## Communicating Systems

- C-like programs
- Each component is described as a control-flow graph (automaton)
- Alphabet: program statements \& communication channels
- In $? x_{1}$ - reads a value to $x_{1}$ through channel $\operatorname{In}$
- enc! $x_{1}$ - sends the value of $x_{1}$ through channel enc

1: while (true)
2: pass = readInput;
3: while (pass $\leq$ 999)
4: pass = readInput;
5: pass2 = encrypt(pass);


## Example

Synchronization using read-write channels, Interleaving on all other alphabet


## Example

Synchronization using read-write channels, Interleaving on all other alphabet


## Example

Synchronization using read-write channels, Interleaving on all other alphabet


## Example

Synchronization using read-write channels, Interleaving on all other alphabet



## Specifications

- Safety properties
- Alphabet:
- (Common) communication channels
- Syntactic requirements:
program behavior through time



## Specifications

- Safety properties
- Alphabet:
- (Common) communication channels
- Syntactic requirements:
program behavior through time
- Constraints over local variables

- Semantic requirements:
- "the entered password is different from the encrypted password"
- "there is no overflow"


## Reasoning About the Smaller Components



## Compositional Verification

- Inputs:
- composite system $M_{1} \| M_{2}$
- property $P$
- Goal: check if $M_{1} \| M_{2} \vDash P$
- First attempt: "divide and conquer"

- Problem: usually impossible to verify each component separately
- Components are designed to satisfy requirements in specific contexts


## Compositional Verification

- Assume-Guarantee (AG) paradigm [Pnueli, 1985]:
- assumptions represent component's environment
- Under assumption $A$ on its environment, does the component guarantee the property?



## AG Rule for Safety Properties

1. check if a component $M_{1}$ guarantees $P$ when it is a part of a system satisfying assumption $A$
$M_{1} \| A \vDash P$


## AG Rule for Safety Properties

1. check if a component $M_{1}$ guarantees $P$ when it is a part of a system satisfying assumption $A$

$$
M_{1} \| A \vDash P
$$

2. discharge assumption: show that the remaining component $M_{2}$ satisfies $A$

$$
M_{2} \vDash A
$$



## AG Rule for Safety Properties

1. check if a component $M_{1}$ guarantees $P$ when it is a part of a system satisfying assumption $A$

$$
M_{1} \| A \vDash P
$$

2. discharge assumption: show that the remaining component $M_{2}$ satisfies $A$
3. Conclude that $M_{1} \| M_{2} \vDash P$

$$
M_{2} \vDash A
$$



## AG Rule for Safety Properties

1. check if a component $M_{1}$ guarantees $P$ when it is a part of a system satisfying assumption $A$
$M_{1} \| A \vDash P$
2. discharge assumption: show that the remaining component $M_{2}$ satisfies $A$
3. Conclude that $M_{1} \| M_{2} \vDash P$
$M_{2} \vDash A$
Can we automatically construct $A$ ?

## Automatic Assumption Generation



## L* Algorithm for Learning Regular Languages [Angluines]

- Learning assumptions for compositional verification [CGPo3]
- Given a regular language $L$, we learn a DFA $A$ such that $\mathcal{L}(A)=L$


Teacher


## L* Algorithm for Learning Regular Languages [Angluines]

- Learning assumptions for compositional verification [CGPo3]
- Given a regular language $L$, we learn a DFA $A$ such that $\mathcal{L}(A)=L$
- Membership queries


Teacher


## L* Algorithm for Learning Regular Languages [Angluinery

- Learning assumptions for compositional verification [CGPo3]
- Given a regular language $L$, we learn a DFA $A$ such that $\mathcal{L}(A)=L$
- Equivalence queries, for a candidate $A_{i}$


Teacher
Learner 66

## L* Algorithm for Learning Regular Languages [Angluiner]

- Learning assumptions for compositional verification [CGPoz]
- Given a regular language $L$, we learn a DFA $A$ such that $\mathcal{L}(A)=L$
- Equivalence queries, for a candidate $A_{i}$
- Try to use intermediate candidates $A_{i}$ as assumptions for AG rule
- But, the weakest assumption is not regular in our case


$$
\begin{aligned}
& M_{1} \| A_{i} \vDash P \\
& M_{2} \vDash A_{i} \\
& \\
& M_{1} \| M_{2} \vDash P
\end{aligned}
$$

## Weakest Assumption is not always regular

- By a way of contradiction
- $A_{w}$ is over $\alpha M_{2}=\{x:=0, y:=0, x:=x+1, y:=y+1$, sync $\}$
- Consider $L=\{x:=0\} \cdot\{y:=0\} \cdot\{x:=x+1, y:=y+1\}^{*} \cdot\{$ sync $\}$

$M_{1}$


M2


P

$$
\begin{aligned}
& M_{1} \| \boldsymbol{M}_{\mathbf{2}} \vDash P \\
& M_{2} \vDash \boldsymbol{M}_{\mathbf{2}} \\
& M_{1} \| M_{2} \vDash P
\end{aligned}
$$

- The teacher answers queries according to the syntactic language of $M_{2}$
- Regular since it is given as an automaton


## A New Goal for Learning

- The teacher answers queries according to the syntactic language of $M_{2}$
- Regular since it is given as an automaton


Membership Queries - $T\left(M_{2}\right)$
$w \notin T\left(M_{2}\right)$ NO !

$$
\begin{gathered}
w \in T\left(M_{2}\right) \wedge \\
M_{1} \| w \vDash P \\
Y E S!
\end{gathered}
$$

Teacher
Is $w \in L ?$


## AG rule with learning



## Repair



## AG rule with learning



## Assume Guarantee or Repair

- Repair by elimination of error traces
- Two types of repair
- Syntactic repair
- Semantic repair


## Assume Guarantee or Repair

## Syntactic repair-

 counterexample does not contain constraints

## Syntactic Repair

- Implemented 3 methods to removing the trace $\boldsymbol{t}$ :
- Exact remove exactly $\boldsymbol{t}$ from $\mathrm{M}_{2}$


## - Approximate

add an intermediate state and use it to direct some traces off the accepting state, including $\boldsymbol{t}$

- Aggressive
make the accepting state that $\boldsymbol{t}$ reaches not-accepting


## Assume Guarantee or Repair

## Semantic repair - <br> counterexample contains violated constraints of the specification



## Semantic Repair

- AGR returns a counterexample $\boldsymbol{t}$, for input $x_{1}=2^{63}$
- Goal: make $\boldsymbol{t}$ infeasible by adding a new constraint $\boldsymbol{\mathcal { C }}$ such that
- $\left(\varphi_{\mathrm{t}} \wedge \boldsymbol{C} \rightarrow\right.$ false $)$
- Applying abduction, quantifier elimination and simplification results in $\mathcal{C}=\left(x_{1}<2^{63}\right)$


## Result

## 1: while (true)

2: pass = readInput;
3: while (pass $\leq$ 999)
4: pass = readInput;
5: pass2 = encrypt(pass);
6: assume pass<2 ${ }^{63}$;


## AG rule with learning



## Termination

- In case $M_{1} \| M_{2} \vDash P$
- $M_{2}$ is a correct assumption for the AG rule
- $M_{2}$ is regular, therefore $L^{*}$ terminates
$\rightarrow$ In the case of verification, termination is guaranteed
$M_{1} \| \boldsymbol{M}_{2} \vDash P$ $M_{2} \vDash \boldsymbol{M}_{2}$
$M_{1} \| M_{2} \vDash P$
- In case $M_{1} \| M_{2} \neq P$
- Every iteration with an erroneous $M_{2}$ will result in a cex
$\rightarrow$ In the case of an error, progress is guaranteed


## Correctness and Termination

- Correctness of Repair
- All questions relate to language containment
- Repair only eliminates traces
- Incremental

- Previous answers to the learner's questions are still correct
- Can use the same table for $L^{*}$


## Comparing Repair Methods (logarithmic scale)


\#5 \#6 \#7 \#8 \#15 \#16 \#18 \#19 \#22


## AGR Summary

- Modular verification for communicating systems
- Adjusting automata learning to systems with data
- Iterative and incremental verification and repair to prove correctness of repaired system



## LEARNING SYMBOLIC AUTOMATA <br> Joint work with Dana Fisman and Sandra Zilles

## Symbolic Finite-State Automata (SFAs)

- Finite state automata
- Defined with respect to a Boolean algebra
- The transition relation is over predicates from the Boolean algebra



## Monotonic Algebras

- Predicates correspond to a total order over the domain elements
- $\llbracket \psi \rrbracket=\{d \mid a \leq d \leq b\}$
- Interval algebra over $\mathbb{N}, \mathbb{Z}, \mathbb{R}$



## Identification in the Limit using polynomial time and data $[\sigma 9,4$

- Passive learning (vs. active learning in L*)



## Identification in the Limit using polynomial time and data $[\sigma)^{2,4}$

- Passive learning (vs. active learning in $L^{*}$ )
- Given a set $S$ of labeled words, build an automaton that agrees with $S$



## Identification in the Limit using 

- Given an automaton $A$, build a characteristic sample $S$



## Identification in the Limit using 

- Given an automaton $A$, build a characteristic sample $S$
- For every sample $S^{\prime} \supseteq S$ that agrees with $A$, infer an equivalent automaton to $A$



## Identification in the Limit for DFAs ${ }_{[0092]}$

- Constructing a characteristic sample
- Every state is represented by an access word



## Identification in the Limit for DFAs ${ }_{[0092]}$

- Constructing a characteristic sample
- Every state is represented by an access word



## Identification in the Limit for DFAs ${ }_{[0092]}$

- Constructing a characteristic sample
- Every state is represented by an access word



## Identification in the Limit for DFAs ${ }_{\left[0 g_{23}\right]}$

- Constructing a characteristic sample
- Distinctive suffixes between states:
- If $\delta\left(q_{0}, w\right) \neq \delta\left(q_{0}, u\right)$
- there exists a suffix $z$ such that $w \cdot z \in L(A), u \cdot z \notin L(A)$
- Add $w \cdot z, u \cdot z$



## Identification in the Limit for DFAs ${ }_{\text {[og93] }}$

- Constructing a characteristic sample
- Representing the transition relation



## Identification in the Limit for DFAs ${ }_{\text {[og93] }}$

- Constructing a characteristic sample
- Representing the transition relation



## Identification in the Limit for DFAs ${ }_{[0092]}$

- Constructing a characteristic sample
- Representing the transition relation



## Identification in the Limit for DFAs ${ }_{[0092]}$

- Constructing a characteristic sample
- Representing the transition relation



## Identification in the Limit for DFAs <br> 

- Constructing a DFA

$$
\begin{aligned}
& \langle\epsilon, 0\rangle \\
& \langle a, 1\rangle \\
& \langle b, 0\rangle \\
& \langle a a, 0\rangle \\
& \langle a b, 1\rangle \\
& \langle a b a, 0\rangle \\
& \langle a b b, 1\rangle
\end{aligned}
$$

## Identification in the Limit for DFAs <br> 

- Constructing a DFA
- Prefix-tree automaton



## Identification in the Limit for DFAs <br> 

- Constructing a DFA
- Prefix-tree automaton
- Join states according to $S^{\prime}$
$\langle\epsilon, 0\rangle$
$\langle a, 1\rangle$
$\langle b, 0\rangle$
$\langle a a, 0\rangle$
$\langle a b, 1\rangle$
$\langle a b a, 0\rangle$
$\langle a b b, 1\rangle$



## Identification in the Limit for DFAs <br> 

- Constructing a DFA
- Prefix-tree automaton
- Join states according to $S^{\prime}$
$\langle\epsilon, 0\rangle$
$\langle a, 1\rangle$
$\langle b, 0\rangle$
$\langle a a, 0\rangle$
$\langle a b, 1\rangle$
$\langle a b a, 0\rangle$
$\langle a b b, 1\rangle$



## Identification in the Limit for DFAs <br> 

- Constructing a DFA
- Prefix-tree automaton
- Join states according to $S^{\prime}$
$\langle\epsilon, 0\rangle$
$\langle a, 1\rangle$
$\langle b, 0\rangle$
$\langle a a, 0\rangle$
$\langle a b, 1\rangle$
$\langle a b a, 0\rangle$
$\langle a b b, 1\rangle$



## Identification in the Limit for DFAs <br> 

- Constructing a DFA
- Prefix-tree automaton
- Join states according to $S^{\prime}$

$$
\begin{aligned}
& \langle\epsilon, 0\rangle \\
& \langle a, 1\rangle \\
& \langle b, 0\rangle \\
& \langle a a, 0\rangle \\
& \langle a b, 1\rangle \\
& \langle a b a, 0\rangle \\
& \langle a b b, 1\rangle
\end{aligned}
$$



## Identification in the Limit for DFAs <br> 

- Constructing a DFA
- Prefix-tree automaton
- Join states according to $S^{\prime}$



## Identification in the Limit for DFAs <br> 

- Constructing a DFA
- Prefix-tree automaton
- Join states according to $S^{\prime}$

$$
\begin{aligned}
& \langle\epsilon, 0\rangle \\
& \langle a, 1\rangle \\
& \langle b, 0\rangle \\
& \langle a a, 0\rangle \\
& \langle a b, 1\rangle \\
& \langle a b a, 0\rangle \\
& \langle a b b, 1\rangle
\end{aligned}
$$



## Identification in the Limit for DFAs <br> 

- Constructing a DFA
- Prefix-tree automaton
- Join states according to $S^{\prime}$


[^0]
## Identification in the Limit for SFAs

- Learn the SFA out of a set of concrete words
- Creating a set of concrete words
- concretize $\left(\left\langle\psi_{1}, \ldots, \psi_{n}\right\rangle\right)=\left\langle\Gamma_{1}, \ldots, \Gamma_{n}\right\rangle$
- concretize $([0,100),[100, \infty))=\langle\{0\},\{100\}\rangle$


Monotonic algebra!

## Identification in the Limit for SFAs

- Learn the SFA out of a set of concrete words
- Creating a set of concrete words
- concretize $\left(\left\langle\psi_{1}, \ldots, \psi_{n}\right\rangle\right)=\left\langle\Gamma_{1}, \ldots, \Gamma_{n}\right\rangle$
- concretize $([0,100),[100, \infty))=\langle\{0\},\{100\}\rangle$




## Identification in the Limit for SFAs

- Learn the SFA out of a set of concrete words
- Creating a set of concrete words



## Identification in the Limit for SFAs

- Learn the SFA out of a set of concrete words

- Construct an SFA
- generalize $\left(\left\langle\Gamma_{1}, \ldots, \Gamma_{n}\right\rangle\right)=\left\langle\psi_{1}, \ldots, \psi_{n}\right\rangle$
- generalize $(\{0\},\{100\})=\langle[0,100),[100, \infty)\rangle$

Monotonic
algebra!


## Identification in the Limit for SFAs

- Learn the SFA out of a set of concrete words
- Construct an SFA
- generalize $\left(\Gamma_{1}, \ldots, \Gamma_{n}\right)=\left\langle\psi_{1}, \ldots, \psi_{n}\right\rangle$
- generalize $(\{0\},\{100\})=\langle[0,100),[100, \infty)\rangle$




## Identification in the Limit for SFAs

- generalize
- $\Gamma_{1}=\{0,50,400\} \quad \Gamma_{2}=\{100,800\} \quad \Gamma_{3}=\{2048\}$

| 0 | 100 | 400 | 800 | 2048 |
| :--- | :--- | :--- | :--- | :--- |
| $[0,100)$ | $[100,400)$ | $[400,800)$ | $[800,2048)$ | $[2048, \infty)$ |

- generalize $\left(\left\langle\Gamma_{1}, \Gamma_{2}, \Gamma_{3}\right\rangle\right)=\langle[0,100) \vee[400,800), \quad[100,400) \vee[800,2048),[2048, \infty)\rangle$


## Identification in the Limit for SFAs

- Learn the SFA out of a set of concrete words
- Construct an SFA



## Identification in the Limit for SFAs

- Learn the SFA out of a set of concrete words
- Construct an SFA
- decontaminate $(\Sigma)=\Sigma^{\prime}$
- $\Sigma^{\prime} \subseteq \Sigma$ and contains exactly the alphabet of concretizations



## Identification in the Limit for SFAs

- Travers words by lexicographic order
- Add letters that are needed for access words and for transitions relation




## Identification in the Limit for SFAs

- Travers words by lexicographic order
- Add letters that are needed for access words and for transitions relation


Monotonic algebra!

## Identification in the Limit for SFAs

## 



## Necessary Condition

$$
\left\langle\psi_{1}, \ldots, \psi_{n}\right\rangle \quad \text { concretize }\left\langle\Gamma_{1}, \ldots, \Gamma_{n}\right\rangle
$$

and data

$$
\left\langle\varphi_{1}, \ldots, \varphi_{n}\right\rangle \quad \text { generalize }\left\langle\Delta_{1}, \ldots, \Delta_{n}\right\rangle
$$

## Necessary Condition

$$
\left\langle\psi_{1}, \ldots, \psi_{n}\right\rangle \longrightarrow \text { concretize }\left\langle\Gamma_{1}, \ldots, \Gamma_{n}\right\rangle
$$

Poly time
and Jaka
If $\llbracket \Delta_{i} \rrbracket \supseteq \llbracket \Gamma_{i} \rrbracket$
Then $\llbracket \varphi_{i} \rrbracket=\llbracket \psi_{i} \rrbracket$

## Necessary Condition

## Otherwise, we cannot learn

 outgoing transitions of a single state$\left\langle\psi_{1}, \ldots, \psi_{n}\right\rangle$ $\qquad$ concretize
$\left\langle\Gamma_{1}, \ldots, \Gamma_{n}\right\rangle$

$$
\begin{aligned}
& \text { If } \llbracket \Delta_{i} \rrbracket \supseteq \llbracket \Gamma_{i} \rrbracket \\
& \text { Then } \llbracket \varphi_{i} \rrbracket=\llbracket \psi_{i} \rrbracket
\end{aligned}
$$

## Propositional Algebra

- Predicates are defined over $\left\{p_{1}, \ldots, p_{k}\right\}$
- Examples: $p_{1} \vee p_{2}\left(p_{1} \wedge p_{2}\right) \vee p_{3}$
- Looking for efficient concretize and generalize


## Propositional Algebra

- Predicates are defined over $\left\{p_{1}, \ldots, p_{k}\right\}$
- Examples: $p_{1} \vee p_{2 \prime}\left(p_{1} \wedge p_{2}\right) \vee p_{3}$
- Looking for efficient concretize and generalize

No one to one
function from $\Upsilon$ to P
set of semantic Boolean functions over $k$ propositions

P
$|\mathrm{P}|<|\mathrm{Y}|$
set of concrete partitions of polynomial size in $k$

## Query Learning of SFAs

- L* - style learning of SFA
- Goal: learn an SFA over a Boolean algebra, while asking queries over concrete letters
- [AD18] suggest MAT* for learning SFAs


## Query Learning of SFAs

- Learnability of the underlying algebra is a necessary condition
- Membership


Teacher


## Query Learning of SFAs

- Learnability of the underlying algebra is a necessary condition
- Equivalence



## Query Learning of SFAs

- Learnability of the underlying algebra is a necessary condition
- Assume that we can learn SFA, then we can learn the algebra


Teacher


## Query Learning of SFAs

- Concise SFA over the propositional algebra cannot be polynomially learned using MO and EO
- The teacher can force the learner to ask $2^{k}-1$ queries
- Membership



## Query Learning of SFAs

- Concise SFA over the propositional algebra cannot be polynomially learned using MO and EO
- The teacher can force the learner to ask $2^{k}-1$ queries
- Equivalence



## Complexity of SFAs

- Usually, the size of DFA is measured by its number of states
- For SFAs, we need to consider:



## Complexity of SFAs

## Normalized SFA

- One transition between each pair of states
- Predicates labeling the transitions can be very complex


## Neat SFA

- Only basic transitions
- Predicates labeling transitions are simple
- Can cause an exponential blowup in the number of transitions


## Complexity of SFAs

- Converting to normalized
- Disjunction between all transition predicates


$$
\langle n, m, l\rangle
$$

## Complexity of SFAs

- Converting to neat
- Splitting into basic transitions, using DNF


$$
\left\langle n, m \cdot 2^{l}, l\right\rangle
$$

## Complexity of SFAs

- For monotonic algebras, transforming to DNF is polynomial in the size of the original formula
- $([0,100) \vee[200,500)) \wedge([0,300) \vee[400,600))=$

$$
([0,100) \wedge[0,300)) \vee([0,100) \wedge[400,600)) \vee
$$

$$
([200,500) \wedge[0,300)) \vee([200,500) \wedge[400,600))=
$$ $[0,100) \vee[200,300) \vee[400,500)$

- Then, over monotonic algebras, transforming to neat is polynomial


## Complexity of SFAs - Automata Operations

| Operation | $\langle\mathbf{n}, \mathbf{m}, \mathbf{l}\rangle$ |
| :---: | :---: |
| ```product construction }\mp@subsup{\mathcal{M}}{1}{},\mp@subsup{\mathcal{M}}{2}{ complementation of deterministic }\mp@subsup{\mathcal{M}}{1}{1 determinization of }\mp@subsup{\mathcal{M}}{1}{ minimization of }\mp@subsup{\mathcal{M}}{1}{``` | $\begin{gathered} \left\langle n_{1} \times n_{2}, m_{1} \times m_{2}, \operatorname{size}_{\wedge}^{\mathbb{P}}\left(l_{1}, l_{2}\right)\right\rangle \\ \left\langle n_{1}+1, m_{1}+1, \operatorname{size}_{\vee{ }^{m_{1}}}^{\mathbb{P}}\left(l_{1}\right)\right\rangle \\ \left\langle 2^{n_{1}}, 2^{m_{1}}, \operatorname{size}_{\wedge^{n_{1} \times m_{1}}}\left(l_{1}\right)\right\rangle^{2} \\ \left\langle n_{1}, m_{1}, \operatorname{size}_{\wedge^{m_{1}}}^{\mathbb{P}}\left(l_{1}\right)\right\rangle \end{gathered}$ |

Table 5.1: Analysis of standard automata procedures on SFAs.

## Complexity of SFAs - Decision Procedures

| Decision Procedures | Time Complexity |
| :---: | :---: |
| emptiness | linear in $n, m$ |
| emptiness + feasibility | $n \times m \times s a t^{\mathbb{P}}(l)$ |
| membership of $\gamma_{1} \cdots \gamma_{t} \in \mathbb{D}^{*}$ | $\sum_{i=1}^{t} \operatorname{sat}^{\mathbb{P}}\left(\operatorname{size}_{\wedge}^{\mathbb{P}}\left(l,\left\|\psi_{\gamma_{i}}\right\|\right)\right)^{3}$ |
| inclusion $\mathcal{M}_{1} \subseteq \mathcal{M}_{2}$ | $\left(\left(n_{1} \times n_{2}\right) \times\left(m_{1} \times m_{2}\right) \times s a t^{\mathbb{P}}\left(\operatorname{size}_{\wedge}^{\mathbb{P}}\left(l_{1}, l_{2}\right)\right)\right)$ |

Table 5.2: Analysis of times complexity of decision procedures for SFAs

## SFA Summary

- Identification in the limit of SFA
- Necessary and sufficient conditions
- Algorithm for identification of SFAs over monotonic algebras
- Necessary condition for query learning of SFAs
- SFAs over the propositional algebra are not efficiently learnable
- Complexity of automata algorithms in terms of $\langle n, m, l\rangle$


## Thank you! Questíons?




[^0]:    $\langle\epsilon, 0\rangle$
    $\langle a, 1\rangle$
    $\langle b, 0\rangle$ $\langle a a, 0\rangle$
    $\langle a b, 1\rangle$
    $\langle a b a, 0\rangle$
    $\langle a b b, 1\rangle$

