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Automata over Infinite Data Domains

• Model infinite-state system using a finite model

3

1: while (true)

2: pass = readInput;

3: while (pass ≤ 999) 

4:       pass = readInput;

5: pass2 = encrypt(pass);
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Learnability

5

1: while (true)

2: pass = readInput;

3: while (pass ≤ 999) 

4:       pass = readInput;

5: pass2 = encrypt(pass);

Learning symbolic automata 
(conditions for learning: L* and 
identification in the limit)

[Frenkel, Grumberg, Sheinvald 17, 19]                    [Frenkel, Grumberg, Pasareanu, Sheinvald 20]                                  [Fisman, Frenkel, Zilles] 



Learnability

6

1: while (true)

2: pass = readInput;

3: while (pass ≤ 999) 

4:       pass = readInput;

5: pass2 = encrypt(pass);

Learning symbolic automata 
(conditions for learning: L* and 
identification in the limit)

Adapting L* algorithm for 
communicating programs

[Frenkel, Grumberg, Sheinvald 17, 19]                    [Frenkel, Grumberg, Pasareanu, Sheinvald 20]                                  [Fisman, Frenkel, Zilles] 
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Applications in Program Verification and 
Repair

8

1: while (true)

2: pass = readInput;

3: while (pass ≤ 999) 

4:       pass = readInput;

5: pass2 = encrypt(pass);

Bounded model-checking 
algorithm

[Frenkel, Grumberg, Sheinvald 17, 19]                    [Frenkel, Grumberg, Pasareanu, Sheinvald 20]                                  [Fisman, Frenkel, Zilles] 



Applications in Program Verification and 
Repair
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1: while (true)

2: pass = readInput;

3: while (pass ≤ 999) 

4:       pass = readInput;

5: pass2 = encrypt(pass);

Compositional verification and 
repair algorithm

Bounded model-checking 
algorithm

[Frenkel, Grumberg, Sheinvald 17, 19]                    [Frenkel, Grumberg, Pasareanu, Sheinvald 20]                                  [Fisman, Frenkel, Zilles] 



MODEL CHECKING 
SYSTEMS OVER 
INFINITE DATA

Joint work with Orna Grumberg and Sarai Sheinvald 

@NFM 2017, @Journal of automated reasoning 2019
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Goal

•Develop a Model checking process for 
systems over infinite data domains 

•Using the automata-theoretic approach

11



Model checking

12

system

specification

YES! NO! + 
counter example



Model checking

3

system

specification

YES! NO! + 
counter example

Given as an 
LTL formula



Verification of Systems over Infinite Data 
Domains

14



Verification of Systems over Infinite Data 
Domains
• LTL cannot express the property

“every client is eventually active”
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Verification of Systems over Infinite Data 
Domains
• LTL cannot express the property

“every client is eventually active”

Variable LTL (VLTL) [GKS12]

• ∀𝑥: 𝐹 𝑎𝑐𝑡𝑖𝑣𝑒. 𝑥

• 𝐴𝑃 - finite set of (parameterized) propositions

• 𝑉 - finite set of quantified variables

16



∃∗VLTL [GKS12]

• VLTL with only existential quantifiers

• 𝐺 ∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥

• A possible satisfying computation

• We are interested in verifying universal properties, 
the negation that describes a bad behavior is existential 

𝑠𝑒𝑛𝑑. 1

𝑠𝑒𝑛𝑑. 1

𝑠𝑒𝑛𝑑. 4

𝑠𝑒𝑛𝑑. 3

𝑠𝑒𝑛𝑑. 9

𝑠𝑒𝑛𝑑. 7
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Model Checking - Infinite Data Domains

Program 
automaton

Non-Det
variable

Büchi 
automaton

Alternating 
variable

Büchi 
automaton

∃∗VLTL 
formula

Emptiness test

18

Formula automaton



Model Checking - Infinite Data Domains

Program 
automaton

Non-Det
variable

Büchi 
automaton

Alternating 
variable

Büchi 
automaton

∃∗VLTL 
formula

Emptiness test

19

Reactive systems,
Automata over 
infinite words



Model Checking - Infinite Data Domains

Program 
automaton

Non-Det
variable

Büchi 
automaton

Alternating 
variable

Büchi 
automaton

∃∗VLTL 
formula

Emptiness test

20

natural translation 
for LTL formulas

Easy emptiness test



Non-Deterministic  Variable Büchi Automata 
(NVBW) [GKS13]

• 𝐺 ∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥

• Alphabet is parameterized propositions 

• Ability to reset a variable and to assign it a new value

• As long as there is no reset - the value cannot be changed

𝑠𝑒𝑛𝑑. 1

𝑠𝑒𝑛𝑑. 1

𝑠𝑒𝑛𝑑. 4

𝑠𝑒𝑛𝑑. 3

𝑠𝑒𝑛𝑑. 9

𝑠𝑒𝑛𝑑. 7

21

𝑟𝑒𝑠𝑒𝑡(𝑥)

𝑠𝑒𝑛𝑑. 𝑥

𝑟𝑒𝑠𝑒𝑡(𝑥)

Useful for 
emptiness test



• 𝐺 ∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥

• Increasing gaps between 𝑠𝑒𝑛𝑑. 𝑥, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥.

• Not enough variables and states to remember all values

𝑠𝑒𝑛𝑑. 1 𝑠𝑒𝑛𝑑. 2
𝑟𝑒𝑐. 1

𝑠𝑒𝑛𝑑. 3 𝑠𝑒𝑛𝑑. 4
𝑟𝑒𝑐. 2

𝑠𝑒𝑛𝑑. 5 𝑠𝑒𝑛𝑑. 6
𝑟𝑒𝑐. 3

𝑠𝑒𝑛𝑑. 7 𝑠𝑒𝑛𝑑. 8
𝑟𝑒𝑐. 4

.  .  .

22

NVBW Cannot Express all ∃∗VLTL



Alternating Variable Büchi Automata (AVBW)

• 𝐺 (∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥)
𝑞0

𝑟𝑒𝑠𝑒𝑡(𝑥)

𝑞1

𝑠𝑒𝑛𝑑. 𝑥

𝑠𝑒𝑛𝑑. 𝑥

𝑟𝑒𝑐. 𝑥

𝑡𝑟𝑢𝑒

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)

23



• 𝐺 (∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥)

Easy construction 
from ∃∗ VLTL

24

Alternating Variable Büchi Automata (AVBW)

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)

𝑞1

𝑠𝑒𝑛𝑑. 𝑥

𝑠𝑒𝑛𝑑. 𝑥

𝑟𝑒𝑐. 𝑥

𝑡𝑟𝑢𝑒

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)



• 𝐺 (∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥)
𝑠𝑒𝑛𝑑. 1

𝑞0

𝑞1 𝑞0

𝑥 = 1 𝑥 = 1

25

Alternating Variable Büchi Automata (AVBW)

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)

𝑞1

𝑠𝑒𝑛𝑑. 𝑥

𝑠𝑒𝑛𝑑. 𝑥

𝑟𝑒𝑐. 𝑥

𝑡𝑟𝑢𝑒

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)



• 𝐺 (∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥)
𝑠𝑒𝑛𝑑. 1

𝑠𝑒𝑛𝑑. 2

𝑞0

𝑞1 𝑞0

𝑞0𝑞1𝑞1

𝑥 = 1

𝑥 = 2

𝑥 = 1

𝑥 = 2𝑥 = 1
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Alternating Variable Büchi Automata (AVBW)

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)

𝑞1

𝑠𝑒𝑛𝑑. 𝑥

𝑠𝑒𝑛𝑑. 𝑥

𝑟𝑒𝑐. 𝑥

𝑡𝑟𝑢𝑒

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)



• 𝐺 (∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥)
𝑠𝑒𝑛𝑑. 1

𝑠𝑒𝑛𝑑. 4
𝑟𝑒𝑐. 1

𝑠𝑒𝑛𝑑. 2

𝑥 = 2
𝑥 = 1

𝑞0

𝑞1 𝑞0

𝑞0𝑞1𝑞1

𝑡𝑟𝑢𝑒
𝑞1

𝑞0𝑞1

𝑥 = 1

𝑥 = 4

𝑥 = 2

𝑥 = 1

𝑥 = 2

𝑥 = 4

𝑥 = 1
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Alternating Variable Büchi Automata (AVBW)

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)

𝑞1

𝑠𝑒𝑛𝑑. 𝑥

𝑠𝑒𝑛𝑑. 𝑥

𝑟𝑒𝑐. 𝑥

𝑡𝑟𝑢𝑒

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)



VLTL to AVBWs

• Similar to [V95]

• Special care of resets

• 𝑋 = 𝑣𝑎𝑟𝑠 𝜑 ∪ 𝑥𝑝 𝑝 ∈ AP

• 𝑄 = 𝑠𝑢𝑏 𝜑

• Reset
• 𝑥𝑝 varaibles

• variables under ∃

• 𝑥 ≠ 𝑦 for ¬𝑎. 𝑥 ∈ 𝑠𝑢𝑏(𝜑)

28



Model Checking - Infinite Data Domains

Alternating 
variable

Büchi 
automaton

∃∗VLTL 
formula
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Model Checking - Infinite Data Domains

Non-Det
variable

Büchi 
automaton

Alternating 
variable

Büchi 
automaton

∃∗VLTL 
formula

Unlike the 
finite 

alphabet 
case!
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Model Checking - Infinite Data Domains

Program 
automaton

Non-Det
variable

Büchi 
automaton

Alternating 
variable

Büchi 
automaton

∃∗VLTL 
formula

?

Emptiness test

31



Model Checking - Infinite Data Domains

Alternating 
variable

Büchi 
automaton ?

Emptiness test

• Emptiness of AVBWs is undecidable

• Satisfiability problem of ∃∗VLTL formulas is undecidable [SW14]

• ∃∗VLTL ≡AVBW, thus
• Satisfiability problem ≡ emptiness problem

32



Solutions

“easy 
fragments”

Partial 
translation 
algorithm 

AVBW→NVBW

Bounded 
model 

checking

Reduction to 
an easy 

fragment

Model checking 
∃∗ VLTL

33



∃∗VLTL Formulas with a Direct 
Construction to NVBW
• PNF formulas    ∃𝑥: 𝐺 𝑠𝑒𝑛𝑑. 𝑥 𝑠𝑒𝑛𝑑. 7 𝜔

• 𝑋, 𝐹 formulas

• Quantifiers are at the beginning \ next to atomic 
propositions ∃𝑥1: 𝐺 𝑠𝑒𝑛𝑑. 𝑥1 ∧ 𝐺 ∃𝑥2: 𝑟𝑒𝑐. 𝑥2

“easy 
fragments”

34



Flattening 

• A formula with no negations has an equisatisfiable  formula in PNF

𝐺 (∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥)

∃𝑥: 𝐺 (𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥)

35

Reduction to 
an easy 

fragment

Always holds No negations



Translation Algorithm

• A partial algorithm for translation

• Based on the Miyano-Hayashi construction [MH84]

AND 

• Take care of variables, resets 

• Map variables of alternating automaton to variables of non-deterministic 
automaton 

Partial 
translation 
algorithm 

AVBW→NVBW

36

(𝑞0, ∅)

𝑞1, 𝑥 → 𝑧1
𝑞1, 𝑥 → 𝑧3

, 𝑞1, 𝑥 → 𝑧1

𝑟𝑒𝑠𝑒𝑡(𝑧2)



Alternating to Non-Deterministic [MH84]

• 𝐺 (𝑠𝑒𝑛𝑑 → 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒)

12

𝑞0

𝑞1𝑞0

𝑞0

𝑞0

𝑞1

𝑞1

true𝑞0

𝑞1𝑞0

𝑞1𝑞0 𝑞1

𝑞1

𝑠𝑒𝑛𝑑. 𝑥

𝑠𝑒𝑛𝑑. 𝑥

𝑟𝑒𝑐. 𝑥

𝑡𝑟𝑢𝑒

𝑞0



AVBW to NVBW
• 𝐺∃𝑥: 𝑎. 𝑥 ∧ 𝑋𝑋 𝑏. 𝑥

31

𝑎. 𝑧2

𝑎. 𝑧3,
𝑏. 𝑧1

𝒂. 𝒛𝟏, 𝑏. 𝑧2

𝒂. 𝒛𝟐,
𝒃. 𝒛𝟑

𝑎. 𝑧1

( (𝑞0, ∅) , ∅)

(𝑞0, ∅)

𝑞1, 𝑥 → 𝑧1
, 𝑞1, 𝑥 → 𝑧1

𝑟𝑒𝑠𝑒𝑡(𝑧2)

(𝑞0, ∅)

𝑞1, 𝑥 → 𝑧2
𝑞2, 𝑥 → 𝑧1

, (𝑞2, 𝑥 → 𝑧1)

𝑟𝑒𝑠𝑒𝑡(𝑧3)

(𝑞0, ∅)

𝑞1, 𝑥 → 𝑧3
𝑞2, 𝑥 → 𝑧2

, ∅

𝑟𝑒𝑠𝑒𝑡(𝑧1)

(𝑞0, ∅)

𝑞1, 𝑥 → 𝑧1
𝑞2, 𝑥 → 𝑧3

,
𝑞1, 𝑥 → 𝑧1
𝑞2, 𝑥 → 𝑧3

𝑟𝑒𝑠𝑒𝑡(𝑧2)

(𝑞0, ∅)

𝑞1, 𝑥 → 𝑧2
𝑞2, 𝑥 → 𝑧1

, (𝑞2, 𝑥 → 𝑧1)

𝑟𝑒𝑠𝑒𝑡(𝑧3)

𝑎. 𝑧3, 𝒃. 𝒛𝟏



Incompleteness

• The empty language

• Our algorithm does not halt

39



BMC Algorithm

• Based on the translation algorithm

• We are looking for a witness to non-emptiness

• Test emptiness with a partial NVBW 

• Might find “more interesting” witnesses as the algorithm 
continues

Bounded 
model 

checking

40

Partial 
NVBWs



VLTL Summary 

• Using alternating variable automata to model VLTL properties

• Translation algorithm from AVBWs to NVBWs

• Bounded model-checking procedure for ∃∗VLTL

• Easy fragments for model-checking

41



COMPOSITIONAL 
VERIFICATION AND 

REPAIR
Joint work with Orna Grumberg, Corina Pasareanu, and Sarai Sheinvald 

@TACAS 2020
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Model Checking 

system

specification

YES! NO! + 
counter example

43
Repair! 



Model Checking 

component

specification

YES! NO! + 
counter example

component

component

Number of states in the 
system model grows 
exponentially with the 
number of components 
in the system

44
Repair! 



Model Checking 

component

specification

YES! NO! + 
counter example

component

component

Number of states in the 
system model grows 
exponentially with the 
number of components 
in the system

Repair! 
45

State Explosion 
Problem



COMPOSITIONAL VERIFICATION 
AND REPAIR OF C-LIKE PROGRAMS

• Model checking and repair
algorithm for 
communicating systems 

• Exploit the partition of the 
system into components

46



Setting –
Communicating 

Systems

Assume-
Guarantee (AG) 

AG rule &  
Automata 
Learning

Repair & Results

47

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃



𝑀2

Communicating Systems

• C-like programs

• Each component is described as a control-flow graph (automaton)

• Alphabet: program statements & communication channels

• 𝐼𝑛? 𝑥1 – reads a value to 𝑥1 through channel 𝐼𝑛

• 𝑒𝑛𝑐! 𝑥1 – sends the value of 𝑥1 through channel 𝑒𝑛𝑐

48

1: while (true)

2: pass = readInput;

3: while (pass ≤ 999) 

4:       pass = readInput;

5: pass2 = encrypt(pass);



Example

Synchronization using read-write channels, Interleaving on all other alphabet

49

𝑀2𝑀1



Example

50

𝑀2𝑀1

Synchronization using read-write channels, Interleaving on all other alphabet



Example
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𝑀2𝑀1

𝑦1 ≔ 𝑥1

Synchronization using read-write channels, Interleaving on all other alphabet



Example

Synchronization using read-write channels, Interleaving on all other alphabet

52

𝑀2𝑀1
𝑥2 ≔ 𝑦1



Example

53

State Explosion 
Problem

||



Specifications

54

• Safety properties 

• Alphabet: 

• (Common) communication channels 

• Syntactic requirements: 
program behavior through time



Specifications

• Safety properties 

• Alphabet: 

• (Common) communication channels 

• Syntactic requirements: 
program behavior through time

• Constraints over local variables

• Semantic requirements:
• “the entered password is different 

from the encrypted password”

• “there is no overflow”
55



Setting –
Communicating 

Systems

Assume-
Guarantee (AG) 

AG rule &  
Automata 
Learning

Repair & Results

56

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃

Reasoning About the Smaller Components



Compositional Verification

• Inputs: 
• composite system 𝑀1║𝑀2

• property 𝑃

• Goal: check if 𝑀1║𝑀2 ⊨ 𝑃

• First attempt: “divide and conquer”
• Problem: usually impossible to verify each component separately

• Components are designed to satisfy requirements in specific contexts

𝑀1

𝑀2

⊨ 𝑃1

⊨ 𝑃2

57



Compositional Verification

• Assume-Guarantee (AG) paradigm [Pnueli, 1985]:
• assumptions represent component’s environment

• Under assumption 𝐴 on its environment, does the component guarantee 
the property?

𝑀1 ║ 𝐴 ⊨ 𝑃𝑀2

𝐴

58



AG Rule for Safety Properties

1. check if a component 𝑀1guarantees 𝑃 when it is a part of a system 
satisfying assumption 𝐴

𝑀1 ║ ⊨ 𝑃

𝐴

59

𝑀1|| 𝐴 ⊨ 𝑃



AG Rule for Safety Properties

1. check if a component 𝑀1guarantees 𝑃 when it is a part of a system 
satisfying assumption 𝐴

2. discharge assumption: show that the remaining component 𝑀2 satisfies 𝐴

𝐴𝑀2

𝐴

60

𝑀1|| 𝐴 ⊨ 𝑃

𝑀2 ⊨ 𝐴



AG Rule for Safety Properties

1. check if a component 𝑀1guarantees 𝑃 when it is a part of a system 
satisfying assumption 𝐴

2. discharge assumption: show that the remaining component 𝑀2 satisfies 𝐴

3. Conclude that 𝑀1|| 𝑀2 ⊨ 𝑃

𝑀1 ║ ⊨ 𝑃𝑀2

61

𝑀2 ⊨ 𝐴

𝑀1|| 𝐴 ⊨ 𝑃



AG Rule for Safety Properties

1. check if a component 𝑀1guarantees 𝑃 when it is a part of a system 
satisfying assumption 𝐴

2. discharge assumption: show that the remaining component 𝑀2 satisfies 𝐴

3. Conclude that 𝑀1|| 𝑀2 ⊨ 𝑃

𝑀1 ║ ⊨ 𝑃𝑀2
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𝑀2 ⊨ 𝐴

𝑀1|| 𝐴 ⊨ 𝑃

Can we 
automatically 
construct 𝐴? 



Setting –
Communicating 

Systems

Assume-
Guarantee (AG) 

AG rule &  
Automata 
Learning

Repair & Results
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𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃

Automatic Assumption Generation 



L∗ Algorithm for Learning Regular 
Languages [Angluin87]

• Learning assumptions for compositional verification [CGP03]

• Given a regular language 𝐿, we learn a DFA 𝐴 such that ℒ 𝐴 = 𝐿

64LearnerTeacher

𝐿



L∗ Algorithm for Learning Regular 
Languages [Angluin87]

• Learning assumptions for compositional verification [CGP03]

• Given a regular language 𝐿, we learn a DFA 𝐴 such that ℒ 𝐴 = 𝐿

• Membership queries

65

Is 𝑤 ∈ 𝐿?

LearnerTeacher

Yes / No
𝐿



L∗ Algorithm for Learning Regular 
Languages [Angluin87]

• Learning assumptions for compositional verification [CGP03]

• Given a regular language 𝐿, we learn a DFA 𝐴 such that ℒ 𝐴 = 𝐿

• Equivalence queries, for a candidate 𝐴𝑖

66LearnerTeacher

Is ℒ(𝐴𝑖) = 𝐿? Yes – Done!

No + 
cex  ∈ ℒ 𝐴𝑖 ΔL

𝐿



L∗ Algorithm for Learning Regular 
Languages [Angluin87]

• Learning assumptions for compositional verification [CGP03]

• Given a regular language 𝐿, we learn a DFA 𝐴 such that ℒ 𝐴 = 𝐿

• Equivalence queries, for a candidate 𝐴𝑖

• Try to use intermediate candidates 𝐴𝑖 as assumptions for AG rule

• But, the weakest assumption is not regular in our case 
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𝑀1|| 𝐴𝑖 ⊨ 𝑃
𝑀2 ⊨ 𝐴𝑖

𝑀1||𝑀2 ⊨ 𝑃

Weakest 
assumption



Weakest Assumption is not always regular

• By a way of contradiction

• 𝐴𝑤 is over 𝛼𝑀2 = {𝑥 ≔ 0, 𝑦 ≔ 0, 𝑥 ≔ 𝑥 + 1, 𝑦 ≔ 𝑦 + 1, 𝑠𝑦𝑛𝑐}

• Consider 𝐿 = 𝑥 ≔ 0 ⋅ 𝑦 ≔ 0 ⋅ 𝑥 ≔ 𝑥 + 1, 𝑦 ≔ 𝑦 + 1 ∗ ⋅ {𝑠𝑦𝑛𝑐}

68



A New Goal for Learning

• The teacher answers queries according to the syntactic language of 𝑀2

• Regular since it is given as an automaton 

69

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃

𝑀1|| 𝑴𝟐 ⊨ 𝑃
𝑀2 ⊨ 𝑴𝟐

𝑀1||𝑀2 ⊨ 𝑃



A New Goal for Learning

• The teacher answers queries according to the syntactic language of 𝑀2

• Regular since it is given as an automaton 

70

But I already know 𝑀2…

LearnerTeacher

You might find a 
much smaller 
assumption!

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃

𝑀1|| 𝑴𝟐 ⊨ 𝑃
𝑀2 ⊨ 𝑴𝟐

𝑀1||𝑀2 ⊨ 𝑃



Membership Queries - 𝑇(𝑀2)

71LearnerTeacher

Is 𝑤 ∈ 𝐿?
𝑤 ∉ 𝑇(𝑀2)

NO!

𝑤 ∈ 𝑇 𝑀2 ∧
𝑀1|| 𝑤 ⊨ 𝑃

YES!

𝑤 ∈ 𝑇 𝑀2 ∧
𝑀1|| 𝑤 ⊭ 𝑃

𝑤 is a real cex!

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃



Equivalence Queries - 𝑇(𝑀2)

72LearnerTeacher

Is ℒ 𝐴𝑖 = 𝐿?

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃

𝑀1||𝐴𝑖 ⊨ 𝑃

𝑀2 ⊆ 𝐴𝑖

YES! 𝑀1||𝐴𝑖 ⊭ 𝑃
𝑡 ∈ 𝐴𝑖: 𝑀1||𝑡 ⊭ 𝑃

𝑡 ∈ 𝑀2

𝑡 is a real cex!

𝑡 ∉ 𝑀2

NO! 
take 𝑡 off 𝐴𝑖+1

𝑀2 ⊈ 𝐴𝑖

𝑡 ∈ 𝑀2 ∖ 𝐴𝑖
NO!

add it to 𝐴𝑖+1



AG rule with learning
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Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai

2. M2 ⊆Ai



AG rule with learning
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Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai P is violated 
in M1 ║M2

2. M2 ⊆Ai



AG rule with learning

75

Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai false real error?
cex∈ M2?

P is violated 
in M1 ║M2

2. M2 ⊆Ai



AG rule with learning
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Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai

strengthen assumption

false Yes

No

real error?
cex∈ M2?

P is violated 
in M1 ║M2

2. M2 ⊆Ai



AG rule with learning
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Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai

strengthen assumption

false

true

Yes

No

real error?
cex∈ M2?

P is violated 
in M1 ║M2

2. M2 ⊆Ai



AG rule with learning
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Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai

strengthen assumption

false

true

true

Yes

No

P holds 
in M1 ║M2

real error?
cex∈ M2?

P is violated 
in M1 ║M2

2. M2 ⊆Ai



AG rule with learning

79

Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai

strengthen assumption

weaken assumption

false

true

true

Yes

No

P holds 
in M1 ║M2

real error?
cex∈ M2?

P is violated 
in M1 ║M2

2. M2 ⊆Ai

false



Repair

Setting –
Communicating 

Systems

Assume-
Guarantee (AG) 

AG rule &  
Automata 
Learning

Repair & Results
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𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃



AG rule with learning

82

Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai

strengthen assumption

weaken assumption

false

true

true

Yes

No

P holds 
in M1 ║M2

real error?
cex∈ M2?

P is violated 
in M1 ║M2

2. M2 ⊆Ai

false

Repair M2

Return to verification 
with the repaired M2 



Assume Guarantee or Repair

• Repair by elimination of error traces

• Two types of repair 

• Syntactic repair

• Semantic repair

83



Assume Guarantee or Repair

Syntactic repair –
counterexample does 
not contain constraints 

84



Syntactic Repair

• Implemented 3 methods to removing the trace 𝒕:
• Exact

remove exactly 𝒕 from M2

• Approximate
add an intermediate state and use it to direct some traces off the 
accepting state, including 𝒕

• Aggressive
make the accepting state that 𝒕 reaches not-accepting

85



Assume Guarantee or Repair

Semantic repair –
counterexample contains 
violated constraints of the 
specification

86

||



Semantic Repair

• AGR returns a counterexample 𝒕, for input 𝑥1 = 263

• Goal: make 𝒕 infeasible by adding a new constraint 𝓒 such that

• (t 𝓒 false)

• Applying abduction, quantifier elimination and simplification results in 
𝓒 = (𝑥1 < 263)

87



Result

88

1: while (true)

2: pass = readInput;

3: while (pass ≤ 999) 

4:       pass = readInput;

5: pass2 = encrypt(pass);

6: assume pass<263;



AG rule with learning

89

Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai

strengthen assumption

weaken assumption

false

true

true

Yes

No

P holds 
in M1 ║M2

real error?
cex∈ M2?

P is violated 
in M1 ║M2

2. M2 ⊆Ai

false

Repair M2

Return to verification 
with the repaired M2 

Again, where 
𝑴𝟐:= Repaired 𝑴𝟐



Termination
• In case 𝑀1||𝑀2 ⊨ 𝑃

• 𝑀2 is a correct assumption for the AG rule

• 𝑀2 is regular, therefore 𝐿∗ terminates

→ In the case of verification, termination is guaranteed

• In case 𝑀1||𝑀2 ⊭ 𝑃

• Every iteration with an erroneous 𝑀2 will result in a cex

→ In the case of an error, progress is guaranteed

90

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃

𝑀1|| 𝑴𝟐 ⊨ 𝑃
𝑀2 ⊨ 𝑴𝟐

𝑀1||𝑀2 ⊨ 𝑃



Correctness and Termination

• Correctness of Repair

• All questions relate to language containment

• Repair only eliminates traces

• Incremental

• Previous answers to the learner’s questions are still correct

• Can use the same table for 𝐿∗

91

Partial NVBWs

𝑀2

𝑀2
1𝑀2

2

𝑃



Comparing Repair Methods (logarithmic scale)

92#15, #16, #18, #19 apply also abduction



AGR Summary 

• Modular verification for 
communicating systems

• Adjusting automata learning 
to systems with data 

• Iterative and incremental 
verification and repair to prove 
correctness of repaired system

93



LEARNING SYMBOLIC 
AUTOMATA

Joint work with Dana Fisman and Sandra Zilles
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Symbolic Finite-State Automata (SFAs)

• Finite state automata

• Defined with respect to a Boolean algebra

• The transition relation is over predicates from the Boolean algebra

95



Monotonic Algebras

• Predicates correspond to a total order over the domain elements

• 𝜓 = { 𝑑 | 𝑎 ≤ 𝑑 ≤ 𝑏 }

• Interval algebra over ℕ, ℤ,ℝ

96



Identification in the Limit using 
polynomial time and data [G78, dlH97]

• Passive learning (vs. active learning in L∗)

97

𝑤1, 0
𝑤2, 1

𝑤𝑛, 0

…

𝑞0

𝑤1

𝑤2

𝑤𝑛

…



Identification in the Limit using 
polynomial time and data [G78, dlH97]

• Passive learning (vs. active learning in L∗)

• Given a set 𝑆 of labeled words, build an automaton that agrees with 𝑆

98

𝑤1, 0
𝑤2, 1

𝑤𝑛, 0

…

𝑞0

𝑤1

𝑤2

𝑤𝑛

…

In Poly time



Identification in the Limit using 
polynomial time and data [G78, dlH97]

• Given an automaton 𝐴, build a characteristic sample 𝑆

99

𝑤1, 0
𝑤2, 1

𝑤𝑛, 0
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𝑞0
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Identification in the Limit using 
polynomial time and data [G78, dlH97]

• Given an automaton 𝐴, build a characteristic sample 𝑆

• For every sample 𝑆′ ⊇ 𝑆 that agrees with 𝐴, infer an equivalent automaton to 𝐴

100

𝑤1, 0
𝑤2, 1

𝑤𝑛, 0

…

𝑞0

𝑤1

𝑤2

𝑤𝑛

…

In Poly time



Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Every state is represented by an access word

101

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏



Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Every state is represented by an access word

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏

102

𝜖, 0



Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Every state is represented by an access word
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𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏
𝜖, 0
𝑎, 1



Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Distinctive suffixes between states:
• If 𝛿 𝑞0, 𝑤 ≠ 𝛿 𝑞0, 𝑢

• there exists a suffix 𝑧 such that 𝑤 ⋅ 𝑧 ∈ 𝐿 𝐴 , 𝑢 ⋅ 𝑧 ∉ 𝐿(𝐴)

• Add 𝑤 ⋅ 𝑧, 𝑢 ⋅ 𝑧

104

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏
𝜖, 0
𝑎, 1



Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Representing the transition relation

105
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Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Representing the transition relation

106

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏
𝜖, 0
𝑎, 1
𝑏, 0



Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Representing the transition relation
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Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Representing the transition relation
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Identification in the Limit for DFAs [OG92]

• Constructing a DFA
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Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton
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Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton

• Join states according to 𝑆′
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Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton

• Join states according to 𝑆′
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Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton

• Join states according to 𝑆′
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Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton

• Join states according to 𝑆′
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Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton

• Join states according to 𝑆′
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Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton

• Join states according to 𝑆′
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Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton

• Join states according to 𝑆′

117

𝜖, 0
𝑎, 1
𝑏, 0
𝑎𝑎, 0
𝑎𝑏, 1
𝑎𝑏𝑎, 0
𝑎𝑏𝑏, 1

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏

𝑞0

𝑞0𝑞1

𝑎

𝑏

𝑏

𝑎



Identification in the Limit for SFAs

• Learn the SFA out of a set of concrete words

• Creating a set of concrete words

• concretize 𝜓1, … , 𝜓𝑛 = Γ1, … , Γ𝑛

• concretize 0,100 , [100,∞) = {0}, {100}
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Identification in the Limit for SFAs

• Learn the SFA out of a set of concrete words

• Creating a set of concrete words

• concretize 𝜓1, … , 𝜓𝑛 = Γ1, … , Γ𝑛

• concretize 0,100 , [100,∞) = {0}, {100}
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Identification in the Limit for SFAs

• Learn the SFA out of a set of concrete words

• Creating a set of concrete words
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𝑞0 𝑞1

100

𝑞1

0

100

0
𝜖, 0

100, 1
0, 0

100 ⋅ 100, 0
100 ⋅ 0, 1



Identification in the Limit for SFAs

• Learn the SFA out of a set of concrete words

• Construct an SFA

• generalize Γ1, … , Γ𝑛 = 𝜓1, … , 𝜓𝑛

• generalize 0 , {100} = 0,100 , [100,∞)
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Identification in the Limit for SFAs

• Learn the SFA out of a set of concrete words

• Construct an SFA

• generalize Γ1, … , Γ𝑛 = 𝜓1, … , 𝜓𝑛

• generalize 0 , {100} = 0,100 , [100,∞)
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𝑞0 𝑞1

[100,∞)

𝑞1

0, 100

[100,∞)

0, 100

𝑞0 𝑞1

100

𝑞1

0

100

0



Identification in the Limit for SFAs

• generalize

• Γ1 = {0, 50, 400} Γ2 = {100, 800} Γ3 = {2048}

• generalize Γ1, Γ2, Γ3 = 0,100 ∨ 400,800 , 100,400 ∨ 800,2048 , [2048,∞)
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0 100 400 800 2048

[0,100) [100, 400) [400,800) [800, 2048) [2048,∞)



Identification in the Limit for SFAs

• Learn the SFA out of a set of concrete words

• Construct an SFA
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𝑞0 𝑞1

100

𝑞1

0

100

0

𝜖, 0
100, 1
0, 0

100 ⋅ 100, 0
100 ⋅ 0, 1

100 ⋅ 0 ⋅ 0, 1



Identification in the Limit for SFAs

• Learn the SFA out of a set of concrete words

• Construct an SFA

• decontaminate Σ = Σ′

• Σ′ ⊆ Σ and contains exactly the alphabet of concretizations
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𝜖, 0
100, 1
0, 0

100 ⋅ 100, 0
100 ⋅ 0, 1

100 ⋅ 0 ⋅ 0, 1
𝟏𝟓𝟎, 𝟏



• Travers words by lexicographic order 

• Add letters that are needed for access words and for transitions relation

𝜖, 0
100, 1
0, 0

100 ⋅ 100, 0
100 ⋅ 0, 1

100 ⋅ 0 ⋅ 0, 1
𝟏𝟓𝟎, 𝟏

Identification in the Limit for SFAs
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𝑞0

0

100, 150



• Travers words by lexicographic order 

• Add letters that are needed for access words and for transitions relation

𝜖, 0
100, 1
0, 0

100 ⋅ 100, 0
100 ⋅ 0, 1

100 ⋅ 0 ⋅ 0, 1
𝟏𝟓𝟎, 𝟏

Identification in the Limit for SFAs
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𝑞0

0

100

Monotonic 
algebra!



Identification in the Limit for SFAs
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DFA 𝐷𝐴

𝑞0 𝑞1

[100,∞)

𝑞1

0, 100

[100,∞)

0, 100

SFA 𝐴

concretize Sample 
𝑆𝐴

Black box 
characteristic 
sample for DFAs

Sample 
S ⊇ 𝑆𝐴

DFA 𝐷𝑠′ Sample
S ⊇ S′ ⊇ 𝑆𝐴

generalize Black box 
infer a DFA

decontaminate

SFA 𝐴𝑆′



Necessary Condition 
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concretize

generalize

𝜓1, … , 𝜓𝑛 Γ1, … , Γ𝑛

𝜑1, … , 𝜑𝑛 Δ1, … , Δ𝑛

Poly time 

and data



Necessary Condition 
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concretize

generalize

𝜓1, … , 𝜓𝑛 Γ1, … , Γ𝑛

𝜑1, … , 𝜑𝑛 Δ1, … , Δ𝑛

Poly time 

and data

If   Δ𝑖 ⊇ Γ𝑖

Then 𝜑𝑖 = 𝜓𝑖



Necessary Condition 
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concretize

generalize

𝜓1, … , 𝜓𝑛 Γ1, … , Γ𝑛

𝜑1, … , 𝜑𝑛 Δ1, … , Δ𝑛

Poly time 

and data

If   Δ𝑖 ⊇ Γ𝑖

Then 𝜑𝑖 = 𝜓𝑖

Otherwise, we cannot learn 
outgoing transitions of a single state 

𝑞0

[0,100)

[100,∞)



Propositional Algebra

• Predicates are defined over 𝑝1, … , 𝑝𝑘

• Examples: 𝑝1 ∨ 𝑝2, 𝑝1 ∧ 𝑝2 ∨ 𝑝3

• Looking for efficient concretize and generalize

132



Propositional Algebra

• Predicates are defined over 𝑝1, … , 𝑝𝑘

• Examples: 𝑝1 ∨ 𝑝2, 𝑝1 ∧ 𝑝2 ∨ 𝑝3

• Looking for efficient concretize and generalize
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Υ
set of semantic Boolean 

functions over 𝑘 propositions 

Υ = 22
𝑘

Every function defines a 
set of sets of propositions 

satisfying the function 

Ρ
set of concrete partitions 

of polynomial size in k

Ρ < |Υ|

No one to one 
function from Υ

to Ρ



Query Learning of SFAs

• L∗ - style learning of SFA

• Goal: learn an SFA over a Boolean algebra, while asking queries over concrete
letters 

• [AD18] suggest MAT∗ for learning SFAs
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Query Learning of SFAs

• Learnability of the underlying algebra is a necessary condition

• Membership
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Is 𝑎 ∈ 𝜑 ? 

LearnerTeacher

Yes / No
𝜑



Query Learning of SFAs

• Learnability of the underlying algebra is a necessary condition

• Equivalence
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Is 𝜓 = 𝜑 ? 

LearnerTeacher

Yes / 
No + cex

𝜑



Query Learning of SFAs

• Learnability of the underlying algebra is a necessary condition

• Assume that we can learn SFA, then we can learn the algebra 

137LearnerTeacher

𝜑
𝑞0

𝜑

¬𝜑



Query Learning of SFAs

• Concise SFA over the propositional algebra cannot be polynomially learned using 
MQ and EQ

• The teacher can force the learner to ask 2𝑘 − 1 queries  

• Membership

138LearnerTeacher

Is 0,1,0, … , 1
∈ 𝜑 ? 

No



Query Learning of SFAs

• Concise SFA over the propositional algebra cannot be polynomially learned using 
MQ and EQ

• The teacher can force the learner to ask 2𝑘 − 1 queries

• Equivalence   

139LearnerTeacher

Is 𝜓 = 𝜑 ? 
No
+

ത𝑏 ∉ 𝜓



Complexity of SFAs 

• Usually, the size of DFA is measured by its number of states

• For SFAs, we need to consider:

𝑛,𝑚, 𝑙

140

number of states out-degree size of the most complex predicate



Complexity of SFAs 

Normalized SFA

• One transition between each pair of 
states

• Predicates labeling the transitions 
can be very complex

Neat SFA

• Only basic transitions

• Predicates labeling transitions are 
simple

• Can cause an exponential blowup in 
the number of transitions 

141



Complexity of SFAs 

• Converting to normalized

• Disjunction between all transition predicates 

142

𝑝 𝑞

𝜓1

𝜓2

𝜓3

𝑝 𝑞
𝜓1 ∨ 𝜓2 ∨ 𝜓3

𝑛,𝑚, 𝑙

𝑛,𝑚,𝑚 ⋅ 𝑙



Complexity of SFAs 

• Converting to neat

• Splitting into basic transitions, using DNF
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𝑝 𝑞

𝑝1 ∨ 𝑝3
∧ (𝑝2 ∨ 𝑝4)

𝑝 𝑞

𝑛,𝑚, 𝑙

𝑛,𝑚 ⋅ 2𝑙 , 𝑙

𝑝1 ∧ 𝑝2 ∨
𝑝1 ∧ 𝑝4 ∨
𝑝3 ∧ 𝑝2 ∨
(𝑝3 ∧ 𝑝4)

𝑝1 ∧ 𝑝2

𝑝1 ∧ 𝑝4

𝑝3 ∧ 𝑝2

𝑝3 ∧ 𝑝4



Complexity of SFAs 

• For monotonic algebras, transforming to DNF is polynomial in the size of the 
original formula

• [0, 100) ∨ [200, 500) ∧ 0, 300 ∨ 400, 600 =
0, 100 ∧ 0, 300 ∨ 0, 100 ∧ 400, 600 ∨
200, 500 ∧ 0, 300 ∨ 200, 500 ∧ 400, 600 =
0, 100 ∨ 200, 300 ∨ 400, 500

• Then, over monotonic algebras, transforming to neat is polynomial
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Complexity of SFAs – Automata Operations
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Complexity of SFAs – Decision Procedures
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SFA Summary

• Identification in the limit of SFA
• Necessary and sufficient conditions

• Algorithm for identification of SFAs over monotonic algebras

• Necessary condition for query learning of SFAs
• SFAs over the propositional algebra are not efficiently learnable

• Complexity of automata algorithms in terms of 
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1: while (true)

2: pass = readInput;

3: while (pass ≤ 999) 

4:       pass = readInput;

5: pass2 = encrypt(pass);

Thank you! 

Questions?  


