AUTOMATA OVER INFINITE DATA DOMAINS: LEARNABILITY AND APPLICATIONS IN PROGRAM VERIFICATION AND REPAIR

Hadar Frenkel

Advisors: Orna Grumberg & Sarai Sheinvald

AUTOMATA OVER INFINITE DATA DOMAINS: LEARNABILITY AND APPLICATIONS IN PROGRAM VERIFICATION AND REPAIR

Hadar Frenkel

Advisors: Orna Grumberg & Sarai Sheinvald

Automata over Infinite Data Domains

• Model infinite-state system using a finite model

1: while (true)
2: pass = readInput;
3: while (pass ≤ 999)
4: pass = readInput;
5: pass2 = encrypt(pass);

AUTOMATA OVER INFINITE DATA DOMAINS: LEARNABILITY AND APPLICATIONS IN PROGRAM VERIFICATION AND REPAIR

Hadar Frenkel

Advisors: Orna Grumberg & Sarai Sheinvald

Learnability

1: while (true)
2: pass = readInput;
3: while (pass ≤ 999)
4: pass = readInput;
5: pass2 = encrypt(pass);

Learning symbolic automata (conditions for learning: L* and identification in the limit)

Learnability

Adapting L* algorithm for communicating programs

[Frenkel, Grumberg, Pasareanu, Sheinvald 20]

Learning symbolic automata (conditions for learning: L* and identification in the limit)

AUTOMATA OVER INFINITE DATA DOMAINS: LEARNABILITY AND APPLICATIONS IN PROGRAM VERIFICATION AND REPAIR

Hadar Frenkel

Advisors: Orna Grumberg & Sarai Sheinvald

Applications in Program Verification and Repair

Bounded model-checking algorithm

1: while (true)
2: pass = readInput;
3: while (pass ≤ 999)
4: pass = readInput;
5: pass2 = encrypt(pass);

[Frenkel, Grumberg, Pasareanu, Sheinvald 20]

Applications in Program Verification and Repair

Bounded model-checking algorithm

Compositional verification and repair algorithm

[Frenkel, Grumberg, Pasareanu, Sheinvald 20]

MODEL CHECKING SYSTEMS OVER INFINITE DATA

Joint work with Orna Grumberg and Sarai Sheinvald

@NFM 2017, @Journal of automated reasoning 2019

Goal

 Develop a Model checking process for systems over infinite data domains

Using the automata-theoretic approach

Verification of Systems over Infinite Data Domains

Verification of Systems over Infinite Data Domains

• LTL cannot express the property "every client is eventually active"

Verification of Systems over Infinite Data Domains

• LTL cannot express the property "every client is eventually active"

Variable LTL (VLTL) [GKS12]

- $\forall x: F active. x$
- AP finite set of (parameterized) propositions
- V finite set of quantified variables

H*VLTL [GKS12]

- VLTL with only existential quantifiers
- $G \exists x: send. x$
- A possible satisfying computation
- We are interested in verifying universal properties, the negation that describes a bad behavior is existential

Non-Deterministic Variable Büchi Automata (NVBW) [GKS13]

- $G \exists x: send. x$
- Alphabet is parameterized propositions
- Ability to reset a variable and to assign it a new value
- As long as there is no reset the value cannot be changed

NVBW Cannot Express all 3*VLTL

• $G (\exists x: send. x \land XF receive. x)$

• Increasing gaps between *send*. *x*, *receive*. *x*.

• Not enough variables and states to remember all values

• $G (\exists x: send. x \land XF receive. x)$

• $G (\exists x: send. x \land XF receive. x)$

VLTL to AVBWs

- Similar to [V95]
- Special care of resets
- $X = vars(\varphi) \cup \{x_p | p \in AP\}$
- $Q = sub(\varphi)$
- Reset
 - *x*_{*p*} varaibles
 - variables under 3
- $x \neq y$ for $\neg a. x \in sub(\varphi)$

- $-\delta(a.x, A) = true \text{ if } a.x \in A \text{ and } \delta(a.x, A) = false, \text{ otherwise.}$
- $\delta(\neg a.x, A) = \neg \delta(a.x, A).^4$
- $\delta(\eta \wedge \psi, A) = \delta(\eta, A) \wedge \delta(\psi, A).$
- $\ \delta(\eta \lor \psi, A) = \delta(\eta, A) \lor \delta(\psi, A)$
- $\ \delta(\mathsf{X}\,\eta,A) = \eta$
- $\ \delta(\eta \, \mathsf{U} \, \psi, A) = \delta(\psi, A) \lor (\delta(\eta, A) \land \eta \, \mathsf{U} \, \psi)$
- $\ \delta(\eta \, \mathsf{V} \, \psi, A) = \delta(\eta \wedge \psi, A) \vee (\delta(\psi, A) \wedge \eta \, \mathsf{V} \, \psi)$
- $\ \delta(\exists x\eta, A) = \delta(\eta, A)$

- Emptiness of AVBWs is **undecidable**
- Satisfiability problem of \exists *VLTL formulas is undecidable [SW14]
- \exists^* VLTL \equiv AVBW, thus
 - Satisfiability problem ≡ emptiness problem

Solutions

3*VLTL Formulas with a Direct Construction to NVBW

- PNF formulas $\exists x: G \text{ send. } x \quad (send. 7)^{\omega}$
- X, F formulas
- Quantifiers are at the beginning \ next to atomic propositions $\exists x_1: G \text{ send. } x_1 \land G \exists x_2: rec. x_2$

"easy fragments"

Flattening

Reduction to an easy fragment

• A formula with no negations has an equisatisfiable formula in PNF

Translation Algorithm

Partial translation algorithm AVBW→NVBW

- A partial algorithm for translation
- Based on the Miyano-Hayashi construction [MH84]

AND

- Take care of variables, resets
- Map variables of alternating automaton to variables of non-deterministic automaton

$$\begin{pmatrix} (q_0, \emptyset) \\ (q_1, x \to z_1) \\ (q_1, x \to z_3) \end{pmatrix}, \{(q_1, x \to z_1)\} \\ reset(z_2)$$

Alternating to Non-Deterministic [MH84]

• G (send $\rightarrow XF$ receive)

AVBW to NVBW

• $G \exists x: a. x \land XX b. x$

Incompleteness

- The empty language
- Our algorithm does not halt

BMC Algorithm

Bounded model checking

- Based on the translation algorithm
- We are looking for a *witness* to non-emptiness
- Test emptiness with a partial NVBW
- Might find "more interesting" witnesses as the algorithm continues

VLTL Summary

- Using alternating variable automata to model VLTL properties
- Translation algorithm from AVBWs to NVBWs
- Bounded model-checking procedure for \exists^*VLTL
- Easy fragments for model-checking

COMPOSITIONAL VERIFICATION AND REPAIR

Joint work with Orna Grumberg, Corina Pasareanu, and Sarai Sheinvald

@TACAS 2020

State Explosion Problem

cification

Repair!

Number of states in the system model grovs exponentially with the number of components in the system

CO

ent

Model Checking

nt

ES!

COMPOSITIONAL VERIFICATION AND REPAIR OF C-LIKE PROGRAMS

- Model checking and repair algorithm for communicating systems
- Exploit the partition of the system into components

Communicating Systems

- C-like programs
- Each component is described as a control-flow graph (automaton)
 - Alphabet: program statements & communication channels
- $In? x_1$ reads a value to x_1 through channel In
- $enc! x_1 sends$ the value of x_1 through channel enc
- 1: while (true)
 2: pass = readInput;
 3: while (pass ≤ 999)
- 4: pass = readInput;
- 5: pass2 = encrypt(pass);

Specifications

- Safety properties
- Alphabet:
- (Common) communication channels
- Syntactic requirements: program behavior through time

Specifications

- Safety properties
- Alphabet:
- (Common) communication channels
- Syntactic requirements: program behavior through time
- Constraints over local variables
- Semantic requirements:
 - "the entered password is different from the encrypted password"
 - "there is no overflow"

Reasoning About the Smaller Components

Compositional Verification

- Inputs:
 - composite system $M_1 \parallel M_2$
 - property *P*
- Goal: check if $M_1 \parallel M_2 \vDash P$

- First attempt: "divide and conquer"
 - Problem: usually impossible to verify each component separately
 - Components are designed to satisfy requirements in specific contexts

Compositional Verification

- Assume-Guarantee (AG) paradigm [Pnueli, 1985]:
 - <u>assumptions</u> represent component's environment
- Under assumption *A* on its environment, does the component guarantee the property?

1. check if a component M_1 guarantees P when it is a part of a system satisfying assumption A $M_1 \parallel A \models P$

- 1. check if a component M_1 guarantees P when it is a part of a system satisfying assumption A $M_1 \parallel A \models P$
- 2. **discharge** assumption: show that the remaining component M_2 satisfies A

$$M_2 \vDash A$$

- 1. check if a component M_1 guarantees P when it is a part of a system satisfying assumption A $M_1 \parallel A \models P$
- 2. discharge assumption: show that the remaining component M₂ satisfies A
- 3. Conclude that $M_1 \parallel M_2 \models P$

$$M_2 \vDash A$$

$$M_1 \parallel M_2 \models P$$

- 1. check if a component M_1 guarantees P when it is a part of a system satisfying assumption A $M_1 \parallel A \models P$
- 2. discharge assumption: show that the remaining component M₂ satisfies A
- 3. Conclude that $M_1 \parallel M_2 \models P$

$$M_1 \parallel M_2 \models P$$

$$M_2 \vDash A$$

Can we automatically construct A?

Automatic Assumption Generation

- Learning assumptions for compositional verification [CGP03]
- Given a regular language L, we learn a DFA A such that $\mathcal{L}(A) = L$

- Learning assumptions for compositional verification [CGP03]
- Given a regular language L, we learn a DFA A such that $\mathcal{L}(A) = L$
- Membership queries

- Learning assumptions for compositional verification [CGP03]
- Given a regular language L, we learn a DFA A such that $\mathcal{L}(A) = L$
- Equivalence queries, for a candidate A_i

- Learning assumptions for compositional verification [CGP03]
- Given a regular language L, we learn a DFA A such that $\mathcal{L}(A) = L$
- Equivalence queries, for a candidate A_i
- Try to use intermediate candidates A_i as assumptions for AG rule
- But, the weakest assumption is not regular in our case

Weakest Assumption is not always regular

• By a way of contradiction

• A_w is over $\alpha M_2 = \{x \coloneqq 0, y \coloneqq 0, x \coloneqq x + 1, y \coloneqq y + 1, sync\}$

• Consider $L = \{x \coloneqq 0\} \cdot \{y \coloneqq 0\} \cdot \{x \coloneqq x + 1, y \coloneqq y + 1\}^* \cdot \{sync\}$

A New Goal for Learning

 $M_1 || \mathbf{M}_2 \models P$ $M_2 \models \mathbf{M}_2$ $M_1 || M_2 \models P$

- The teacher answers queries according to the *syntactic language* of M₂
- Regular since it is given as an automaton

A New Goal for Learning

 $M_2 \models M_2$ $M_1 || M_2 \models P$

 $M_1 \parallel M_2 \vDash P$

- The teacher answers queries according to the *syntactic language* of M₂
- Regular since it is given as an automaton

Membership Queries - $T(M_2)$

 $M_1 \parallel A \vDash P$ $M_2 \vDash A$ $M_1 || M_2 \models P$ Is $w \in L$?

 $w \notin T(M_2)$ NO! $w \in T(M_2) \land$ $M_1 || w \models P$ YES! $w \in T(M_2) \land$ $M_1 \parallel w \not\models P$ w is a real cex! Teacher

Learner 71

Return to verification with the repaired M₂

Assume Guarantee or Repair

• Repair by elimination of error traces

- Two types of repair
 - Syntactic repair
 - Semantic repair

Assume Guarantee or Repair

Syntactic repair – counterexample does not contain constraints

Syntactic Repair

- Implemented 3 methods to removing the trace *t*:
 - Exact
 - remove exactly \boldsymbol{t} from M₂
 - Approximate

add an intermediate state and use it to direct some traces off the accepting state, including *t*

Aggressive

make the accepting state that *t* reaches not-accepting

Assume Guarantee or Repair

Semantic repair – counterexample contains violated constraints of the specification

Semantic Repair

• AGR returns a counterexample t, for input $x_1 = 2^{63}$

- $In?x_{1} \qquad In?x_{1} \qquad (getEnc?x_{2}, getEnc!y_{1})$ $x_{2} < 2^{64} \qquad (x_{1} \neq x_{2})$ $x_{2} \geq 2^{64} \qquad x_{1} = x_{2}$
- Goal: make *t* infeasible by adding a new constraint *C* such that
 - $(\phi_t \wedge \mathcal{C} \rightarrow false)$
- Applying abduction, quantifier elimination and simplification results in $C = (x_1 < 2^{63})$

Result

1: while (true)
2: pass = readInput;
3: while (pass ≤ 999)
4: pass = readInput;
5: pass2 = encrypt(pass);
6: assume pass<2⁶³;

Return to verification with the repaired M₂

Termination

- In case $M_1 || M_2 \models P$
- M_2 is a correct assumption for the AG rule
- M_2 is regular, therefore L^* terminates
- \rightarrow In the case of *verification*, termination is guaranteed

 $M_1 || \mathbf{M}_2 \vDash P$ $M_2 \vDash \mathbf{M}_2$ $M_1 || M_2 \vDash P$

- In case $M_1 || M_2 \not\models P$
- Every iteration with an erroneous M_2 will result in a cex
- \rightarrow In the case of an error, *progress* is guaranteed

Correctness and Termination

- Correctness of Repair
- All questions relate to language containment
- Repair only eliminates traces

- Incremental
- Previous answers to the learner's questions are still correct
- Can use the same table for L*

Comparing Repair Methods (logarithmic scale)

#15, #16, #18, #19 apply also abduction

AGR Summary

- Modular verification for communicating systems
- Adjusting automata learning to systems with data
- Iterative and incremental verification and repair to prove correctness of repaired system

LEARNING SYMBOLIC AUTOMATA

Joint work with Dana Fisman and Sandra Zilles

Symbolic Finite-State Automata (SFAs)

- Finite state automata
- Defined with respect to a Boolean algebra
- The transition relation is over predicates from the Boolean algebra

Monotonic Algebras

- Predicates correspond to a total order over the domain elements
- $[\![\psi]\!] = \{ d \mid a \le d \le b \}$
- Interval algebra over $\mathbb{N}, \mathbb{Z}, \mathbb{R}$

• Passive learning (vs. active learning in L*)

- Passive learning (vs. active learning in L*)
- Given a set S of labeled words, build an automaton that agrees with S

• Given an automaton A, build a characteristic sample S

In Poly data

- Given an automaton A, build a characteristic sample S
- For every sample $S' \supseteq S$ that agrees with A, infer an equivalent automaton to A

- Constructing a characteristic sample
- Every state is represented by an access word

- Constructing a characteristic sample
- Every state is represented by an access word

- Constructing a characteristic sample
- Every state is represented by an access word

- Constructing a characteristic sample
- Distinctive suffixes between states:
 - If $\delta(q_0, w) \neq \delta(q_0, u)$
 - there exists a suffix z such that $w \cdot z \in L(A)$, $u \cdot z \notin L(A)$
 - Add $w \cdot z$, $u \cdot z$

- Constructing a characteristic sample
- Representing the transition relation

- Constructing a characteristic sample
- Representing the transition relation

- Constructing a characteristic sample
- Representing the transition relation

- Constructing a characteristic sample
- Representing the transition relation

• Constructing a DFA

- Constructing a DFA
- Prefix-tree automaton

- Constructing a DFA
- Prefix-tree automaton
- Join states according to S'

 $\begin{array}{l} \langle \epsilon, 0 \rangle \\ \langle a, 1 \rangle \\ \langle b, 0 \rangle \\ \langle aa, 0 \rangle \\ \langle ab, 1 \rangle \\ \langle aba, 0 \rangle \\ \langle abb, 1 \rangle \end{array}$

- Constructing a DFA
- Prefix-tree automaton
- Join states according to S'

 $\begin{array}{c} \langle \epsilon, 0 \rangle \\ \langle a, 1 \rangle \\ \langle b, 0 \rangle \\ \langle aa, 0 \rangle \\ \langle ab, 1 \rangle \\ \langle aba, 0 \rangle \\ \langle abb, 1 \rangle \end{array}$

- Constructing a DFA
- Prefix-tree automaton
- Join states according to S'

 $\langle \epsilon, 0 \rangle$ $\langle a, 1 \rangle$ $\langle b, 0 \rangle$ $\langle aa, 0 \rangle$ $\langle ab, 1 \rangle$ $\langle aba, 0 \rangle$ $\langle abb, 1 \rangle$

- Constructing a DFA
- Prefix-tree automaton
- Join states according to S'

 $\langle \epsilon, 0 \rangle$ $\langle a, 1 \rangle$ $\langle b, 0 \rangle$ $\langle aa, 0 \rangle$ $\langle ab, 1 \rangle$ $\langle aba, 0 \rangle$ $\langle abb, 1 \rangle$

- Constructing a DFA
- Prefix-tree automaton
- Join states according to S'

 $\begin{array}{l} \langle \epsilon, 0 \rangle \\ \langle a, 1 \rangle \\ \langle b, 0 \rangle \\ \langle aa, 0 \rangle \\ \langle ab, 1 \rangle \\ \langle aba, 0 \rangle \\ \langle abb, 1 \rangle \end{array}$

- Constructing a DFA
- Prefix-tree automaton
- Join states according to S'

 $\begin{array}{c} \langle \epsilon, 0 \rangle \\ \langle a, 1 \rangle \\ \langle b, 0 \rangle \\ \langle aa, 0 \rangle \\ \langle ab, 1 \rangle \\ \langle aba, 0 \rangle \\ \langle abb, 1 \rangle \end{array}$

- Constructing a DFA
- Prefix-tree automaton
- Join states according to S'

- Learn the SFA out of a set of concrete words
- Creating a set of concrete words
- concretize $(\langle \psi_1, \dots, \psi_n \rangle) = \langle \Gamma_1, \dots, \Gamma_n \rangle$
- concretize $([0,100), [100, \infty)) = \langle \{0\}, \{100\} \rangle$

- Learn the SFA out of a set of concrete words
- Creating a set of concrete words
- concretize $(\langle \psi_1, \dots, \psi_n \rangle) = \langle \Gamma_1, \dots, \Gamma_n \rangle$
- concretize $([0,100), [100, \infty)) = \langle \{0\}, \{100\} \rangle$

- Learn the SFA out of a set of concrete words
- Creating a set of concrete words

- Learn the SFA out of a set of concrete words
- Construct an SFA
- generalize($\langle \Gamma_1, \dots, \Gamma_n \rangle$) = $\langle \psi_1, \dots, \psi_n \rangle$
- generalize($\{0\}, \{100\}$) = $\langle [0,100), [100, \infty) \rangle$

- Learn the SFA out of a set of concrete words
- Construct an SFA
- generalize($\Gamma_1, \dots, \Gamma_n$) = $\langle \psi_1, \dots, \psi_n \rangle$
- generalize($\{0\}, \{100\}$) = $\langle [0,100), [100, \infty) \rangle$

• generalize

• $\Gamma_1 = \{0, 50, 400\}$ $\Gamma_2 = \{100, 800\}$ $\Gamma_3 = \{2048\}$

0	100	400	800	2048
[0,100)	[100, 400)	[400,800)	[800, 2048)	[2048,∞)

• generalize($\langle \Gamma_1, \Gamma_2, \Gamma_3 \rangle$) = $\langle [0, 100) \lor [400, 800), [100, 400) \lor [800, 2048), [2048, \infty) \rangle$

- Learn the SFA out of a set of concrete words
- Construct an SFA

- Learn the SFA out of a set of concrete words
- Construct an SFA
- decontaminate(Σ) = Σ'
- $\Sigma' \subseteq \Sigma$ and contains exactly the alphabet of concretizations

- Travers words by lexicographic order
- Add letters that are needed for access words and for transitions relation

- Travers words by lexicographic order
- Add letters that are needed for access words and for transitions relation

Necessary Condition

Necessary Condition

Necessary Condition

Otherwise, we cannot learn outgoing transitions of a single state

$$\langle \varphi_1, \dots, \varphi_n \rangle$$
 generalize $\langle \Delta_1, \dots, \Delta_n \rangle$

Propositional Algebra

- Predicates are defined over $\{p_1, \dots, p_k\}$
- Examples: $p_1 \lor p_2$, $(p_1 \land p_2) \lor p_3$
- Looking for efficient concretize and generalize

Propositional Algebra

- Predicates are defined over $\{p_1, \dots, p_k\}$
- Examples: $p_1 \lor p_2$, $(p_1 \land p_2) \lor p_3$
- Looking for efficient concretize and generalize

No one to one function from Υ to P

 $|\mathbf{P}| < |\Upsilon|$

 $\begin{array}{l} \Upsilon \\ \text{set of semantic Boolean} \\ \text{functions over } k \text{ propositions} \end{array} \quad \left| \Upsilon \right| = 2^{2^k} \\ \bullet \end{array}$

Every function defines a set of sets of propositions satisfying the function P set of concrete partitions of polynomial size in k

- L^* style learning of SFA
- Goal: learn an SFA over a Boolean algebra, while asking queries over **concrete** letters
- [AD18] suggest MAT* for learning SFAs

- Learnability of the underlying algebra is a necessary condition
- Membership

- Learnability of the underlying algebra is a necessary condition
- Equivalence

- Learnability of the underlying algebra is a necessary condition
- Assume that we can learn SFA, then we can learn the algebra

Teacher

Learner 137

- Concise SFA over the propositional algebra cannot be polynomially learned using MQ and EQ
- The teacher can force the learner to ask $2^k 1$ queries
- Membership

- Concise SFA over the propositional algebra cannot be polynomially learned using MQ and EQ
- The teacher can force the learner to ask $2^k 1$ queries
- Equivalence

- Usually, the size of DFA is measured by its number of states
- For SFAs, we need to consider:

Normalized SFA

- One transition between each pair of states
- Predicates labeling the transitions can be very complex

Neat SFA

- Only basic transitions
- Predicates labeling transitions are simple
- Can cause an exponential blowup in the number of transitions

- Converting to normalized
- Disjunction between all transition predicates

 $\langle n, m, l \rangle$

- Converting to neat
- Splitting into basic transitions, using DNF

- For monotonic algebras, transforming to DNF is polynomial in the size of the original formula
- $([0, 100) \lor [200, 500)) \land ([0, 300) \lor [400, 600)) =$ $([0, 100) \land [0, 300)) \lor ([0, 100) \land [400, 600)) \lor$ $([200, 500) \land [0, 300)) \lor ([200, 500) \land [400, 600)) =$ $[0, 100) \lor [200, 300) \lor [400, 500)$

• Then, over monotonic algebras, transforming to neat is polynomial

Complexity of SFAs – Automata Operations

Operation	$\langle {f n}, {f m}, {f l} angle$	
product construction $\mathcal{M}_1, \mathcal{M}_2$	$\langle n_1 \times n_2, m_1 \times m_2, size^{\mathbb{P}}_{\wedge}(l_1, l_2) \rangle$	
complementation of deterministic \mathcal{M}_1^{1}	$\langle n_1 + 1, m_1 + 1, size_{\nabla^{m_1}}^{\mathbb{P}}(l_1) \rangle$	
determinization of \mathcal{M}_1	$\langle 2^{n_1}, 2^{m_1}, size^{\mathbb{P}}_{\wedge^{n_1 \times m_1}}(l_1) \rangle^2$	
minimization of \mathcal{M}_1	$\langle n_1, m_1, size^{\mathbb{P}}_{\wedge^{m_1}}(l_1) \rangle$	

Table 5.1: Analysis of standard automata procedures on SFAs.

Complexity of SFAs – Decision Procedures

Decision Procedures	Time Complexity
emptiness	linear in n, m
emptiness + feasibility	$n \times m \times sat^{\mathbb{P}}(l)$
membership of $\gamma_1 \cdots \gamma_t \in \mathbb{D}^*$	$\sum_{i=1}^{t} sat^{\mathbb{P}}(size^{\mathbb{P}}_{\wedge}(l, \psi_{\gamma_i}))^{3}$
inclusion $\mathcal{M}_1 \subseteq \mathcal{M}_2$	$((n_1 \times n_2) \times (m_1 \times m_2) \times sat^{\mathbb{P}}(size^{\mathbb{P}}_{\wedge}(l_1, l_2)))$

Table 5.2: Analysis of times complexity of decision procedures for SFAs

SFA Summary

- Identification in the limit of SFA
 - Necessary and sufficient conditions
 - Algorithm for identification of SFAs over monotonic algebras
- Necessary condition for query learning of SFAs
 - SFAs over the propositional algebra are not efficiently learnable
- Complexity of automata algorithms in terms of $\langle n, m, l \rangle$

number of states out-degree size of the most complex predicate

Thank you! Questions?

1: while (true)

2:

3:

4:

5:

pass = readInput;
while (pass ≤ 999)
 pass = readInput;

pass2 = encrypt(pass);

