
AUTOMATA OVER INFINITE DATA
DOMAINS: LEARNABILITY AND

APPLICATIONS IN PROGRAM
VERIFICATION AND REPAIR

Hadar Frenkel

Advisors: Orna Grumberg & Sarai Sheinvald

1

AUTOMATA OVER INFINITE DATA
DOMAINS: LEARNABILITY AND

APPLICATIONS IN PROGRAM
VERIFICATION AND REPAIR

Hadar Frenkel

Advisors: Orna Grumberg & Sarai Sheinvald

2

Automata over Infinite Data Domains

• Model infinite-state system using a finite model

3

1: while (true)

2: pass = readInput;

3: while (pass ≤ 999)

4: pass = readInput;

5: pass2 = encrypt(pass);

AUTOMATA OVER INFINITE DATA
DOMAINS: LEARNABILITY AND

APPLICATIONS IN PROGRAM
VERIFICATION AND REPAIR

Hadar Frenkel

Advisors: Orna Grumberg & Sarai Sheinvald

4

Learnability

5

1: while (true)

2: pass = readInput;

3: while (pass ≤ 999)

4: pass = readInput;

5: pass2 = encrypt(pass);

Learning symbolic automata
(conditions for learning: L* and
identification in the limit)

[Frenkel, Grumberg, Sheinvald 17, 19] [Frenkel, Grumberg, Pasareanu, Sheinvald 20] [Fisman, Frenkel, Zilles]

Learnability

6

1: while (true)

2: pass = readInput;

3: while (pass ≤ 999)

4: pass = readInput;

5: pass2 = encrypt(pass);

Learning symbolic automata
(conditions for learning: L* and
identification in the limit)

Adapting L* algorithm for
communicating programs

[Frenkel, Grumberg, Sheinvald 17, 19] [Frenkel, Grumberg, Pasareanu, Sheinvald 20] [Fisman, Frenkel, Zilles]

AUTOMATA OVER INFINITE DATA
DOMAINS: LEARNABILITY AND

APPLICATIONS IN PROGRAM
VERIFICATION AND REPAIR

Hadar Frenkel

Advisors: Orna Grumberg & Sarai Sheinvald

7

Applications in Program Verification and
Repair

8

1: while (true)

2: pass = readInput;

3: while (pass ≤ 999)

4: pass = readInput;

5: pass2 = encrypt(pass);

Bounded model-checking
algorithm

[Frenkel, Grumberg, Sheinvald 17, 19] [Frenkel, Grumberg, Pasareanu, Sheinvald 20] [Fisman, Frenkel, Zilles]

Applications in Program Verification and
Repair

9

1: while (true)

2: pass = readInput;

3: while (pass ≤ 999)

4: pass = readInput;

5: pass2 = encrypt(pass);

Compositional verification and
repair algorithm

Bounded model-checking
algorithm

[Frenkel, Grumberg, Sheinvald 17, 19] [Frenkel, Grumberg, Pasareanu, Sheinvald 20] [Fisman, Frenkel, Zilles]

MODEL CHECKING
SYSTEMS OVER
INFINITE DATA

Joint work with Orna Grumberg and Sarai Sheinvald

@NFM 2017, @Journal of automated reasoning 2019

10

Goal

•Develop a Model checking process for
systems over infinite data domains

•Using the automata-theoretic approach

11

Model checking

12

system

specification

YES! NO! +
counter example

Model checking

3

system

specification

YES! NO! +
counter example

Given as an
LTL formula

Verification of Systems over Infinite Data
Domains

14

Verification of Systems over Infinite Data
Domains
• LTL cannot express the property

“every client is eventually active”

15

Verification of Systems over Infinite Data
Domains
• LTL cannot express the property

“every client is eventually active”

Variable LTL (VLTL) [GKS12]

• ∀𝑥: 𝐹 𝑎𝑐𝑡𝑖𝑣𝑒. 𝑥

• 𝐴𝑃 - finite set of (parameterized) propositions

• 𝑉 - finite set of quantified variables

16

∃∗VLTL [GKS12]

• VLTL with only existential quantifiers

• 𝐺 ∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥

• A possible satisfying computation

• We are interested in verifying universal properties,
the negation that describes a bad behavior is existential

𝑠𝑒𝑛𝑑. 1

𝑠𝑒𝑛𝑑. 1

𝑠𝑒𝑛𝑑. 4

𝑠𝑒𝑛𝑑. 3

𝑠𝑒𝑛𝑑. 9

𝑠𝑒𝑛𝑑. 7

17

Model Checking - Infinite Data Domains

Program
automaton

Non-Det
variable

Büchi
automaton

Alternating
variable

Büchi
automaton

∃∗VLTL
formula

Emptiness test

18

Formula automaton

Model Checking - Infinite Data Domains

Program
automaton

Non-Det
variable

Büchi
automaton

Alternating
variable

Büchi
automaton

∃∗VLTL
formula

Emptiness test

19

Reactive systems,
Automata over
infinite words

Model Checking - Infinite Data Domains

Program
automaton

Non-Det
variable

Büchi
automaton

Alternating
variable

Büchi
automaton

∃∗VLTL
formula

Emptiness test

20

natural translation
for LTL formulas

Easy emptiness test

Non-Deterministic Variable Büchi Automata
(NVBW) [GKS13]

• 𝐺 ∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥

• Alphabet is parameterized propositions

• Ability to reset a variable and to assign it a new value

• As long as there is no reset - the value cannot be changed

𝑠𝑒𝑛𝑑. 1

𝑠𝑒𝑛𝑑. 1

𝑠𝑒𝑛𝑑. 4

𝑠𝑒𝑛𝑑. 3

𝑠𝑒𝑛𝑑. 9

𝑠𝑒𝑛𝑑. 7

21

𝑟𝑒𝑠𝑒𝑡(𝑥)

𝑠𝑒𝑛𝑑. 𝑥

𝑟𝑒𝑠𝑒𝑡(𝑥)

Useful for
emptiness test

• 𝐺 ∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥

• Increasing gaps between 𝑠𝑒𝑛𝑑. 𝑥, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥.

• Not enough variables and states to remember all values

𝑠𝑒𝑛𝑑. 1 𝑠𝑒𝑛𝑑. 2
𝑟𝑒𝑐. 1

𝑠𝑒𝑛𝑑. 3 𝑠𝑒𝑛𝑑. 4
𝑟𝑒𝑐. 2

𝑠𝑒𝑛𝑑. 5 𝑠𝑒𝑛𝑑. 6
𝑟𝑒𝑐. 3

𝑠𝑒𝑛𝑑. 7 𝑠𝑒𝑛𝑑. 8
𝑟𝑒𝑐. 4

. . .

22

NVBW Cannot Express all ∃∗VLTL

Alternating Variable Büchi Automata (AVBW)

• 𝐺 (∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥)
𝑞0

𝑟𝑒𝑠𝑒𝑡(𝑥)

𝑞1

𝑠𝑒𝑛𝑑. 𝑥

𝑠𝑒𝑛𝑑. 𝑥

𝑟𝑒𝑐. 𝑥

𝑡𝑟𝑢𝑒

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)

23

• 𝐺 (∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥)

Easy construction
from ∃∗ VLTL

24

Alternating Variable Büchi Automata (AVBW)

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)

𝑞1

𝑠𝑒𝑛𝑑. 𝑥

𝑠𝑒𝑛𝑑. 𝑥

𝑟𝑒𝑐. 𝑥

𝑡𝑟𝑢𝑒

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)

• 𝐺 (∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥)
𝑠𝑒𝑛𝑑. 1

𝑞0

𝑞1 𝑞0

𝑥 = 1 𝑥 = 1

25

Alternating Variable Büchi Automata (AVBW)

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)

𝑞1

𝑠𝑒𝑛𝑑. 𝑥

𝑠𝑒𝑛𝑑. 𝑥

𝑟𝑒𝑐. 𝑥

𝑡𝑟𝑢𝑒

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)

• 𝐺 (∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥)
𝑠𝑒𝑛𝑑. 1

𝑠𝑒𝑛𝑑. 2

𝑞0

𝑞1 𝑞0

𝑞0𝑞1𝑞1

𝑥 = 1

𝑥 = 2

𝑥 = 1

𝑥 = 2𝑥 = 1

26

Alternating Variable Büchi Automata (AVBW)

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)

𝑞1

𝑠𝑒𝑛𝑑. 𝑥

𝑠𝑒𝑛𝑑. 𝑥

𝑟𝑒𝑐. 𝑥

𝑡𝑟𝑢𝑒

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)

• 𝐺 (∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥)
𝑠𝑒𝑛𝑑. 1

𝑠𝑒𝑛𝑑. 4
𝑟𝑒𝑐. 1

𝑠𝑒𝑛𝑑. 2

𝑥 = 2
𝑥 = 1

𝑞0

𝑞1 𝑞0

𝑞0𝑞1𝑞1

𝑡𝑟𝑢𝑒
𝑞1

𝑞0𝑞1

𝑥 = 1

𝑥 = 4

𝑥 = 2

𝑥 = 1

𝑥 = 2

𝑥 = 4

𝑥 = 1

27

Alternating Variable Büchi Automata (AVBW)

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)

𝑞1

𝑠𝑒𝑛𝑑. 𝑥

𝑠𝑒𝑛𝑑. 𝑥

𝑟𝑒𝑐. 𝑥

𝑡𝑟𝑢𝑒

𝑞0
𝑟𝑒𝑠𝑒𝑡(𝑥)

VLTL to AVBWs

• Similar to [V95]

• Special care of resets

• 𝑋 = 𝑣𝑎𝑟𝑠 𝜑 ∪ 𝑥𝑝 𝑝 ∈ AP

• 𝑄 = 𝑠𝑢𝑏 𝜑

• Reset
• 𝑥𝑝 varaibles

• variables under ∃

• 𝑥 ≠ 𝑦 for ¬𝑎. 𝑥 ∈ 𝑠𝑢𝑏(𝜑)

28

Model Checking - Infinite Data Domains

Alternating
variable

Büchi
automaton

∃∗VLTL
formula

29

Model Checking - Infinite Data Domains

Non-Det
variable

Büchi
automaton

Alternating
variable

Büchi
automaton

∃∗VLTL
formula

Unlike the
finite

alphabet
case!

30

Model Checking - Infinite Data Domains

Program
automaton

Non-Det
variable

Büchi
automaton

Alternating
variable

Büchi
automaton

∃∗VLTL
formula

?

Emptiness test

31

Model Checking - Infinite Data Domains

Alternating
variable

Büchi
automaton ?

Emptiness test

• Emptiness of AVBWs is undecidable

• Satisfiability problem of ∃∗VLTL formulas is undecidable [SW14]

• ∃∗VLTL ≡AVBW, thus
• Satisfiability problem ≡ emptiness problem

32

Solutions

“easy
fragments”

Partial
translation
algorithm

AVBW→NVBW

Bounded
model

checking

Reduction to
an easy

fragment

Model checking
∃∗ VLTL

33

∃∗VLTL Formulas with a Direct
Construction to NVBW
• PNF formulas ∃𝑥: 𝐺 𝑠𝑒𝑛𝑑. 𝑥 𝑠𝑒𝑛𝑑. 7 𝜔

• 𝑋, 𝐹 formulas

• Quantifiers are at the beginning \ next to atomic
propositions ∃𝑥1: 𝐺 𝑠𝑒𝑛𝑑. 𝑥1 ∧ 𝐺 ∃𝑥2: 𝑟𝑒𝑐. 𝑥2

“easy
fragments”

34

Flattening

• A formula with no negations has an equisatisfiable formula in PNF

𝐺 (∃𝑥: 𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥)

∃𝑥: 𝐺 (𝑠𝑒𝑛𝑑. 𝑥 ∧ 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒. 𝑥)

35

Reduction to
an easy

fragment

Always holds No negations

Translation Algorithm

• A partial algorithm for translation

• Based on the Miyano-Hayashi construction [MH84]

AND

• Take care of variables, resets

• Map variables of alternating automaton to variables of non-deterministic
automaton

Partial
translation
algorithm

AVBW→NVBW

36

(𝑞0, ∅)

𝑞1, 𝑥 → 𝑧1
𝑞1, 𝑥 → 𝑧3

, 𝑞1, 𝑥 → 𝑧1

𝑟𝑒𝑠𝑒𝑡(𝑧2)

Alternating to Non-Deterministic [MH84]

• 𝐺 (𝑠𝑒𝑛𝑑 → 𝑋𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒)

12

𝑞0

𝑞1𝑞0

𝑞0

𝑞0

𝑞1

𝑞1

true𝑞0

𝑞1𝑞0

𝑞1𝑞0 𝑞1

𝑞1

𝑠𝑒𝑛𝑑. 𝑥

𝑠𝑒𝑛𝑑. 𝑥

𝑟𝑒𝑐. 𝑥

𝑡𝑟𝑢𝑒

𝑞0

AVBW to NVBW
• 𝐺∃𝑥: 𝑎. 𝑥 ∧ 𝑋𝑋 𝑏. 𝑥

31

𝑎. 𝑧2

𝑎. 𝑧3,
𝑏. 𝑧1

𝒂. 𝒛𝟏, 𝑏. 𝑧2

𝒂. 𝒛𝟐,
𝒃. 𝒛𝟑

𝑎. 𝑧1

((𝑞0, ∅) , ∅)

(𝑞0, ∅)

𝑞1, 𝑥 → 𝑧1
, 𝑞1, 𝑥 → 𝑧1

𝑟𝑒𝑠𝑒𝑡(𝑧2)

(𝑞0, ∅)

𝑞1, 𝑥 → 𝑧2
𝑞2, 𝑥 → 𝑧1

, (𝑞2, 𝑥 → 𝑧1)

𝑟𝑒𝑠𝑒𝑡(𝑧3)

(𝑞0, ∅)

𝑞1, 𝑥 → 𝑧3
𝑞2, 𝑥 → 𝑧2

, ∅

𝑟𝑒𝑠𝑒𝑡(𝑧1)

(𝑞0, ∅)

𝑞1, 𝑥 → 𝑧1
𝑞2, 𝑥 → 𝑧3

,
𝑞1, 𝑥 → 𝑧1
𝑞2, 𝑥 → 𝑧3

𝑟𝑒𝑠𝑒𝑡(𝑧2)

(𝑞0, ∅)

𝑞1, 𝑥 → 𝑧2
𝑞2, 𝑥 → 𝑧1

, (𝑞2, 𝑥 → 𝑧1)

𝑟𝑒𝑠𝑒𝑡(𝑧3)

𝑎. 𝑧3, 𝒃. 𝒛𝟏

Incompleteness

• The empty language

• Our algorithm does not halt

39

BMC Algorithm

• Based on the translation algorithm

• We are looking for a witness to non-emptiness

• Test emptiness with a partial NVBW

• Might find “more interesting” witnesses as the algorithm
continues

Bounded
model

checking

40

Partial
NVBWs

VLTL Summary

• Using alternating variable automata to model VLTL properties

• Translation algorithm from AVBWs to NVBWs

• Bounded model-checking procedure for ∃∗VLTL

• Easy fragments for model-checking

41

COMPOSITIONAL
VERIFICATION AND

REPAIR
Joint work with Orna Grumberg, Corina Pasareanu, and Sarai Sheinvald

@TACAS 2020

42

Model Checking

system

specification

YES! NO! +
counter example

43
Repair!

Model Checking

component

specification

YES! NO! +
counter example

component

component

Number of states in the
system model grows
exponentially with the
number of components
in the system

44
Repair!

Model Checking

component

specification

YES! NO! +
counter example

component

component

Number of states in the
system model grows
exponentially with the
number of components
in the system

Repair!
45

State Explosion
Problem

COMPOSITIONAL VERIFICATION
AND REPAIR OF C-LIKE PROGRAMS

• Model checking and repair
algorithm for
communicating systems

• Exploit the partition of the
system into components

46

Setting –
Communicating

Systems

Assume-
Guarantee (AG)

AG rule &
Automata
Learning

Repair & Results

47

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃

𝑀2

Communicating Systems

• C-like programs

• Each component is described as a control-flow graph (automaton)

• Alphabet: program statements & communication channels

• 𝐼𝑛? 𝑥1 – reads a value to 𝑥1 through channel 𝐼𝑛

• 𝑒𝑛𝑐! 𝑥1 – sends the value of 𝑥1 through channel 𝑒𝑛𝑐

48

1: while (true)

2: pass = readInput;

3: while (pass ≤ 999)

4: pass = readInput;

5: pass2 = encrypt(pass);

Example

Synchronization using read-write channels, Interleaving on all other alphabet

49

𝑀2𝑀1

Example

50

𝑀2𝑀1

Synchronization using read-write channels, Interleaving on all other alphabet

Example

51

𝑀2𝑀1

𝑦1 ≔ 𝑥1

Synchronization using read-write channels, Interleaving on all other alphabet

Example

Synchronization using read-write channels, Interleaving on all other alphabet

52

𝑀2𝑀1
𝑥2 ≔ 𝑦1

Example

53

State Explosion
Problem

||

Specifications

54

• Safety properties

• Alphabet:

• (Common) communication channels

• Syntactic requirements:
program behavior through time

Specifications

• Safety properties

• Alphabet:

• (Common) communication channels

• Syntactic requirements:
program behavior through time

• Constraints over local variables

• Semantic requirements:
• “the entered password is different

from the encrypted password”

• “there is no overflow”
55

Setting –
Communicating

Systems

Assume-
Guarantee (AG)

AG rule &
Automata
Learning

Repair & Results

56

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃

Reasoning About the Smaller Components

Compositional Verification

• Inputs:
• composite system 𝑀1║𝑀2

• property 𝑃

• Goal: check if 𝑀1║𝑀2 ⊨ 𝑃

• First attempt: “divide and conquer”
• Problem: usually impossible to verify each component separately

• Components are designed to satisfy requirements in specific contexts

𝑀1

𝑀2

⊨ 𝑃1

⊨ 𝑃2

57

Compositional Verification

• Assume-Guarantee (AG) paradigm [Pnueli, 1985]:
• assumptions represent component’s environment

• Under assumption 𝐴 on its environment, does the component guarantee
the property?

𝑀1 ║ 𝐴 ⊨ 𝑃𝑀2

𝐴

58

AG Rule for Safety Properties

1. check if a component 𝑀1guarantees 𝑃 when it is a part of a system
satisfying assumption 𝐴

𝑀1 ║ ⊨ 𝑃

𝐴

59

𝑀1|| 𝐴 ⊨ 𝑃

AG Rule for Safety Properties

1. check if a component 𝑀1guarantees 𝑃 when it is a part of a system
satisfying assumption 𝐴

2. discharge assumption: show that the remaining component 𝑀2 satisfies 𝐴

𝐴𝑀2

𝐴

60

𝑀1|| 𝐴 ⊨ 𝑃

𝑀2 ⊨ 𝐴

AG Rule for Safety Properties

1. check if a component 𝑀1guarantees 𝑃 when it is a part of a system
satisfying assumption 𝐴

2. discharge assumption: show that the remaining component 𝑀2 satisfies 𝐴

3. Conclude that 𝑀1|| 𝑀2 ⊨ 𝑃

𝑀1 ║ ⊨ 𝑃𝑀2

61

𝑀2 ⊨ 𝐴

𝑀1|| 𝐴 ⊨ 𝑃

AG Rule for Safety Properties

1. check if a component 𝑀1guarantees 𝑃 when it is a part of a system
satisfying assumption 𝐴

2. discharge assumption: show that the remaining component 𝑀2 satisfies 𝐴

3. Conclude that 𝑀1|| 𝑀2 ⊨ 𝑃

𝑀1 ║ ⊨ 𝑃𝑀2

62

𝑀2 ⊨ 𝐴

𝑀1|| 𝐴 ⊨ 𝑃

Can we
automatically
construct 𝐴?

Setting –
Communicating

Systems

Assume-
Guarantee (AG)

AG rule &
Automata
Learning

Repair & Results

63

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃

Automatic Assumption Generation

L∗ Algorithm for Learning Regular
Languages [Angluin87]

• Learning assumptions for compositional verification [CGP03]

• Given a regular language 𝐿, we learn a DFA 𝐴 such that ℒ 𝐴 = 𝐿

64LearnerTeacher

𝐿

L∗ Algorithm for Learning Regular
Languages [Angluin87]

• Learning assumptions for compositional verification [CGP03]

• Given a regular language 𝐿, we learn a DFA 𝐴 such that ℒ 𝐴 = 𝐿

• Membership queries

65

Is 𝑤 ∈ 𝐿?

LearnerTeacher

Yes / No
𝐿

L∗ Algorithm for Learning Regular
Languages [Angluin87]

• Learning assumptions for compositional verification [CGP03]

• Given a regular language 𝐿, we learn a DFA 𝐴 such that ℒ 𝐴 = 𝐿

• Equivalence queries, for a candidate 𝐴𝑖

66LearnerTeacher

Is ℒ(𝐴𝑖) = 𝐿? Yes – Done!

No +
cex ∈ ℒ 𝐴𝑖 ΔL

𝐿

L∗ Algorithm for Learning Regular
Languages [Angluin87]

• Learning assumptions for compositional verification [CGP03]

• Given a regular language 𝐿, we learn a DFA 𝐴 such that ℒ 𝐴 = 𝐿

• Equivalence queries, for a candidate 𝐴𝑖

• Try to use intermediate candidates 𝐴𝑖 as assumptions for AG rule

• But, the weakest assumption is not regular in our case

67

𝑀1|| 𝐴𝑖 ⊨ 𝑃
𝑀2 ⊨ 𝐴𝑖

𝑀1||𝑀2 ⊨ 𝑃

Weakest
assumption

Weakest Assumption is not always regular

• By a way of contradiction

• 𝐴𝑤 is over 𝛼𝑀2 = {𝑥 ≔ 0, 𝑦 ≔ 0, 𝑥 ≔ 𝑥 + 1, 𝑦 ≔ 𝑦 + 1, 𝑠𝑦𝑛𝑐}

• Consider 𝐿 = 𝑥 ≔ 0 ⋅ 𝑦 ≔ 0 ⋅ 𝑥 ≔ 𝑥 + 1, 𝑦 ≔ 𝑦 + 1 ∗ ⋅ {𝑠𝑦𝑛𝑐}

68

A New Goal for Learning

• The teacher answers queries according to the syntactic language of 𝑀2

• Regular since it is given as an automaton

69

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃

𝑀1|| 𝑴𝟐 ⊨ 𝑃
𝑀2 ⊨ 𝑴𝟐

𝑀1||𝑀2 ⊨ 𝑃

A New Goal for Learning

• The teacher answers queries according to the syntactic language of 𝑀2

• Regular since it is given as an automaton

70

But I already know 𝑀2…

LearnerTeacher

You might find a
much smaller
assumption!

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃

𝑀1|| 𝑴𝟐 ⊨ 𝑃
𝑀2 ⊨ 𝑴𝟐

𝑀1||𝑀2 ⊨ 𝑃

Membership Queries - 𝑇(𝑀2)

71LearnerTeacher

Is 𝑤 ∈ 𝐿?
𝑤 ∉ 𝑇(𝑀2)

NO!

𝑤 ∈ 𝑇 𝑀2 ∧
𝑀1|| 𝑤 ⊨ 𝑃

YES!

𝑤 ∈ 𝑇 𝑀2 ∧
𝑀1|| 𝑤 ⊭ 𝑃

𝑤 is a real cex!

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃

Equivalence Queries - 𝑇(𝑀2)

72LearnerTeacher

Is ℒ 𝐴𝑖 = 𝐿?

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃

𝑀1||𝐴𝑖 ⊨ 𝑃

𝑀2 ⊆ 𝐴𝑖

YES! 𝑀1||𝐴𝑖 ⊭ 𝑃
𝑡 ∈ 𝐴𝑖: 𝑀1||𝑡 ⊭ 𝑃

𝑡 ∈ 𝑀2

𝑡 is a real cex!

𝑡 ∉ 𝑀2

NO!
take 𝑡 off 𝐴𝑖+1

𝑀2 ⊈ 𝐴𝑖

𝑡 ∈ 𝑀2 ∖ 𝐴𝑖
NO!

add it to 𝐴𝑖+1

AG rule with learning

73

Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai

2. M2 ⊆Ai

AG rule with learning

74

Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai P is violated
in M1 ║M2

2. M2 ⊆Ai

AG rule with learning

75

Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai false real error?
cex∈ M2?

P is violated
in M1 ║M2

2. M2 ⊆Ai

AG rule with learning

76

Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai

strengthen assumption

false Yes

No

real error?
cex∈ M2?

P is violated
in M1 ║M2

2. M2 ⊆Ai

AG rule with learning

77

Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai

strengthen assumption

false

true

Yes

No

real error?
cex∈ M2?

P is violated
in M1 ║M2

2. M2 ⊆Ai

AG rule with learning

78

Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai

strengthen assumption

false

true

true

Yes

No

P holds
in M1 ║M2

real error?
cex∈ M2?

P is violated
in M1 ║M2

2. M2 ⊆Ai

AG rule with learning

79

Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai

strengthen assumption

weaken assumption

false

true

true

Yes

No

P holds
in M1 ║M2

real error?
cex∈ M2?

P is violated
in M1 ║M2

2. M2 ⊆Ai

false

Repair

Setting –
Communicating

Systems

Assume-
Guarantee (AG)

AG rule &
Automata
Learning

Repair & Results

81

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃

AG rule with learning

82

Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai

strengthen assumption

weaken assumption

false

true

true

Yes

No

P holds
in M1 ║M2

real error?
cex∈ M2?

P is violated
in M1 ║M2

2. M2 ⊆Ai

false

Repair M2

Return to verification
with the repaired M2

Assume Guarantee or Repair

• Repair by elimination of error traces

• Two types of repair

• Syntactic repair

• Semantic repair

83

Assume Guarantee or Repair

Syntactic repair –
counterexample does
not contain constraints

84

Syntactic Repair

• Implemented 3 methods to removing the trace 𝒕:
• Exact

remove exactly 𝒕 from M2

• Approximate
add an intermediate state and use it to direct some traces off the
accepting state, including 𝒕

• Aggressive
make the accepting state that 𝒕 reaches not-accepting

85

Assume Guarantee or Repair

Semantic repair –
counterexample contains
violated constraints of the
specification

86

||

Semantic Repair

• AGR returns a counterexample 𝒕, for input 𝑥1 = 263

• Goal: make 𝒕 infeasible by adding a new constraint 𝓒 such that

• (t 𝓒 false)

• Applying abduction, quantifier elimination and simplification results in
𝓒 = (𝑥1 < 263)

87

Result

88

1: while (true)

2: pass = readInput;

3: while (pass ≤ 999)

4: pass = readInput;

5: pass2 = encrypt(pass);

6: assume pass<263;

AG rule with learning

89

Model Checking

1. Ai║M1 ⊨ P
Automata
Learning

L*

Ai

strengthen assumption

weaken assumption

false

true

true

Yes

No

P holds
in M1 ║M2

real error?
cex∈ M2?

P is violated
in M1 ║M2

2. M2 ⊆Ai

false

Repair M2

Return to verification
with the repaired M2

Again, where
𝑴𝟐:= Repaired 𝑴𝟐

Termination
• In case 𝑀1||𝑀2 ⊨ 𝑃

• 𝑀2 is a correct assumption for the AG rule

• 𝑀2 is regular, therefore 𝐿∗ terminates

→ In the case of verification, termination is guaranteed

• In case 𝑀1||𝑀2 ⊭ 𝑃

• Every iteration with an erroneous 𝑀2 will result in a cex

→ In the case of an error, progress is guaranteed

90

𝑀1|| 𝐴 ⊨ 𝑃
𝑀2 ⊨ 𝐴

𝑀1||𝑀2 ⊨ 𝑃

𝑀1|| 𝑴𝟐 ⊨ 𝑃
𝑀2 ⊨ 𝑴𝟐

𝑀1||𝑀2 ⊨ 𝑃

Correctness and Termination

• Correctness of Repair

• All questions relate to language containment

• Repair only eliminates traces

• Incremental

• Previous answers to the learner’s questions are still correct

• Can use the same table for 𝐿∗

91

Partial NVBWs

𝑀2

𝑀2
1𝑀2

2

𝑃

Comparing Repair Methods (logarithmic scale)

92#15, #16, #18, #19 apply also abduction

AGR Summary

• Modular verification for
communicating systems

• Adjusting automata learning
to systems with data

• Iterative and incremental
verification and repair to prove
correctness of repaired system

93

LEARNING SYMBOLIC
AUTOMATA

Joint work with Dana Fisman and Sandra Zilles

94

Symbolic Finite-State Automata (SFAs)

• Finite state automata

• Defined with respect to a Boolean algebra

• The transition relation is over predicates from the Boolean algebra

95

Monotonic Algebras

• Predicates correspond to a total order over the domain elements

• 𝜓 = { 𝑑 | 𝑎 ≤ 𝑑 ≤ 𝑏 }

• Interval algebra over ℕ, ℤ,ℝ

96

Identification in the Limit using
polynomial time and data [G78, dlH97]

• Passive learning (vs. active learning in L∗)

97

𝑤1, 0
𝑤2, 1

𝑤𝑛, 0

…

𝑞0

𝑤1

𝑤2

𝑤𝑛

…

Identification in the Limit using
polynomial time and data [G78, dlH97]

• Passive learning (vs. active learning in L∗)

• Given a set 𝑆 of labeled words, build an automaton that agrees with 𝑆

98

𝑤1, 0
𝑤2, 1

𝑤𝑛, 0

…

𝑞0

𝑤1

𝑤2

𝑤𝑛

…

In Poly time

Identification in the Limit using
polynomial time and data [G78, dlH97]

• Given an automaton 𝐴, build a characteristic sample 𝑆

99

𝑤1, 0
𝑤2, 1

𝑤𝑛, 0

…

𝑞0

𝑤1

𝑤2

𝑤𝑛

…

In Poly data

Identification in the Limit using
polynomial time and data [G78, dlH97]

• Given an automaton 𝐴, build a characteristic sample 𝑆

• For every sample 𝑆′ ⊇ 𝑆 that agrees with 𝐴, infer an equivalent automaton to 𝐴

100

𝑤1, 0
𝑤2, 1

𝑤𝑛, 0

…

𝑞0

𝑤1

𝑤2

𝑤𝑛

…

In Poly time

Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Every state is represented by an access word

101

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏

Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Every state is represented by an access word

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏

102

𝜖, 0

Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Every state is represented by an access word

103

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏
𝜖, 0
𝑎, 1

Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Distinctive suffixes between states:
• If 𝛿 𝑞0, 𝑤 ≠ 𝛿 𝑞0, 𝑢

• there exists a suffix 𝑧 such that 𝑤 ⋅ 𝑧 ∈ 𝐿 𝐴 , 𝑢 ⋅ 𝑧 ∉ 𝐿(𝐴)

• Add 𝑤 ⋅ 𝑧, 𝑢 ⋅ 𝑧

104

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏
𝜖, 0
𝑎, 1

Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Representing the transition relation

105

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏
𝜖, 0
𝑎, 1

Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Representing the transition relation

106

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏
𝜖, 0
𝑎, 1
𝑏, 0

Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Representing the transition relation

107

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏
𝜖, 0
𝑎, 1
𝑏, 0
𝑎𝑎, 0

Identification in the Limit for DFAs [OG92]

• Constructing a characteristic sample

• Representing the transition relation

108

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏
𝜖, 0
𝑎, 1
𝑏, 0
𝑎𝑎, 0
𝑎𝑏, 1

Identification in the Limit for DFAs [OG92]

• Constructing a DFA

109

𝜖, 0
𝑎, 1
𝑏, 0
𝑎𝑎, 0
𝑎𝑏, 1
𝑎𝑏𝑎, 0
𝑎𝑏𝑏, 1

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏

Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton

110

𝜖, 0
𝑎, 1
𝑏, 0
𝑎𝑎, 0
𝑎𝑏, 1
𝑎𝑏𝑎, 0
𝑎𝑏𝑏, 1

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏

𝑞0

𝑞0𝑞1 𝑞2

𝑎 𝑏

𝑞3

𝑎

𝑞0𝑞4

𝑏

𝑞5

𝑎

𝑞0𝑞6

𝑏

Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton

• Join states according to 𝑆′

111

𝜖, 0
𝑎, 1
𝑏, 0
𝑎𝑎, 0
𝑎𝑏, 1
𝑎𝑏𝑎, 0
𝑎𝑏𝑏, 1

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏

𝑞0

𝑞0𝑞1 𝑞2

𝑎 𝑏

𝑞3

𝑎

𝑞0𝑞4

𝑏

𝑞5

𝑎

𝑞0𝑞6

𝑏

Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton

• Join states according to 𝑆′

112

𝜖, 0
𝑎, 1
𝑏, 0
𝑎𝑎, 0
𝑎𝑏, 1
𝑎𝑏𝑎, 0
𝑎𝑏𝑏, 1

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏

𝑞0

𝑞0𝑞1 𝑞2

𝑎 𝑏

𝑞3

𝑎

𝑞0𝑞4

𝑏

𝑞5

𝑎

𝑞0𝑞6

𝑏

Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton

• Join states according to 𝑆′

113

𝜖, 0
𝑎, 1
𝑏, 0
𝑎𝑎, 0
𝑎𝑏, 1
𝑎𝑏𝑎, 0
𝑎𝑏𝑏, 1

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏

𝑞0

𝑞0𝑞1

𝑎

𝑏

𝑞3

𝑎

𝑞0𝑞4

𝑏

𝑞5

𝑎

𝑞0𝑞6

𝑏

Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton

• Join states according to 𝑆′

114

𝜖, 0
𝑎, 1
𝑏, 0
𝑎𝑎, 0
𝑎𝑏, 1
𝑎𝑏𝑎, 0
𝑎𝑏𝑏, 1

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏

𝑞0

𝑞0𝑞1

𝑎

𝑏

𝑞3

𝑎

𝑞0𝑞4

𝑏

𝑞5

𝑎

𝑞0𝑞6

𝑏

Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton

• Join states according to 𝑆′

115

𝜖, 0
𝑎, 1
𝑏, 0
𝑎𝑎, 0
𝑎𝑏, 1
𝑎𝑏𝑎, 0
𝑎𝑏𝑏, 1

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏

𝑞0

𝑞0𝑞1

𝑎

𝑏

𝑞3

𝑎 𝑏

Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton

• Join states according to 𝑆′

116

𝜖, 0
𝑎, 1
𝑏, 0
𝑎𝑎, 0
𝑎𝑏, 1
𝑎𝑏𝑎, 0
𝑎𝑏𝑏, 1

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏

𝑞0

𝑞0𝑞1

𝑎

𝑏

𝑞3

𝑎 𝑏

Identification in the Limit for DFAs [OG92]

• Constructing a DFA

• Prefix-tree automaton

• Join states according to 𝑆′

117

𝜖, 0
𝑎, 1
𝑏, 0
𝑎𝑎, 0
𝑎𝑏, 1
𝑎𝑏𝑎, 0
𝑎𝑏𝑏, 1

𝑞0 𝑞1

𝑎

𝑎

𝑞1

𝑏𝑏

𝑞0

𝑞0𝑞1

𝑎

𝑏

𝑏

𝑎

Identification in the Limit for SFAs

• Learn the SFA out of a set of concrete words

• Creating a set of concrete words

• concretize 𝜓1, … , 𝜓𝑛 = Γ1, … , Γ𝑛

• concretize 0,100 , [100,∞) = {0}, {100}

118

𝑞0 𝑞1

[100,∞)

𝑞1

0, 100

[100,∞)

0, 100

Monotonic
algebra!

Identification in the Limit for SFAs

• Learn the SFA out of a set of concrete words

• Creating a set of concrete words

• concretize 𝜓1, … , 𝜓𝑛 = Γ1, … , Γ𝑛

• concretize 0,100 , [100,∞) = {0}, {100}

119

𝑞0 𝑞1

[100,∞)

𝑞1

0, 100

[100,∞)

0, 100

𝑞0 𝑞1

100

𝑞1

0

100

0

Identification in the Limit for SFAs

• Learn the SFA out of a set of concrete words

• Creating a set of concrete words

120

𝑞0 𝑞1

100

𝑞1

0

100

0
𝜖, 0

100, 1
0, 0

100 ⋅ 100, 0
100 ⋅ 0, 1

Identification in the Limit for SFAs

• Learn the SFA out of a set of concrete words

• Construct an SFA

• generalize Γ1, … , Γ𝑛 = 𝜓1, … , 𝜓𝑛

• generalize 0 , {100} = 0,100 , [100,∞)

121

𝑞0 𝑞1

100

𝑞1

0

100

0
Monotonic

algebra!

Identification in the Limit for SFAs

• Learn the SFA out of a set of concrete words

• Construct an SFA

• generalize Γ1, … , Γ𝑛 = 𝜓1, … , 𝜓𝑛

• generalize 0 , {100} = 0,100 , [100,∞)

122

𝑞0 𝑞1

[100,∞)

𝑞1

0, 100

[100,∞)

0, 100

𝑞0 𝑞1

100

𝑞1

0

100

0

Identification in the Limit for SFAs

• generalize

• Γ1 = {0, 50, 400} Γ2 = {100, 800} Γ3 = {2048}

• generalize Γ1, Γ2, Γ3 = 0,100 ∨ 400,800 , 100,400 ∨ 800,2048 , [2048,∞)

123

0 100 400 800 2048

[0,100) [100, 400) [400,800) [800, 2048) [2048,∞)

Identification in the Limit for SFAs

• Learn the SFA out of a set of concrete words

• Construct an SFA

124

𝑞0 𝑞1

100

𝑞1

0

100

0

𝜖, 0
100, 1
0, 0

100 ⋅ 100, 0
100 ⋅ 0, 1

100 ⋅ 0 ⋅ 0, 1

Identification in the Limit for SFAs

• Learn the SFA out of a set of concrete words

• Construct an SFA

• decontaminate Σ = Σ′

• Σ′ ⊆ Σ and contains exactly the alphabet of concretizations

125

𝜖, 0
100, 1
0, 0

100 ⋅ 100, 0
100 ⋅ 0, 1

100 ⋅ 0 ⋅ 0, 1
𝟏𝟓𝟎, 𝟏

• Travers words by lexicographic order

• Add letters that are needed for access words and for transitions relation

𝜖, 0
100, 1
0, 0

100 ⋅ 100, 0
100 ⋅ 0, 1

100 ⋅ 0 ⋅ 0, 1
𝟏𝟓𝟎, 𝟏

Identification in the Limit for SFAs

126

𝑞0

0

100, 150

• Travers words by lexicographic order

• Add letters that are needed for access words and for transitions relation

𝜖, 0
100, 1
0, 0

100 ⋅ 100, 0
100 ⋅ 0, 1

100 ⋅ 0 ⋅ 0, 1
𝟏𝟓𝟎, 𝟏

Identification in the Limit for SFAs

127

𝑞0

0

100

Monotonic
algebra!

Identification in the Limit for SFAs

128

DFA 𝐷𝐴

𝑞0 𝑞1

[100,∞)

𝑞1

0, 100

[100,∞)

0, 100

SFA 𝐴

concretize Sample
𝑆𝐴

Black box
characteristic
sample for DFAs

Sample
S ⊇ 𝑆𝐴

DFA 𝐷𝑠′ Sample
S ⊇ S′ ⊇ 𝑆𝐴

generalize Black box
infer a DFA

decontaminate

SFA 𝐴𝑆′

Necessary Condition

129

concretize

generalize

𝜓1, … , 𝜓𝑛 Γ1, … , Γ𝑛

𝜑1, … , 𝜑𝑛 Δ1, … , Δ𝑛

Poly time

and data

Necessary Condition

130

concretize

generalize

𝜓1, … , 𝜓𝑛 Γ1, … , Γ𝑛

𝜑1, … , 𝜑𝑛 Δ1, … , Δ𝑛

Poly time

and data

If Δ𝑖 ⊇ Γ𝑖

Then 𝜑𝑖 = 𝜓𝑖

Necessary Condition

131

concretize

generalize

𝜓1, … , 𝜓𝑛 Γ1, … , Γ𝑛

𝜑1, … , 𝜑𝑛 Δ1, … , Δ𝑛

Poly time

and data

If Δ𝑖 ⊇ Γ𝑖

Then 𝜑𝑖 = 𝜓𝑖

Otherwise, we cannot learn
outgoing transitions of a single state

𝑞0

[0,100)

[100,∞)

Propositional Algebra

• Predicates are defined over 𝑝1, … , 𝑝𝑘

• Examples: 𝑝1 ∨ 𝑝2, 𝑝1 ∧ 𝑝2 ∨ 𝑝3

• Looking for efficient concretize and generalize

132

Propositional Algebra

• Predicates are defined over 𝑝1, … , 𝑝𝑘

• Examples: 𝑝1 ∨ 𝑝2, 𝑝1 ∧ 𝑝2 ∨ 𝑝3

• Looking for efficient concretize and generalize

133

Υ
set of semantic Boolean

functions over 𝑘 propositions

Υ = 22
𝑘

Every function defines a
set of sets of propositions

satisfying the function

Ρ
set of concrete partitions

of polynomial size in k

Ρ < |Υ|

No one to one
function from Υ

to Ρ

Query Learning of SFAs

• L∗ - style learning of SFA

• Goal: learn an SFA over a Boolean algebra, while asking queries over concrete
letters

• [AD18] suggest MAT∗ for learning SFAs

134

Query Learning of SFAs

• Learnability of the underlying algebra is a necessary condition

• Membership

135

Is 𝑎 ∈ 𝜑 ?

LearnerTeacher

Yes / No
𝜑

Query Learning of SFAs

• Learnability of the underlying algebra is a necessary condition

• Equivalence

136

Is 𝜓 = 𝜑 ?

LearnerTeacher

Yes /
No + cex

𝜑

Query Learning of SFAs

• Learnability of the underlying algebra is a necessary condition

• Assume that we can learn SFA, then we can learn the algebra

137LearnerTeacher

𝜑
𝑞0

𝜑

¬𝜑

Query Learning of SFAs

• Concise SFA over the propositional algebra cannot be polynomially learned using
MQ and EQ

• The teacher can force the learner to ask 2𝑘 − 1 queries

• Membership

138LearnerTeacher

Is 0,1,0, … , 1
∈ 𝜑 ?

No

Query Learning of SFAs

• Concise SFA over the propositional algebra cannot be polynomially learned using
MQ and EQ

• The teacher can force the learner to ask 2𝑘 − 1 queries

• Equivalence

139LearnerTeacher

Is 𝜓 = 𝜑 ?
No
+

ത𝑏 ∉ 𝜓

Complexity of SFAs

• Usually, the size of DFA is measured by its number of states

• For SFAs, we need to consider:

𝑛,𝑚, 𝑙

140

number of states out-degree size of the most complex predicate

Complexity of SFAs

Normalized SFA

• One transition between each pair of
states

• Predicates labeling the transitions
can be very complex

Neat SFA

• Only basic transitions

• Predicates labeling transitions are
simple

• Can cause an exponential blowup in
the number of transitions

141

Complexity of SFAs

• Converting to normalized

• Disjunction between all transition predicates

142

𝑝 𝑞

𝜓1

𝜓2

𝜓3

𝑝 𝑞
𝜓1 ∨ 𝜓2 ∨ 𝜓3

𝑛,𝑚, 𝑙

𝑛,𝑚,𝑚 ⋅ 𝑙

Complexity of SFAs

• Converting to neat

• Splitting into basic transitions, using DNF

143

𝑝 𝑞

𝑝1 ∨ 𝑝3
∧ (𝑝2 ∨ 𝑝4)

𝑝 𝑞

𝑛,𝑚, 𝑙

𝑛,𝑚 ⋅ 2𝑙 , 𝑙

𝑝1 ∧ 𝑝2 ∨
𝑝1 ∧ 𝑝4 ∨
𝑝3 ∧ 𝑝2 ∨
(𝑝3 ∧ 𝑝4)

𝑝1 ∧ 𝑝2

𝑝1 ∧ 𝑝4

𝑝3 ∧ 𝑝2

𝑝3 ∧ 𝑝4

Complexity of SFAs

• For monotonic algebras, transforming to DNF is polynomial in the size of the
original formula

• [0, 100) ∨ [200, 500) ∧ 0, 300 ∨ 400, 600 =
0, 100 ∧ 0, 300 ∨ 0, 100 ∧ 400, 600 ∨
200, 500 ∧ 0, 300 ∨ 200, 500 ∧ 400, 600 =
0, 100 ∨ 200, 300 ∨ 400, 500

• Then, over monotonic algebras, transforming to neat is polynomial

144

Complexity of SFAs – Automata Operations

145

Complexity of SFAs – Decision Procedures

146

SFA Summary

• Identification in the limit of SFA
• Necessary and sufficient conditions

• Algorithm for identification of SFAs over monotonic algebras

• Necessary condition for query learning of SFAs
• SFAs over the propositional algebra are not efficiently learnable

• Complexity of automata algorithms in terms of

147

148

1: while (true)

2: pass = readInput;

3: while (pass ≤ 999)

4: pass = readInput;

5: pass2 = encrypt(pass);

Thank you!

Questions?

