AUTOMATA OVER INFINITE DATA
DOMAINS: LEARNABILITY AND
APPLICATIONS IN PROGRAM
VERIFICATION AND REPAIR

Hadar Frenkel

Advisors: Orna Grumberg & Sarai Sheinvald

AUTOMATA OVER INFINITE DATA
DOMAINS: LEARNABILITY AND
APPLICATIONS IN PROGRAM
VERIFICATION AND REPAIR

Hadar Frenkel

Advisors: Orna Grumberg & Sarai Sheinvald

Automata over Infinite Data Domains

« Model infinite-state system using a finite model

1: while (true)

2 pass = readlnput;
3: while (pass < 999)
4
5

readInput;
encrypt (pass) ;

get Enclas

AUTOMATA OVER INFINITE DATA
DOMAINS: LEARNABILITY AND
APPLICATIONS IN PROGRAM
VERIFICATION AND REPAIR

Hadar Frenkel

Advisors: Orna Grumberg & Sarai Sheinvald

Learnability

Learning symbolic automata
(conditions for learning: L* and
identification in the limit)

(100, oc 100, 0o)

[Fisman, Frenkel, Zilles]

Learnability

Adapting L* algorithm for
communicating programs

while (true)
pass = readInput;
while (pass < 999)
pass = readInput;

pass2 = encrypt(pass);

get Enclas

[Frenkel, Grumberg, Pasareanu, Sheinvald 20]

(). 99]

0. 99]

AUTOMATA OVER INFINITE DATA
DOMAINS: LEARNABILITY AND
APPLICATIONS IN PROGRAM
VERIFICATION AND REPAIR

Hadar Frenkel

Advisors: Orna Grumberg & Sarai Sheinvald

Applications in Program Verification and
Repair

Bounded model-checking
algorithm

send.x o rec.r

[Frenkel, Grumberg, Sheinvald 17, 19]

Applications in Program Verification and
Repair

Compositional verification and
repair algorithm

: while (true)
pass = readInput;
while (pass < 999)
pass = readInput;
pass2 = encrypt(pass);

get Enclas

[Frenkel, Grumberg, Pasareanu, Sheinvald 20]

MODEL CHECKING
SYSTEMS OVER

INFINITE DATA

Joint work with Orna Grumberg and Sarai Sheinvald

@NFM 2017, @Journal of automated reasoning 2019

Goal

«Develop a Model checking process for
systems over infinite data domains

Using the automata-theoretic approach

NO! +
counter example

Given as an
LTL formula

counter example

Verification of Systems over Infinite Data
Domains

Verification of Systems over Infinite Data
Domains

 LTL cannot express the property

“every client is eventually active”

Verification of Systems over Infinite Data
Domains

 LTL cannot express the property

“every client is eventually active”

Variable LTL (VLTL) [GKS12]

e Vx:F active.x
« AP - finite set of (parameterized) propositions

o I/ - finite set of quantified variables

J3*VLTL [cks12]

« VLTL with only existential quantifiers

e G dx:send.x

o A possible satisfying computation

« We are interested in verifying universal properties,
the negation that describes a bad behavior is existential SENE:

@
@

Model Checking - Infinite Data Domains

Program
automaton
Emptiness test J

Formula automaton

Model Checking - Infinite Data Domains

Program
L Reactive systems, utomaton

Automata over
infinite words Emptiness test

lternating Non-Det
variable variable

BUchi BUchi
automaton automaton

Model Checking - Infinite Data Domains

|

natural translation
for LTL formulas

lternating
variable
BUchi

automator

Program
automaton

Non-Det
variable
Bichi
automator

Emptiness test

Easy emptiness test]

Non-Deterministic Variable BUchi Automata
(NVBW) (6ksa3i

e ¢ dx:send. x

« Alphabet is parameterized propositions
« Ability to reset a variable and to assign it a new value

 Aslong as there is no reset - the value cannot be changed

Use__-ful for
emptiness test
@
@

NVBW Cannot Express all 3*VLTL

o G (Ax:send.x A XF receive. x)

- send. 2 - send. 4 send. 6 send. 8 n n -
rec. 2 rec.4

e Increasing gaps between send. x, receive. x.

« Not enough variables and states to remember all values

Alternating Variable Buchi Automata (AVBW)

reset(x)

e G (Ax:send.x N XF receive. x)

Alternating Variable Buchi Automata (AVBW)

reset(x)

e G (Ax:send.x N XF receive. x)

Easy construction
from 3* VLTL

Alternating Variable Buchi Automata (AVBW)

e G (Ax:send.x N XF receive. x)

Alternating Variable Buchi Automata (AVBW)

e G (Ax:send.x N XF receive. x)

q send. x
0
reset(x)

send. x

Alternating Variable Buchi Automata (AVBW)

e G (Ax:send.x N XF receive. x)

q send. x
0
reset(x)

send. x

VLTL to AVBWs

- d(a.x, A) = true ifa.x € A and §(a.z, A) = false, otherwise.

» Similar to [V9s] - 6(-a.z, A) = -6(a.x, A).*

L S ecial care Of resets
P _ 8(n A, A) = 6(n, A) A S(%, A).

e X =vars(p) U {xp|p € AP}
« Q = sub(p)

» Reset
* Xp varaibles - 6(nU,A) =4d(,A) vV (6(n,A) AnUy)

- variables under 3 = 8(V 1, A) = S(n A, A) V (3(1h, A) AnV 1))

- oV, A)=4d(n,A) Vi, A)

- 6(Xn,A)=n

e x = y for ma.x € sub(¢) — 5(3zn, A) = 8(n, A)

Model Checking - Infinite Data Domains

\/ Alternating
variable
BUchi
automaton

Model Checking - Infinite Data Domains

C)

Unlike the
finite

alphabet
case!

)

\/ Alternating Non-Det

variable variable
BUchi BUchi

automaton automaton

Model Checking - Infinite Data Domains

Program
automaton
Emptiness test J

\/ Alternating Non-Det

variable variable
BUchi BUchi

automaton automaton

Model Checking - Infinite Data Domains

« Emptiness of AVBWs is undecidable

» Satisfiability problem of 3*VLTL formulas is undecidable [SW14]

« 3*VLTL = AVBW, thus
« Satisfiability problem = emptiness problem Emptiness test

Alternating
variable
BUchi

automaton

Solutions

“easy
fragments”

Reduction to
an easy
fragment

Model checking
3" VLTL

Partial
translation
algorithm
AVBW-NVBW

Bounded
model
checking

J3*VLTL Formulas with a Direct
Construction to NVBW

e« PNF formulas 3x:G send.x (send.7)¢

e X, F formulas

 Quantifiers are at the beginning\ next to atomic

propositions Ixq: G send.x; A G Ix,:rec.x,

“easy
fragments”

Reduction to
an easy

Flatten | ng fragment

A formula with no negations has an equisatisfiable formulain PNF

G (3x:send.x AN XF receive. x)

Always holds “ ﬁ No negations

dx: G (send.x A XF receive. x)

Partial

Translation Algorithm translation

algorithm
AVBW-NVBW

e A partial algorithm for translation

» Based on the Miyano-Hayashi construction [MH84]

AND
o Take care of variables, resets

» Map variables of alternating automaton to variables of non-deterministic

automaton
4 I
(90, D)
({(‘h»x - Zﬂ}, {(q1,x — Z1)}>
(q1,x > z3)

reset(z,)

o J

Alternating to Non-Deterministic [mHss]

« (G (send — XF receive)

(20)
send. x
@ do qd1
send. x

0) | e)

A

AVBW to NVBW

e GAx:a.x NXX b.x

. p

(40, 9) (90, 9) 23, (40, B)
({(CI X ’—> A)}' Uqyx = Zl)}) ki (q1,x = 23) ¢, {(q2, x = z1)} ' (q1,x = z3) ¢, {0}
" réset(zz) (q2,x = 71) (g2, x = 23)

reset(zs) reset(z,)

N

a.Z3,b.21 5 bZ
N 1, . 2

({(q0,9)}, 0))

:)
(qu @) (qo, Q)))
({(ql;x - Zz)};{(CIz,X - Z1)}> < (ql,x N Zl)}’{(qlpx Zl)

X > Z
(g2, x = z1) e @ g

- reset(zs) B reset(z,)

Incompleteness

« The empty language

» Our algorithm does not halt

model
checking

BMC AIgOr|thm Bounded

» Based on the translation algorithm
« We are looking for a witness to non-emptiness
 Test emptiness with a partial NVBW

« Might find "more interesting” witnesses as the algorithm
continues

Partial
NVBWs

VLTL Summary

« Using alternating variable automata to model VLTL properties
» Translation algorithm from AVBWSs to NVBWs -
« Bounded model-checking procedure for 3*VLTL

« Easy fragments for model-checking

COMPOSITIONAL
VERIFICATION AND

REPAIR

Joint wor k with Orna Grumberg, Corina Pasareanu, an d Sarai Sheinvald
@TACAS 2020

Model Checking

component

component

component ’

e

Number of states in the
system model grows
exponentially with the
number of components
in the system

specification

Number of statee+

system model S
exponentially wj
number of components

in the system

COMPOSITIONAL VERIFICATION
AND REPAIR OF C-LIKE PROGRAMS

« Model checking and repair
algorithm for
communicating systems

« Exploit the partition of the
system into components

/ Setting — \

Communicating
Systems

getEnclay

/ Assume- \

Guarantee (AQ)

L

M;||A = P
My, E A

M,||M5 E P

/

/ AG rule & \

Automata
Learning

1
A alke.
§ e :
L
U ;\
3 'L\' 7
! T TN
/
/
N

R

o
z z
=
=}
2
g 10 :
= E :
7
7z
= 1
o S | §
3 .) 1]
& ‘ ‘ :
=] O LS

epair & Results\

repair size

#5 #6 #7 #8 #I5#16#I8#l9#22/

Communicating Systems

e C-like programs

« Each component is described as a control-flow graph (automaton)

 Alphabet: program statements & communication channels
get Enc?xy

e In? x4 —reads a value to x; through channel In

» enc! x; —sends the value of x; through channel enc 1o
n’r

while (true) T < 999
pass = readlInput;
while (pass < 999)
pass = readlnput;
pass2 = encrypt (pass);

Example

Synchronization using read-write channels, Interleaving on all other alphabet

get Enc?xy

Example

Synchronization using read-write channels, Interleaving on all other alphabet

get Enc?xy

Example

Synchronization using read-write channels, Interleaving on all other alphabet

get Enc?xy

Example

Synchronization using read-write channels, Interleaving on all other alphabet

get Enc?xy

Example

State Explosion
Problem

(getEncly,, getEnclzs)

{enclyy, enclay) (enc?y,, enclry)

=
Il

Specifications

» Safety properties
» Alphabet:

o (Common) communication channels

| . etEnc?xy, getEncly,
e Syntactic requirements: (getEnc?as, getEncly,)
program behavior through time

Specifications

o Safety properties
 Alphabet:
o (Common) communication channels

« Syntactic requirements:
program behavior through time

e Constraints over local variables

e Semantic requirements:

« “the entered password is different
from the encrypted password”

e “there is no overflow”

(getEnc?zy, getEncly)

Reasoning About the Smaller Components

/ Assume- \

Guarantee (AQ)

M;||A = P
My, E A

Compositional Verification

e Inputs:
e cOmposite system M, || M,
e property P

- Goal: checkif My |M, = P
M, | EP,

e First attempt: “divide and conquer”
 Problem: usually impossible to verify each component separately

« Components are designed to satisfy requirements in specific contexts

Compositional Verification

« Assume-Guarantee (AG) paradigm [Pnueli, 1985]:
e assumptions represent component’s environment

« Under assumption 4 on its environment, does the component guarantee
the property?

AG Rule for Safety Properties

1. checkif a component M; guarantees P when it is a part of a system
satisfying assumption A Mi||AE P

AG Rule for Safety Properties

1. checkif a component M, guarantees P when it is a part of a system
satisfying assumption A Mi||AE P

2. discharge assumption: show that the remaining component M, satisfies A
M, = A

AG Rule for Safety Properties

check if a component M, guarantees P when it is a part of a system
satisfying assumption A My||AE P

discharge assumption: show that the remaining component M, satisfies A

Conclude that My|| M, E P M; = A

AG Rule for Safety Properties

check if a component M, guarantees P when it is a part of a system
satisfying assumption A My||AEP

discharge assumption: show that the remaining component M, satisfies A

Conclude that Mq|| M, & P M; F A

Can we
automatically
construct A?

Automatic Assumption Generation

/ \/ AG rule & \

Automata

L* Algorithm for Learning Regular
Languages wnguins

« Learning assumptions for compositional verification [CGPo3]

« Given aregularlanguage L, we learn a DFA A such that L(A) = L

N—

Teacher Learner e,

L* Algorithm for Learning Regular
Languages wnguins

« Learning assumptions for compositional verification [CGPo3]

« Given aregularlanguage L, we learn a DFA A such that L(A) = L

« Membership queries

Teacher Learner e

L* Algorithm for Learning Regular
Languages wnguins

« Learning assumptions for compositional verification [CGPo3]

« Given aregularlanguage L, we learn a DFA A such that L(A) = L

« Equivalence queries, for a candidate A4;

No +
cex € L(A;)AL

Teacher Learner 66

L* Algorithm for Learning Regular
Languages wnguins

« Learning assumptions for compositional verification [CGPo3]
« Given aregularlanguage L, we learn a DFA A such that L(A) = L
« Equivalence queries, for a candidate A4;

o Try to use intermediate candidates A; as assumptions for AG rule

« But, the weakest assumption is not reqularin our case

Weakest
assumption

Weakest Assumption is not always reqular

By a way of contradiction
e AyisoveraM, ={x=0, y:==0, x:==x+1, y:==y+ 1, sync}
e ConsiderL={x:=0}-{y=0}-{x =x+1,y:=y+ 1} - {sync}

M,||M, = P
M, = M,

A New Goal for Learning

M;||M5 E P

 The teacher answers queries according to the syntactic language of M,

 Regularsince it is given as an automaton

M,||M, = P
M, = M,

A New Goal for Learning

M;||M5 E P

 The teacher answers queries according to the syntactic language of M,

 Regularsince it is given as an automaton

But | already know M, ...

You might find a
much smaller
assumption!

Teacher Learner 7o

Membership Queries - T (M)

w € T(M,) A
Mi||w # P
w is a real cex!

Teacher Learner 7

Equivalence Queries - T (M)

M1||Ai Bﬁ P
t € A; My||t # P

() t e M,
g © t is areal cex!

t & M,
NO!
take t off A; ;1

t € M, \ 4
NO!

additto A;,4

Teacher Learner ;>

AG rule with learning

Model Checking

Automata .
Learning 1. A " M, EP

L*

AG rule with learning

Model Checking

Automata . .
Learning 1. A ” M, EP P is violated
L* inM, || M,

AG rule with learning

Model Checking

v

1AM P real error7? P s violated
cexe Ma2: N Ml | M2

Automata
Learning
L*

AG rule with learning

strengthen assumption

Model Checking

v

7 . .
LA M EP X real error? Yes Pisviolated

Learning > _

Automata

AG rule with learning

strengthen assumption

y Model Checking

Automata .
- | real error? Yes Pisv
Learning LAl M EP ‘ eal erro _ Pisviolated

ltrue

2. M, €A

v

AG rule with learning

strengthen assumption

y Model Checking
Automata

v

5 .
1A ” M. i P false real error: Yes X P is violated

Learning > :
i ST T
ltrue

2.M, €A true

\ P holds

inM, || M,

AG rule with learning

strengthen assumption

y Model Checking
Automata

v

5 .
1A ” M. i P false real error: Yes X P is violated

Learning > _
: ST T
1 ltrue

2.M, €A true

\ P holds

inM, || M,

weaken assumption

/Repair & Results\

repair size
% % assumption size

1
#5 #6 #7 #8 #15#16#I8#l9#22/

/ repair and assumption sizes
>, >,

AG rU|e W|th |ea rn|ng Return to verification

with the repaired M2

strengthen assumption

Model Checking

Automata

?
1. A ” M, P false real error:

Learning >
| ltrue

2. M, €A true RepairM,

\ P holds

inM, || m,

weaken assumption

Assume Guarantee or Repair

« Repair by elimination of error traces

« Two types of repair
e Syntactic repair

e Semantic repair

Assume Guarantee or Repair

Syntactic repair —
counterexample does
not contain constraints

(getEnc?xs, getEncly,)

(getEnclas, getEncly)

Syntactic Repair

e Implemented 3 methods to removing the trace t:

e Exact
remove exactly t from M,

« Approximate
add an intermediate state and use it to direct some traces off the
accepting state, including t

« Aggressive
make the accepting state that t reaches not-accepting

Assume Guarantee or Repair

Semantic repair —

counterexample contains

violated constraints of the (getEnc?zs, getBncly)
specification

Semantic Repair

 AGRreturns a counterexample ¢, forinputx, = 2°3

« Goal: make t infeasible by adding a new constraint € such that
e (@A C— false)

« Applying abduction, quantifier elimination and simplification results in
C= (x1 < 263)

Result

while (true)
pass = readInput;
while (pass < 999)
pass = readInput;
passZ2 = encrypt(pass);
assume pass<293;

AG rule with learning Return to verificatior

with the repaired M2

- Again, where
v

M, := Repaired M,

Termination

e In case M,||M, & P

| | M;||M, = P
« M, is a correct assumption for the AG rule M, = M,

« M, isreqular, therefore L* terminates
M,||M, & P

— In the case of verification, termination is guaranteed

e In case M,||M, ¥ P
« Every iteration with an erroneous M, will resultin a cex

— In the case of an error, progress is guaranteed

Correctness and Termination

« Correctness of Repair

« All questions relate to language containment

 Repair only eliminates traces

e Incremental

 Previous answers to the learner’s questions are still correct

e Can use the same table for L*

Comparing Repair Methods (logarithmic scale)

| | | | | |
aggress. repair size

B B approx. Z % assumption size

al llJllI

#5 #6 #7 #8 #I5 #16 #18 #19 #22 #S #6 #7 #8 #15 #16 #1

—_—
(7]
=

S
L

E
-

repair and assumption sizes

ARA A LSRR
AAALLALALALLALALRALAR LA
AN AN ASNANSNNSN

o0

#19 #22

#15, #16, #18, #19 apply also abduction

AGR Summary

e Modular verification for
communicating systems

» Adjusting automata learning
to systems with data

e [terative and incremental
verification and repair to prove
correctness of repaired system

LEARNING SYMBOLIC

AUTOMATA

Joint work with Dana Fisman and Sandra Zilles

Symbolic Finite-State Automata (SFAs)

e Finite state automata
» Defined with respect to a Boolean algebra

» The transition relation is over predicates from the Boolean algebra

[0,99]

1100, 00f.) [100, o0)

Monotonic Algebras

» Predicates correspond to a total order over the domain elements
c[Yl={d | a<d<b}

e Interval algebraover N, Z, R

Identification in the Limit using
polynomial time and data s aio;

« Passive learning (vs. active learning in L")

Identification in the Limit using
polynomial time and data s aio;

« Passive learning (vs. active learning in L")

« Given a set S of labeled words, build an automaton that agrees with S

Identification in the Limit using
polynomial time and data s aio;

 Given an automaton 4, build a characteristic sample §

Identification in the Limit using
polynomial time and data s ar;

 Given an automaton 4, build a characteristic sample §

 For every sample S’ 2 S that agrees with A4, infer an equivalent automatonto A

ldentification in the Limit for DFAS oc..,

« Constructing a characteristic sample

« Every state is represented by an access word

ldentification in the Limit for DFAS oc..,

« Constructing a characteristic sample

« Every state is represented by an access word

ldentification in the Limit for DFAS oc..,

« Constructing a characteristic sample

« Every state is represented by an access word

ldentification in the Limit for DFAS oc..,

« Constructing a characteristic sample

o Distinctive suffixes between states:
« If5(q0,w) # 6(qo,u)
o there exists a suffix zsuchthatw -z € L(A),u - z &€ L(A)
e Addw - -z,u-z

ldentification in the Limit for DFAS oc..,

« Constructing a characteristic sample

 Representing the transition relation

ldentification in the Limit for DFAS oc..,

« Constructing a characteristic sample

 Representing the transition relation

ldentification in the Limit for DFAS oc..,

« Constructing a characteristic sample

 Representing the transition relation

ldentification in the Limit for DFAS oc..,

« Constructing a characteristic sample

 Representing the transition relation

b ' b
ldentification in the Limit for DFAs @‘

0G92] a

« Constructing a DFA

b ' b
ldentification in the Limit for DFAs @‘

0G92] a

« Constructing a DFA

e Prefix-tree automaton

b ' b
ldentification in the Limit for DFAs @‘

0Gg2] a

« Constructing a DFA

e Prefix-tree automaton

» Join states accordingto S’

b ' b
ldentification in the Limit for DFAs @‘

0Gg2] a

« Constructing a DFA

e Prefix-tree automaton

» Join states accordingto S’

b ' b
ldentification in the Limit for DFAs @‘

0Gg2] a

« Constructing a DFA

e Prefix-tree automaton

» Join states accordingto S’

b ' b
ldentification in the Limit for DFAs @‘

0Gg2] a

« Constructing a DFA

e Prefix-tree automaton

» Join states accordingto S’

b ' b
ldentification in the Limit for DFAs @‘

0Gg2] a

« Constructing a DFA

e Prefix-tree automaton

» Join states accordingto S’

b ' b
ldentification in the Limit for DFAs @‘

0Gg2] a

« Constructing a DFA

e Prefix-tree automaton

» Join states accordingto S’

b ' b
ldentification in the Limit for DFAs @‘

0Gg2] a

« Constructing a DFA

e Prefix-tree automaton

» Join states accordingto S’

ldentification in the Limit for SFAs

e Learn the SFA out of a set of concrete words

» Creating a set of concrete words [0,100)

[0,100) [100,)
o concretize ((Y4, ..., ¥,,)) = (I, ..., [},) '@"’
« concretize ([0,100),[100,0)) = ({0},{100})

[100, o)
[
@

Monotonic
algebra!

ldentification in the Limit for SFAs

e Learn the SFA out of a set of concrete words
» Creating a set of concrete words

[0,100) [100, o)
e concretize ((Y4, ..., ¥,)) = (I, ..., Ty) '@
« concretize (]0,100),[100,0)) = ({0},{100})

[0,100)

[100, o)

100

ldentification in the Limit for SFAs

e Learn the SFA out of a set of concrete words

» Creating a set of concrete words

ldentification in the Limit for SFAs

e Learn the SFA out of a set of concrete words
e Construct an SFA
o generalize((I, ..., I},)) = (Y, ..., Yy)

e generalize({0},{100}) = (|0,100),[100, o))

Monotonic
algebra!

ldentification in the Limit for SFAs

e Learn the SFA out of a set of concrete words

e Construct an SFA [0,100)

[0,100) [100, o0)
o generalize(Iy, ..., T,) = (Y4, ..., ¥y,) '@
+ generalize({0},{100}) = ([0,100), [100, c0)) [100, 00)

100

ldentification in the Limit for SFAs

- generalize

. T, = {0,50,400} T, = {100, 800} [, = {2048)

0 100 400 800

[0,100) [100,400) [400,800) [800,2048)

. generalize((I';, T, I3)) = ([0,100) v [400,800), [100,400) v [800,2048),[2048, =))

ldentification in the Limit for SFAs

e Learn the SFA out of a set of concrete words

e Construct an SFA

(100-0-0,1)

ldentification in the Limit for SFAs

e Learn the SFA out of a set of concrete words
e Construct an SFA

« decontaminate(X) = X'

« X' C ¥ and contains exactly the alphabet of concretizations

(100-0-0,1)

ldentification in the Limit for SFAs

« Travers words by lexicographic order

« Add letters that are needed for access words and for transitions relation

(€,0)
(100, 1)

(0,0)
100,150

(100-0-0,1)
(150,1)

ldentification in the Limit for SFAs

« Travers words by lexicographic order

« Add letters that are needed for access words and for transitions relation

: .
=
(100, 1)
(0,0)
100

° @ ‘ Monotonic
algebra!

(100-0-0,1)
(150,1)

ldentification in the Limit for SFAs

[0,100) [0,100)

concretize

[100, o0) L

SFA A

Black box X Sample

characteristic J Sa

sample for DFAs

Sample
S2 5,

generalize

decontaminatel N

DFA D, Black box Sample
~ infera DFA S2S' 25,

4

Necessary Condition

(Y1, .o, Pp) concretize (T,)

generalize

Necessary Condition

(Y1, .o, Pp) concretize (T,)

It [A;] =2 [I3]
Then [¢;] = [¥]

generalize

Necessary Condition

Otherwise, we cannot learn
outgoing transitions of a single state

(Y1, .o, Pp) concretize (T,)

It [A;] =2 [I3]
Then [¢;] = [¥]

generalize

Propositional Algebra

e Predicates are defined over {p4, ..., px}

« Examples: p; V p,, (p1 AP2) V D3

« Looking for efficient concretize and generalize

Propositional Algebra

e Predicates are defined over {p4, ..., px}

« Examples: p1 V py, (p1 AD2) V D3 No one to one

« Looking for efficient concretize and generalize function from Y
toP

k
Y Y| = 22 p IP| < |Y|
set of semantic Boolean " set of concrete partitions
functions over k propositions @ of polynomial size in k

Every function defines a
set of sets of propositions
satisfying the function

Query Learning of SFAs

o L - style learning of SFA

« Goal: learn an SFA over a Boolean algebra, while asking queries over concrete
letters

 [AD18] suggest MAT" for learning SFAs

Query Learning of SFAs

« Learnability of the underlying algebra is a necessary condition

« Membership

Teacher Learner i3s

Query Learning of SFAs

« Learnability of the underlying algebra is a necessary condition

 Equivalence

Is [] = [e]?

Teacher Learner 136

Query Learning of SFAs

« Learnability of the underlying algebra is a necessary condition

» Assume that we can learn SFA, then we can learn the algebra

Teacher Learner 137

Query Learning of SFAs

« Concise SFA over the propositional algebra cannot be polynomially learned using
MQ and EQ

» The teacher can force the learner to ask 2% — 1 queries

« Membership

N—

Teacher Learner 138

Query Learning of SFAs

« Concise SFA over the propositional algebra cannot be polynomially learned using
MQ and EQ

» The teacher can force the learner to ask 2% — 1 queries

« Equivalence

Is [] = [¢]?

N—

Teacher Learner i3g

Complexity of SFAs

« Usually, the size of DFA is measured by its number of states

« For SFAs, we need to consider:
(n,m, 1)

e

number of states out-degree size of the most complex predicate

Complexity of SFAs

Normalized SFA Neat SFA

 One transition between each pair of Only basic transitions

states . . "
« Predicates labeling transitions are

» Predicates labeling the transitions simple

can be very complex . .
« Can cause an exponential blowup in

the number of transitions

Complexity of SFAs

 Converting to normalized

e Disjunction between all transition predicates
¥4

Q Y1V Vs ‘Q
g p "\ 4

(n,m,m-1)

Complexity of SFAs

e Converting to neat

« Splitting into basic transitions, using DNF

(p1VD3)

(p1 Ap2) Vv
(P1 APs) V
(p3s Ap2) V
(P3 A D4)

(n,m, 1)

(p3 A p4)

(n,m- 2%, 1)

Complexity of SFAs

« For monotonic algebras, transforming to DNF is polynomial in the size of the
original formula

« ([0,100) v [200,500)) A ([0,300) v [400,600)) =
([0,100) A [0,300)) v ([0,100) A [400,600)) v
([200,500) A [0,300)) v ([200,500) A [400,600)) =
[0,100) v [200,300) Vv [400,500)

« Then, over monotonic algebras, transforming to neat is polynomial

Complexity of SFAs — Automata Operations

Operation

(n, m,1)

product construction My, Mo
complementation of deterministic M
determinization of My

minimization of M

<n1 X No, M1 X M9, sz’zelﬁ(ll,lg))
(ny + 1, my + 1, sizedm, (I1))
<2n1:~ 21, Sizelﬁiﬂl xmq (l1)> :

(?’11? my, 5?:33%”1 (Z1)>

Table 5.1: Analysis of standard automata procedures on SFAs.

Complexity of SFAs — Decision Procedures

Decision Procedures

Time Complexity

emptiness
emptiness + feasibility
membership of vy - - -y € D*
inclusion M; C Mo

linear in n, m

n x m x sat* (1)

Sy sat®(sizek (1, i) >
((n1 x ng) x (my1 x mg) x sat” (sizes (I1,12)))

Table 5.2: Analysis of times complexity of decision procedures for SFAs

SFA Summary

o Identification in the limit of SFA
« Necessary and sufficient conditions

o Algorithm for identification of SFAs over monotonic algebras

« Necessary condition for query learning of SFAs
« SFAs over the propositional algebra are not efficiently learnable

« Complexity of automata algorithms in terms of {(n, m, l)

e T

number of states out-degree size of the most complex predicate

getEnclay

e

100, 00/

(). 99]

0. 99]

