Realizable and Context-Free Hyperlanguages

Hadar Frenkel, CISPA Helmholtz Center for Information Security, Germany Sarai Sheinvald, Braude College of Engineering, Israel

Standard Properties: behavior of the traces of the system

"Every request is eventually granted"

Property = a set of traces. LTL, Regular expressions, ...

Hyperproperties: behavior of the system in its entirety

"For every trace with high-security signals, there exists a trace in which they are unobservable"

Hyperproperty = a set of sets of traces. HyperLTL

In this talk

Finite-Word Hyperautomata

- Hyperautomata
- Realizability of hyperlanguages

Context-Free Hypergrammars

- Hypergrammars
- Synchronous hypergrammars
- Emptiness and membership problems for hypergrammars

Finite-word automata

NFA: non-det finite word automaton

The **language** of an NFA **A**: the set of all words that **A** accepts

NFA: regular languages

Hyperautomata [Bonakdarpour & Sheinvald '21]

NFH: non-det finite word hyperautomaton

An NFH accepts a **language** Lif L satisfies α w.r.t. A "For every word there exists a longer word" Hyperlanguage: all infinite languages over {a}

{*L* | *L* is infinite}

NFH: regular hyperlanguages

Hyperautomata

Can express regular hyperproperties:

Noninference: replacing high-security commands with dummy value does not affect the low-security observable data.

Realizability

We study the basic case of singleton hyperlanguages: $\mathcal{L} = \{L\}$

- Various types of *L*
- Realizability and unrealizability results for various α

In this talk

Finite-Word Hyperautomata

- Hyperautomata 🗸
- Realizability of $\{L\}$
 - Finite \ infinite L
 - Ordered L
 - Regular L

Context-Free Hypergrammars

- Hypergrammars
- Synchronous hypergrammars
- Emptiness and membership problems for hypergrammars

Realizability of $\{L\}$

Simple α does not suffice

- $\forall x \land A : \text{ if } L \text{ is accepted then also } L' \subset L \implies \text{ not } \forall \text{-realizable}$
- $\exists x \land x \in L$ is accepted with $x \leftarrow w$ then also L' for $w \in L' \cap L \implies \text{not } \exists \text{-realizable}$

Realizability of {L}: finite L

Simple α does not suffice

$$\forall x \mid A \mid : \text{ if } L \text{ is accepted then also } L' \subset L \implies \text{not } \forall \text{-realizable}$$

 $\exists x \land A : \text{ if } L \text{ is accepted with } x \leftarrow w \text{ then also } L' \text{ for } w \in L' \cap L \implies \text{ not } \exists \text{-realizable}$

If *L* is finite then $\{L\}$ is $\forall \exists$ -realizable: $L = \{w_1, \dots, w_n\}$

(Un)Realizability of {L}: infinite L

Simple α does not suffice

Realizability of {L}: Ordered L

Def: *L* is **ordered** if:

 $L = \{w_1, w_2, ...\}$ and there exists an NFA A_L

Realizability of {L}: Ordered L

<u>Def</u>: *L* is **ordered** if:

 $L = \{w_1, w_2, ...\}$ and there exists an NFA A_L :

Realizability of {L}: Partially Ordered L

Realizability of {L}: Regular L

If L is regular then $\{L\}$ is (m,k)-ordered and $\exists^m \forall \exists^k$ -realizable

<u>m</u>: Minimal elements - simple paths to accepting states $uv \in Min$

<u>k</u>: Successors words - one additional simple cycle $uxv \in succ(uv)$

∃∀∃ Realizable proof: automatic structures

In this talk

Finite-Word Hyperautomata

- Hyperautomata
- Realizability of $\{L\}$
 - Finite \ infinite L
 - Ordered **A**
 - Regular L

Context-Free Hypergrammars

- Hypergrammars
- Synchronous hypergrammars
- Emptiness & membership

Context-Free Grammars (CGF)

A terminal word **w** is in the **language** of a CGF **G** if **w** can be derived from the initial variable

"For every word of type $a^n b^n$ there exists a longer word"

Hyperlanguage: all infinite languages $\subseteq \{a^nb^n | n \in \mathbb{N}\}$ Set of sets of words

$$\forall x \exists y \quad S \rightarrow \begin{cases} a \\ a \end{cases} \quad S \quad \begin{cases} b \\ b \end{cases} \quad \left| \begin{array}{c} A \\ b \end{array} \right|^{*} \quad A \end{cases}$$

$$A \rightarrow \begin{cases} \# \\ a \end{cases} \quad A \quad \begin{cases} \# \\ b \end{array} \quad \left| \begin{array}{c} \# \\ a \end{array} \right|^{*} \quad b \end{cases}$$

а

а

а

b

at the middle of words leads to asynchronization

b b

a a

a

b

b

Easy solution:

hypergrammar $G: \forall x \exists y G$

 $G \cap \sum_{\Sigma^*} \cdot \{\#\}^*$ $\Sigma^* \cdot \{\#\}^*$

Avoid # at the
widdle of the viscousaa##bbaaabbb

Result: only the synchronous part of *G*

Can we define a hypergrammar that is **inherently** synchronous?

Can we define a hypergrammar that is **inherently** synchronous?

Can we define a hypergrammar that is **inherently** synchronous? Rgt(w) ⊆ Lft(w')

Can we define a hypergrammar that is **inherently** synchronous? Rgt(w) ⊆ Lft(w')

Can we define a hypergrammar that is **inherently** synchronous? Rgt(w) ⊆ Lft(w')

Can we define a hypergrammar that is **inherently** synchronous? Rgt(w) G Lft(w')

In this talk

Finite-Word Hyperautomata

Context-Free Hypergrammars

- Hyperautomata
- Realizability of $\{L\}$
 - Finite \ infinite L
 - Ordered **A**
 - Regular L

- Hypergrammars √
- Synchronous hypergrammars
- Emptiness & membership

Emptiness: ∀*syncCFHG

$$\forall x \forall y \; \mathbf{G} : \text{if } L \text{ is accepted then also } L' \subset L \Rightarrow$$

G is not empty iff is a singleton language $\{w\} \in \mathcal{L}(G) \Rightarrow$

Check emptiness of the underlying grammar

Emptiness: Undecidable for \forall^*CFHG

Reduction from Post correspondence problem

 $x \leftarrow$ bba ab bba a $y \leftarrow$ bb aa bb baa

Regular Membership

Undecidable for ∀^{*}(sync)CFHG

Reduction from the universality problem of CFG


```
is universal \Leftrightarrow
```

 $\Sigma^* \subseteq \mathsf{G}$ \Leftrightarrow

$$\Sigma^* \in \forall x \mathsf{G}$$

Questions?

Hyperautomata

- Realizability of {L} for
 - Finite \setminus infinite L
 - Ordered *L*
 - Regular L

Hypergrammars

- Synchronous hypergrammars
- Emptiness ∀*, ∃∀* [in the paper: ∃*, ∃*∀*]
- Regular membership ∃*, ∀* [in the paper: finite membership]