
Learning Better Representations From Less Data For
Propositional Satisfiability

Mohamed Ghanem∗ Frederik Schmitt∗ Julian Siber∗ Bernd Finkbeiner∗
∗CISPA Helmholtz Center for Information Security

{mohamed.ghanem,frederik.schmitt,julian.siber,finkbeiner}@cispa.de

Abstract

Training neural networks on NP-complete problems typically demands very large
amounts of training data and often needs to be coupled with computationally
expensive symbolic verifiers to ensure output correctness. In this paper, we
present NeuRes, a neuro-symbolic approach to address both challenges for proposi-
tional satisfiability, being the quintessential NP-complete problem. By combining
certificate-driven training and expert iteration, our model learns better representa-
tions than models trained for classification only, with a much higher data efficiency
– requiring orders of magnitude less training data. NeuRes employs propositional
resolution as a proof system to generate proofs of unsatisfiability and to accelerate
the process of finding satisfying truth assignments, exploring both possibilities in
parallel. To realize this, we propose an attention-based architecture that autoregres-
sively selects pairs of clauses from a dynamic formula embedding to derive new
clauses. Furthermore, we employ expert iteration whereby model-generated proofs
progressively replace longer teacher proofs as the new ground truth. This enables
our model to reduce a dataset of proofs generated by an advanced solver by ∼32%
after training on it with no extra guidance. This shows that NeuRes is not limited
by the optimality of the teacher algorithm owing to its self-improving workflow.
We show that our model achieves far better performance than NeuroSAT in terms
of both correctly classified and proven instances.

1 Introduction

Boolean satisfiability (SAT) is a fundamental problem in computer science. For theory, this stems
from SAT being the first problem proven NP-complete [12]. For practice, this is due to many highly-
optimized SAT solvers being used as flexible reasoning engines in a variety of tasks such as model
checking [11, 46], software verification [16], planning [26], and mathematical proof search [23].
Recently, SAT has also served as a litmus test for assessing the symbolic reasoning capabilities of
neural models and a promising domain for neuro-symbolic systems [42, 41, 1, 9, 35]. So far, neural
models only provide limited, if any, justification for unsatisfiability predictions. NeuroCore [41],
for example, predicts an unsatisfiable core, the verification of which can be as hard as solving the
original problem. No certificates at all or certificates that are hard to check limit neural methods
in a domain where correctness is critical and prevents close integrations with symbolic methods.
Therefore, we propose a neuro-symbolic model that utilizes resolution to solve SAT problems by
generating easy-to-check certificates.

A resolution proof is a sequence of case distinctions, each involving two clauses, that ends in the
empty clause (falsum). This technique can also be used to prove satisfiability by exhaustively
applying it until no further new resolution steps are possible and the empty clause has not been
derived. Generating such a proof is an interesting problem from a neuro-symbolic perspective because
unlike other discrete combinatorial problems that have been considered before [45, 6, 27, 29, 10], it

Preprint. Under review.

requires selecting compatible pairs of clauses from the dynamically growing pool, as newly derived
clauses are naturally considered for derivation in subsequent steps. In this work, we devise three
attention-based mechanisms to perform this pair-selection needed for generating resolution proofs.
In addition, we augment the architecture to efficiently handle sat (satisfiable) formulas with an
assignment decoding mechanism that assigns a truth value to each literal. We hypothesize that,
despite their final goals being in complete opposition, resolution and sat assignment finding can form
a mutually beneficial collaboration. On the one hand, clauses derived by resolution incrementally
inject additional information into the network, e.g., deriving a single-literal clause by resolution
directly implies that literal should be true in any possible sat assignment. On the other hand, finding
a sat assignment absolves the resolution network from having to prove satisfiability by exhaustion.
On that basis, given an input formula, NeuRes proceeds in two parallel tracks: (1) finding a sat
assignment, and (2) deriving a resolution proof of unsatisfiability. Both tracks operate on a shared
representation of the problem state. Depending on which track succeeds, NeuRes produces the
corresponding SAT verdict which is guaranteed to be sound by virtue of its certificate-based design.
Since both of our certificate types are efficient to check, we can afford to perform these symbolic
checks at each step. When comparing NeuRes with NeuroSAT [42], which has been trained to predict
satisfiability with millions of samples, we demonstrate that NeuRes achieves a higher accuracy while
providing a proof and requires only thousands of training samples.

As for most problems in theorem proving we are not only interest in finding any proof but a short
proof. Resolution proofs can vary largely in their size depending on the resolution steps taken. Being
able to efficiently check the proof, also allows us to adapt the proof target while training the model.
In particular, we explore an expert iteration mechanism [38] that pre-rolls the resolution proof of
the model and replaces the target proof whenever the pre-rolled proof is shorter. We demonstrate
that the bootstrapping mechanism iteratively shortens the proofs of our training dataset while further
improving the overall performance of the model.

We make the following contributions:

1. We introduce novel architectures which combine graph neural networks with attention
mechanisms for generating resolution proofs and assignments for CNF formulas (Section 4).

2. We show that for propositional logic, learning to prove rather than predict satisfiability
results in better representations and requires far less training samples (Section 6 and 7).

3. We devise a bootstrapped training procedure where our model progressively produces shorter
resolution proofs than its teacher (Section 6.2) boosting the model’s overall performance.

2 Related Work

SAT Solving and Certificates. We refer to the annual SAT competitions [4] for a comprehensive
overview on the ever-evolving landscape of SAT solvers, benchmarks, and proof checkers. SAT
solvers are complex systems with a documented history of bugs [8, 25], hence proof certificates
have been partially required in this competition since 2013 [2]. Unlike satisfiable formulas, there are
several ways to certify unsatisfiable formulas [22]. Resolution proofs [50, 19] are easy to verify [14],
but non-trivial to generate from modern solvers based on the paradigm of conflict-driven clause
learning [33]. Clausal proofs, e.g., in DRAT format [48], are easier to generate and space-efficient,
but hard to validate. Verifying the proofs can take longer than their discovery [21] and requires highly
optimized algorithms [30].

Deep Learning for SAT Solving. NeuroSAT [42] was the first study of the Boolean satisfiability
problem as an end-to-end learning task. Building upon the NeuroSAT architecture, a simplified
version has been trained to predict unsatisfiable cores and successfully integrated in a state-of-the-art
SAT solver [41]. It has been showed that both the NeuroSAT architecture and a newly introduced
deep exchangeable architecture can outperform SAT solvers on instances of 3-SAT problems [9]. The
NeuroSAT architecture has also been applied on special classes of crypto-analysis problems [43]. In
addition to supervised learning, unsupervised methods have been proposed for solving SAT problems.
For Circuit-SAT a deep-gated DAG recursive neural architecture has been presented together with a
differentiable training objective to optimize towards solving the Circuit-SAT problem and finding
a satisfying assignment [1]. For Boolean satisfiability, a differentiable training objective has been
proposed together with a query mechanism that allows for recurrent solution trials [35].

2

Figure 1: Overall NeuRes architecture

Deep Learning for Formal Proof Generation. In formal mathematics, deep learning has been
integrated with theorem proving for clause selection [32, 17], premise selection [24, 47, 5, 34],
tactic prediction [49, 36] and whole proof searches [39, 18]. For SMT formulas specifically, deep
reinforcement learning has been applied to tactic prediction [3]. In the domain of quantified boolean
formulas, heuristics have been learned to guide search algorithms in proving the satisfiability and
unsatisfiability of formulas [31]. For temporal logics, deep learning has been applied to prove the
satisfiability of linear-time temporal logic formulas and the realizability of specifications [20, 40, 13].

3 Proofs of (Un-)Satisfiability

We start with a brief review of certifying the (un-)satisfiability of propositional formulas in conjunctive
normal form. For a set of Boolean variables V , we identify with each variable x ∈ V the positive
literal x and the negative literal ¬x denoted by x̄. A clause corresponds to a disjunction of literals and
is abbreviated by a set of literals, e.g., {1̄, 3} represents (¬x1 ∨x3). A formula in conjunctive normal
form (CNF) is a conjunction of clauses and is abbreviated by a set of clauses, e.g., {{1̄, 3}, {1, 2, 4̄}}
represents (¬x1∨x3)∧ (x1∨x2∨¬x4). Any Boolean formula can be converted to an equisatisfiable
CNF formula in polynomial time, for example with Tseitin transformation [44].

A CNF formula is satisfiable if there exists an assignment A : V → {⊤,⊥} such that all clauses
are satisfied, i.e., each clause contains a positive literal x such that A(x) = ⊤ or a negative literal
x̄ such that A(x) = ⊥. If no such assignment exists we call the formula unsatisfiable. To prove
unsatisfiability we rely on resolution, a fundamental inference rule in satisfiability testing [15]. The
resolution rule (Res) picks clauses with two opposite literals and performs the following inference:

C1 ∪ {x} C2 ∪ {x̄}
Res

C1 ∪ C2

Resolution effectively performs a case distinction on the value of variable x: Either it is assigned
to false, then C1 has to evaluate to true, or it is assigned to true, then C2 has to evaluate to true.
Hence, we may infer the clause C1 ∪ C2. A resolution proof for a CNF formula is a sequence of
applications of the Res rule ending in the empty clause.

4 Models

4.1 General Architecture

NeuRes is a neural network that takes a CNF formula as a set of clauses and outputs either a satisfying
truth assignment or a resolution proof of unsatisfiability. As such, our model comprises a formula
embedder connected to two downstream heads: (1) an attention network responsible for selecting
clause pairs, and (2) a truth assignment decoder. See Figure 1 for an overview of the NeuRes
architecture. After obtaining the initial clause and literal embeddings (representing the input formula),
we continue with the iterative certificate generation phase. At each step, the model selects a clause

3

pair which gets resolved into a new clause to append to the current formula graph while decoding a
candidate truth assignment in parallel. The model keeps deriving new clauses until the empty clause
is found (marking resolution proof completion), a satisfying assignment is found (marking a certified
sat verdict), or the limit on episode length is reached (marking timeout).

4.2 Message-Passing Embedder

Similar to NeuroSAT, we use a message-passing GNN to obtain clause and literal embeddings by
performing a predetermined number of rounds. Our formula graph is also constructed in a similar
fashion to NeuroSAT graphs where clause nodes are connected to their constituent literal nodes
and literals are connect to their complements (cf. Appendix A). For a formula F in m variables
and n clauses, the outputs of this GNN are two matrices: EL ∈ Rm×d for literal embeddings and
EC ∈ Rn×d for clause embedding, where d ∈ N+ is the embedding dimension. Here we have
two key differences from NeuroSAT. Firstly, NeuroSAT uses these embeddings as voters to predict
satisfiability through a classification MLP. In our case, we use these embeddings as clause tokens
for clause pair selection and literal tokens for truth value assignment. Secondly, since our model
derives new clauses with every resolution step, we need to embed these new clauses, as well as update
existing embeddings to reflect their relation to the newly inferred clauses. Consequently, we need to
introduce a new phase to the message-passing protocol, for which we explore two approaches: static
embeddings and dynamic embeddings.

In a static approach, we do not change the embeddings of initial clauses upon inferring a new clause.
Instead, we exchange local messages between the node corresponding to the new clause and its literal
nodes, in both directions. The main advantage of this approach is its low cost. A major drawback is
that initial clauses never learn information about their relation to newly inferred clauses.

In a dynamic approach, we do not only generate a new clause and its embedding, we also update the
embeddings of all other clauses. This accounts for the fact that the utility of an existing clause may
change with the introduction of a new clause. We perform one message-passing round on the mature
graph for every newly derived clause, which produces the new clause embedding and updates other
clause embeddings. Since message-passing rounds are parallel across clauses, a single update to the
whole embedding matrix is reasonably efficient.

4.3 Selector Networks

After producing clause and literal embeddings, NeuRes enters the derivation stage. At each step, our
model needs to select two clauses to resolve, produce the resultant clause, and add it to the current
formula. To realize our clause-pair selection mechanism, we employ three attention-based designs.

4.3.1 Cascaded Attention (Casc-Attn)

Figure 2: Cascaded attention

In this design, pairs are selected by making two consecutive attention queries on the clause pool. We
condition the second attention query on the outcome (i.e., the clause) of the first query. Figure 2
shows this scheme where we perform the first query using the mean of the literal embeddings EL

concatenated with a zero vector while performing the second query using the mean of the literal
embeddings concatenated with the embedding vector EC

c1 of the clause selected in the first query.
Formally, Casc-Attn selects a clause index pair (c1, c2) as follows:

4

ci = argmax
j

[
uT tanh(W1qi +W2E

C
j)

]
with qi =

{
EL ∥ 0 if i = 1

EL ∥ EC
c1 if i = 2

(1)

where W1 ∈ R2d×d,W2 ∈ Rd×d, u ∈ Rd are trainable network parameters.

The advantage of this design is that it is not limited to pair selection and can be used to select a
tuple of arbitrary length. The main downside, however, is that this design chooses c1 independently
from c2, which is undesirable because the utility of a resolution step is determined by both clauses
simultaneously (not sequentially).

4.3.2 Full Self-Attention (Full-Attn)

To address the downside of independent clause selection, this variant performs self-attention between
all clauses to obtain a matrix S ∈ Rn×n where Si,j represents the attention score of the clause pair
(ci, cj) as shown in Figure 3. The model selects clause pairs by choosing the cell with the maximal
score. In this attention scheme, the clause embeddings are used as both queries and keys.

Figure 3: Full self-attention

Formally, Full-Attn selects a clause index pair (c1, c2) as follows:

(c1, c2) = argmax
(i,j)

Si,j with Q = ECWQ; K = ECWK ; S =
QKT

√
d

(2)

where WQ ∈ Rd×d,WK ∈ Rd×d are trainable network parameters. Since S contains many cells that
correspond to invalid resolution steps (i.e., clause pairs that cannot be resolved), we mask out the
invalid cells from the attention grid in ensure the network selection is valid at every step.

4.3.3 Anchored Self-Attention (Anch-Attn)

In Full-Attn, the attention grid grows quadratically with the number of clauses. In this variant, we
relax this cost by exploiting a property of binary resolution where each step targets a single variable
in the two resolvent clauses. This allows us to narrow down candidate clause pairs by first selecting a
variable as an anchor on which our clauses should be resolved. As such, we do not need to consider
the full clause set at once, only the clauses containing the chosen variable v. We further compress the
attention grid by lining clauses containing the literal v on rows while lining clauses containing the
literal ¬v on columns. This reduces the redundancy of the attention grid since clauses containing the
variable v with the same parity cannot be resolved on v, so there is no point in matching them. In
the worst case, this relaxed grid is of size n

2 × n
2 = n2

4 instead of n2. In this scheme, we have two
attention modules: one attention network to choose an anchor variable followed by a self-attention
network to produce the anchored score grid.

In light of Figure 4, this approach combines structural elements from Casc-Attn and Full-Attn;
however, both elements are used differently in Anch-Attn. Firstly, the attention mechanism in Casc-
Attn is used to select clauses whereas Anch-Attn uses it to select variables. Secondly, self-attention in
Full-Attn matches any pair of clauses (ci, cj) in both directions as the row and column dimensions in
the attention score grid reflect the same clauses (all clauses). By contrast, Anch-Attn computes self-
attention scores for clause pairs in only one order (positive instance to negative instance). Formally,
Anch-Attn selects an anchor variable v as follows:

v = argmax
i

[
uT tanh(W1EC +W2(E

L+

i + EL−

i))
]

(3)

5

Figure 4: Anchored self-attention

where W1 ∈ Rd×d,W2 ∈ Rd×d, u ∈ Rd are trainable network parameters. The clause index pair
(c1, c2) is then selected according to the same equations of Full-Attn (Eq. 2) using the v-anchored set
of clause embeddings.

4.4 Assignment Decoder

To extract satisfying assignments, we use a sigmoid-activated MLP ψ on top of the literal embeddings
EL to assign a truth value Â(li) to a literal li as shown in Eq. 4.

Â(li) = σ(ψ(EL
i)) (4)

Note that since for each variable, we have a positive and a negative literal embeddings, we can
construct two different truth assignments at a time using this method. However, to simplify our loss
function, we only derive truth assignments from the positive literal embeddings at train time while
extracting both at test time.

5 Training and Hyperparameters

5.1 Dataset

For our training and testing data, we adopt the same formula generation method as NeuroSAT [42],
namely SR(n) where n is the number of variables in the formula. This method was designed to
generate a generalized formula distribution that is not limited to a particular domain of SAT problems.
To control our data distributions, we vary the range on the number of Boolean variables involved in
each formula. For our training data, we use formulas in SR(U(10, 40)) where U(10, 40) denotes the
uniform distribution on integers between 10 and 40 (inclusive). To generate our teacher certificates
comprising resolution proofs and truth assignments, we use the BooleForce solver [7] on the formulas
generated on the SR distribution.

5.2 Loss Function

We train our model in a supervised fashion using teacher-forcing on solver certificates. During unsat
episodes, teacher actions (clause pairs) are imposed over the whole run. The length of the teacher
proof dictates the length of the respective episode, denoted as T . Model parameters θ maximize the
likelihood of teacher choices yt thereby minimizing the resolution loss LRes shown in Eq 5.

LRes = − 1

T

∑
t

log(p(yt; θ)) · γ(T−t)
(5)

During sat episodes, we minimize Lsat computed as the binary cross-entropy loss between the
sigmoid-activated outputs of assignment decoder Â : V → [0, 1] and the teacher assignment
A : V → {0, 1} as shown in Eq. 6.

Lsat =
1

T

∑
t

[
γ(T−t)

|V |

V∑
v

BCE(Â(v),A(v))

]
(6)

In both types of episodes, step-wise losses are weighted by a time-horizon discounting factor γ < 1.0
over the whole episode. The main rationale behind this is that later losses should have higher weights
as the formula tends to get easier to solve with each new clause inferred by resolution.

6

Table 1: Performance of all attention variants on unsat SR(U(10, 40)) test problems.

VARIANT
STATIC-EMBED DYNAMIC-EMBED

PROVEN (%) P-LEN PROVEN (%) P-LEN

CASC-ATTN 14.72 1.87 37.33 1.79

FULL-ATTN 25.38 1.61 95.2 1.67

ANCH-ATTN 28.72 2.12 60.5 2.28

Table 2: Bootstrapped training data reduction statistics. Reduction statistics are computed on the
SR(U(10, 40)) training set while p-Len and success rate are computed on a test set of the same
distribution.

REDUCTION DEPTH MAX: 23, AVG: 6.6

PROOF REDUCTION (%) MAX: 86.11, AVG: 33.51

PROOFS REDUCED (%) 90.08

TOTAL REDUCTION (%) 31.85

P-LEN 1.15

SUCCESS RATE (%) 100.0

5.3 Hyperparameters

NeuRes has several hyperparameters that influence network size, depth, and loss weighting. In the
experiments we fix the embedding dimension to 128. We train our models with a batch size of 1
and the Adam optimizer [28] for 50 epochs which took about six days on a single NVIDIA A100
GPU. We linearly anneal the learning rate from 5 × 10−5 to zero over the training episodes. This
empirically yields better results than using a constant learning rate. We use a time discounting factor
λ = 0.99 for the episodic loss. We apply global-norm gradient clipping with a ratio of 0.5 [37].

6 Generating Resolution Proofs

NeuRes uses resolution as the core reasoning technique for certificate generation, both in the unsat
and sat cases. Hence, we start with an in-depth comparative evaluation of several internal variants
for resolution only. In particular, we evaluate the success rate (i.e., problems solved before timeout)
and proof length relative to teacher, denoted by p-Len = |PNeuRes|

|Pteacher| . We use a limit of 4 on this ratio
as a timeout to avoid simply brute-forcing a resolution proof. Note that we measure p-Len only for
solved formulas to avoid diluting the average with resolution trails that timed out. For experiments in
this section, we train on 8K unsat formulas in SR(U(10, 40)) and test our models on 10K unseen
formulas belonging to the same distribution. We use more formulas than the model was trained on to
more reliably demonstrate its learning capacity.

6.1 Attention Variants

To assess the basic resolution performance of NeuRes, we evaluate each attention variant using both
static and dynamic embeddings. For this experiment, we perform 32 rounds of message-passing
for each input formula. As shown in Table 1, dynamic embedding is decisively better for all three
attention variants, thereby confirming its conceptual merit. While anchored attention leads over other
variants under static embeddings, full attention performs significantly better for dynamic embeddings,
albeit at the cost of longer proofs on average. We believe that Anch-Attn’s better performance
in the static setting can be explained through the full connectivity of its attention grid (proven in
Appendix B). Since dynamic-embedding Full-Attn is the best-performing configuration over in-
distribution test settings, we will demonstrate the remaining evaluation experiments exclusively on
this variant.

7

6.2 Shortening Teacher Proofs with Bootstrapping

During our initial experiments, we discovered proofs produced by NeuRes that were shorter than
the corresponding teacher proofs in the training data. Although teacher proofs were generated by
a traditional SAT solver, they are not guaranteed to be size-optimal. The size of resolution proofs
is their only real drawback, hence any method that can reduce this size would be immensely useful.
Upon closer inspection we find that, on average, our previous best performer trained with regular
teacher-forcing manages to shorten ∼18% of teacher proofs by a notable factor (cf. Appendix C).

This inspired us to devise a bootstrapped training procedure to capitalize on this feature: We pre-roll
each input problem using model actions only, and whenever the model proof is shorter than the
teacher’s, it replaces the teacher’s in the dataset. In other words, we maximize the likelihood of the
shorter proof. In doing so iteratively, the model progressively becomes its own teacher by exploiting
redundancies in the teacher algorithm.

The outcome of this bootstrapped training process is summarized in Table 2. We find that bootstrap-
ping results in notable gains in terms of both success rate and optimality. The sharp decline in proof
length (relatively quantified by p-Len) at test time shows that the models transfers the bootstrapped
knowledge to unseen test formulas, as opposed to merely overfitting on training formulas. In addition
to success rate and p-Len, we inspect the reduction statistics of our bootstrapped variant (first three
rows of Table 2). Since the bootstrapped model performs multiple reduction scans over the training
dataset, we add a metric for reduction depth computed as the number of progressive reductions made
to a proof. To further quantify this effect, we report the maximum and average reduction ratios of
reduced proofs relative to teacher proofs. Finally, we report the total reduction made to the dataset
size in terms of total number of proof steps.

In Appendix C, we have compiled additional statistics (cf. Table 4) on proof shortening during the
training process, as well as an example proof reduced by the bootstrapped NeuRes (Figure 7). We
only include a small reduction example (from 20 steps to 10 steps) for space constraints, but we have
many more examples of much larger reductions (e.g., from ∼800 to ∼400 steps).

7 Resolution-Aided SAT Solving

In this section, we evaluate the performance of our fully integrated model trained on a hybrid dataset
comprising 8K unsatisfiable formulas (and their resolution proofs) and 8K satisfiable formulas (and
their satisfying assignments). For the unsatisfiable formulas, timeout (4 · |Pteacher|) and optimality
(p-Len) are measured similarly to previous experiments. For satisfiable formulas, we set the timeout
(maximum #trials) to 2 · |V |. Ultimately, this section aims to investigate the effect of incorporating a
certificate-driven downstream head on the quality of the learnt representations through its impact on
the performance of the complementary task, i.e., proving/predicting satisfiability. We use NeuroSAT
as our baseline as it employs the same formula embedding architecture. Since NeuroSAT proves sat
but only predicts unsat, we train a classification MLP on top of our trained NeuRes model to further
showcase the benefit of our representations on prediction accuracy.

Table 3: Performance of full solver mode tested on SR(40) problems and trained on SR(U(10, 40))
problems where PREDICTED refers to the satisfiability prediction without certificate.

MODEL
PROVEN (%) PREDICTED (%)

SAT UNSAT TOTAL SAT UNSAT TOTAL

NEURES 96.8 99.6 98.2 84.28 99.2 91.65
NEUROSAT [42] 70 - - 73 96 85

Table 3 confirms this main hypothesis. In essence, this result points to the fact that learning signals
obtained from training on unsat certificates largely enhance the ability of the neural network to extract
useful information from the input formula. This is doubly promising considering NeuroSAT was
trained on millions of formulas while NeuRes was trained on only 16K formulas. Lastly, we find
that augmenting sat formulas by resolution derivations results in relative improvements (∼ 2.3%) in
success rate even though these derivations are attempting to prove unsatisfiability.

8

8 Generalizing to Larger Problems

We also evaluate our Res-Aided model (trained on SR(U(10, 40))) on five datasets comprising
formulas with up to 5 times more variables than encountered during training. We use the same
distributions reported by NeuroSAT and we run our model for the same maximum number of
iterations (1000).

Figure 5: SAT success rate over iterations.

Figure 5 shows the scalability of NeuRes to larger problems by letting it run for more iterations.
Compared to NeuroSAT [42], NeuRes scores a much higher first-try success rate on all 5 problem
distributions, and a higher final success rate on all of them except for SR(40) on which both models
nearly score 100%. Particularly, NeuRes shows higher first-try success on the 3 largest problem sizes
where NeuroSAT solves zero or near-zero problems on the first try.

9 Conclusion

In this paper, we introduced a deep learning approach for proving and predicting propositional
satisfiability. We proposed an architecture that combines graph neural networks with attention
mechanisms to generate resolution proofs of unsatisfiability. Unlike methods that merely predict
unsatisfiability, our models provide easily verifiable certificates for their verdicts. We demonstrated
that our certificate-based training and resolution-aided mode of operation surpass previous approaches
in terms of performance and data efficiency, which we attribute to learning better representation.

Despite its promising benchmark performance, our model cannot solely outperform highly-engineered
industrial solvers, as is currently the case for all neural methods as standalone tools. The gap between
neural networks and symbolic algorithms is still several breakthroughs wide, and our hope is to
bring deep learning methods one concrete step closer to filling this gap. For NeuRes, this step is
recognizing the immense value of carefully integrating certificates into the model design and training
as opposed to using shallow supervision labels. Last but not least, it is worth noting that even at their
present state, neural networks stand great potential to advance traditional solvers by combining them
in hybrid solvers that utilize the deep long-range dependencies captured by neural networks along
with the exploration speed of symbolic algorithms. Moreover, we demonstrated a unique potential to
advance SAT solving through proof reduction, as proof size is a major challenge in certifying the
results of traditional solvers. This proof reduction is facilitated by a bootstrapped training procedure
that uses teacher proofs as a guide as opposed to a golden standard.

References

[1] S. Amizadeh, S. Matusevych, and M. Weimer. Learning to solve circuit-sat: An unsupervised
differentiable approach. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

9

[2] A. Balint, A. Belov, M. Heule, and M. Järvisalo, editors. Proceedings of SAT Competition 2013:
Solver and Benchmark Descriptions, volume B-2013-1 of Department of Computer Science
Series of Publications B. University of Helsinki, Finland, 2013.

[3] M. Balunovic, P. Bielik, and M. T. Vechev. Learning to solve SMT formulas. In S. Bengio,
H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
10338–10349, 2018.

[4] T. Balyo, M. Heule, M. Iser, M. Järvisalo, and M. Suda, editors. Proceedings of SAT Competition
2023: Solver, Benchmark and Proof Checker Descriptions. Department of Computer Science
Series of Publications B. Department of Computer Science, University of Helsinki, Finland,
2023.

[5] K. Bansal, S. M. Loos, M. N. Rabe, C. Szegedy, and S. Wilcox. Holist: An environment for
machine learning of higher order logic theorem proving. In K. Chaudhuri and R. Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pages 454–463. PMLR, 2019.

[6] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimization with
reinforcement learning. In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings. OpenReview.net, 2017.

[7] A. Biere. Booleforce sat solver. https://fmv.jku.at/booleforce/, 2010.

[8] R. Brummayer, F. Lonsing, and A. Biere. Automated testing and debugging of SAT and QBF
solvers. In O. Strichman and S. Szeider, editors, Theory and Applications of Satisfiability
Testing - SAT 2010, 13th International Conference, SAT 2010, Edinburgh, UK, July 11-14, 2010.
Proceedings, volume 6175 of Lecture Notes in Computer Science, pages 44–57. Springer, 2010.

[9] C. Cameron, R. Chen, J. S. Hartford, and K. Leyton-Brown. Predicting propositional satisfiabil-
ity via end-to-end learning. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, New York, NY, USA, February 7-12, 2020, pages 3324–3331. AAAI Press, 2020.

[10] Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Velickovic. Combinatorial
optimization and reasoning with graph neural networks. J. Mach. Learn. Res., 24:130:1–130:61,
2023.

[11] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability
solving. Formal Methods Syst. Des., 19(1):7–34, 2001.

[12] S. A. Cook. The complexity of theorem-proving procedures. In M. A. Harrison, R. B. Banerji,
and J. D. Ullman, editors, Proceedings of the 3rd Annual ACM Symposium on Theory of
Computing, May 3-5, 1971, Shaker Heights, Ohio, USA, pages 151–158. ACM, 1971.

[13] M. Cosler, F. Schmitt, C. Hahn, and B. Finkbeiner. Iterative circuit repair against formal
specifications. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[14] A. Darbari, B. Fischer, and J. Marques-Silva. Industrial-strength certified SAT solving through
verified SAT proof checking. In A. Cavalcanti, D. Déharbe, M. Gaudel, and J. Woodcock,
editors, Theoretical Aspects of Computing - ICTAC 2010, 7th International Colloquium, Natal,
Rio Grande do Norte, Brazil, September 1-3, 2010. Proceedings, volume 6255 of Lecture Notes
in Computer Science, pages 260–274. Springer, 2010.

[15] M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM, 7(3):201–
215, 1960.

[16] L. M. de Moura and N. S. Bjørner. Satisfiability modulo theories: introduction and applications.
Commun. ACM, 54(9):69–77, 2011.

10

https://fmv.jku.at/booleforce/

[17] V. Firoiu, E. Aygün, A. Anand, Z. Ahmed, X. Glorot, L. Orseau, L. M. Zhang, D. Precup, and
S. Mourad. Training a first-order theorem prover from synthetic data. CoRR, abs/2103.03798,
2021.

[18] E. First, M. N. Rabe, T. Ringer, and Y. Brun. Baldur: Whole-proof generation and repair with
large language models. CoRR, abs/2303.04910, 2023.

[19] E. I. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF formulas. In
2003 Design, Automation and Test in Europe Conference and Exposition (DATE 2003), 3-7
March 2003, Munich, Germany, pages 10886–10891. IEEE Computer Society, 2003.

[20] C. Hahn, F. Schmitt, J. U. Kreber, M. N. Rabe, and B. Finkbeiner. Teaching temporal logics
to neural networks. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[21] M. Heule, W. A. H. Jr., and N. Wetzler. Bridging the gap between easy generation and efficient
verification of unsatisfiability proofs. Softw. Test. Verification Reliab., 24(8):593–607, 2014.

[22] M. J. H. Heule. Proofs of unsatisfiability. In A. Biere, M. Heule, H. van Maaren, and T. Walsh,
editors, Handbook of Satisfiability - Second Edition, volume 336 of Frontiers in Artificial
Intelligence and Applications, pages 635–668. IOS Press, 2021.

[23] M. J. H. Heule and O. Kullmann. The science of brute force. Commun. ACM, 60(8):70–79,
2017.

[24] G. Irving, C. Szegedy, A. A. Alemi, N. Eén, F. Chollet, and J. Urban. Deepmath - deep sequence
models for premise selection. In D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain,
pages 2235–2243, 2016.

[25] M. Järvisalo, M. Heule, and A. Biere. Inprocessing rules. In B. Gramlich, D. Miller, and
U. Sattler, editors, Automated Reasoning - 6th International Joint Conference, IJCAR 2012,
Manchester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture Notes in Computer
Science, pages 355–370. Springer, 2012.

[26] H. A. Kautz and B. Selman. Planning as satisfiability. In B. Neumann, editor, 10th European
Conference on Artificial Intelligence, ECAI 92, Vienna, Austria, August 3-7, 1992. Proceedings,
pages 359–363. John Wiley and Sons, 1992.

[27] E. B. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization
algorithms over graphs. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus,
S. V. N. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pages 6348–6358, 2017.

[28] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[29] W. Kool, H. van Hoof, and M. Welling. Attention, learn to solve routing problems! In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019.

[30] P. Lammich. Efficient verified (UN)SAT certificate checking. J. Autom. Reason., 64(3):513–532,
2020.

[31] G. Lederman, M. N. Rabe, S. Seshia, and E. A. Lee. Learning heuristics for quantified
boolean formulas through reinforcement learning. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[32] S. M. Loos, G. Irving, C. Szegedy, and C. Kaliszyk. Deep network guided proof search. In
T. Eiter and D. Sands, editors, LPAR-21, 21st International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, Maun, Botswana, May 7-12, 2017, volume 46 of
EPiC Series in Computing, pages 85–105. EasyChair, 2017.

11

[33] J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT solvers. In
A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability - Second
Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages 133–182.
IOS Press, 2021.

[34] M. Mikula, S. Antoniak, S. Tworkowski, A. Q. Jiang, J. P. Zhou, C. Szegedy, L. Kucinski,
P. Milos, and Y. Wu. Magnushammer: A transformer-based approach to premise selection.
CoRR, abs/2303.04488, 2023.

[35] E. Ozolins, K. Freivalds, A. Draguns, E. Gaile, R. Zakovskis, and S. Kozlovics. Goal-aware
neural SAT solver. In International Joint Conference on Neural Networks, IJCNN 2022, Padua,
Italy, July 18-23, 2022, pages 1–8. IEEE, 2022.

[36] A. Paliwal, S. M. Loos, M. N. Rabe, K. Bansal, and C. Szegedy. Graph representations for
higher-order logic and theorem proving. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, New York, NY, USA, February 7-12, 2020, pages 2967–2974. AAAI
Press, 2020.

[37] R. Pascanu, T. Mikolov, and Y. Bengio. Understanding the exploding gradient problem. CoRR,
abs/1211.5063, 2(417):1, 2012.

[38] S. Polu, J. M. Han, K. Zheng, M. Baksys, I. Babuschkin, and I. Sutskever. Formal mathe-
matics statement curriculum learning. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[39] S. Polu and I. Sutskever. Generative language modeling for automated theorem proving. CoRR,
abs/2009.03393, 2020.

[40] F. Schmitt, C. Hahn, M. N. Rabe, and B. Finkbeiner. Neural circuit synthesis from specification
patterns. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan,
editors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages
15408–15420, 2021.

[41] D. Selsam and N. S. Bjørner. Guiding high-performance SAT solvers with unsat-core predictions.
In M. Janota and I. Lynce, editors, Theory and Applications of Satisfiability Testing - SAT 2019
- 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings,
volume 11628 of Lecture Notes in Computer Science, pages 336–353. Springer, 2019.

[42] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill. Learning a SAT solver
from single-bit supervision. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[43] L. Sun, D. Gérault, A. Benamira, and T. Peyrin. Neurogift: Using a machine learning based sat
solver for cryptanalysis. In S. Dolev, V. Kolesnikov, S. Lodha, and G. Weiss, editors, Cyber
Security Cryptography and Machine Learning - Fourth International Symposium, CSCML 2020,
Be’er Sheva, Israel, July 2-3, 2020, Proceedings, volume 12161 of Lecture Notes in Computer
Science, pages 62–84. Springer, 2020.

[44] G. S. Tseitin. On the complexity of derivation in propositional calculus. Automation of
reasoning: 2: Classical papers on computational logic 1967–1970, pages 466–483, 1983.

[45] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. Advances in neural information
processing systems, 28, 2015.

[46] Y. Vizel, G. Weissenbacher, and S. Malik. Boolean satisfiability solvers and their applications
in model checking. Proc. IEEE, 103(11):2021–2035, 2015.

[47] M. Wang, Y. Tang, J. Wang, and J. Deng. Premise selection for theorem proving by deep
graph embedding. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 2786–2796, 2017.

12

[48] N. Wetzler, M. Heule, and W. A. H. Jr. Drat-trim: Efficient checking and trimming using expres-
sive clausal proofs. In C. Sinz and U. Egly, editors, Theory and Applications of Satisfiability
Testing - SAT 2014 - 17th International Conference, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8561 of Lecture Notes in
Computer Science, pages 422–429. Springer, 2014.

[49] K. Yang and J. Deng. Learning to prove theorems via interacting with proof assistants. In
K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 6984–6994. PMLR, 2019.

[50] L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-based checker:
Practical implementations and other applications. In 2003 Design, Automation and Test in
Europe Conference and Exposition (DATE 2003), 3-7 March 2003, Munich, Germany, pages
10880–10885. IEEE Computer Society, 2003.

13

Appendix

A NeuroSAT Formula Graph Construction

(a) Literal-to-Clause Phase (b) Clause-to-Literal Phase

Figure 6: Two-phase message-passing round on NeuroSAT formula graph.

NeuroSAT-style formula graphs have two designated node types: clause nodes connected to the
literal nodes corresponding to their constituent literals [42]. For example, in Figure 6, the clause
contents are as follows: c1 = (a ∨ b), c2 = (a ∨ b̄), c3 = (ā ∨ b̄). Each message-passing
round involves two exchange phases: (1) Literal-to-Clause, and (2) Clause-to-Literal (and implicitly
Literal-to-Complement). This construction is particularly efficient as it allows the message-passing
protocol to cover the entire graph connectivity in at most |V | + 1 rounds where V is the set of
variables in the formula.

B Clause Connectivity Under Static Embeddings

In Section 4.2, we stated that under static embeddings for a derived clause, as the embedder creates
its embedding, it only updates the representations of the variables involved in it – leaving other clause
embeddings intact. This might present a problem for Full-Attn where the attention grid contains
all clauses including disconnected1 pairs. An example of such a pair would be two derived clauses
that do not share a variable. This could potentially lower the efficacy of the Full-Attn mechanism
as it tries to match clauses that are unaware of each other. Interestingly, despite being a relaxation
on Full-Attn, Anch-Attn has a distinct edge over Full-Attn under static embeddings in form of the
following property:
Lemma B.1. Clauses in the variable-anchored attention grid of Anch-Attn are guaranteed to be
connected under both static and dynamic embeddings.

Proof. Let v be a variable in the input formula, and the set of clauses of a v-anchored attention grid
be A. We show that we always have at least one clause Ai ∈ A that reaches all other clauses in A on
the formula graph. We make two case distinctions:

Case 1: All clauses in A are input clauses (in the original formula). Here, the lemma follows trivially
since all these clause were connected during the input-phase message-passing protocol as they share
at least one variable v.

Case 2: A contains derived clauses. Let Ai be the most recently derived clause in A. Since Ai

shares variable v with all other clauses in A, then Ai would be connected to them all during the
derivation-phase message-passing protocol immediately after Ai was derived. This is because Ai

receives a message from V (under both static and dynamic embeddings) containing information about
all other clauses containing v, which is precisely A \ {Ai}. Therefore, the lemma holds.

1We use the terms connected and disconnected here to refer to the fact of whether two nodes have exchanged
messages (in either direction) or not, respectively.

14

C Teacher Proof Reduction

Table 4: Teacher proof reduction statistics of non-bootstrapped model trained on unreduced
SR(U(10, 40)) dataset. Note that all rows, except for Total Reduction, are computed over the
reduced portion of the dataset, i.e., the proofs that were successfully shortened by NeuRes.

(%) TRAIN TEST

PROOFS REDUCED 17.82 18.29
MAX. REDUCTION 86.11 76.4
AVG. REDUCTION 23.55 23.65

TOTAL REDUCTION 3.07 3.15

On rather interesting observation on Table 4 is that the model appears to be marginally better at
producing shorter proofs for unseen (test) formulas than for training formulas. While we would
normally expect the opposite, a fair speculation would be that the trained model was teacher-forced
to match teacher proofs during training over multiple epochs while the same does not hold for unseen
formulas where the bias towards teacher behavior is significantly lower. To definitively confirm this
would require a more in-depth investigation.

15

(a) Teacher Proof

(b) NeuRes Proof

Figure 7: Teacher Proof Reduction Example

16

	Introduction
	Related Work
	Proofs of (Un-)Satisfiability
	Models
	General Architecture
	Message-Passing Embedder
	Selector Networks
	Cascaded Attention (Casc-Attn)
	Full Self-Attention (Full-Attn)
	Anchored Self-Attention (Anch-Attn)

	Assignment Decoder

	Training and Hyperparameters
	Dataset
	Loss Function
	Hyperparameters

	Generating Resolution Proofs
	Attention Variants
	Shortening Teacher Proofs with Bootstrapping

	Resolution-Aided SAT Solving
	Generalizing to Larger Problems
	Conclusion
	NeuroSAT Formula Graph Construction
	Clause Connectivity Under Static Embeddings
	Teacher Proof Reduction

