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Hyperproperties

A Hyperproperty H C 2™R is a set of sets of execution
traces [Clarkson, Schneider, 10].

Example

trace equality: “All traces agree on a proposition p.”
observational determinism: “A program appears deterministic to low security users.”
noninterference, generalized noninterference, noninference, declassification, ...



A Logical Approach to Information-Flow Control

HyperLTL [Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sdnchez, '14]
HyperLTL

e LTL + explicit trace quantification:

An.3An’. Qon, A [ —ony off
satisfiable by { {on}?, {off}“} on/——————\on
VRN VRN
e trace equality: off off off off
V. Vn'. O(on, < ony) /7 N\ VRN /7 N\ /7 N\
on on on on on on on on

e observational determinism: Seoo=?
V. Vr'. (Or = O )W (I # 1)
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Overview

1. monitor construction
2. two techniques to make monitoring of hyperproperties feasible in practice:

- Trace Analysis: exploits a dominance relation between traces
- Specification Analysis: exploits symmetry, transitivity, and reflexivity in the specification



Monitor Construction

e conference management system with author and pc traces
e no paper submission is lost:

- every submission (s) is visible (v) to every pc member
- when comparing two pc traces, they have to agree on v

V. Vr'. (=pcy A pcy) = OO(sx = Over) A
(pce A pcrr) = OO(Ve < Vi)



Monitor Construction

V. Vn'. (=pcy A pc) = O(sr = Ovr) A
(pcr A pew) = OO(Va < Vo)




Monitor Construction

Deterministic monitor template .4 = (X, Q, 8, qo):
e finite alphabet & = 2AP*7

The automaton runs in parallel over n-ary tuple N € ((2*7)* )" of finite traces:

n
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Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces



Trace Analysis - Example
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Trace Analysis

Definition (Trace Redundancy)

e HyperlLTL formula ¢

e tracesetT

atrace tis (T, ¢)-redundant if

T is a model of ¢

if and only if

TU {t} is a model of ¢



Dominance Checking

e HyperlLTL formula ¢
e traces tandt’

e monitor template %,

t’ dominates t if and only if

Nney £ (Mo[t'/n]) € £ (My[t/n])



Storage Minimization Algorithm

input :HyperLTL formula ¢, redundancy free trace set T, trace t
output: redundancy free set of traces T, € TU {t}

M, =build_template(o)

foreach t’ € T do

if t’ dominates t then
I returnT

end

end

foreach t’ € T do

if t dominates t’ then
| T:=7\{t'}

end

end
return TU {t}



Specification Analysis

Basic Idea: We use the HyperLTL-Sat solver EAHyper [Finkbeiner, H., Stenger, '17] to check whether
HyperLTL formulas are symmetric, transitive or reflexive.

e Symmetry: we omit at least half of the monitor instantiations
e Transitivity: we reduce the instantiations to two

e Reflexivity: we omit the reflexive monitor instantiation

20



Symmetry - Example

For observational determinism
V. V' (0r = O )W (7 # I)
we check whether the following formula is valid:

V. V1’ (Ox = O )W (Ir # Inv)
(O = Or) W (I 7& Iz)

=> we can omit the symmetric monitor instantiations
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Transitivity - Example

For output-equality
Vn.Vn'.0, = Oy

we check whether the following formula is valid:

V. Vr'.Vn”. (0 = Ox) A (Op = Ogr)
—>(OT[/ — oTl"')

=> it is sufficient to store one reference trace
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Reflexivity - Example

For observational determinism
V. V' (On = O )W (I # Iv)
we check whether the following formula is valid:
V. (Or = O) W (I # 1)

=> we can omit the reflexive monitor
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Experiments

V. V' (Or = O )W (I # 1)

® naive monitoring approach
e trace analysis
e specification analysis

e combination of both

runtime on randomly generated traces

runtime in msec.

110°

500 1,000

# of instances

1,500

2,000

24



Experiments: Trace Analysis

V. V' D<n(ln = ’11’) — D<n+c(on = on’)

n=16 n=14

10%
104
108

102 |

e absolute numbers of violations
e number of instances stored
e number of instances pruned

0.5 0.75 1 (0] 0.25 0.5 0.75 1

10° randomly generated traces of length 100000
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Experiments: Specification Analysis

symm | trans | refl
ObsDet1 V.V O(x = lw) — 0(Ox = Op') v X v
ObsDet2 VaVr'. (Iy = Iy) = O(0r = Oy) v/ X v/
ObsDet3 VY .(0r = O)H (I # 1) v X v
QuantNoninf | V... V.. =((/\iln, = In,) A N\igjOn #Ox) | v X v
EQ Vr.Vn'.(0(ax < ar) v v v
V', ((=peq A pew) = O0(sx = Ovar))
ConfiMan A((pcr A pew) = OO(vr = Vi) X X X

e preprocessing can be done in a couple of seconds with EAHyper

e saves tremendous amount of time during the monitoring process
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Summary

e monitoring hyperproperties in theory:

Monitor Template Memory Explosion

e monitoring hyperproperties in practice:

- Trace Analysis: exploits a dominance relation between traces
- Specification Analysis: exploits symmetry, transitivity, and reflexivity in the specification
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Monitorability

Theorem

Given a HyperlLTL formula ¢ = V' ... Vm.¢, where ¢ # true is an LTL formula. ¢ is monitorable
if, and only if, Yu € £7.3v € £J .uv € bad(< (¢)).

Theorem

Given an alternation-free HyperLTL formula ¢. Deciding whether ¢ is monitorable is
PSpace-complete.
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Finite Trace Semantics

dii= 1€ ifi> |t
i,j] =
tLi, min(j, [t] —1)], otherwise

TTfin =1 an ifa € nﬁn(”)[o]

M =1 =@ if TTan T @

M lEre vy ifTa, [=EreorTla, FEr ¢

Min Fr O0 if e[, ... 1 =1 0

Ten Er U Y if i > 0.Ta[i,...] Er ¢y AVOLj<iTlailj,...1 =70
Ten =7 Ao if there is some t € T such that TTg,[m— t] =7 @
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Alternation

An offline monitor for a V"3d™HyperLTL and 3™ V"HyperLTL formula has to perform the checks

/\ \/ check if #, accepts N x M , and

NET" MET™

\/ /\ check if 4, accepts M x N , respectively.
MeTm NeT"
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