Monitoring Hyperproperties

©00

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup
Reactive Systems Group, Saarland University, Germany

The 17th International Conference on Runtime Verification
Seattle, USA, 2017

Hyperproperties

A Hyperproperty H C 2™R is a set of sets of execution
traces [Clarkson, Schneider, 10].

Example

trace equality: “All traces agree on a proposition p.”
observational determinism: “A program appears deterministic to low security users.”
noninterference, generalized noninterference, noninference, declassification, ...

A Logical Approach to Information-Flow Control

HyperLTL [Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sdnchez, '14]
HyperLTL

e LTL + explicit trace quantification:

An.3An’. Qon, A [—ony off
satisfiable by { {on}?, {off}“} on/——————\on
VRN VRN
e trace equality: off off off off
V. Vn'. O(on, < ony) /7 N\ VRN /7 N\ /7 N\
on on on on on on on on

e observational determinism: Seoo=?
V. Vr'. (Or = O)W (I # 1)

Monitoring Hyperproperties

e we sequentially observe traces of a system

e when a new trace comes in, we check whether a given hyperproperty still holds

Monitoring Hyperproperties

e we sequentially observe traces of a system

e when a new trace comes in, we check whether a given hyperproperty still holds

Monitoring Hyperproperties

e we sequentially observe traces of a system

e when a new trace comes in, we check whether a given hyperproperty still holds

Monitoring Hyperproperties

e we sequentially observe traces of a system

e when a new trace comes in, we check whether a given hyperproperty still holds

Monitoring Hyperproperties

e we sequentially observe traces of a system

e when a new trace comes in, we check whether a given hyperproperty still holds

Monitoring Hyperproperties

e we sequentially observe traces of a system

e when a new trace comes in, we check whether a given hyperproperty still holds

Monitoring Hyperproperties

e we sequentially observe traces of a system

e when a new trace comes in, we check whether a given hyperproperty still holds

Monitoring Hyperproperties

e we sequentially observe traces of a system

e when a new trace comes in, we check whether a given hyperproperty still holds

Overview

1. monitor construction
2. two techniques to make monitoring of hyperproperties feasible in practice:

- Trace Analysis: exploits a dominance relation between traces
- Specification Analysis: exploits symmetry, transitivity, and reflexivity in the specification

Monitor Construction

e conference management system with author and pc traces
e no paper submission is lost:

- every submission (s) is visible (v) to every pc member
- when comparing two pc traces, they have to agree on v

V. Vr'. (=pcy A pcy) = OO(sx = Over) A
(pce A pcrr) = OO(Ve < Vi)

Monitor Construction

V. Vn'. (=pcy A pc) = O(sr = Ovr) A
(pcr A pew) = OO(Va < Vo)

Monitor Construction

Deterministic monitor template .4 = (X, Q, 8, qo):
e finite alphabet & = 2AP*7

The automaton runs in parallel over n-ary tuple N € ((2*7)*)" of finite traces:

n

sla.l) U {@am}|=au .

j=1aeN() (i)

Monitor Construction

Deterministic monitor template .4 = (X, Q, 8, qo):
e finite alphabet & = 24P*”

The automaton runs in parallel over n-ary tuple N € ((227)*)" of finite traces:

n

sla.l) U {@am}|=au .

j=1aeN() (i)

Monitor Construction

Deterministic monitor template .4 = (X, Q, 8, qo):
e finite alphabet X = 24PX7

The automaton runs in parallel over n-ary tuple N € ((247)*)" of finite traces:

slal) U {@m)}) =au .

j=1aeN()(i)

Monitor Construction

Deterministic monitor template .4 = (X, Q, 8, qo):
e finite alphabet X = 24PX7

The automaton runs in parallel over n-ary tuple N € ((247)*)" of finite traces:

a.l) U {lam)}|=au.

j=1aeN()(i)

6

—_

Monitor Construction

Deterministic monitor template .4 = (X, Q, 8, qo):
e finite alphabet X = 24PX7

The automaton runs in parallel over n-ary tuple N € ((247)*)" of finite traces:

a.l) U {lam)}|=au.

j=1aeN()(i)

6

—_

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

Trace Analysis - Example

FICIEIERED
(oo]o]u]

an author submits a paper

another author submits a paper

Trace Analysis - Example

ol |o]o]o]
ool]o]o]
BFIERIBIBIE)

an author submits a paper
another author submits a paper

an author submits two papers

Trace Analysis - Example

FIRIEEE

LT

R

an author submits a paper
another author submits a paper

an author submits two papers

Trace Analysis - Example

o= |ofo]o]
EENET il
BFIERIBIBIE
FIEIEIRIE

an author submits a paper
another author submits a paper

an author submits two papers

a pc observes 3 submissions

Trace Analysis - Example

L Lber T
Ll
L L i

| 0 [tect| v} | v} | ()|

an author submits a paper
another author submits a paper

an author submits two papers

a pc observes 3 submissions

Trace Analysis - Example

| 0 [ted]| | v} |]

a pc member observes three submissions

Trace Analysis - Example

FIEEIRIRIE
| 0 [ted| |] 0|

a pc member observes three submissions

Za pc member observes two submissions ¢

Trace Analysis

Definition (Trace Redundancy)

e HyperlLTL formula ¢

e tracesetT

atrace tis (T, ¢)-redundant if

T is a model of ¢

if and only if

TU {t} is a model of ¢

Dominance Checking

e HyperlLTL formula ¢
e traces tandt’

e monitor template %,

t’ dominates t if and only if

Nney £ (Mo[t'/n]) € £ (My[t/n])

Storage Minimization Algorithm

input :HyperLTL formula ¢, redundancy free trace set T, trace t
output: redundancy free set of traces T, € TU {t}

M, =build_template(o)

foreach t’ € T do

if t’ dominates t then
I returnT

end

end

foreach t’ € T do

if t dominates t’ then
| T:=7\{t'}

end

end
return TU {t}

Specification Analysis

Basic Idea: We use the HyperLTL-Sat solver EAHyper [Finkbeiner, H., Stenger, '17] to check whether
HyperLTL formulas are symmetric, transitive or reflexive.

e Symmetry: we omit at least half of the monitor instantiations
e Transitivity: we reduce the instantiations to two

e Reflexivity: we omit the reflexive monitor instantiation

20

Symmetry - Example

For observational determinism
V. V' (0r = O)W (7 # I)
we check whether the following formula is valid:

V. V1’ (Ox = O)W (Ir # Inv)
(O = Or) W (I 7& Iz)

=> we can omit the symmetric monitor instantiations

pal

Transitivity - Example

For output-equality
Vn.Vn'.0, = Oy

we check whether the following formula is valid:

V. Vr'.Vn”. (0 = Ox) A (Op = Ogr)
—>(OT[/ — oTl"')

=> it is sufficient to store one reference trace

22

Reflexivity - Example

For observational determinism
V. V' (On = O)W (I # Iv)
we check whether the following formula is valid:
V. (Or = O) W (I # 1)

=> we can omit the reflexive monitor

23

Experiments

V. V' (Or = O)W (I # 1)

® naive monitoring approach
e trace analysis
e specification analysis

e combination of both

runtime on randomly generated traces

runtime in msec.

110°

500 1,000

of instances

1,500

2,000

24

Experiments: Trace Analysis

V. V' D<n(ln = ’11’) — D<n+c(on = on’)

n=16 n=14

10%
104
108

102 |

e absolute numbers of violations
e number of instances stored
e number of instances pruned

0.5 0.75 1 (0] 0.25 0.5 0.75 1

10° randomly generated traces of length 100000

25

Experiments: Specification Analysis

symm | trans | refl
ObsDet1 V.V O(x = lw) — 0(Ox = Op') v X v
ObsDet2 VaVr'. (Iy = Iy) = O(0r = Oy) v/ X v/
ObsDet3 VY .(0r = O)H (I # 1) v X v
QuantNoninf | V... V.. =((/\iln, = In,) A N\igjOn #Ox) | v X v
EQ Vr.Vn'.(0(ax < ar) v v v
V', ((=peq A pew) = O0(sx = Ovar))
ConfiMan A((pcr A pew) = OO(vr = Vi) X X X

e preprocessing can be done in a couple of seconds with EAHyper

e saves tremendous amount of time during the monitoring process

26

Summary

e monitoring hyperproperties in theory:

Monitor Template Memory Explosion

e monitoring hyperproperties in practice:

- Trace Analysis: exploits a dominance relation between traces
- Specification Analysis: exploits symmetry, transitivity, and reflexivity in the specification

27

Bibliography

[Clarkson, Schneider, 10] Clarkson, M. R., and F. B. Schneider. "Hyperproperties." Journal of Computer
Security 18.6 (2010): 1157-1210.

[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sanchez, "14] Clarkson, M. R., Finkbeiner, B., Koleini, M.,
Micinski, K. K., Rabe, M. N., & Sanchez, C. (2014, April). Temporal logics for hyperproperties. In
International Conference on Principles of Security and Trust (pp. 265-284).

[Finkbeiner, H., "16] Finkbeiner, Bernd, Hahn, Christopher. Deciding hyperproperties. 27th International
Conference on Concurrency Theory, CONCUR 2016

[Finkbeiner, H., Stenger, '17] Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger. EAHyper: Satisfiability,
Implication, and Equivalence Checking of Hyperproperties. International Conference on Computer Aided
Verification (2017).

Pictures: http://russia-insider.com/sites/insider/files/20110226_bbd001_0.jpg

28

Monitorability

Theorem

Given a HyperlLTL formula ¢ = V' ... Vm.¢, where ¢ # true is an LTL formula. ¢ is monitorable
if, and only if, Yu € £7.3v € £J .uv € bad(< (¢)).

Theorem

Given an alternation-free HyperLTL formula ¢. Deciding whether ¢ is monitorable is
PSpace-complete.

29

Finite Trace Semantics

dii= 1€ ifi> |t
i,j] =
tLi, min(j, [t] —1)], otherwise

TTfin =1 an ifa € nﬁn(”)[o]

M =1 =@ if TTan T @

M lEre vy ifTa, [=EreorTla, FEr ¢

Min Fr O0 if e[, ... 1 =1 0

Ten Er U Y if i > 0.Ta[i,...] Er ¢y AVOLj<iTlailj,...1 =70
Ten =7 Ao if there is some t € T such that TTg,[m— t] =7 @

30

Alternation

An offline monitor for a V"3d™HyperLTL and 3™ V"HyperLTL formula has to perform the checks

/\ \/ check if #, accepts N x M , and

NET" MET™

\/ /\ check if 4, accepts M x N , respectively.
MeTm NeT"

31

	Introduction
	Appendix

