
none.png

Monitoring Hyperproperties

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup
Reactive Systems Group, Saarland University, Germany

The 17th International Conference on Runtime Verification
Seattle, USA, 2017

0



Hyperproperties

Definition
A Hyperproperty H ⊆ 2TR is a set of sets of execution
traces [Clarkson, Schneider, ’10].

Example

trace equality: “All traces agree on a proposition p.”
observational determinism: “A program appears deterministic to low security users.”
noninterference, generalized noninterference, noninference, declassification, . . .

1



A Logical Approach to Information-Flow Control

HyperLTL [Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez, ’14]

HyperLTL

• LTL + explicit trace quantification:
∃π.∃π′. onπ ∧ ¬onπ′
satisfiable by {{on}ω,{off}ω}

• trace equality:
∀π.∀π′. (onπ↔ onπ′)

• observational determinism:
∀π.∀π′. (Oπ = Oπ′)W (Iπ 6= Iπ′)

off

on

off

on on

off

on on

on

off

on on

off

on on

2



Monitoring Hyperproperties

• we sequentially observe traces of a system

• when a new trace comes in, we check whether a given hyperproperty still holds

3



Monitoring Hyperproperties

• we sequentially observe traces of a system

• when a new trace comes in, we check whether a given hyperproperty still holds

3



Monitoring Hyperproperties

• we sequentially observe traces of a system

• when a new trace comes in, we check whether a given hyperproperty still holds

3



Monitoring Hyperproperties

• we sequentially observe traces of a system

• when a new trace comes in, we check whether a given hyperproperty still holds

3



Monitoring Hyperproperties

• we sequentially observe traces of a system

• when a new trace comes in, we check whether a given hyperproperty still holds

3



Monitoring Hyperproperties

• we sequentially observe traces of a system

• when a new trace comes in, we check whether a given hyperproperty still holds

3



Monitoring Hyperproperties

• we sequentially observe traces of a system

• when a new trace comes in, we check whether a given hyperproperty still holds

3



Monitoring Hyperproperties

• we sequentially observe traces of a system

• when a new trace comes in, we check whether a given hyperproperty still holds

3



Overview

1. monitor construction

2. two techniques to make monitoring of hyperproperties feasible in practice:

– Trace Analysis: exploits a dominance relation between traces
– Specification Analysis: exploits symmetry, transitivity, and reflexivity in the specification

4



Monitor Construction

• conference management system with author and pc traces
• no paper submission is lost:

– every submission (s) is visible (v) to every pc member
– when comparing two pc traces, they have to agree on v

∀π. ∀π′. (¬pcπ ∧ pcπ′)→ (sπ → vπ′)∧ (1)

(pcπ ∧ pcπ′)→ (vπ↔ vπ′) (2)

5



Monitor Construction

∀π. ∀π′. (¬pcπ ∧ pcπ′)→ (sπ → vπ′)∧

(pcπ ∧ pcπ′)→ (vπ↔ vπ′)

⇓

q0

q2
q1 q3q4

¬pcπ ∧ pcπ′

¬sπ

sπ

vπ′

vπ′ ∧ sπ

¬pcπ′

>

pcπ ∧ pcπ′

vπ↔ vπ′

6



Monitor Construction

Deterministic monitor templateM = (,Q, δ, q0):

• finite alphabet  = 2AP×V

The automaton runs in parallel over n-ary tuple N ∈ ((2AP)∗)n of finite traces:

δ

⎛⎝qi,
n⋃︁
j=1

⋃︁
a∈N(j)(i)

{(a, πj)}

⎞⎠ = qi+1 .

7



Monitor Construction

Deterministic monitor templateM = (,Q, δ, q0):

• finite alphabet  = 2AP×V

The automaton runs in parallel over n-ary tuple N ∈ ((2AP)∗)n of finite traces:

δ

⎛⎝qi,
n⋃︁
j=1

⋃︁
a∈N(j)(i)

{(a, πj)}

⎞⎠ = qi+1 .

7



Monitor Construction

Deterministic monitor templateM = (,Q, δ, q0):

• finite alphabet  = 2AP×V

The automaton runs in parallel over n-ary tuple N ∈ ((2AP)∗)n of finite traces:

δ

⎛⎝qi,
n⋃︁
j=1

⋃︁
a∈N(j)(i)

{(a, πj)}

⎞⎠ = qi+1 .

8



Monitor Construction

Deterministic monitor templateM = (,Q, δ, q0):

• finite alphabet  = 2AP×V

The automaton runs in parallel over n-ary tuple N ∈ ((2AP)∗)n of finite traces:

δ

⎛⎝qi,
n⋃︁
j=1

⋃︁
a∈N(j)(i)

{(a, πj)}

⎞⎠ = qi+1 .

8



Monitor Construction

Deterministic monitor templateM = (,Q, δ, q0):

• finite alphabet  = 2AP×V

The automaton runs in parallel over n-ary tuple N ∈ ((2AP)∗)n of finite traces:

δ

⎛⎝qi,
n⋃︁
j=1

⋃︁
a∈N(j)(i)

{(a, πj)}

⎞⎠ = qi+1 .

8



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Memory Explosion

The naive approach always stores every trace seen so far!

Trace Analysis: discard traces that are dominated by other traces

9



Trace Analysis - Example

{} {s} {} {} {} an author submits a paper

{} {} {s} {} {} another author submits a paper

10



Trace Analysis - Example

{} {s} {} {} {} an author submits a paper

{} {} {s} {} {} another author submits a paper

{} {} {s} {s} {} an author submits two papers

11



Trace Analysis - Example

{} {s} {} {} {} an author submits a paper

{} {} {s} {} {} another author submits a paper

{} {} {s} {s} {} an author submits two papers

12



Trace Analysis - Example

{} {s} {} {} {} an author submits a paper

{} {} {s} {} {} another author submits a paper

{} {} {s} {s} {} an author submits two papers

{} {pc} {v} {v} {v} a pc observes 3 submissions

13



Trace Analysis - Example

{} {s} {} {} {} an author submits a paper

{} {} {s} {} {} another author submits a paper

{} {} {s} {s} {} an author submits two papers

{} {pc} {v} {v} {v} a pc observes 3 submissions

14



Trace Analysis - Example

{} {pc} {v} {v} {v} a pc member observes three submissions

15



Trace Analysis - Example

{} {pc} {v} {v} {v} a pc member observes three submissions

{} {pc} {v} {v} {} Ea pc member observes two submissions E

16



Trace Analysis

Definition (Trace Redundancy)

• HyperLTL formula φ

• trace set T

a trace t is (T, φ)-redundant if

T is a model of φ if and only if T ∪ {t} is a model of φ

17



Dominance Checking

• HyperLTL formula φ

• traces t and t′

• monitor templateMφ

t′ dominates t if and only if
⋀︀

π∈V L (Mφ[t′/π]) ⊆ L (Mφ[t/π])

18



Storage Minimization Algorithm

input :HyperLTL formula φ, redundancy free trace set T, trace t
output :redundancy free set of traces Tmin ⊆ T ∪ {t}

Mφ = build_template(φ)

foreach t′ ∈ T do
if t′ dominates t then

return T
end

end
foreach t′ ∈ T do

if t dominates t′ then
T := T \ {t′}

end
end
return T ∪ {t}

19



Specification Analysis

Basic Idea: We use the HyperLTL-Sat solver EAHyper [Finkbeiner, H., Stenger, ’17] to check whether
HyperLTL formulas are symmetric, transitive or reflexive.

• Symmetry: we omit at least half of the monitor instantiations

• Transitivity: we reduce the instantiations to two

• Reflexivity: we omit the reflexive monitor instantiation

20



Symmetry - Example

For observational determinism

∀π.∀π′. (Oπ = Oπ′)W (Iπ 6= Iπ′)

we check whether the following formula is valid:

∀π.∀π′. (Oπ = Oπ′)W (Iπ 6= Iπ′)

↔(Oπ′ = Oπ)W (Iπ′ 6= Iπ)

⇒ we can omit the symmetric monitor instantiations

21



Transitivity - Example

For output-equality
∀π.∀π′.Oπ = Oπ′

we check whether the following formula is valid:

∀π.∀π′.∀π′′. (Oπ = Oπ′)∧ (Oπ′ = Oπ′′)

→(Oπ′ = Oπ′′′)

⇒ it is sufficient to store one reference trace

22



Reflexivity - Example

For observational determinism

∀π.∀π′. (Oπ = Oπ′)W (Iπ 6= Iπ′)

we check whether the following formula is valid:

∀π. (Oπ = Oπ)W (Iπ 6= Iπ)

⇒ we can omit the reflexive monitor

23



Experiments

∀π.∀π′. (Oπ = Oπ′)W (Iπ 6= Iπ′)

• naive monitoring approach

• trace analysis

• specification analysis

• combination of both

runtime on randomly generated traces

0 500 1,000 1,500 2,000
0

2

4

6

8

·105

# of instances

ru
nt
im

e
in
m
se
c.

24



Experiments: Trace Analysis

∀π.∀π′. <n(Iπ = Iπ′)→ <n+c(Oπ = Oπ′)

n = 16

0 0.25 0.5 0.75 1

·105

100

101

102

103

104

105
n = 14

0 0.25 0.5 0.75 1

·105

100

101

102

103

104

105
n = 12

0 0.25 0.5 0.75 1

·105

100

101

102

103

104

105

• absolute numbers of violations
• number of instances stored
• number of instances pruned 105 randomly generated traces of length 100000

25



Experiments: Specification Analysis

symm trans refl
ObsDet1 ∀π.∀π′. (Iπ = Iπ′)→ (Oπ = Oπ′) 3 7 3

ObsDet2 ∀π.∀π′. (Iπ = Iπ′)→ (Oπ = Oπ′) 3 7 3

ObsDet3 ∀π.∀π′.(Oπ = O′
π
)W (Iπ 6= I′

π
) 3 7 3

QuantNoninf ∀π0 . . .∀πc.¬((
⋀︀

i Iπi = Iπ0)∧
⋀︀

i 6=jOπi 6= Oπj) 3 7 3

EQ ∀π.∀π′. (aπ↔ aπ′) 3 3 3

ConfMan
∀π∀π′.

(︀
(¬pcπ ∧ pcπ′)→ (sπ → vπ′)

)︀
∧

(︀
(pcπ ∧ pcπ′)→ (vπ↔ vπ′)

)︀ 7 7 7

• preprocessing can be done in a couple of seconds with EAHyper

• saves tremendous amount of time during the monitoring process

26



Summary

• monitoring hyperproperties in theory:

Monitor Template Memory Explosion

• monitoring hyperproperties in practice:

– Trace Analysis: exploits a dominance relation between traces
– Specification Analysis: exploits symmetry, transitivity, and reflexivity in the specification

27



Bibliography

[Clarkson, Schneider, ’10] Clarkson, M. R., and F. B. Schneider. "Hyperproperties." Journal of Computer
Security 18.6 (2010): 1157-1210.

[Clarkson, Finkbeiner, Koleini, Micinski, Rabe, Sánchez, ’14] Clarkson, M. R., Finkbeiner, B., Koleini, M.,
Micinski, K. K., Rabe, M. N., & Sánchez, C. (2014, April). Temporal logics for hyperproperties. In
International Conference on Principles of Security and Trust (pp. 265-284).

[Finkbeiner, H., ’16] Finkbeiner, Bernd, Hahn, Christopher. Deciding hyperproperties. 27th International
Conference on Concurrency Theory, CONCUR 2016

[Finkbeiner, H., Stenger, ’17] Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger. EAHyper: Satisfiability,
Implication, and Equivalence Checking of Hyperproperties. International Conference on Computer Aided
Verification (2017).

Pictures: http://russia-insider.com/sites/insider/files/20110226_bbd001_0.jpg

28



Monitorability

Theorem
Given a HyperLTL formula φ = ∀π1 . . .∀πk.ψ, where ψ 6≡ true is an LTL formula. φ is monitorable
if, and only if, ∀u ∈ ∗V .∃v ∈ 

∗
V .uv ∈ bad(L (ψ)).

Theorem
Given an alternation-free HyperLTL formula φ. Deciding whether φ is monitorable is
PSpace-complete.

29



Finite Trace Semantics

t[ i, j] =

{︃
ε if i ≥ |t|
t[ i,min(j, |t| − 1)] , otherwise

fin |=T aπ if a ∈ fin(π)[0]
fin |=T ¬φ if fin 6|=T φ

fin |=T φ∨ ψ if fin |=T φ or fin |=T ψ

fin |=T φ if fin[1, . . .] |=T φ

fin |=T φUψ if ∃i ≥ 0.fin[ i, . . .] |=T ψ∧∀0 ≤ j < i.fin[ j, . . .] |=T φ

fin |=T ∃π.φ if there is some t ∈ T such that fin[π 7→ t] |=T φ

30



Alternation

An offline monitor for a ∀n∃mHyperLTL and ∃m∀nHyperLTL formula has to perform the checks⋀︁
N∈Tn

⋁︁
M∈Tm

check ifMφ accepts N× M , and⋁︁
M∈Tm

⋀︁
N∈Tn

check ifMφ acceptsM× N , respectively.

31


	Introduction
	Appendix

