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Abstract
In this thesis, we present a transformation to remove labels from one-counter Petri nets

and prove that it preserves weak bisimilarity of two states in the system. We then apply

this construction in a reduction to show that weak bisimulation equivalence is unde-

cidable in unary one-counter Petri nets. As an addition, we also discuss lossyness in

one-counter Petri nets. We compare possible definitions and comment on an approach

to prove that weak bisimilarity could also be undecidable in lossy one-counter Petri

nets.
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Chapter 1

Introduction

Modelling various kinds of systems has always been an important aspect in Computer

Science. Finding suitable abstractions is a major step in order to reliably verify the

correctness of a system and to prove desirable properties. Over the years, a wide

range of models has evolved which all capture different aspects of real-world systems.

Although many of them have been studied extensively, there are still various open

problems. Models that are considerably complex quickly become Turing powerful so

that it is clear that many interesting questions like termination are undecidable. For

weaker models, these kinds of problems become more interesting.

1.1 Petri Nets

Petri nets [8] belong to the area of process models and are not Turing powerful. They

model a concurrent, flow-like behaviour as e.g. in chemical processes. Petri nets con-

sist of states (so-called places) which contain tokens and transition rules that describe

how the tokens move between the places. A sample Petri net is given in Fig. 1.1. It

consists of three places and two transitions which are labelled with t1 and t2. The two

places on the left both contain a token initially. The multiplicity on the arcs describes

the number of tokens a transition consumes and produces when it fires.

1



2 Chapter 1. Introduction
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Figure 1.1: An Example Petri Net

To see how the tokens move through the net, see Fig. 1.2. In this net, all places can

contain an arbitrary number of tokens, depending on the execution of the net.

1.2 Aim of the Thesis

One of the most important questions when modelling systems is whether two con-

figurations in a model behave equivalently. For state-based models, the best known

behavioural equivalence is bisimulation equivalence. While being stronger than path

equivalence but weaker than simple isomorphism, it is also a congruence. These prop-

erties make bisimulation very convenient to work with. Besides normal (also called

strong) bisimilarity, there is also weak bisimilarity which allows to study systems mod-

ular internal, invisible actions. Weak bisimilarity is known to be undecidable for many,

even comparatively weak systems (see Chapter 2).

In this thesis, we investigate the decidability of weak bisimulation equivalence in un-

ary one-counter Petri nets. Unary one-counter nets are a very restricted version of Petri

nets. They only have one unbounded place (i.e. all other places do not contain more

than a fixed number of tokens). Furthermore, only a single action is allowed for trans-

ition labels. Unary one-counter nets can thus be treated as being unlabelled. We claim

that weak bisimulation equivalence is still undecidable for this kind of Petri nets. Con-
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Figure 1.2: An Execution in a Petri Net

sidering that unlabelled one-counter nets are one of the weakest state-based systems

which still have a reasonable expressiveness, this is a very strong result. It makes us

conclude that weak bisimilarity seems to be undecidable for a wide range of systems.

This thesis is structured as follows. We first give a survey on related literature to put our

work into context. We then state important definitions and lemmas that we build this

thesis on. In Chapter 4, we give a transformation from one-counter nets to unlabelled

one-counter nets. This transformation is used in a reduction from the problem of weak

bisimilarity in one-counter nets to weak bisimilarity in unlabelled one-counter nets

to formally prove our claim. Subsequently, we discuss another possibility to weaken

one-counter nets: Lossy one-counter nets allow the system to non-deterministically

lose data. We expected to be able to prove that weak bisimilarity is also undecidable in

lossy one-counter nets using a straightforward argument. However, it turned out that
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this problem is much more complicated than we initially thought. In Chapter 5, we

therefore discuss a few obstacles and challenges we encountered when trying to give

an undecidability proof. Finally, we evaluate our work and give a conclusion.



Chapter 2

Background

In this chapter, we introduce systems that are related to Petri nets and give a survey

over results in literature that are of interest for our work. We mainly concentrate on

decidability results for strong and weak bisimulation equivalence.

Philosophically, Petri nets seem to be very different from models for computation as

e.g. register machines. Mathematically, they are surprisingly similar. A related sys-

tem are counter machines. Counter machines are simple register machines where the

registers contain a single integer value that can be increased, decreased and tested for

zero by instructions.

Petri nets are mathematically equivalent to the subclass of counter machines where the

counters can not explicitly be tested for zero. These are also called vector addition

systems with states (VASS). Petri nets only allow implicit tests for zero meaning that

a transition can be restricted to the case where a place contains at least a fixed number

of tokens. Since one-counter nets are the subclass of Petri nets where there is a finite

number of control states and only one unbounded place, one-counter nets are a subclass

of one-counter machines.

The concept of lossyness in counter machines has been introduced by Mayr in [5] as a

version of Minsky counter machines [7]. In lossy counter machines, the counters can

decrease spontaneously. Lossyness is also interesting for other systems, e.g. channel

5



6 Chapter 2. Background

systems where messages can get lost in unreliable channels. It might be surprising that

lossyness actually weakens a system. This is due to the fact that neither the machine

nor an observer is able to control or even notice when and what data is lost.

In Table 2.1, you can find a survey of decidability results of strong and weak bisimu-

lation equivalence in systems that are of interest for us. Note that we do not consider

equivalences between different kinds of systems. A broader background on decidabil-

ity results for Petri nets and counter machines can for example be found in [10, 1].

System strong bisimulation weak bisimulation

Petri nets 7 7

Counter machines 7 7

One-counter Petri nets 3 7

One-counter machines 3 7

Unlabelled Petri nets 7 7

Lossy Petri nets 7 7

Lossy counter machines 7 7

Table 2.1: Decidability Results for Weak and Strong Bisimulation Equivalence, Partly

Taken from [2]

In 1995, Jančar proved that both, strong and weak bisimilarity, is undecidable for

Petri nets [3]. This result carries over to counter machines. In [4], Jančar shows that

strong bisimilarity is decidable for the subclass of pushdown automata with only one

stack symbol (apart from the symbol indicating the bottom of the stack). The stack is

thus serving as a counter. This subclass of pushdown automata is equivalent to one-

counter machines what implies that strong bisimilarity must also be decidable for one-

counter nets. Weak bisimilarity, on the other hand, is undecidable for one-counter nets

and therefore also for one-counter machines as proved by Mayr in [6]. Srba shows

in [11] that strong bisimulation equivalence is undecidable even for unlabelled Petri

nets. Since the undecidability of strong bisimilarity implies the undecidability of weak

bisimilarity, we also get that weak bisimilarity is undecidable for unlabelled Petri nets.

Finally, Schnoebelen proves in [9] that all equivalences in Van Glabbeek’s branch-
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ing time-linear time spectrum [12] (thus also strong bisimilarity) are undecidable for

lossy channel systems and the even weaker lossy VASSes. This implies that strong

bisimilarity must also be undecidable for lossy Petri nets and lossy counter machines.

Schnoebelen’s result also gives us that weak bisimilarity is undecidable in these sys-

tems.

In this thesis, we prove that weak bisimilarity is still undecidable in unlabelled one-

counter nets. This strengthens some of the results above. It also supports the conjecture

that weak bisimilarity is undecidable for a wide range of infinite-state systems (see

more in Chapter 6).





Chapter 3

Preliminaries

In this chapter, we introduce the different systems and equivalences we use. Similar

definitions can be found in several publications, e.g. [6, 11, 9]. Additionally, we state

important lemmas that we base our work on.

Before we define one-counter Petri nets formally, we first give some basic definitions,

e.g. of transition systems and bisimilarity.

Definition 3.1 A labelled transition system T is a tuple (S,Act,−→) such that:

• S is a (possible infinite) set of states

• Act is a finite set of labels

• −→⊆ S×Act×S is the transition relation

For a sequence of transition steps s0
a1−→ s1

a2−→ . . .sn we also write s0
a1...an−−−→ sn.

Definition 3.2 A transition system can model internal actions with a designated action

τ ∈ Act. We define the extended transition relation⇒ writing s a
=⇒ t iff either a = τ

and s = t or s τ∗aτ∗−−−→ t. A step s a
=⇒ t is called a weak step whereas a step s a−→ t is

referred to as a strong step.

Definition 3.3 An unlabelled transition system T is a labelled transition system with

|Act| = 1. In an unlabelled transition system with weak steps we additionally have

9



10 Chapter 3. Preliminaries

τ ∈ Act such that |Act| = 2. For the sake of readability, we prefer to not label strong

steps in unlabelled transition systems.

Definition 3.4 In a transition system, two states s1 and t1 are bisimilar if there exists

a relation R such that:

1. If (s, t) ∈ R and s a−→ s′, then also t a−→ t ′ and (s′, t ′) ∈ R . The same holds in the

other direction for steps of t.

2. The initial configurations (s1, t1) are in R .

In such a case, R is called the bisimulation equivalence and we write s1 ∼ t1. The

relation ∼ is the union of all bisimulations and itself a bisimulation.

We obtain weak bisimulation equivalence by replacing each transition step a−→ by a

weak transition step a
=⇒ in the definition of (strong) bisimulation equivalence. The

following characterisation of weak bisimulation equivalence is known to be equivalent

and is more convenient in proofs.

Definition 3.5 In a transition system, two states s1 and t1 are weakly bisimilar if

there exists a relation R such that:

1. If (s, t) ∈ R and s a−→ s′, then also t a
=⇒ t ′ and (s′, t ′) ∈ R . The same holds in the

other direction for steps of t.

2. The initial configurations (s1, t1) are in R .

In such a case, R is called the weak bisimulation equivalence and we write s1 ≈ t1.

The relation ≈ is the union of all weak bisimulations and itself a weak bisimulation.

Weak bisimulation equivalence (and with the corresponding adaptations also strong

bisimulation equivalence) can be modelled with a game on the transition system. The

game has two players, an attacker and a defender and is played on the transition system.

Starting in a configuration (s1, t1) ∈ S2, the attacker makes a first step which is either

s1
a−→ s2 or t1

a−→ t2 for some s2, t2 ∈ S and a ∈ Act (note that a can also by τ). The

defender has to answer with a weak step t1
a
=⇒ t2 or s1

a
=⇒ s2, respectively. Like this,

the game continues in a way that the attacker can choose the process in each round.
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The attacker wins if at some point, he can make a step that can not be answered by the

defender. The defender wins if both processes are in a deadlock or the game continues

forever. If the defender wins, it holds s1 ≈ t1; if the attacker wins, it holds s1 6≈ t1.

To avoid confusion, we always assume a female attacker and a male defender when

speaking about bisimulation games.

The following simple fact holds by a transitivity argument for strong and weak bisim-

ilarity.

Fact 3.6 Let the state of the game on a transition system T be (s, t). If the attacker can

force the game into a configuration (s′, t ′) and s′ 6∼T t ′ (or s′ 6≈T t ′, respectively), then

also s 6∼T t (or s 6≈T t, respectively). Similar, if the defender can force the game into a

configuration (s′, t ′) and s′ ∼T t ′ (or s′ ≈T t ′, respectively), then also s∼T t (or s≈T t,

respectively).

In this thesis we investigate in decidability questions of different subclasses of Petri

nets. In general, Petri nets allow an unbounded number of tokens in each place. The

reachability graph of a net indicates all reachable configurations — also called mark-

ings. For the case where only one place may contain an arbitrary number of tokens,

we follow [6] and choose a simplified notation.

Definition 3.7 A one-counter Petri net (1CPN) is a tuple (S,X ,Act,∆) in which S

is the set of control states describing the configurations of all bounded places. The

special symbol X denotes the unbounded place, Act is a set of atomic actions and ∆

the set of transition rules. All sets S, Act and ∆ are finite. A configuration of the net is

given as sXn with s ∈ S and n ∈ N. It denotes that the system is in control state s and

there are n tokens in the unbounded place. Rules in ∆ are of the form s1Xm a−→ s2Xn

where s1,s2 ∈ S, a ∈ Act and n,m ∈ N. A rule describes a set of transitions with label

a that go out from configurations with control state s1 and m+ k tokens in place X to

state s2 and n+ k tokens in X where k ∈ N. For a configuration sX0 we also just write

s.

As we did for transition systems, we define a weakened version of 1CPNs where the

labels are omitted.
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Definition 3.8 An unlabelled one-counter Petri net with weak steps (S,X ,∆) is a

1CPN (S,X ,Act,∆) where Act = {a,τ}. Here, a denotes the visible transition and τ

the internal action. For strong steps s1Xm a−→ s2Xn we just write s1Xm −→ s2Xn.

Lastly, we introduce Minsky machines again following [6]. Minsky machines are

simple register machines where the registers serve as counters that can be increased,

decreased and tested for zero. Although being very simple, Minsky showed that his

machines are Turing complete when introducing them in 1967 (if they have at least

two counters) [7].

Definition 3.9 A n-counter Minsky machine (nCMM) is a tuple (Q,q0,qaccept,C, I)

where Q is a finite set of states, q0,qaccept ∈ Q are the initial and the accepting state,

C = {c1, . . . ,cn} is the set of counters and I is a set of instructions where every i ∈ I is

of one of the two forms:

• (q : c j := c j + 1; goto p)

• (q : if c j = 0 then goto p else c j := c j − 1; goto r)

where j ≤ n ∈ N and q,q′,q′′ ∈ Q. A configuration in a nCMM is a n + 1-tuple

(q,v1, . . . ,vn) where q ∈ Q is the current state and v1, . . . ,vn ∈ N denote the counter

values.

We call an n-counter Minsky machine deterministic if for every q ∈Q, there is at most

one instruction i∈ I where i is of the form (q: ...). A deterministic nCMM accepts
input values v1, . . . ,vn if the run starting in configuration (q0,v1, . . . ,vn) is finite and

terminates in state qaccept.

Our work is based on two decidability results on Minsky machines and one-counter

Petri nets.

Fact 3.10 (Proven in [7]) For a deterministic 2-counter Minsky machine M it is in

general undecidable whether M accepts n1,n2.

Fact 3.11 (Proven in [6]) For a one-counter Petri net P= (S,X ,Act,∆) with q0,q′0 ∈ S

and n ∈ N it is in general undecidable whether q0Xn ≈P q′0Xn.



Chapter 4

Removing Labels from Rule-Based

Transition Systems

In this chapter, we present a transformation for removing transition labels from infinite

transition systems that are described using a finite number of rules. The transformation

we propose is designed to preserve weak bisimilarity of a pair of states in the system.

We describe the transformation in detail for one-counter Petri nets. As we assume

a finite number of rules, the transformation is computable and is thus suitable to be

applied in reductions. Furthermore, the existence of such a transformation shows that

weak bisimilarity of states in 1CPNs only depends on the branching structure of the

system, not on the labels.

The biggest challenge when removing the labels from a Petri net is to ensure that if

the attacker takes a transition that was formerly labelled with a, then the defender

still responds with a former a−transition. We enforce this behaviour by introducing a

unique ‘testing gadget’ for each action. If the defender uses a wrong transition, then

the attacker can win the game by entering the gadget.

More concretely, a state s is renamed to (s,a) such that a is the action of the last strong

transition a player took. From state (s,a), a player can enter the testing gadget for

a. The length of a testing gadget is always even to ensure that if the attacker enters

the testing gadget, then the defender has to follow, otherwise he loses. If the attacker

13
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makes an encoded a-step and the defender answers with an encoded b-step (where

a 6= b), then the two processes are in states (s,a) and (t,b). Now, the attacker can enter

the testing gadget for a. If the defender enters the testing gadget for b, then the two

gadgets are not weakly bisimilar by construction and he loses. If he proceeds to some

other state (r,c) instead, then the attacker enters the testing gadget for c. Since the

gadgets are always of even length, one process has an even number and the other one

an odd number of steps left, so the attacker wins. In contrast to strong steps, τ-steps

are not a problem and can be added according to the old system. In Fig. 4.1, you can

find how a rule of a 1CPN P would be translated into unlabelled rules of a 1CPN P̂.

Formally, we define the construction as follows.

Definition 4.1 Let us be given a labelled 1CPN P = (S,X ,Act,∆) where Act =

{a1, . . . ,an}. We constructively define a corresponding unlabelled 1CPN P̂ = (S,X ,∆)

as follows:

T (ai) := {s1
ai
, . . . ,s2i

ai
}

S := (S×Act)
⋃

ai∈Act

T (ai)

∆ := {(s1,ai)Xm −→ (s2,a j)Xn | ai,a j 6= τ ∈ Act, s1Xm a j−→ s2Xn ∈ ∆}

∪{(s1,ai)Xm τ−→ (s2,ai)Xn | ai ∈ Act, s1Xm τ−→ s2Xn ∈ ∆}

∪{(s,ai)−→ s1
ai
| (s,ai) ∈ S×Act}

∪{sk
ai
−→ sk+1

ai
| ai ∈ Act, 0 < k < 2i, sk

ai
,sk+1

ai
∈ T (ai)}

The construction is designed to preserve weak bisimulation equivalence of two states

in the system. Formally, we aim to prove the following theorem.

Theorem 4.2 Let P = (S,X ,Act,∆) be a 1CPN. Then P̂ is an unlabelled 1CPN such

that for any two states s, t ∈ S and n,m ∈N it holds that sXm ≈P tXn iff for all a ∈ Act,

(s,a)Xm ≈P̂ (t,a)Xn.

We prove this theorem by showing that:

1. If the defender has a winning strategy for the weak bisimulation game on P, he also

has one for P̂.
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Rule in P Rule in P̂

s1 s2
ai

(s1,a j)

s1
a j

. . . s2 j
a j s1

ai
. . . s2i

ai

(s2,ai)

for all a j ∈ Act

s1 s2
τ

(s1,a j)

s1
a j

. . . s2 j
a j

(s2,a j)
τ

for all a j ∈ Act

Figure 4.1: Tranformation Removing Labels from Rules in 1CPNs

2. If the attacker has a winning strategy for the weak bisimulation game on P, she

also has one for P̂.

In both cases, we describe how to translate the winning strategy from P to P̂.

Fact 4.3 Note that for any two n,m∈N and a∈ Act, the two processes s1
aXn and s1

aXm

are isomorphic and therefore weakly bisimilar.

The following lemma describes an invariant that holds for every configuration of the

game. As we will later see, it gives us the first direction of the proof.

Lemma 4.4 Let ((s,a)Xm,(t,a)Xn) be a configuration in the weak bisimulation game

on P̂. If sXm ≈P tXn, then one of the following statements holds:

• The defender can win the game on P̂ by making the processes isomorphic in the

next round.
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• The defender can force the game on P̂ into a configuration ((s′,b)Xm′,(t ′,b)Xn′)

where again s′Xm′ ≈P t ′Xn′ holds.

Proof Let us assume without loss of generality that the attacker makes a step starting

in (s,a)Xm, the other case is similar. By construction, she can choose between three

different options.

• She goes (s,a)Xm τ−→ (s′,a)Xm′ for some s′ ∈ S and m′ ∈ N. The same transition

(with adapted states) is by construction also possible in P so assume the defender

would have answered with a step tXn τ
=⇒ t ′Xn′ in P. He can therefore answer with

(t,a)Xn τ
=⇒ (t ′,a)Xn′ in P̂ and s′Xm′ ≈P t ′Xn′ holds.

• She goes (s,a)Xm −→ (s′,b)Xm′ for some s′ ∈ S, b ∈ Act and m′ ∈ N. This cor-

responds by construction to a transition sXm b−→ s′Xm′ in P which we assume is

answered by the defender with tXn τ∗−→ t1Xn1 b−→ t2Xn2 τ∗−→ t ′Xn′ in P. Therefore,

s′Xm′ ≈P t ′Xn′ holds again. In P̂, he can do the corresponding steps (t,a)Xn τ∗−→
(t1,a)Xn1 −→ (t2,b)Xn2 τ∗−→ (t ′,b)Xn′ .

• She goes (s,a)Xm −→ s1
aXm. But then the defender can make the two processes

isomorphic by answering (t,a)Xn −→ s1
aXn. �

For the other direction, we first state two simple lemmas about the correctness of our

construction.

Lemma 4.5 For all s ∈ S, a,b ∈ Act and n,m ∈ N it holds that (s,a)Xm 6≈P̂ s1
bXn.

Proof The following describes a winning strategy for the attacker. She first goes

(s,a)Xm −→ s1
aXm which the defender has to answer by moving s1

bXn −→ s2
bXn. By

construction, there is now an odd number of strong steps left until deadlock in process

s1
aXm whereas in process s2

bXn, it is an even number. Therefore, s1
aXm 6≈P̂ s2

bXm. �

Lemma 4.6 For all s, t ∈ S, a,b ∈ Act where a 6= b and n,m ∈ N it holds that

(s,a)Xm 6≈P̂ (t,b)Xn.

Proof The following describes a winning strategy for the attacker. She first goes

(s,a)Xm −→ s1
aXm. The defender has two possibilities to answer.
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• He goes (t,b)Xn =⇒ (t ′,c)Xn′ for some t ′ ∈ S, c ∈ Act and n′ ∈ N. But by

Lemma 4.5, (t ′,c)Xn′ 6≈P̂ (s1
a,)X

m.

• He goes (t,b)Xn τ∗
=⇒ (t1,b)Xn1 −→ s1

bXn1 . But since a 6= b, one of the processes can

by construction of P̂ make strictly more strong steps then the other one. By always

choosing the process with more steps until deadlock the attacker wins. �

The next lemma will give us the other direction of Theorem 4.2. Similar to the

defender’s case, it states the necessary invariant to translate the attacker’s winning

strategy. We exploit the fact that if the attacker can win the bisimulation game, then he

can do so within a finite number of rounds.

Lemma 4.7 Let ((s,a)Xm,(t,a)Xn) be a configuration in the weak bisimulation game

on P̂. If the attacker can win every weak bisimulation game on P starting in (sXm, tXn)

within l rounds, then one of the following statements holds:

• The attacker can force the game on P̂ into some configuration (yXm′,zXn′) such

that yXm′ 6≈P̂ zXn′ .

• The attacker can force the game on P̂ into some configuration ((s′,b)Xm′,(t ′,b)Xn′)

where she can win every game on P starting in (s′Xm′, t ′Xn′) within l−1 rounds.

Proof Assume the attacker can win every game on P starting in (sXm, tXn) within

l rounds. Without loss of generality, we assume that for configuration (sXm, tXn),

the attacker’s winning strategy for P stipulates a step sXm b−→ s′Xm′ , the other case is

equivalent. Therefore, the attacker takes a step (s,a)Xm −→ (s′,b)Xm′ in P̂. If there is

no strong step left for the defender, then (s,a)Xm 6≈P̂ (t,a)Xn and the first statement

holds. Otherwise, the defender has several choices.

• He goes (t,a)Xn τ∗−→ (t ′,a)Xn′ −→ s1
aXn′ . By Lemma 4.5, (s′,b)Xm′ 6≈P̂ s1

aXn′ and the

first statement holds.

• He goes (t,a)Xn τ∗−→ (t1,a)Xn1 −→ (t2,c)Xn2 τ∗−→ (t ′,c)Xn′ where c 6= b. By

Lemma 4.6, (s′,b)Xm′ 6≈P̂ (t ′,c)Xn′ and the first statement holds.

• He goes (t,a)Xn τ∗−→ (t1,a)Xn1 −→ (t2,b)Xn2 τ∗−→ (t ′,b)Xn′ . This corresponds to a

weak step tXn b
=⇒ t ′Xn′ in P. By the definition of weak bisimilarity, the attacker can
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win every game on P starting in (s′Xm′, t ′Xn′) within l− 1 rounds. Therefore, the

second statement holds. �

Having established the necessary invariants, we are able to prove the main theorem.

Proof (Theorem 4.2) For a 1CPN P, P̂ is by construction an unlabelled 1CPN. Now,

let sXm≈P tXn, i.e. the defender has a winning strategy for every game on P starting in

configuration (sXm, tXn). Let furthermore a ∈ Act. The following describes a winning

strategy for the defender in P̂ starting in ((s,a)Xm,(t,a)Xn): By Lemma 4.4, either

the defender can make the two processes isomorphic in the next round and wins or

the game reaches a configuration ((s′,b)Xm′,(t ′,b)Xn′) where again s′Xm′ ≈P t ′Xn′

holds. Like this, we can repeatedly apply Lemma 4.4 until either the processes become

isomorphic and the defender wins or the game never terminates and he also wins.

For the other direction, let (s,a)Xm ≈P̂ (t,a)Xn for all a ∈ Act and assume sXm 6≈P

tXn. By definition of weak bisimilarity, this means that there is an l ∈ N such that the

attacker can win every game on P starting in (sXm, tXn) within l rounds. We show by

induction on l that for all a ∈ Act, the attacker has a winning strategy for any game on

P̂ starting in ((s,a)Xm,(t,a)Xn) which is a contradiction to (s,a)Xm ≈P̂ (t,a)Xn.

l = 0 By Lemma 4.7, the attacker can force the game into a state (yXm′,zXn′) where

yXm′ 6≈P̂ zXn′ holds, so (s,a)Xm 6≈P̂ (t,a)Xn.

l > 0 By Lemma 4.7, one of the following cases holds: 1) The attacker can

force the game into a state (yXm′,zXn′) where yXm′ 6≈P̂ zXn′ holds, so also

(s,a)Xm 6≈P̂ (t,a)Xn or 2) The attacker can force the game into a configuration

((s′,b)Xm′,(t ′,b)Xn′) where she can win every game on P starting in (s′Xm′, t ′Xn′)

within l−1 rounds. By induction, (s′,b)Xm′ 6≈P̂ (t ′,b)Xn′ , so (s,a)Xm 6≈P̂ (t,a)Xn.

�

Remark It is easy to see that the size of a P̂ is polynomially bounded by the size of

P (for more detail, see Chapter 6). Due to the finite number of rules in a 1CPN, the

transformation is therefore computable and of polynomial complexity. It can thus be

used in decidability or complexity reductions.
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We now apply the transformation in a reduction to establish the undecidability of un-

labelled one-counter nets. To do so, we first note the following simple fact. It states

that the behaviour of a state ((s,a)Xn,(t,a)Xm) in a game on P̂ only depends on s, not

on a.

Fact 4.8 Note that by construction of the transformation, for all s, t ∈ S, a,b∈ Act and

n,m ∈ N it holds that (s,a)Xn ≈P̂ (t,a)Xm iff (s,b)Xn ≈P̂ (t,b)Xm. This implies that

∃ a ∈ Act. (s,a)Xn ≈P̂ (t,a)Xm iff ∀a ∈ Act. (s,a)Xn ≈P̂ (t,a)Xm.

Theorem 4.9 There exists a fixed unlabelled 1CPN P′ = (S,X ,∆) such that for two

states s1,s2 ∈ S and inputs n1,n2 ∈ N, it is undecidable whether s1Xn1 ≈P′ s2Xn2 .

Proof In [6] Mayr proves that there is a fixed 1CPN P = (S,X ,Act,∆) such that for

two states s1,s2 ∈ S and inputs n1,n2 ∈ N, it is undecidable whether s1Xn1 ≈P s2Xn2 .

Having P, with Theorem 4.2, Fact 4.8 and choosing P′ := P̂ it follows that it must also

be undecidable whether (s1,a)Xn1 ≈P′ (s2,a)Xn2 for some fixed a ∈ Act. �

Corollary 4.10 Weak Bisimilarity is in general undecidable for unlabelled one-

counter Petri nets.

Remark We presented a label removing transformation for one-counter Petri nets.

Note that however, the transformation is not limited to 1CPNs. We did not change how

the rules manipulate the counter so the construction can easily be applied to all kinds

of transition systems that are described by a finite number of rules.





Chapter 5

Lossyness in One-Counter Petri Nets

Lossy semantics allow a system with counters, registers or channels to spontaneously

decrease the counter value or lose messages, respectively. This behaviour is non-

deterministic and cannot be controlled by the machine or a user. Lossyness therefore

weakens a model.

For this thesis, we aimed to prove that weak bisimilarity for lossy one-counter Petri

nets is still undecidable. As proposed by Mayr in [6], we planned to apply a similar

technique like the one used by Schnoebelen in [9]. However, it turned out that lossy

1CPNs are more complicated than expected. Being bound to a limited time frame, we

have not been able to complete the proof. But due to the case that the difficulties we

faced were very unexpected, we present the approaches we considered and describe

where the challenges lie.

5.1 Possible Definitions of Lossyness

For this project, we considered classic lossyness. It allows a system to lose an arbitrary

amount of data at any time. There are also other versions of lossyness, e.g. bounded

lossyness where only a bounded amount of data can be lost in one step. For a more

elaborate overview over different kinds of lossyness see [5].
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During our work, we considered different characterisations for classic lossyness in

1CPNs. The first one is the standard in literature (compare for example [9, 10]). It

introduces a different operational semantics for one-counter nets.

Definition 5.1 (Version 1) A lossy one-counter Petri net is a tuple (S,X ,Act,∆)

where S is the set of control states, X denotes the unbounded place, Act is the set

of actions and ∆ the set of transition rules. All sets S, Act and ∆ are finite. Rules in ∆

are of the form s1Xm a−→ s2Xn where s1,s2 ∈ S, a∈ Act and n,m∈N. A rule describes a

set of transitions with label a that go out from configurations with control state s1 and

m+k+ i tokens in place X to state s2 and n+k− j tokens in X where k, i, j ∈N. Here,

i and j denote the counter values that are lost before and after the transition is taken.

Note that this definition differs from the definition of normal 1CPNs in how the trans-

ition rules are interpreted. Giving a different semantics for a syntactically equal system

means that with this definition, lossy 1CPNs are not a subclass of normal 1CPNs.

A alternative approach exploits the fact that we are considering one-counter nets mod-

ular internal actions. Hence, lossyness can be modelled by a τ-loop that decreases the

counter.

Definition 5.2 (Version 2) A lossy one-counter Petri net is a one-counter Petri net

(S,X ,Act,∆) where for every s ∈ S, there is a rule sX τ−→ s ∈ ∆.

With this definition, lossy 1CPNs are a syntactic subclass of normal 1CPNs. A proof

for the undecidability of weak bisimilarity for this kind of system would carry over to

1CPNs and normal Petri nets. Furthermore, we could apply the transformation from

Chapter 4 and obtain a proof that weak bisimilarity is undecidable for lossy, unary one-

counter nets. These properties make the second version so appealing. Interestingly, the

two definitions are not equivalent, not even up to weak bisimilarity. As an example,

consider the following system.

sX a−→ p

sX τ−→ s

s′X a−→ p
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Configurations sX1 and s′X1 in the system above are not weakly bisimilar when consid-

ering Version 1 of the definition of lossyness: The attacker first goes sX1 τ−→ sX0 to what

the defender must respond with s′X1 τ
=⇒ s′X1. Now the attacker can go s′X1 a−→ pX0

which cannot be met with a weak a-step by the defender. To make this system valid

under Version 2, we have to add decreasing τ-loops to every state (in practice, we

would implicitly assume the existence of these loops). Now, the defender can answer

the attacker’s first step with s′X1 τ−→ s′X0 and the two configurations sX1 and s′X1 be-

come weakly bisimilar.

That these two definitions are not equivalent up to weak bisimilarity exposes a conflict

in the definition of lossyness. Version 1 is considered to be the standard in literature

but it only allows losing tokens when the state of the system is changing. Thus, when

considering weak bisimilarity in Petri Nets, Version 2 is more truthful to the intuit-

ive characterisation of lossyness as the machine ‘being able to lose data at any point

without an observer noticing it’.

5.2 Approaches to the Undecidability Proof

Initially, we aimed to prove the following theorem.

Theorem 5.3 Let a lossy one-counter Petri net (S,X ,Act,∆) be given. In general, it is

undecidable whether two configurations sXn and tXm, where s, t ∈ S and m,n ∈N, are

weakly bisimilar.

In [6], Mayr suggests that the

‘undecidability result for weak bisimilarity of 1-counter nets carries over to the
even weaker model of lossy 1-counter nets. [...] The proof is similar to the one
given here, but more technically complex in some details. The idea is to use
an additional technique from [9] by which one can ensure that whenever one
player loses tokens then the other player wins, thus effectively ruling out lossy
behaviour.’

Using the technique mentioned by Mayr, Schnoebelen gives a proof that all relations

between (strong) path inclusion and (strong) bisimulation equivalence are undecidable
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for lossy channel systems [9]. We decided to follow his suggestion and adapt the

proof in [6] using Schnoebelen’s technique. In the following, we first give a brief

overview over Mayr’s proof in order to precisely state the difficulties we encountered

when trying to adapt it.

5.2.1 Undecidability Proof for Normal One-Counter Nets

To prove the undecidability of one-counter nets, Mayr encodes the execution of a two-

counter Minsky machine into a one-counter Petri net. This encoding is then used in a

reduction from the acceptability problem for a 2CMM to the weak bisimilarity problem

for a 1CPN. Since the acceptability problem is known to be undecidable for 2CMMs

(see Fact 3.10) weak bisimilarity must be undecidable for 1CPNs.

For the encoding, the two counters of the Minsky machine are compressed into the

single counter of the net using Gödel’s encoding. Thus, if in some configuration of

the 2CMM, the counters have values n1 and n2, then the counter of the 1CPN has

the value 2n13n2 . This leads to the challenge of realising incrementation and decre-

mentation of the counters in the encoding. Whenever the first (or the second) counter

of the machine is increased by one, then the counter of the net must be multiplied

by two (or three, respectively). Similarly, if the counter of the machine is decreased

by one, then the counter of the net must be divided by two (or three). As an ex-

ample of how the construction works, consider the implementation of a command

(q : c2 := c2 + 1; goto p) as shown in Fig. 5.1. It is designed such that if both

players play reasonable in a game starting in (qXn,q′Xn), then the net simulates the

counter machine, i.e. the game proceeds to configuration (pXk, p′Xk) where k = 3n.

States t1 and t3 are testing gadgets for which holds that t1Xn ≈ t1Xm iff n = m and

t1Xn ≈ t3Xm iff n = 3m. A state G(s) allows a player to arbitrarily choose the counter

value of the process with decreasing and increasing τ-loops before continuing to state

s.

The following lemma formally states that the construction is correct. It is proven in

[6].
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Instruction in Minsky machine: (q : c2 := c2 + 1; goto p)

Corresponding rules in one-counter Petri net:

q

q1

q2

p

t3

t1

G(q′1)

G(q2)

q′

q′1

q′2

p′

t1

t1

a
τ τ

a

(τ,±1)

τ

t

τ
a

t

a

(τ,±1)

a

t

a

t

Figure 5.1: Encoding of an Instruction of a Minsky Machine into a One-Counter Net

Lemma 5.4 Let (q : ci := c2 + 1; goto p) be the instruction of the Minsky

2-counter machine at control state q. Let n1,n2 ∈N and n = 2n13n2 . The weak bisimu-

lation game starting at the configuration (qXn,q′Xn) has the following properties:

• The attacker has a strategy by which she can either (depending on the moves of

the player) win, or at least force the weak bisimulation game into the configuration

(pXm, p′Xm), where m = 2n13n2+1.

• The defender has a strategy by which he can either (depending on the moves of the

attacker) win, or at least force the weak bisimulation game into the configuration

(pXm, p′Xm), where m = 2n13n2+1.

To sum up the proof, the game starting in (qXn,q′Xn) is forced to proceed as follows:

First, the attacker moves qXn a−→ q1Xn, otherwise the defender can make the two pro-

cesses syntactically equal. Next, the defender goes q′Xn a−→ q′1Xk with k = 3n. If he

does not choose k = 3n, then the attacker wins by forcing the game into the testing
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gadgets t1 and t3. Next, the attacker moves q′1Xk a−→ q′2Xk, otherwise the defender can

make the processes syntactically equal with the help of the τ-loops in G(q2). The de-

fender is forced to answer with q1Xn a
=⇒ q2Xk by the thread of the testing gadget t1.

Lastly, the attacker chooses either q2Xk a−→ pXk or q′2Xk a−→ p′Xk to which the defender

responds with q′2Xk a
=⇒ p′Xk or q2Xk a

=⇒ pXk, respectively.

A similar, slightly more technical construction is presented for commands of the form

(q : if ci = 0 then goto p else ci := ci − 1; goto r). To complete the

undecidability proof, a final self loop is added to the accepting state qaccept that allows

the attacker to win the game in configuration (qacceptXn,q′acceptX
n). Like this, it holds

that the machine with initial state q0 accepts values n1,n2 iff q0Xn 6≈ q′0Xn where n =

2n13n2 .

5.2.2 Adaptation of the Proof

It is clear that the proof presented above needs some adaptations to work for lossy one-

counter nets. Otherwise, the attacker could just lose tokens and the correctness lemma

we stated does not hold anymore. The general idea how to punish the attacker for losing

as it is presented by Schnoebelen in [9] involves that the defender is able to make the

two processes syntactically equal if the attacker loses. This means that he would be

able to ‘cross sides’, e.g. from state q′ to q1 instead of q′1. The challenge is that the

defender should only be able to cross if the attacker has lost a token. In his paper,

Schnoebelen ensures this with crossing transitions that decrease the counter value (or

rather drop a message for the case of channel systems). Like this, the defender would

only use a crossing transition if the attacker lost a token. Otherwise, one process would

have a higher counter value than the other one which gives the attacker the possibility

to win the game. There are two main obstacles that hinder this idea from being realised

in Mayr’s construction.

First, in order to multiply the counter by two or three, the defender must be allowed

to set the counter arbitrarily with a weak step, e.g. q1Xn a
=⇒ q2Xk where k = 3n (or

k = 2n). When considering Version 2 of the definition of lossyness, this causes the
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following problem: In contrast to Version 1, the attacker is not forced to commit to

a process or to a transition when losing tokens. Therefore, if the attacker loses, e.g.

in state q′2 with a transition q′2Xk τ−→ q′2Xk−1, the defender needs to be able to punish

the attacker immediately with a weak τ-step. This means that we need to add a rule

q2X τ−→ q′2. But now the defender can always win the game: If the attacker moves

q′1Xk a−→ q′2Xk without losing, then the defender wins by going q1Xn a
=⇒ q′2Xk. This is

a non-trivial problem which shows that with Version 2 of the lossyness definition, we

cannot allow gadgets that permit to set a counter to an arbitrary value with a sequence

of τ-steps only. That problem does not arise under the classic definition of lossyness.

Since the attacker has to commit to a process and a transition when losing, we can add

a rule q2X a−→ p′, which is enough to prevent the attacker from losing on a transition

q′2Xk a−→ p′Xk.

A second problem lies in the fact that during the game, the values of the counters differ

in more than a constant factor. The proof of Lemma 5.4 shows that the game proceeds

in a way that at some point, the two processes are in configuration (q1Xn,q′1X3n). This

is caused by the encoding of two counters into one and is not an issue in Schnoebelen’s

undecidability proof for channel systems. There, the channels stay the same during the

game (up to a constant factor). The different counter values cause a problem when the

attacker loses a token in the process with the higher counter value. Then the defender

is not able to make the two processes syntactically equal without being allowed to

choose the counter value arbitrarily. This, in turn, leads to the question how to prevent

the defender from always winning the game at this point.

The obstacles we encountered let us doubt that there is a straightforward solution to

implement Schnoebelen’s technique into Mayr’s undecidability proof for one-counter

nets. This is mainly due to problems that arise when encoding two counters into one.

We did not expect this outcome at the beginning of the project. However, the chal-

lenges we illustrated make the question of decidability a very interesting one for future

work. At the moment, we do not have a strong conjecture that either favours decidab-

ility or undecidability, for neither of the two definitions of lossyness.
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Evaluation

In the following, we will discuss the impact of our result in the field of process models.

Furthermore, we evaluate the construction itself and compare it to the one Srba gives in

[11]. Lastly, we comment on our discussion regarding lossyness in one-counter nets.

6.1 The Result

That weak bisimilarity is undecidable in unary one-counter nets is a new addition to

various decidability results in the field of process models. Since unary one-counter

nets are a very weak system, the result we obtain is quite strong. It carries over to all

systems that subsume unlabelled 1CPNs. These results support Mayr’s ‘rule of thumb’

he states in [6]:

‘Weak bisimilarity is undecidable for most classes of infinite-state systems that
are closed under product with finite-automata.’

He also notes that his proof for the undecidability of weak bisimilarity in one-counter

nets does not carry over to systems that are not closed under product with finite auto-

mata like basic process algebra (BPA) and basic parallel processes (BPP). As our res-

ult relies on Mayr’s proof, the same obviously also holds for the proof we give in this

thesis.
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Mayr’s proof for one-counter nets also applies to normed 1CPNs. In a normed 1CPN,

every reachable configuration can empty its unbounded place within a finite number of

steps. This is not the case for our proof. In order to norm the unlabelled 1CPN given by

the construction, one would have to add a decreasing τ-loop to the end state s2i
ai

of each

testing gadget to empty the counter. But then s1
ai

Xn and s1
ai

Xm would not be weakly

bisimilar anymore which is a requirement for the correctness proof (see Fact 4.3).

6.2 The Construction

The construction itself is considerably light and straightforward. The size of the new

system is polynomially bounded by the size of the old system. More concretely, the

blowup is |S|× |Act| for the states that mimic the old system. For the testing gadgets,

the number of states we add is

∑
ai∈Act

2i = |Act|2 + |Act|.

As the construction is polynomially bounded, it might also be interesting to transfer

complexity results to unlabelled nets.

A similar construction to remove labels from transition systems is given by Srba in

[11]. Compared to our approach, he does not encode the action into the names of the

states. Instead, for a transition s a−→ t, he adds a testing gadget for a between s and

t. Additionally, to distinguish the testing states from original states, he adds a gadget

to each original state that is longer than any of the testing gadgets. This prevents

the defender from spontaneously entering the gadget. We achieve a similar effect by

making the testing gadgets of even length.

Personally, we think that our construction is slightly more intuitive and easier to

present. Pushing information like transition labels into the states is an easy, old trick

that serves our purposes very well. However, Srba showed that his construction applies

to Petri nets as well as pushdown automata and preserves strong bisimilarity and model

checking of action-based modal µ-calculus formulae. This is a much broader result
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than what we aimed for in this thesis. Of course, this implies the question whether our

construction could be used in other contexts, too.

6.3 Lossyness in One-Counter Nets

When starting the project, we hoped to also come up with a proof for the undecidability

of weak bisimilarity in lossy one-counter nets or even lossy and unlabelled 1CPNs.

However, we have not been able to apply Schnoebelen’s technique [9] successfully,

even though it seemed promising for such a proof. It seems as if the encoding of two

counters into one is an existential problem for the proof. We can therefore conclude

that the decidability question is still open and much more interesting than it might

seem at the first sight. We also stated different definitions for lossyness in one-counter

systems where one definition gives the attacker more options that the other one. Thus,

it might even be the case that the decidability question is answered differently for

different definitions of lossyness.
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Conclusion

We presented a construction to transform a labelled one-counter net into an unlabelled

one preserving weak bisimilarity in the system. Using this transformation, we have

been able to prove that weak bisimilarity is undecidable for unary (unlabelled) one-

counter nets. The construction we described is comparable simple and very straight-

forward. This result contributes to the active research in the field of process models

and supports the assumption that weak bisimilarity is undecidable for systems that are

closed under product with finite automata.

We also discussed some obstacles we encountered when trying to prove that weak

bisimilarity is also undecidable in lossy one-counter nets. It became clear that a proof

for either decidability or undecidability is a interesting challenge for future work.

At this point, we doubt that a reduction from two-counter Minsky machines using

Schnoebelen’s technique works out. However, there is a vast range of systems and un-

decidable problems that could be taken into consideration for a reduction. For example,

one might try to encode an undecidable problem in standard one-channel systems into

the weak bisimilarity problem in one-counter nets. In contrast to extended channel

systems, standard ones do not allow an explicit test for zero. Encoding a standard

one-channel system into a one-counter net would include the challenge of dealing with

different messages in the channel.

Furthermore, it might be interesting to further explore the different definitions of los-
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syness in Petri nets and other systems. The discussion in Section 5.1 showed that one

might apply a non-standard definition of lossyness when considering systems modulo

internal actions. This alternative definition is actually not equivalent to what one nor-

mally finds in literature. In future work, one might therefore discuss which definition

yields a better model for the specific system one is interested in, especially if it was

found that the definitions yield different decidability results.
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