The Hierarchy of Hyperlogics

Norine Coenen, Bernd Finkbeiner, Christopher Hahn, Jana Hofmann

Reactive Systems Group, Saarland University, Germany

The 34th Annual ACM/IEEE Symposium on Logic in Computer Science

Vancouver, Canada, June 2019
Logics for Trace Properties

Linear-Time Logics
- QPTL = S1S
- LTL = FO[<]

Branching-Time Logics
- QCTL* = MSO
- CTL* = MPL

(temporal logics) (FO/SO logics)
Logics for Hyperproperties

Linear-Time Hyperlogics
- HyperLTL
- HyperQPTL
- FO[\leq,E] (temporal logic)
- S1S[E] (FO/SO logic)

Branching-Time Hyperlogics
- HyperCTL**
- HyperQCTL**
- MPL[E] (temporal logic)
- MSO[E] (FO/SO logic)

How do temporal and FO/SO hyperlogics relate w.r.t. expressiveness?
Satisfiability beyond HyperLTL?
Are Trace Properties Enough?

Many processors are **vulnerable** even though proven **correct**.

The attacks compare multiple executions traces.
A trace property is a set of traces.

A hyperproperty\(^1\) is a set of sets of traces.

Hyperproperties relate multiple execution traces.

Hyperproperties in Information-Flow Control

- **Trace equality**: Do all execution traces agree on the value of a?
- **Observational determinism**: Does the system appear deterministic to low-security users?
- **Uniform termination, noninterference, strong secrecy**...
Two Paths to Hyperlogics

Temporal Hyperlogics

temporal logic + trace quantifiers / path quantifiers = temporal hyperlogic

$LTL, CTL^*, QPTL$

First-Order/Second-Order Hyperlogics

monadic FO/SO logic + equal-level predicate E = FO/SO hyperlogic

$FO[<], MPL, S1S$, $HyperLTL, HyperCTL^*, HyperQPTL$
HyperLTL = LTL + prenex trace quantifiers

• Observational determinism:

$$\forall \pi . \forall \pi'. \Box (lowIn_\pi = lowIn_{\pi'}) \rightarrow \Box (lowOut_\pi = lowOut_{\pi'})$$
FO/SO Hyperlogics

\[\text{FO}[<, E] = \text{monadic FO logic of order} + \text{equal-level predicate } E \]

- **Trace equality:** \(\forall x. \forall y. E(x, y) \rightarrow (\bigwedge_{P \in \text{Pred}} P(x) \iff P(y)) \)

- **Input:** \(r = \text{request} \)
- **Outputs:**
 - \(g = \text{grant} \)
 - \(h = \text{halt} \)
 - \(s = \text{grant secret} \)
Expressiveness of Hyperlogics

Linear-Time Logics

- QPTL = S1S
- LTL = FO[<]
- HyperQPTL
- HyperLTL
- FO[<,E]

Branching-Time Logics

- HyperQCTL* = MSO[E]
- MPL[E]
- HyperCTL*
- QCTL* = MSO
- CTL* = MPL

Satisfiability of Hyperlogics

HyperLTL:\(^1\)

HyperQPTL:

HyperCTL\(^*\):

Overview

1. Linear-time hyperlogics
 Expressiveness results
 - The limits of HyperLTL
 - The more expressive HyperQPTL
 - The power of the equal-level predicate
 Deciding HyperQPTL

2. Branching-time hyperlogics
 Deciding HyperCTL*
The Limits of HyperLTL

- **Promptness**: "There is a bound up to which all traces fulfill a."

 Example: **Uniform termination**: "The system terminates within a bounded number of steps."

- Promptness is not expressible in HyperLTL.¹

 ![Diagram](image)

 - $r = \text{request}$
 - $g = \text{grant}$
 - $h = \text{halt}$

¹Bozzelli, Maubert, Pinchinat. *Unifying Hyper and Epistemic Temporal Logics*. FoSSaCS 2015
HyperQPTL

HyperQPTL = QPTL + prenex trace quantifiers

= HyperLTL + quantification over propositional variables

- **Uniform termination**: $\exists q. \forall \pi. q \land (\neg q \mathcal{U} h_\pi)$

- $r = \text{request}$

- $g = \text{grant}$

- $h = \text{halt}$
The Power of the Equal-Level Predicate

The $S1S[E]$ model checking problem is undecidable.

Proof by reduction from the halting problem of 2-counter machines:

- Decide if $T \models \varphi$, where:

- Encode each possible configuration $c = (\text{instr}, c_1, c_2)$ as a trace:

 $\emptyset \rightarrow c_1 \rightarrow \emptyset \rightarrow \emptyset \rightarrow i \rightarrow \emptyset \rightarrow \emptyset \rightarrow c_2 \rightarrow \cdots$

 for $c = (4, 1, 7)$

 T is the set of all encoded configurations.

- φ existentially quantifies a set of configurations that encodes a halting computation.
HyperQPTL Satisfiability

In general undecidable, decidable fragments:

HyperLTL:\(^1\)

\[\begin{align*}
\forall & ^* \\
\exists & ^* \\
\forall & ^* \\
\exists & ^* \\
\end{align*} \]

Decidability proofs: reduction to LTL

HyperQPTL:

\[\begin{align*}
\forall & ^* \\
\exists & ^* \\
Q & ^* \exists ^* Q \forall ^* Q \forall ^* \\
\forall & ^* \\
\end{align*} \]

Decidability proofs: reduction to QPTL

Propositional quantification does not change the decidability of the satisfiability problem.

\(^1\)Finkbeiner, Hahn. Deciding Hyperproperties. CONCUR, 2016.
HyperCTL* Satisfiability

HyperCTL* = CTL* + (non-prenex) path quantifiers

The interesting case: \(\exists \pi. \square(\exists \pi'. \phi) \)

Does this lead to undecidability? (It feels like \(\exists \forall \exists \) after all...)

No!
HyperCTL* Satisfiability

HyperLTL:\footnote{Finkbeiner, Hahn. Deciding Hyperproperties. CONCUR, 2016.}

HyperCTL*:
Proving HyperCTL* Decidability

Roadmap

- Interesting case: \exists^* fragment
- Exemplary proof for $\psi := \exists \pi. (\exists \pi'. \varphi)$

1. Label model with automaton states.
2. Define a cutting operation to cut out superfluous parts of the model.
3. Create a bounded representation of the model.
Decidability of the \exists^* Fragment

Proof for: $\psi := \exists \pi. \Box (\exists \pi'. \varphi)$

1. Label model with automaton states.

- Assumption: $A_{\varphi(\pi, \pi')}$ accepts each $(p[i, \infty], p_i)$.
Decidability of the \(\exists^* \) Fragment

Proof for: \(\psi := \exists \pi. \square (\exists \pi'. \varphi) \)

2. Define a cutting operation to cut out superfluous parts of the model.
Decidability of the \exists^* Fragment

Proof for: $\psi := \exists \pi. \square (\exists \pi'. \varphi)$

2. Define a cutting operation to cut out superfluous parts of the model.
Decidability of the \exists^* Fragment

Proof for: $\psi := \exists \pi. \Box (\exists \pi'. \varphi)$

2. Define a cutting operation to cut out superfluous parts of the model.

- Make sure the automaton run remains accepting.
- Do not cut accepting states.
Decidability of the \exists^* Fragment

Proof for: $\psi := \exists \pi. \Box (\exists \pi'. \varphi)$

3. Create a bounded representation of the model.

- Repeatedly cut out parts of the model until "enough" accepting states are within a bound.
Decidability of the \exists^* Fragment

Proof for: $\psi := \exists \pi . \□ (\exists \pi' . \varphi)$

3. Create a bounded representation of the model.

- Ensure: Accepting state on each loop.
The expressiveness hierarchy of hyperlogics is different to the one for classic logics.

Mixing path quantifiers with propositional quantification and temporal operators does not affect the decidability of the satisfiability problem.