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The Security Arms Race
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First principles that allow us to obtain reliable security guarantees: 

Formal models, formal specifications, mathematical proofs

Formal Methods: Basic Idea
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Model

Break out of the arms race:

Rule out entire classes of attacks 
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Yesterday (and later today): proving security of a protocol by hand

 more flexible, possibly more precise

 human effort is not easily reusable

 makes sense for a protocol standard, but usually not for a concrete implementation

Now: automated methods for proving correctness

 difficult to obtain full automation, often sacrifices precision

 human work is done up front, effort for verifying a given implementation is negligible

 needed if we want to verify large parts of our implementations

Formal Methods: Manual or Automatic?
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Formal Methods: Design Choices
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how much detail do 
we need? 

which features of the 
system can we safely 
abstract from?

does our model allow 
efficient automated 
reasoning?

what kind of 
properties do we 
want/need to express? 

how to express them 
s.t. their verification is 
possible/easy?

for given choice of systems and specifications:

- how can we efficiently reason about them?
- can it be completely automated?
- if so, can we guarantee termination?



More challenging approach: automatic synthesis of systems that are correct by construction 

Find a model that satisfies a given specification:

Formal Methods: Advanced Techniques
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Model

For this lecture, just assume 
that synthesis techniques 

are generalizations of 
verification techniques



 Formal Verification Basics

 Security Protocol Verification

 Parameterized Systems

 Reliability and Fault Tolerance

 Information Flow and Hyperproperties

Overview
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FORMAL VERIFICATION BASICS



Main ingredients: 

 state space (may be infinite)

 transition relation (may be non-deterministic)

 possibly: observations, i.e., state labels

Symbolic representations:

 represent large (or infinite) state spaces more efficiently

 Example: 

- valuations of a set of Boolean variables 𝑥1, … , 𝑥𝑛 yield a state space of size 2𝑛

- transition relation and properties can be defined over sets of states, 
defined by Boolean formulas 𝑥1 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥4

Formal System Models
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Safety properties: “something bad should never happen”

need only define states (of the model) that are errors/insecure/undesirable

Liveness properties: “if the system runs sufficiently long, something good will happen”

define what should happen under which conditions

More complex properties possible

Expressed in dedicated specification languages

Formal Specifications
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Simple case: explicit state traversal

Symbolic safety model checking: 

 start with symbolic representation of error states

 repeatedly “apply” (symbolic representation of) transition relation

 after each application, check if fixpoint or error states are reached

 efficient implementation e.g. with BDDs

Verification Algorithms
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allows verification of systems with “1020 states and beyond” [Burch et al. 1992]



Problem: state space and system runs may be infinite/unbounded

verification needs to handle infinity in a finite way

Handling infinite runs: 

 automata theory (e.g. Büchi automata)

Handling infinite state space:

 abstraction (e.g. equivalence relations, symmetry reduction)

 induction (hard to automate)

Verification Algorithms (II)
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QUESTIONS?



SECURITY PROTOCOL VERIFICATION



Security Protocols: Examples
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SSL/TLS (e-commerce, web search, etc.)

WEP, WPA in secure WLAN

authentication at ATM
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Security protocols are

distributed programs 

that use cryptography 

to achieve security properties 

in the presence of a malicious adversary.

What is a Security Protocol?
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hard to analyze

adds complexity

difficult to test/verify

makes everything much more difficult



Dolev-Yao model [Dolev/Yao 1983]:

 perfect crypto assumption

 attacker controls network and has unbounded computational power

 easy to reason about, automation possible

Computational model:

 crypto can be broken

 computational power of attacker is bounded

 hard to reason about, automation difficult

Computational soundness [Abadi/Rogaway 2002]: 
under which conditions does a proof in the Dolev-Yao model 
imply correctness in the computational model?

Formal Models for Security Protocols
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Example: Needham-Schroeder Protocol [Needham/Schroeder 1978]

Goal: use public key encryption to
1. exchange a confidential message
2. authenticate participants

Semi-formal description:

1. 𝐴 → 𝐵: 𝐴,𝑁𝐴 𝑝𝑘 𝐵

2. 𝐵 → 𝐴: 𝑁𝐴, 𝑁𝐵 𝑝𝑘 𝐴

3. 𝐴 → 𝐵: 𝑁𝐵 𝑝𝑘 𝐵
A B

𝐴,𝑁𝐴 𝑝𝑘 𝐵

𝑁𝐴, 𝑁𝐵 𝑝𝑘 𝐴

𝑁𝐵 𝑝𝑘 𝐵



Why did we say “semi-formal”?

Semi-formal description:

1. 𝐴 → 𝐵: 𝐴, 𝑁𝐴 𝑝𝑘 𝐵

2. 𝐵 → 𝐴: 𝑁𝐴, 𝑁𝐵 𝑝𝑘 𝐴

3. 𝐴 → 𝐵: 𝑁𝐵 𝑝𝑘 𝐵

Are there restrictions on the messages?

This is one possible execution – the intended one. 
Can other things happen if we arrange these 

message exchanges differently? Which restrictions 
are enforced on such message exchanges?

yes, these are “nonces” (numbers used once), 
i.e., need to be fresh



A more formal description

𝐴
𝐴,𝑁𝐴 𝑝𝑘 𝐵 𝑥,𝑦 𝑝𝑘 𝐵

𝐵

𝐴
𝑁𝐴,𝑧 𝑝𝑘 𝐴 𝑦,𝑁𝐵 𝑝𝑘 𝑥

𝐵

𝐴
𝑧 𝑝𝑘 𝐵 𝑁𝐵 𝑝𝑘 𝐵

𝐵

Now, 𝑥, 𝑦, 𝑧 are variables – they are not known before, and the participants will react to 
any value they receive.

Such formalizations are useful when thinking about what could go wrong?



…17 years later [Lowe 1995]

Lowe’s man-in-the-middle attack:

𝐴
𝐴,𝑁𝐴 𝑝𝑘 𝐶

𝐶
𝐴,𝑁𝐴 𝑝𝑘 𝐵

𝐵

𝐴
𝑁𝐴,𝑁𝐵 𝑝𝑘 𝐴

𝐶
𝑁𝐴,𝑁𝐵 𝑝𝑘 𝐴

𝐵

𝐴
𝑁𝐵 𝑝𝑘 𝐶

𝐶
𝑁𝐵 𝑝𝑘 𝐵

𝐵

Violates authentication: 𝐵 thinks it communicates with 𝐴,
but the messages are coming from 𝐶

Violates secrecy: 𝐶 finds out 𝑁𝐵

Easily fixed: 
include identity also in 

response message (from B)

Hard part: 
detect such vulnerabilities



Formalizing Protocols: Dolev-Yao Model

Cryptographic primitives and other operations are modeled as 
function symbols. Messages are terms composed from functions 
and basic values (nonces, identities) according to fixed set of rules. 

Attacker model defines which messages attacker can generate, 
and which information attacker can obtain from messages sent 
over the network.

State of system = set of messages attacker knows or can generate

Transition = step of protocol or derivation of attacker

𝑥 𝑦

𝑥, 𝑦 𝑝𝑘 𝐵

𝐴,𝑁𝐴 𝑝𝑘 𝐵

𝑥 𝑝𝑘 𝐵 𝑠𝑘(𝐵)

𝑥



Secrecy violation = attacker can derive value that should be secret, i.e.,

can we reach a state (set of messages) that includes the secret?

Authentication violation = participant successfully finishes protocol & draws incorrect conclusions

Formal Specifications in the Dolev-Yao Model 
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The Intruder Deduction Problem

Definition: For a given set of inference rules 𝐼, the intruder deduction problem is to decide 
whether 𝑡 can be derived from 𝑆 for arbitrary (finite) set of terms 𝑆 and term 𝑡.

In general, the intruder deduction problem is undecidable [Abadi/Cortier 2006], i.e., no 
general algorithm that solves all instances of the problem exists.

It is however decidable for certain classes of inference systems. In particular, it is decidable 
in PTIME for the Dolev-Yao inference system.

verification can be efficiently automated



SATMC (used in AVISPA tool) [Armando/Compagna 2008]: 

 encodes problem into SAT for efficient solving

 only for fixed bounds on # sessions and # derivation steps

ProVerif [Blanchet 2001]: 

 symbolic model of protocol as Horn clauses

 models unbounded number of sessions but over-approximates behavior

Tamarin [Meier et al. 2013]: 

 very flexible modeling and reasoning

 complex problems can be solved in interactive mode

Verification Algorithms for Security Protocols
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ISO/IEC 9798 and 11770

IETF TLS 1.3

5G-AKA

Found several flaws [Cremers/Horvat 2016]

Standards were updated

Aided in developing new standard
Found a critical attack [Cremers et al. 2017]

Found under-specified assumptions
that enabled an attack [Cremers/Dehnel-Wild 2019]

Formal Verification of Security Protocols: Success Stories



QUESTIONS?



To make verification terminate, usually only a bounded number of sessions are verified

However, without a formal argument why every attack is possible with a given bound, this means 
the verification algorithms are incomplete

Restrictions of Verification Algorithms
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VERIFICATION OF PARAMETERIZED SYSTEMS



How to obtain reliable correctness guarantees
that hold for any value of the parameter?

Parameterized Verification Problems
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Cache Cache Cache Cache Session 1

Thread 1

Session 6

Session 2

Session 5

Session 9

Thread 2

Session 3

Session 8

Thread 3

Session 7
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Consider fixed number of components, each finite state, with some means of communication
between them:

In theory, problem is decidable, following easily
from decidability of finite-state model checking

In practice, problem is more difficult than
might be expected: state space explodes
since we need to consider all combinations
of local states

(in Example, 74 = 2401 states)

Verification of Concurrent Finite-State Systems
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state space exponential in # components



Assume: all components (sessions, processes, cores, …) of the system are 
uniform in their internals and in their connections

Then: if multiple components are in same state and one makes a transition, 
it does not matter which of them does it

abstract system state by vector that counts how many processes are in each (local) state

Parameterized Verification by Abstraction
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Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6

a b b c a b

2 3 1

a b c

Allows safety model checking 
regardless of number of components

under certain assumptions on transition relation

Drawback: 
System must be symmetric 
and components uniform, 

cannot model e.g. 
components with unique IDs



Example: Broadcast Protocols [Esparza et al. 1999]

Parameterized Verification by Abstraction
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𝑠1

𝑠2

𝑠3

𝑎!!

𝑎? ?

𝑎!! 𝑠4

𝑎? ?

𝑠1

𝑠2

𝑠3

𝑎!!

𝑎? ?

𝑎!! 𝑠4

𝑎? ?

𝑠1

𝑠2

𝑠3

𝑎!!

𝑎? ?

𝑎!! 𝑠4

𝑎? ?

𝑠1

𝑠2

𝑠3

𝑎!!

𝑎? ?

𝑎!! 𝑠4

𝑎? ?

4
0
0
0

𝑎

0
1
3
0

𝑎

0
2
0
2

Broadcast sender in 𝑠1: 

4
0
0
0

−

1
0
0
0

=

3
0
0
0

Broadcast receivers move from 𝑠1 to 𝑠3 or from 𝑠3 to 𝑠4: 
3
0
0
0

0 0
0 1

0 0
0 0

1 0
0 0

0 0
1 0

=

0
0
3
0

Broadcast sender moves to 𝑠2: 

0
0
3
0

+

0
1
0
0

=

0
1
3
0

Computation steps are independent of number of 
processes; this enables parameterized verification



Widespread intuition about correctness:

“if an error is possible, then it already appears with a small number of components”

This is true in many cases, and also an error/attack that needs a large number of components 
may be unlikely to happen in practice (think security protocols).

However, it is not true in general. For many classes of systems, we can find errors that need a 
number of components that cannot be bounded by any constant. 

Parameterized Verification: Intuition & Facts
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Notion of cutoffs formalizes this intuition:

Let 𝑀 be the model of one component, 𝑀𝑛 a system composed of 𝑛 copies of 𝑀, and 𝜑 the 
specification of a property.

A natural number 𝑐 is a cutoff if

∀𝑛 ≥ 𝑐: 𝑀𝑛 ⊨ 𝜑 ⇔ 𝑀𝑐 ⊨ 𝜑

That is, if the cutoff system is correct, then all larger systems are also correct.

Parameterized Verification (& Synthesis) by Cutoffs
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if we have cutoffs, parameterized verification is easy

under some additional conditions, 
cutoffs also allow synthesis of systems 

that are correct by construction 
regardless of # components



Cutoff proofs by hand [Emerson/Namjoshi 1995]:

 prove a simulation property, depending on the class of specifications under consideration

 usually requires restrictions on system (components, communication primitives, topology) 
and on specification

 cutoff may depend on properties of components (e.g., local state space) and specification

Automatic cutoff detection [Kaiser et al. 2010]:

 based on sufficient condition for cutoffs that can be checked statically

 approximative: existing cutoff may not be detected

 termination not guaranteed

How to Obtain a Cutoff
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In symbolic model (Dolev-Yao or similar), a cutoff for the number of agents has been shown 
[Heather/Schneider 2000,Comon-Lundh/Cortier 2003]:

in most cases, it is sufficient to consider two agents (one honest, one dishonest)

Note: in general, number of sessions is still unbounded.

Bounding number of sessions is also possible in some cases. The cutoff for sessions is then 
exponential in the number of roles in the protocol (which is usually 2 or 3).

Cutoffs for Security Protocol Verification
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Usually for classes of systems with different communication primitives:

Cutoffs for Verification of Distributed Systems
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token-
passing broadcasts

guarded
transitions

usually constant cutoffs
cutoffs linear in 
local state space

cutoffs exponential in 
local state space

smaller cutoffs are possible with additional restrictions
(on properties or systems)



Verification of cache coherence protocols [Emerson/Kahlon 2003]

constant cutoffs for a custom-made model (with broadcast and guarded transitions) 
that can express all standard textbook cache coherence protocols (only safety properties)

Verification of reference monitors/hypervisors [Franklin et al. 2010]

cutoffs exist for a model where rows of page table are components, and communication is by 
broadcast (only safety properties)

Synthesis of AMBA bus controller [Bloem et al. 2014]

cutoffs for token-passing systems can be used to synthesize correct implementation of bus 
controller; long-standing benchmark problem for formal synthesis (safety and liveness properties)

Formal Verification (& Synthesis) of Parameterized Systems: Success Stories
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QUESTIONS?



RELIABILITY AND FAULT TOLERANCE



To be realistic, formal models need to allow behavior that is not intended and may only happen 
sporadically, or if provoked by an attacker.

In secure messaging, this may be:

 loss of messages (due to network error or interception by attacker)

 loss of state (hardware fault or attacker can corrupt memory)

 loss of phone

In general:

 hardware parts may sporadically fail (and will eventually fail in big system)

 attackers may control parts of the system

Motivation: Faults and Attackers

Swen Jacobs | CISPA SeCon 2019 41



Faults/attacks can be classified along different dimensions

 temporary or permanent?

 crash or arbitrary behavior (“Byzantine fault”)?

 local or global?

Interesting cases:

 temporary, arbitrary behavior, global 
(“self-stabilization”)

 permanent, arbitrary behavior, local 
(“Byzantine fault-tolerance”)

 permanent, crash, local

Different Types of Faults/Attacks
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memory corruption that can bring 
system into an arbitrary state

attacker controls (permanently)
one of the sensors in a car



Faults and attackers can either be modeled explicitly for the given context,
(see symbolic model of security protocols)

or based on general principles like self-stabilization and Byzantine fault-tolerance.

General-purpose verification algorithms can be used to 
express the latter in model and/or specification, 
e.g., replace one component by one that behaves arbitrarily

To be useful in practice they need to

 be specialized to be efficient

 give parameterized correctness guarantees

Formal Verification in the Presence of Faults
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Synthesis of self-stabilizing algorithms [Mirzaie et al. 2018]

self-stabilization in ring structure, communication by guarded updates; 
synthesized algorithms for standard problems like maximal matching or three coloring

Verification of threshold-based algorithms [John et al. 2013, Konnov et al. 2017]

Byzantine fault resistance for components with pairwise communication and guarded updates 
based on thresholds; verified Byzantine consensus and atomic commit algorithms

Synthesis of synchronous counters [Bloem et al. 2016]

supports self-stabilization and Byzantine faults;
synthesized solution for synchronous counting, providing solutions with smaller stabilization time 
and fewer states than any known solution

Formal Verification of Fault-tolerant Systems: Success Stories

Swen Jacobs | CISPA SeCon 2019 44



QUESTIONS?



INFORMATION FLOW AND HYPERPROPERTIES



All properties considered until now can be verified on a single execution trace:

 safety properties (bad things will never happen)

 liveness properties (good things will eventually happen)

This type of verification is supported by efficient and mature tools, 
and is now used in industrial hardware and software design.
(Intel, ARM, Microsoft, Google, Amazon, Facebook)

Until Now: Verification of Trace Properties
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“if inputs satisfy property P, 
then outputs must satisfy property Q”

𝑃 𝑄



Security Verification Needs to Go Beyond Trace Properties

49

Standard notion of correctness:
“if inputs satisfy property P, 
then outputs must satisfy property Q”

Meltdown/Spectre:
compare multiple executions 
of a program function and 
derive information from differences 
between different executions
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Non-interference:

“if low-security inputs of two executions are equal, 
then (regardless of high-security inputs) the low-security outputs must be equal”

Hyperproperties are properties that compare two or more executions of a system.

Non-interference as a Hyperproperty
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𝑙1, ℎ1

𝑙1, ℎ2

𝑙1
′ , ℎ1

′

𝑙2
′ , ℎ2

′ 𝒍𝟏
′ = 𝒍𝟐

′ ?



Information-flow Model Checking, basically:

Model remains the same, but specification talks about multiple executions

Alternative approach: self-composition [Barthe et al. 2004]

Consider a modified model that runs two copies of the system in parallel

Then non-interference can be expressed as 
a trace property of this self-composed system

Verification of Information-flow Properties
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need to devise new algorithms for verification 
that can keep track of multiple executions in parallel

in principle, existing verification algorithms can be used



In practice, strict non-interference is often too strong a requirement

Leakage of some information may be acceptable, or we may assume that an attacker cannot 
observe the difference between certain possible outputs. 

E.g., if output is a list, then only require the set of elements to be equal, and ignore their order.

Verification by self-composition allows to define an indistinguishability criterion 𝐼, and 
instead of 𝑙1

′ = 𝑙2
′ we can require 𝐼 𝑙1

′ , 𝑙2
′ with minor modification of the verification algorithm.

Information-flow Properties: Relaxing Non-interference
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In practice, strict non-interference is often too strong a requirement

Similarly, downgrading of information can be supported [Terauchi/Aiken 2005], 
such that the low outputs can depend on certain properties of the high inputs. 

E.g., if high inputs are lists, then low outputs must only be equal if these lists are of same length. 

This is essential to prove information-flow properties of login procedures, 
since they will always leak at least the information whether the password was correct or not 
(but should not leak additional information).

Information-flow Properties: Relaxing Non-interference (II)

Swen Jacobs | CISPA SeCon 2019 53



Observation: 
model-checking the self-composed system is costly, and full duplication is often not necessary

Lazy self-composition [Yang et al. 2018]: 

 work on a single copy of the system at first

 try to detect if information leak is possible based on symbolic taint analysis
(an over-approximation of actual information leaks)

 if taint analysis reports a possible information leak, use self-composition locally, 
i.e., only for the relevant part of the state space

Efficient Information-flow Model Checking
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Instead of just checking if there exist information leaks, we can try to find out how much 
information can be leaked.

This can be represented by an equivalence relation over the high inputs, i.e., a partition of the 
high inputs s.t. the attacker can distinguish whether two high inputs are from different sets.

It can be computed as follows:

1. start with partition 𝑅 that consists of a single set

2. use self-composition with downgrading based on 𝑅 to check for an information leak

3. if there is one, use it to refine 𝑅 and go back to 2

The resulting R can then be used to compute common measures of information leaks, such as 
Shannon entropy or guessing entropy.

Quantification of Information Leaks [Backes et al. 2009]
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The self-composition approach can be further generalized to check for side-channel attacks,

e.g., timing side channels [Almeida et al. 2016].

To model side channels, add a leakage model that maps each state 𝑠 of the program to an 
observation 𝐿 𝑠 of the attacker.

A leakage model for timing side channels in software will usually reveal which branch is taken in 
an if-statement or at the beginning of a while-loop.

Depending on its precision, it may also reveal

 memory addresses used in load or store operations (to model cache timing attacks)

 size of instruction operands (e.g., timing of division is sensitive to size of operands)

Then, two traces are indistinguishable if the have the same sequence of observations.

Adding Side Channels
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Checking crypto libraries for side-channel attacks [Almeida et al. 2016]

Tool ct-verif verified libraries NaCl, parts of OpenSSL, and two elliptic curve arithmetic 
implementations.

Improved efficiency by lazy self-composition [Yang et al. 2018]

Not used on large-scale benchmarks, but shows orders of magnitude better performance 
than eager self-composition on many examples

Formal Verification of Information Flow: Success Stories
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QUESTIONS?



 Formal Verification Basics

 Security Protocol Verification

 Parameterized Systems

 Reliability and Fault Tolerance

 Information Flow and Hyperproperties

Overview
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