Efficient Parallel Path Checking

Lars Kuhtz

Universität des Saarlandes

LICS'09, Los Angeles, August 11th 2009

Path checking

Path checking problem [Markey, Schnoebelen 2003]

Given a formula φ and a finite path σ . Decide $\sigma \models \varphi$.

Related problems

Regular expressions NL

Semi-extended regular expressions logCFL

Star-free regular expressions P

Extended regular expressions P

Theorem ([Kuhtz,Finkbeiner 2009])

The path checking problem for LTL is efficiently parallelizable.

Path checking in NC

Proof idea

- 1 Construct equivalent Boolean circuit.
- 2 Decompose circuit into planar monotone sub-circuits.
- 3 Evaluate circuit in NC using [Yang 1991] as oracle.

Theorem (Yang 1991. Delcher, Kosaraju 1995)

The planar monotone circuit value problem is in NC.

Construction of circuit

- 1 Obtain monotone formula (de Morgan's law).
- **2** Obtain monotone Boolean circuit \mathcal{C} (expansion laws).

 $(a\,\mathrm{U}(b\,\mathrm{U}c))\,\mathrm{U}(d\,\mathrm{U}e)$

- 1 Obtain monotone formula (de Morgan's law).
- 2 Obtain monotone Boolean circuit $\mathcal C$ (expansion laws).

- 1 Obtain monotone formula (de Morgan's law).
- 2 Obtain monotone Boolean circuit \mathcal{C} (expansion laws).

- 1 Obtain monotone formula (de Morgan's law).
- 2 Obtain monotone Boolean circuit \mathcal{C} (expansion laws).

- 1 Obtain monotone formula (de Morgan's law).
- 2 Obtain monotone Boolean circuit $\mathcal C$ (expansion laws).

- 1 Obtain monotone formula (de Morgan's law).
- 2 Obtain monotone Boolean circuit $\mathcal C$ (expansion laws).

- 1 Obtain monotone formula (de Morgan's law).
- 2 Obtain monotone Boolean circuit \mathcal{C} (expansion laws).

LTL – decomposition of circuit

Topology of circuit

Tree of planar monotone circuits induced by structure of formula.

LTL – decomposition of circuit

Topology of circuit

Tree of planar monotone circuits induced by structure of formula.

LTL – decomposition of circuit

Topology of circuit

Tree of planar monotone circuits induced by structure of formula.

- Tree contraction (AC¹ reduction).
- Use [Yang 1991] as oracle for evaluation of planar monotone circuits.

- Tree contraction (AC¹ reduction).
- Use [Yang 1991] as oracle for evaluation of planar monotone circuits.

- Tree contraction (AC¹ reduction).
- Use [Yang 1991] as oracle for evaluation of planar monotone circuits.

- Tree contraction (AC¹ reduction).
- Use [Yang 1991] as oracle for evaluation of planar monotone circuits.

- Tree contraction (AC¹ reduction).
- Use [Yang 1991] as oracle for evaluation of planar monotone circuits.

- Tree contraction (AC¹ reduction).
- Use [Yang 1991] as oracle for evaluation of planar monotone circuits.

- Tree contraction (AC¹ reduction).
- Use [Yang 1991] as oracle for evaluation of planar monotone circuits.

- Tree contraction (AC¹ reduction).
- Use [Yang 1991] as oracle for evaluation of planar monotone circuits.

- Tree contraction (AC¹ reduction).
- Use [Yang 1991] as oracle for evaluation of planar monotone circuits.

Ultimately periodic paths

Theorem ([Markey,Schnoebelen 2003])

For any LTL+Past formula φ and ultimately periodic path π , one can build in logspace a formula φ' and a finite path π' s.t.

$$\pi \models \varphi \text{ iff } \pi' \models \varphi'.$$

LTL+Past

LTL+Past

CTL over finite trees

Construction of circuit

- 1 Obtain monotone formula (de Morgan's law).
- 2 Obtain monotone Boolean circuit (expansion laws).

Topology of circuit

Tree of trees:

- Inner tree: induced by structure of formula.
- Outer tree: induced by structure of model.

- Tree contraction (AC¹ reduction) on outer tree.
- Use [Kuhtz,Finkbeiner 2009] for evaluation of inner tree.