
Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Causality-based Verification of Multi-threaded Programs
joint work with Bernd Finkbeiner

Andrey Kupriyanov

Saarland University
Reactive Systems Group

September 25, 2014

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Overview

LTL Model Checking

X Full LTL

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
(atl2∧r>0) =⇒ atl3

Safety/Reachability

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
¬(atl3 ∧ atm3)

Liveness/Termination

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
atl2 =⇒ atl3

LTL Satisfiability/Validity

X Full LTL

∓ Boolean

− No system

|= p ∧ (p =⇒ p) =⇒ p

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Overview

LTL Model Checking

X Full LTL

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
(atl2∧r>0) =⇒ atl3

Safety/Reachability

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
¬(atl3 ∧ atm3)

Liveness/Termination

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
atl2 =⇒ atl3

LTL Satisfiability/Validity

X Full LTL

∓ Boolean

− No system

|= p ∧ (p =⇒ p) =⇒ p

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Overview

LTL Model Checking

X Full LTL

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
(atl2∧r>0) =⇒ atl3

Safety/Reachability

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
¬(atl3 ∧ atm3)

Liveness/Termination

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
atl2 =⇒ atl3

LTL Satisfiability/Validity

X Full LTL

∓ Boolean

− No system

|= p ∧ (p =⇒ p) =⇒ p

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Overview

LTL Model Checking

X Full LTL

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
(atl2∧r>0) =⇒ atl3

Safety/Reachability

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
¬(atl3 ∧ atm3)

Liveness/Termination

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
atl2 =⇒ atl3

LTL Satisfiability/Validity

X Full LTL

∓ Boolean

− No system

|= p ∧ (p =⇒ p) =⇒ p

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Our approach

• Proof objects: concurrent traces
allow to capture temporal order, constraints, independence

i

a

b f

c

• Proof rules based on causality
causality ≡ language-preserving trace transformations

i

a ∧ c

b ∧ c f

c
• Proof construction: tableau search based on causal loops

causal loops ≡ infinitely-looping trace transformations
i fc

i a f

c

i b f

c

i

a

b f

c

i

b

¬c f

c

i

b

f f

c

⊥

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Our approach

• Proof objects: concurrent traces
allow to capture temporal order, constraints, independence

i

a

b f

c

• Proof rules based on causality
causality ≡ language-preserving trace transformations

i

a ∧ c

b ∧ c f

c

• Proof construction: tableau search based on causal loops
causal loops ≡ infinitely-looping trace transformations

i fc

i a f

c

i b f

c

i

a

b f

c

i

b

¬c f

c

i

b

f f

c

⊥

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Our approach

• Proof objects: concurrent traces
allow to capture temporal order, constraints, independence

i

a

b f

c

• Proof rules based on causality
causality ≡ language-preserving trace transformations

i

a ∧ c

b ∧ c f

c
• Proof construction: tableau search based on causal loops

causal loops ≡ infinitely-looping trace transformations
i fc

i a f

c

i b f

c

i

a

b f

c

i

b

¬c f

c

i

b

f f

c

⊥
Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Example: mutual exclusion for semaphores

Thread 1 Thread 2 Thread 3

while (true) {
l1: noncritical;

l2: request r;

l3: critical;

l4: release r;

}

while (true) {
m1: noncritical;

m2: request r;

m3: critical;

m4: release r;

}

while (true) {
n1: noncritical;

n2: request r;

n3: critical;

n4: release r;

}

Definition (Most general semaphore class)

Simple semaphore class +

• arbitrary control flow

• arbitrary number of semaphore variables

Open problem

Is the most general semaphore class polynomially verifiable for a fixed number of locks?

Our causality-based reachability analysis algorithm
has settled this question affirmatively.

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Example: mutual exclusion for semaphores

Thread 1 Thread 2 Thread 3

while (true) {
l1: noncritical;

l2: request r;

l3: critical;

l4: release r;

}

while (true) {
m1: noncritical;

m2: request r;

m3: critical;

m4: release r;

}

while (true) {
n1: noncritical;

n2: request r;

n3: critical;

n4: release r;

}

Definition (Most general semaphore class)

Simple semaphore class +

• arbitrary control flow

• arbitrary number of semaphore variables

Open problem

Is the most general semaphore class polynomially verifiable for a fixed number of locks?

Our causality-based reachability analysis algorithm
has settled this question affirmatively.

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Example: mutual exclusion for semaphores

Thread 1 Thread 2 Thread 3

while (true) {
l1: noncritical;

l2: request r;

l3: critical;

l4: release r;

}

while (true) {
m1: noncritical;

m2: request r;

m3: critical;

m4: release r;

}

while (true) {
n1: noncritical;

n2: request r;

n3: critical;

n4: release r;

}

Definition (Most general semaphore class)

Simple semaphore class +

• arbitrary control flow

• arbitrary number of semaphore variables

Open problem

Is the most general semaphore class polynomially verifiable for a fixed number of locks?

Our causality-based reachability analysis algorithm
has settled this question affirmatively.

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Example: mutual exclusion for semaphores

Thread 1 Thread 2 Thread 3

while (true) {
l1: noncritical;

l2: request r;

l3: critical;

l4: release r;

}

while (true) {
m1: noncritical;

m2: request r;

m3: critical;

m4: release r;

}

while (true) {
n1: noncritical;

n2: request r;

n3: critical;

n4: release r;

}

Definition (Most general semaphore class)

Simple semaphore class +

• arbitrary control flow

• arbitrary number of semaphore variables

Open problem

Is the most general semaphore class polynomially verifiable for a fixed number of locks?

Our causality-based reachability analysis algorithm
has settled this question affirmatively.

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

pc1 = 1 ∧
pc2 = 1 ∧
pc3 = 1

pc1 = 2 ∧ pc ′1 = 3 ∧
r > 0 ∧ r ′ = r − 1

pc2 = 2 ∧ pc ′2 = 3 ∧
r > 0 ∧ r ′ = r − 1

pc1 = 3 ∧
pc2 = 3

pc1 = 3

pc2 = 3

eventsEvents

Ordering edgesOrdering edges
Theory formulas (e.g., LA)

over V ∪ V ′
Theory formulas (e.g., LA)

over V ∪ V ′

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

pc1 = 1 ∧
pc2 = 1 ∧
pc3 = 1

pc1 = 2 ∧ pc ′1 = 3 ∧
r > 0 ∧ r ′ = r − 1

pc2 = 2 ∧ pc ′2 = 3 ∧
r > 0 ∧ r ′ = r − 1

pc1 = 3 ∧
pc2 = 3

pc1 = 3

pc2 = 3

eventsEvents

Ordering edgesOrdering edges
Theory formulas (e.g., LA)

over V ∪ V ′
Theory formulas (e.g., LA)

over V ∪ V ′

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

pc1 = 1 ∧
pc2 = 1 ∧
pc3 = 1

pc1 = 2 ∧ pc ′1 = 3 ∧
r > 0 ∧ r ′ = r − 1

pc2 = 2 ∧ pc ′2 = 3 ∧
r > 0 ∧ r ′ = r − 1

pc1 = 3 ∧
pc2 = 3

pc1 = 3

pc2 = 3

eventsEvents

Ordering edgesOrdering edges

Theory formulas (e.g., LA)
over V ∪ V ′

Theory formulas (e.g., LA)
over V ∪ V ′

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

pc1 = 1 ∧
pc2 = 1 ∧
pc3 = 1

pc1 = 2 ∧ pc ′1 = 3 ∧
r > 0 ∧ r ′ = r − 1

pc2 = 2 ∧ pc ′2 = 3 ∧
r > 0 ∧ r ′ = r − 1

pc1 = 3 ∧
pc2 = 3

pc1 = 3

pc2 = 3

eventsEvents

Ordering edgesOrdering edges
Theory formulas (e.g., LA)

over V ∪ V ′
Theory formulas (e.g., LA)

over V ∪ V ′

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Mutual exclusion for semaphores: a causal proof

Thread 1 Thread 2 Thread 3

while (true) {
l1: noncritical;

l2: request r;

l3: critical;

l4: release r;

}

while (true) {
m1: noncritical;

m2: request r;

m3: critical;

m4: release r;

}

while (true) {
n1: noncritical;

n2: request r;

n3: critical;

n4: release r;

}

Init
T1 at l3 ∧
T2 at m3Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Who is first?

. . .

Init

T1 requests r

T2 requests r

T2 releases r
T1 at l3 ∧
T2 at m3

Who can release? . . .

Init

T1 requests r

T2 requests r

T2 releases r

T2 requests r

T1 at l3 ∧
T2 at m3

What is necessary?

Have we seen it before?

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Mutual exclusion for semaphores: a causal proof

Thread 1 Thread 2 Thread 3

while (true) {
l1: noncritical;

l2: request r;

l3: critical;

l4: release r;

}

while (true) {
m1: noncritical;

m2: request r;

m3: critical;

m4: release r;

}

while (true) {
n1: noncritical;

n2: request r;

n3: critical;

n4: release r;

}

Init
T1 at l3 ∧
T2 at m3

Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Who is first?

. . .

Init

T1 requests r

T2 requests r

T2 releases r
T1 at l3 ∧
T2 at m3

Who can release? . . .

Init

T1 requests r

T2 requests r

T2 releases r

T2 requests r

T1 at l3 ∧
T2 at m3

What is necessary?

Have we seen it before?

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Mutual exclusion for semaphores: a causal proof

Thread 1 Thread 2 Thread 3

while (true) {
l1: noncritical;

l2: request r;

l3: critical;

l4: release r;

}

while (true) {
m1: noncritical;

m2: request r;

m3: critical;

m4: release r;

}

while (true) {
n1: noncritical;

n2: request r;

n3: critical;

n4: release r;

}

Init
T1 at l3 ∧
T2 at m3

What is necessary?

Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Who is first?

. . .

Init

T1 requests r

T2 requests r

T2 releases r
T1 at l3 ∧
T2 at m3

Who can release? . . .

Init

T1 requests r

T2 requests r

T2 releases r

T2 requests r

T1 at l3 ∧
T2 at m3

What is necessary?

Have we seen it before?

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Mutual exclusion for semaphores: a causal proof

Thread 1 Thread 2 Thread 3

while (true) {
l1: noncritical;

l2: request r;

l3: critical;

l4: release r;

}

while (true) {
m1: noncritical;

m2: request r;

m3: critical;

m4: release r;

}

while (true) {
n1: noncritical;

n2: request r;

n3: critical;

n4: release r;

}

Init
T1 at l3 ∧
T2 at m3Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Who is first?

. . .

Init

T1 requests r

T2 requests r

T2 releases r
T1 at l3 ∧
T2 at m3

Who can release? . . .

Init

T1 requests r

T2 requests r

T2 releases r

T2 requests r

T1 at l3 ∧
T2 at m3

What is necessary?

Have we seen it before?

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Mutual exclusion for semaphores: a causal proof

Thread 1 Thread 2 Thread 3

while (true) {
l1: noncritical;

l2: request r;

l3: critical;

l4: release r;

}

while (true) {
m1: noncritical;

m2: request r;

m3: critical;

m4: release r;

}

while (true) {
n1: noncritical;

n2: request r;

n3: critical;

n4: release r;

}

Init
T1 at l3 ∧
T2 at m3Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Who is first?

. . .

Init

T1 requests r

T2 requests r

T2 releases r
T1 at l3 ∧
T2 at m3

Who can release? . . .

Init

T1 requests r

T2 requests r

T2 releases r

T2 requests r

T1 at l3 ∧
T2 at m3

What is necessary?

Have we seen it before?

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Mutual exclusion for semaphores: a causal proof

Thread 1 Thread 2 Thread 3

while (true) {
l1: noncritical;

l2: request r;

l3: critical;

l4: release r;

}

while (true) {
m1: noncritical;

m2: request r;

m3: critical;

m4: release r;

}

while (true) {
n1: noncritical;

n2: request r;

n3: critical;

n4: release r;

}

Init
T1 at l3 ∧
T2 at m3Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Who is first?

. . .

Init

T1 requests r

T2 requests r

T2 releases r
T1 at l3 ∧
T2 at m3

Who can release? . . .

Init

T1 requests r

T2 requests r

T2 releases r

T2 requests r

T1 at l3 ∧
T2 at m3

What is necessary?

Have we seen it before?

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Mutual exclusion for semaphores: a causal proof

Thread 1 Thread 2 Thread 3

while (true) {
l1: noncritical;

l2: request r;

l3: critical;

l4: release r;

}

while (true) {
m1: noncritical;

m2: request r;

m3: critical;

m4: release r;

}

while (true) {
n1: noncritical;

n2: request r;

n3: critical;

n4: release r;

}

Init
T1 at l3 ∧
T2 at m3Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Who is first?

. . .

Init

T1 requests r

T2 requests r

T2 releases r
T1 at l3 ∧
T2 at m3

Who can release? . . .

Init

T1 requests r

T2 requests r

T2 releases r

T2 requests r

T1 at l3 ∧
T2 at m3

What is necessary?

Init

T1 requests r

T2 requests r

T2 releases r

T2 requests r

T1 at l3 ∧
T2 at m3

What is necessary?

Have we seen it before?

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Mutual exclusion for semaphores: a causal proof

Thread 1 Thread 2 Thread 3

while (true) {
l1: noncritical;

l2: request r;

l3: critical;

l4: release r;

}

while (true) {
m1: noncritical;

m2: request r;

m3: critical;

m4: release r;

}

while (true) {
n1: noncritical;

n2: request r;

n3: critical;

n4: release r;

}

Init
T1 at l3 ∧
T2 at m3Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Init

T1 requests r

T2 requests r

T1 at l3 ∧
T2 at m3

Who is first?

. . .

Init

T1 requests r

T2 requests r

T2 releases r
T1 at l3 ∧
T2 at m3

Who can release? . . .

Init

T1 requests r

T2 requests r

T2 releases r

T2 requests r

T1 at l3 ∧
T2 at m3

What is necessary?

Have we seen it before?

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

Finite trace A = 〈N,E , ν, η〉
• 〈N,E〉 is a DAG

• ν : N → Φ(V ∪ V ′)

• η : E → Φ(V ∪ V ′)

Transition system S = 〈V , I ,T 〉
• V : variables

• I ∈ Φ(V ′): initialization

• T ⊆ Φ(V ∪ V ′): transitions

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

Finite trace A = 〈N,E , ν, η〉
• 〈N,E〉 is a DAG

• ν : N → Φ(V ∪ V ′)

• η : E → Φ(V ∪ V ′)

• I ≡ x = 0 ∧ y = 0

• T ≡ { x+x+x+: x ′ = x + 1 ∧ y ′ = y
x−x−x−: x ′ = x − 1 ∧ y ′ = y
y+y+y+: y ′ = y + 1 ∧ x ′ = x
y−y−y−: y ′ = y − 1 ∧ x ′ = x }

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

Finite trace A = 〈N,E , ν, η〉
• 〈N,E〉 is a DAG

• ν : N → Φ(V ∪ V ′)

• η : E → Φ(V ∪ V ′)

• I ≡ x = 0 ∧ y = 0

• T ≡ { x+x+x+: x ′ = x + 1 ∧ y ′ = y
x−x−x−: x ′ = x − 1 ∧ y ′ = y
y+y+y+: y ′ = y + 1 ∧ x ′ = x
y−y−y−: y ′ = y − 1 ∧ x ′ = x }

• F ≡ x = 1 ∧ y = 1

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

Finite trace A = 〈N,E , ν, η〉
• 〈N,E〉 is a DAG

• ν : N → Φ(V ∪ V ′)

• η : E → Φ(V ∪ V ′)

• I ≡ x = 0 ∧ y = 0

• T ≡ { x+x+x+: x ′ = x + 1 ∧ y ′ = y
x−x−x−: x ′ = x − 1 ∧ y ′ = y
y+y+y+: y ′ = y + 1 ∧ x ′ = x
y−y−y−: y ′ = y − 1 ∧ x ′ = x }

• F ≡ x = 1 ∧ y = 1

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

Finite trace A = 〈N,E , ν, η〉
• 〈N,E〉 is a DAG

• ν : N → Φ(V ∪ V ′)

• η : E → Φ(V ∪ V ′)

• I ≡ x = 0 ∧ y = 0

• T ≡ { x+x+x+: x ′ = x + 1 ∧ y ′ = y
x−x−x−: x ′ = x − 1 ∧ y ′ = y
y+y+y+: y ′ = y + 1 ∧ x ′ = x
y−y−y−: y ′ = y − 1 ∧ x ′ = x }

• F ≡ x = 1 ∧ y = 1

Language of a finite concurrent trace

A set of system runs such that a linearization of a concurrent trace can be mapped
into a subsequence of a run, respecting constraints

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

Finite trace A = 〈N,E , ν, η〉
• 〈N,E〉 is a DAG

• ν : N → Φ(V ∪ V ′)

• η : E → Φ(V ∪ V ′)

I F

• I ≡ x = 0 ∧ y = 0

• T ≡ { x+x+x+: x ′ = x + 1 ∧ y ′ = y
x−x−x−: x ′ = x − 1 ∧ y ′ = y
y+y+y+: y ′ = y + 1 ∧ x ′ = x
y−y−y−: y ′ = y − 1 ∧ x ′ = x }

• F ≡ x = 1 ∧ y = 1

Language of a finite concurrent trace

A set of system runs such that a linearization of a concurrent trace can be mapped
into a subsequence of a run, respecting constraints

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

Finite trace A = 〈N,E , ν, η〉
• 〈N,E〉 is a DAG

• ν : N → Φ(V ∪ V ′)

• η : E → Φ(V ∪ V ′)

x = 0
y = 0

x = 1
y = 1

• I ≡ x = 0 ∧ y = 0

• T ≡ { x+x+x+: x ′ = x + 1 ∧ y ′ = y
x−x−x−: x ′ = x − 1 ∧ y ′ = y
y+y+y+: y ′ = y + 1 ∧ x ′ = x
y−y−y−: y ′ = y − 1 ∧ x ′ = x }

• F ≡ x = 1 ∧ y = 1

Accepted runs

• I ,x+x+x+,y+y+y+,F

• I ,y+y+y+,x+x+x+,F

• I ,y+y+y+,x+x+x+,x−x−x−,x+x+x+,F

• . . .

Rejected runs

• I ,x+x+x+,F

• I ,x+x+x+,y+y+y+,x+x+x+,F

• I ,x−x−x−,y−y−y−,F

• . . .

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

Finite trace A = 〈N,E , ν, η〉
• 〈N,E〉 is a DAG

• ν : N → Φ(V ∪ V ′)

• η : E → Φ(V ∪ V ′)

x = 0
y = 0

x = 1
y = 1

• I ≡ x = 0 ∧ y = 0

• T ≡ { x+x+x+: x ′ = x + 1 ∧ y ′ = y
x−x−x−: x ′ = x − 1 ∧ y ′ = y
y+y+y+: y ′ = y + 1 ∧ x ′ = x
y−y−y−: y ′ = y − 1 ∧ x ′ = x }

• F ≡ x = 1 ∧ y = 1

Accepted runs

• I ,x+x+x+,y+y+y+,F

• I ,y+y+y+,x+x+x+,F

• I ,y+y+y+,x+x+x+,x−x−x−,x+x+x+,F

• . . .

Rejected runs

• I ,x+x+x+,F

• I ,x+x+x+,y+y+y+,x+x+x+,F

• I ,x−x−x−,y−y−y−,F

• . . .

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

Finite trace A = 〈N,E , ν, η〉
• 〈N,E〉 is a DAG

• ν : N → Φ(V ∪ V ′)

• η : E → Φ(V ∪ V ′)

x = 0
y = 0

x ′ > x

y ′ > y

x = 1
y = 1

x > 0

y > 0

• I ≡ x = 0 ∧ y = 0

• T ≡ { x+x+x+: x ′ = x + 1 ∧ y ′ = y
x−x−x−: x ′ = x − 1 ∧ y ′ = y
y+y+y+: y ′ = y + 1 ∧ x ′ = x
y−y−y−: y ′ = y − 1 ∧ x ′ = x }

• F ≡ x = 1 ∧ y = 1

Accepted runs

• I ,x+x+x+,y+y+y+,F

• I ,y+y+y+,x+x+x+,F

• I ,y+y+y+,x+x+x+,x−x−x−,x+x+x+,F

• . . .

Rejected runs

• I ,x+x+x+,F

• I ,x+x+x+,y+y+y+,x+x+x+,F

• I ,x−x−x−,y−y−y−,F

• . . .

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

Finite trace A = 〈N,E , ν, η〉
• 〈N,E〉 is a DAG

• ν : N → Φ(V ∪ V ′)

• η : E → Φ(V ∪ V ′)

x = 0
y = 0

x ′ > x

y ′ > y

x = 1
y = 1

x > 0

y > 0

• I ≡ x = 0 ∧ y = 0

• T ≡ { x+x+x+: x ′ = x + 1 ∧ y ′ = y
x−x−x−: x ′ = x − 1 ∧ y ′ = y
y+y+y+: y ′ = y + 1 ∧ x ′ = x
y−y−y−: y ′ = y − 1 ∧ x ′ = x }

• F ≡ x = 1 ∧ y = 1

Accepted run

I x+x+x+ y+y+y+ F

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

Finite trace A = 〈N,E , ν, η〉
• 〈N,E〉 is a DAG

• ν : N → Φ(V ∪ V ′)

• η : E → Φ(V ∪ V ′)

x = 0
y = 0

x ′ > x

y ′ > y

x = 1
y = 1

x > 0

y > 0

• I ≡ x = 0 ∧ y = 0

• T ≡ { x+x+x+: x ′ = x + 1 ∧ y ′ = y
x−x−x−: x ′ = x − 1 ∧ y ′ = y
y+y+y+: y ′ = y + 1 ∧ x ′ = x
y−y−y−: y ′ = y − 1 ∧ x ′ = x }

• F ≡ x = 1 ∧ y = 1

Accepted run

I x+x+x+ y+y+y+ F

x = 0
y = 0 x ′ > x y ′ > y

x = 1
y = 1

x > 0

y > 0

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

Finite trace A = 〈N,E , ν, η〉
• 〈N,E〉 is a DAG

• ν : N → Φ(V ∪ V ′)

• η : E → Φ(V ∪ V ′)

x = 0
y = 0

x ′ > x

y ′ > y

x = 1
y = 1

x > 0

y > 0

• I ≡ x = 0 ∧ y = 0

• T ≡ { x+x+x+: x ′ = x + 1 ∧ y ′ = y
x−x−x−: x ′ = x − 1 ∧ y ′ = y
y+y+y+: y ′ = y + 1 ∧ x ′ = x
y−y−y−: y ′ = y − 1 ∧ x ′ = x }

• F ≡ x = 1 ∧ y = 1

Accepted run

I y+y+y+ x+x+x+ F

x = 0
y = 0 x ′ > x y ′ > y

x = 1
y = 1

x > 0

y > 0

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

Finite trace A = 〈N,E , ν, η〉
• 〈N,E〉 is a DAG

• ν : N → Φ(V ∪ V ′)

• η : E → Φ(V ∪ V ′)

x = 0
y = 0

x ′ > x

y ′ > y

x = 1
y = 1

x > 0

y > 0

• I ≡ x = 0 ∧ y = 0

• T ≡ { x+x+x+: x ′ = x + 1 ∧ y ′ = y
x−x−x−: x ′ = x − 1 ∧ y ′ = y
y+y+y+: y ′ = y + 1 ∧ x ′ = x
y−y−y−: y ′ = y − 1 ∧ x ′ = x }

• F ≡ x = 1 ∧ y = 1

Accepted run

I y+y+y+ x+x+x+ F

x = 0
y = 0

y ′ > y x ′ > x
x = 1
y = 1

y > 0

x > 0

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

Finite trace A = 〈N,E , ν, η〉
• 〈N,E〉 is a DAG

• ν : N → Φ(V ∪ V ′)

• η : E → Φ(V ∪ V ′)

x = 0
y = 0

x ′ > x

y ′ > y

x = 1
y = 1

x > 0

y > 0

• I ≡ x = 0 ∧ y = 0

• T ≡ { x+x+x+: x ′ = x + 1 ∧ y ′ = y
x−x−x−: x ′ = x − 1 ∧ y ′ = y
y+y+y+: y ′ = y + 1 ∧ x ′ = x
y−y−y−: y ′ = y − 1 ∧ x ′ = x }

• F ≡ x = 1 ∧ y = 1

Accepted run

I y+y+y+ x+x+x+ x−x−x− x+x+x+ F

x = 0
y = 0

y ′ > y x ′ > x
x = 1
y = 1

y > 0

x > 0

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Finite concurrent traces

Finite trace A = 〈N,E , ν, η〉
• 〈N,E〉 is a DAG

• ν : N → Φ(V ∪ V ′)

• η : E → Φ(V ∪ V ′)

x = 0
y = 0

x ′ > x

y ′ > y

x = 1
y = 1

x > 0

y > 0

• I ≡ x = 0 ∧ y = 0

• T ≡ { x+x+x+: x ′ = x + 1 ∧ y ′ = y
x−x−x−: x ′ = x − 1 ∧ y ′ = y
y+y+y+: y ′ = y + 1 ∧ x ′ = x
y−y−y−: y ′ = y − 1 ∧ x ′ = x }

• F ≡ x = 1 ∧ y = 1

Accepted run

I y+y+y+ x+x+x+ x−x−x− x+x+x+ F

x = 0
y = 0

y ′ > y x ′ > x
x = 1
y = 1

y > 0

x > 0

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Reachability analysis algorithm
[K., Finkbeiner, CONCUR 2013]

S Pick a trace?

Construct initial
trace tableau

return Safe
no

Coverable?

yes

Trace inclusion

Cover
yes

Linearizable?

SMT query

no

Necessary
event

UNSAT core
Craig interpolation

no
return Unsafe

yes

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Proof rules: finite traces

L

φ

a

R1

φ ∧ ψ
a

Event split

R2

φ ∧ ¬ψ
a

L

a b

R1

a b

Order split

R2

b a

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Proof rules: finite traces

L

φ′
a

¬φ
b

R

φ′
a

¬φ
b

φ ∧ ¬φ′
x

Necessary event

φ

¬φ

a

b

x

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Safety

Theorem (Soundness)

If there exists a correct and complete causal trace tableau for a transition system S,
then S is safe.

Theorem (Relative completeness)

If a transition system S is safe, then a correct and complete causal trace tableau for S
can be constructed, provided that all necessary first-order formulas are given.

Theorem (Polynomiality for semaphore programs)

Causality-based verification algorithm proves the safety of the most general class of
multi-threaded semaphore programs in deterministic polynomial time with respect to
the number of threads and locks.

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Termination of multi-threaded programs

• Parallel compilation (e.g. GNU Make)
gnu.org/software/make/

make -j N app
main.o main.c

libutil.a

file1.o

file2.o

file1.c

file2.c

util.h

• Parallel computations in GPUs (OpenCL, CUDA)
developer.nvidia.com/cuda-zone/ x0..7

x4..7

x4..5

x4..5

x4..5

x0..3

x0..3

x2..3 x6..7x0..1

x0..1

x0..1

x1 x3 x5 x7x0

x0

x0

x0

x2

x2

x2

x2

x4

x4

x4

x4

x6

x6

x6

x6

• Distributed processing (e.g. the Map-Reduce architecture)
developers.google.com/appengine/docs/java/dataprocessing/

• Device drivers, leader election, . . .

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Producer-Consumer (Map-Reduce architecture)

Producer 1 Producer 2 Consumer 1 Consumer 2
while (p1>0) {

if(*) q1++;

else q2++;

p1--;

}

while (p2>0) {
if(*) q1++;

else q2++;

p2--;

}

while (true) {
await(q1>0);

skip; //step 1

skip; //step 2

q1--;

}

while (true) {
await(q2>0);

skip; //step 1

skip; //step 2

q2--;

}

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Producer-Consumer (Map-Reduce architecture)

Producer 1 Producer 2 Consumer 1 Consumer 2
while (p1>0) {

if(*) q1++;

else q2++;

p1--;

}

while (p2>0) {
if(*) q1++;

else q2++;

p2--;

}

while (true) {
await(q1>0);

skip; //step 1

skip; //step 2

q1--;

}

while (true) {
await(q2>0);

skip; //step 1

skip; //step 2

q2--;

}

Terminator T2 AProVE
Threads Time(s) Mem.(MB) Time(s) Mem.(MB) Time(s) Mem.(MB)

1 3.37 26 2.42 38 3.17 237
2 1397 1394 3.25 44 6.79 523
3 × MO U(29.2) 253 U(26.6) 1439
4 × MO U(36.6) 316 U(71.2) 1455
5 × MO U(30.7) 400 U(312) 1536

10 × MO Z3-TO × × MO
20 × MO Z3-TO × × MO
40 × MO Z3-TO × × MO
60 × MO Z3-TO × × MO
80 × MO Z3-TO × × MO

100 × MO Z3-TO × × MO

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Producer-Consumer (Map-Reduce architecture)

Producer 1 Producer 2 Consumer 1 Consumer 2
while (p1>0) {

if(*) q1++;

else q2++;

p1--;

}

while (p2>0) {
if(*) q1++;

else q2++;

p2--;

}

while (true) {
await(q1>0);

skip; //step 1

skip; //step 2

q1--;

}

while (true) {
await(q2>0);

skip; //step 1

skip; //step 2

q2--;

}

Terminator T2 AProVE Arctor 1

Threads Time(s) Mem.(MB) Time(s) Mem.(MB) Time(s) Mem.(MB) Time(s) Mem.(MB)

1 3.37 26 2.42 38 3.17 237 0.002 2.3
2 1397 1394 3.25 44 6.79 523 0.002 2.6
3 × MO U(29.2) 253 U(26.6) 1439 0.002 2.6
4 × MO U(36.6) 316 U(71.2) 1455 0.003 2.7
5 × MO U(30.7) 400 U(312) 1536 0.007 2.7

10 × MO Z3-TO × × MO 0.027 3.0
20 × MO Z3-TO × × MO 0.30 4.2
40 × MO Z3-TO × × MO 4.30 12.7
60 × MO Z3-TO × × MO 20.8 35
80 × MO Z3-TO × × MO 67.7 145

100 × MO Z3-TO × × MO 172 231

1Arctor : Abstraction Refinement of Concurrent Temporal Orderings (react.uni-saarland.de/tools/arctor/)

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Infinite concurrent traces

pc1 = 1 ∧
pc2 = 1 ∧
pc3 = 1

pc1 = 2 ∧ pc′1 = 3 ∧
r > 0 ∧ r ′ = r − 1

pc2 = 2 ∧ pc′2 = 3 ∧
r > 0 ∧ r ′ = r − 1

pc1 = 3 ∧
pc2 = 3

pc1 = 3

pc2 = 3

(pc1 = 1 ∧
pc ′1 = 2

pc2 = 2 ∧
pc′2 = 3) ω

stem cycle

eventsEvents

Ordering edgesOrdering edges
Theory formulas (e.g., LA)

over V ∪ V ′
Theory formulas (e.g., LA)

over V ∪ V ′

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Infinite concurrent traces

pc1 = 1 ∧
pc2 = 1 ∧
pc3 = 1

pc1 = 2 ∧ pc′1 = 3 ∧
r > 0 ∧ r ′ = r − 1

pc2 = 2 ∧ pc′2 = 3 ∧
r > 0 ∧ r ′ = r − 1

pc1 = 3 ∧
pc2 = 3

pc1 = 3

pc2 = 3

(pc1 = 1 ∧
pc ′1 = 2

pc2 = 2 ∧
pc′2 = 3) ω

stem cycle

eventsEvents

Ordering edgesOrdering edges
Theory formulas (e.g., LA)

over V ∪ V ′
Theory formulas (e.g., LA)

over V ∪ V ′

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Termination analysis algorithm
[K., Finkbeiner, CAV 2014]

S Pick a trace?

Construct initial
trace tableau

return Terminating
no

Coverable?

yes

Trace inclusion

Cover
yes

Linearizable?

SMT query

no

Local
refinement

UNSAT core
Craig interpolation

no

Terminating?

Ranking function synthesis

yes

Invariance
split

yes

Reachable?

K., Finkbeiner, CONCUR 2013

no

no
return Termination unknown

yes

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Termination: soundness and completeness

Theorem (Soundness)

If there exists a correct and complete causal trace tableau for a transition system S,
then S is terminating.

Theorem (Relative completeness)

If a transition system S is terminating, then a correct and complete causal trace
tableau for S can be constructed, provided that all necessary first-order formulas are
given.

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Experimental results: simple programs
Terminator T2 AProVE Arctor

Benchmark Time(s) Mem.(MB) Time(s) Mem.(MB) Time(s) Mem.(MB) Time(s) Mem.(MB) Vertices

Chain 2 0.65 20 0.52 20 1.58 131 0.002 2.0 3
Chain 4 1.45 25 0.54 22 2.13 153 0.002 2.2 7
Chain 6 24.4 57 0.58 24 2.58 171 0.002 2.5 11
Chain 8 × MO 0.63 26 3.48 210 0.002 2.5 15
Chain 20 × MO 2.36 55 16.5 941 0.007 2.5 39
Chain 40 × MO 40.5 288 536 1237 0.023 2.8 79
Chain 60 × MO Z3-TO × × MO 0.063 3.0 119
Chain 80 × MO Z3-TO × × MO 0.145 3.3 159
Chain 100 × MO Z3-TO × × MO 0.320 3.9 199

Phase 1 × MO U(4.53) 48 1.60 132 0.002 2.4 2
Phase 2 × MO U(4.53) 48 2.16 144 0.002 2.4 11
Phase 3 × MO U(30.6) 301 3.83 199 0.002 2.5 20
Phase 4 × MO × MO 8.89 336 0.003 2.6 29
Phase 8 × MO × MO 47.0 1506 0.003 2.6 65
Phase 10 × MO × MO × MO 0.012 2.7 83
Phase 20 × MO × MO × MO 0.061 3.3 173
Phase 40 × MO × MO × MO 0.35 4.0 353
Phase 60 × MO × MO × MO 1.18 4.2 533
Phase 80 × MO × MO × MO 3.21 5.1 713
Phase 100 × MO × MO × MO 7.38 6.1 893
Semaphore 1 3.05 26 2.81 46 3.22 230 0.002 2.6 8
Semaphore 2 622 691 U(20.7) 219 U(6.52) 465 0.002 2.6 16
Semaphore 3 × MO U(15.8) 239 U(10.42) 1138 0.003 2.6 24
Semaphore 10 × MO U(83.5) 470 U(246) 1287 0.023 2.8 80
Semaphore 20 × MO × MO × MO 0.073 3.3 160
Semaphore 40 × MO × MO × MO 0.264 4.0 320
Semaphore 60 × MO × MO × MO 0.58 4.0 480
Semaphore 80 × MO × MO × MO 1.02 4.6 640
Semaphore 100 × MO × MO × MO 1.59 5.1 800

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Experimental results: models of industrial programs
• Parallel compilation (GNU Make)

app
main.o main.c

libutil.a

file1.o

file2.o

file1.c

file2.c

util.h

Threads Time(s) Mem.(MB) Vertices

2 0.04 3.6 126
3 0.10 4.3 189
4 0.17 4.5 252
5 0.26 4.5 315
6 0.36 4.5 378
7 0.48 4.5 441
8 0.62 4.6 504
9 0.79 5.5 567
10 0.97 5.5 630

• Parallel computations in GPUs (CUDA)
x0..7

x4..7

x4..5

x4..5

x4..5

x0..3

x0..3

x2..3 x6..7x0..1

x0..1

x0..1

x1 x3 x5 x7x0

x0

x0

x0

x2

x2

x2

x2

x4

x4

x4

x4

x6

x6

x6

x6
Threads Time(s) Mem.(MB) Vertices

2 0.04 3.3 86
3 0.09 3.7 129
4 0.15 4.3 172
5 0.24 4.5 215
6 0.33 4.5 258
7 0.45 4.6 301
8 0.58 5.5 344
9 0.72 5.5 387
10 0.88 5.5 430

• Distributed processing (Map-Reduce)
Threads Time(s) Mem.(MB) Vertices

2 0.42 4.5 238
3 2.50 4.5 393
4 8.22 5.5 547
5 31.3 6.5 767
6 78.7 6.5 986
7 219 7.3 1271
8 457 8.3 1555
9 1053 9.3 1905
10 1924 11.4 2254

No other termination prover can handle even 2 threads! Arctor

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL Satisfiability/Validity

Applications

Specification debugging:

• detection of unsatisfiable specifications

• detection of vacuous specifications

Specification understanding:

• small models/countermodels

Can be used for finite-state LTL model checking by a simple reduction

Captures the LTL complexity

PSPACE-complete even for simple fragments L(F ,X), L(U)

Decision algorithms

• Tableau calculus [Schwendimann, 1998]

• Clausal temporal resolution [Fischer, Dixon, Peim, 2001]

• Reduction to automata-based model checking [Rozier, Vardi, 2007]

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL concurrent traces

d

a

b ∧ ¬a

(a)
ω‖‖‖

a⇒ c
a⇒ c

stem cycle

Events

Ordering edges

LTL formulasLTL formulas

Conflict edges

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL concurrent traces

d

a

b ∧ ¬a

(a)
ω‖‖‖

a⇒ c
a⇒ c

stem cycle

Events

Ordering edges

LTL formulasLTL formulas

Conflict edges

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL concurrent traces

d

a

b ∧ ¬a

(a)
ω‖‖‖

a⇒ c
a⇒ c

stem cycle

Events

Ordering edges

LTL formulasLTL formulas

Conflict edges

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL proof rules

L

ϕ =⇒

R

> ϕ

Finally

L

ϕ ()
ω

=⇒

R

> ()
ω

ϕ ϕ

Globally

L

ϕ =⇒

R

> ϕ

⊥

‖‖‖

Next

L

ϕU ψ =⇒

R

> ψ
ϕ

Until

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL proof rules

L

ϕ =⇒

R

> ϕ

Finally

L

ϕ ()
ω

=⇒

R

> ()
ω

ϕ ϕ

Globally

L

ϕ =⇒

R

> ϕ

⊥

‖‖‖

Next

L

ϕU ψ =⇒

R

> ψ
ϕ

Until

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL satisfiability: p ∧ ¬p

p ∧ ¬p (>)
ω

(>)ω

¬p (p)
ω

(p)ω

> (p ¬p)
ω

(p ∧ ¬p)ω

> (p ¬p)
ω

‖‖‖

(p , ¬p)ω

[Schwendimann, 1998,

A New One-Pass Tableau Calculus for PLTL]

Tools: LWB, pltl, LTL Tableau,. . .

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL satisfiability: p ∧ ¬p

p ∧ ¬p (>)
ω

(>)ω

¬p (p)
ω

(p)ω

> (p ¬p)
ω

(p ∧ ¬p)ω

> (p ¬p)
ω

‖‖‖

(p , ¬p)ω

[Schwendimann, 1998,

A New One-Pass Tableau Calculus for PLTL]

Tools: LWB, pltl, LTL Tableau,. . .

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL satisfiability: p ∧ ¬p

p ∧ ¬p (>)
ω

(>)ω

¬p (p)
ω

(p)ω

> (p ¬p)
ω

(p ∧ ¬p)ω

> (p ¬p)
ω

‖‖‖

(p , ¬p)ω

[Schwendimann, 1998,

A New One-Pass Tableau Calculus for PLTL]

Tools: LWB, pltl, LTL Tableau,. . .

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL satisfiability: p ∧ ¬p

p ∧ ¬p (>)
ω

(>)ω

¬p (p)
ω

(p)ω

> (p ¬p)
ω

(p ∧ ¬p)ω

> (p ¬p)
ω

‖‖‖

(p , ¬p)ω

[Schwendimann, 1998,

A New One-Pass Tableau Calculus for PLTL]

Tools: LWB, pltl, LTL Tableau,. . .

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL satisfiability: p ∧ ¬p

p ∧ ¬p (>)
ω

(>)ω

¬p (p)
ω

(p)ω

> (p ¬p)
ω

(p ∧ ¬p)ω

> (p ¬p)
ω

‖‖‖

(p , ¬p)ω

[Schwendimann, 1998,

A New One-Pass Tableau Calculus for PLTL]

Tools: LWB, pltl, LTL Tableau,. . .

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL satisfiability: p ∧ ¬p

p ∧ ¬p (>)
ω

(>)ω

¬p (p)
ω

(p)ω

> (p ¬p)
ω

(p ∧ ¬p)ω

> (p ¬p)
ω

‖‖‖

(p , ¬p)ω

[Schwendimann, 1998,

A New One-Pass Tableau Calculus for PLTL]

Tools: LWB, pltl, LTL Tableau,. . .

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL satisfiability: p ∧ ¬p

p ∧ ¬p (>)
ω

(>)ω

¬p (p)
ω

(p)ω

> (p ¬p)
ω

(p ∧ ¬p)ω

> (p ¬p)
ω

‖‖‖

(p , ¬p)ω

[Schwendimann, 1998,

A New One-Pass Tableau Calculus for PLTL]

Tools: LWB, pltl, LTL Tableau,. . .

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL satisfiability: p ∧ ¬p

p ∧ ¬p (>)
ω

(>)ω

¬p (p)
ω

(p)ω

> (p ¬p)
ω

(p ∧ ¬p)ω

> (p ¬p)
ω

‖‖‖

(p , ¬p)ω

[Schwendimann, 1998,

A New One-Pass Tableau Calculus for PLTL]

Tools: LWB, pltl, LTL Tableau,. . .

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL satisfiability: p ∧ ¬p

p ∧ ¬p (>)
ω

(>)ω

¬p (p)
ω

(p)ω

> (p ¬p)
ω

(p ∧ ¬p)ω

> (p ¬p)
ω

‖‖‖

(p , ¬p)ω

[Schwendimann, 1998,

A New One-Pass Tableau Calculus for PLTL]

Tools: LWB, pltl, LTL Tableau,. . .

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL satisfiability: p ∧ ¬p

p ∧ ¬p (>)
ω

(>)ω

¬p (p)
ω

(p)ω

> (p ¬p)
ω

(p ∧ ¬p)ω

> (p ¬p)
ω

‖‖‖

(p , ¬p)ω

[Schwendimann, 1998,

A New One-Pass Tableau Calculus for PLTL]

Tools: LWB, pltl, LTL Tableau,. . .

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL model checking

Automata-based LTL Model Checking

The standard way to model check a program P against an LTL property ϕ:

1 translate ¬ϕ into a Büchi automaton A

2 check for emptiness the synchronized product of A and P

Main problem: LTL formulas are often not small!

They describe necessary assumptions of, e.g.:

• fairness

• termination

• allowed request/response pairs

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL model checking

Automata-based LTL Model Checking

The standard way to model check a program P against an LTL property ϕ:

1 translate ¬ϕ into a Büchi automaton A

2 check for emptiness the synchronized product of A and P

Main problem: LTL formulas are often not small!

They describe necessary assumptions of, e.g.:

• fairness

• termination

• allowed request/response pairs

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Example: individual accessibility for semaphores

Thread 1 Thread 2 Thread 3

while (true) {
l1: noncritical;

l2: request r;

l3: critical;

l4: release r;

}

while (true) {
m1: noncritical;

m2: request r;

m3: critical;

m4: release r;

}

while (true) {
n1: noncritical;

n2: request r;

n3: critical;

n4: release r;

}

LTL Properties

Fair scheduling: ϕF ≡ (at2 ∧ rfree) =⇒ at3

Termination of critical sections: ϕT ≡ (at3 =⇒ at1)
Individual Accessibility: ϕA ≡ (at2 =⇒ at3)

ϕ ≡
∧

i∈1..n(ϕFi ∧ ϕTi) =⇒ ϕA1

Translation of ¬ϕ into a Büchi automaton: ltl3ba

Threads Time (sec) Memory (MB) |Automaton| (MB)
2 0.005 4.2 0.002
3 0.09 5.0 0.38
4 9.6 14.7 8.6
5 1295 139 185
6 TO X X

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL concurrent traces over a theory

dd

a

b ∧ ¬a

(a)
ω‖‖‖

a⇒ c

a⇒ c

stem cycle

Events

Ordering edges

LTL formulasLTL formulas

LTL formulas
over a theory
LTL formulas
over a theory

Conflict edges

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL concurrent traces over a theory

d
x = 0 ∧

(x = 1)

x ′ > x

x ′ ≤ x ∧ y > 0

(x ′ > x)
ω‖‖‖

x ′ > x ⇒ y ′ < y

x ′ > x ⇒ y ′ < y

stem cycle

stem cycle

Events

Ordering edges

LTL formulasLTL formulas

LTL formulas
over a theory
LTL formulas
over a theory

Conflict edges

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

LTL model checking algorithm

S Pick a trace?

Construct initial
trace tableau

return Property holds
no

Coverable?

yes

Trace inclusion

Cover
yes

Linearizable?

SMT query

no

Local
refinement

UNSAT core
Craig interpolation

no

Terminating?

Ranking function synthesis

yes

Invariance
split

yes

LTL unsat?

LTL path checking

yes

LTL
refinement

yes

Reachable?

K., Finkbeiner, CONCUR 2013

no

no
return Possible counterexample

yes

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Conclusion

LTL Model Checking

X Full LTL

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
(atl2∧r>0) =⇒ atl3

Safety/Reachability

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
¬(atl3 ∧ atm3)

Liveness/Termination

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
atl2 =⇒ atl3

LTL Satisfiability/Validity

X Full LTL

∓ Boolean

− No system

|= p ∧ (p =⇒ p) =⇒ p

Thank you for attention!

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Introduction Safety/Reachability Liveness/Termination LTL Satisfiability/Validity LTL Model Checking

Conclusion

LTL Model Checking

X Full LTL

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
(atl2∧r>0) =⇒ atl3

Safety/Reachability

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
¬(atl3 ∧ atm3)

Liveness/Termination

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
atl2 =⇒ atl3

LTL Satisfiability/Validity

X Full LTL

∓ Boolean

− No system

|= p ∧ (p =⇒ p) =⇒ p

Thank you for attention!

Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

	Introduction
	Safety/Reachability
	Liveness/Termination
	LTL Satisfiability/Validity
	LTL Model Checking

