

Causality-based Verification of Multi-threaded Programs

joint work with Bernd Finkbeiner

Andrey Kupriyanov

Saarland University Reactive Systems Group

September 25, 2014

Our approach

• Proof objects: concurrent traces

allow to capture temporal order, constraints, independence

Our approach

• Proof objects: concurrent traces allow to capture temporal order, constraints, independence

• Proof rules based on causality

 $causality \equiv$ language-preserving trace transformations

Our approach

• Proof objects: concurrent traces allow to capture temporal order, constraints, independence

• Proof rules based on causality $causality \equiv$ language-preserving trace transformations

• Proof construction: tableau search based on causal loops causal $loops \equiv$ infinitely-looping trace transformations

c

a $b \rightarrow f$

i

Thread 1 Thread 2 Thread 3 while (true) { $h:$ noncritical: h : request r; h : critical; l4: release r; } while (true) { m_1 : noncritical; m_2 : request r; m3: critical; m4: release r; } while (true) { n_1 : noncritical: n_2 : request r; n₃: critical; n_4 : release r: }

Definition (Most general semaphore class)

Simple semaphore class $+$

- arbitrary control flow
- arbitrary number of semaphore variables

Definition (Most general semaphore class)

Simple semaphore class $+$

- arbitrary control flow
- arbitrary number of semaphore variables

Open problem

Is the most general semaphore class polynomially verifiable for a fixed number of locks?

Definition (Most general semaphore class)

Simple semaphore class $+$

- arbitrary control flow
- arbitrary number of semaphore variables

Open problem

Is the most general semaphore class polynomially verifiable for a fixed number of locks?

Our causality-based reachability analysis algorithm has settled this question affirmatively.

What is necessary?

Transition system $S = \langle V, I, T \rangle$

- $\bullet\;V$: variables
- $I \in \Phi(V')$: initialization
- $\mathcal{T} \subseteq \Phi(V \cup V')$: transitions

\n- \n
$$
I \equiv x = 0 \land y = 0
$$
\n
\n- \n
$$
T \equiv \{ \mathbf{x}^+ : x' = x + 1 \land y' = y
$$
\n
$$
\mathbf{x}^- : x' = x - 1 \land y' = y
$$
\n
$$
\mathbf{y}^+ : y' = y + 1 \land x' = x
$$
\n
$$
\mathbf{y}^- : y' = y - 1 \land x' = x \}
$$
\n
\n

\n- \n
$$
I \equiv x = 0 \land y = 0
$$
\n
\n- \n
$$
T \equiv \{ x^+ : x' = x + 1 \land y' = y
$$
\n
$$
x^- : x' = x - 1 \land y' = y
$$
\n
$$
y^+ : y' = y + 1 \land x' = x
$$
\n
$$
y^- : y' = y - 1 \land x' = x \}
$$
\n
\n- \n
$$
F \equiv x = 1 \land y = 1
$$
\n
\n

Finite trace $\mathcal{A} = \langle N, E, \nu, \eta \rangle$

- $\langle N, E \rangle$ is a DAG
- $\bullet\;\nu: N\to \Phi(V\cup V')$
- $\eta : E \to \Phi(V \cup V')$

\n- \n
$$
I \equiv x = 0 \land y = 0
$$
\n
\n- \n
$$
T \equiv \{ x^+ : x' = x + 1 \land y' = y
$$
\n
$$
x^- : x' = x - 1 \land y' = y
$$
\n
$$
y^+ : y' = y + 1 \land x' = x
$$
\n
$$
y^- : y' = y - 1 \land x' = x \}
$$
\n
\n- \n
$$
F \equiv x = 1 \land y = 1
$$
\n
\n

Finite trace $\mathcal{A} = \langle N, E, \nu, \eta \rangle$

- $\langle N, E \rangle$ is a DAG
- $\bullet\;\nu: N\to \Phi(V\cup V')$
- $\eta : E \to \Phi(V \cup V')$

\n- \n
$$
I \equiv x = 0 \land y = 0
$$
\n
\n- \n
$$
T \equiv \{ \mathbf{x}^+ \colon x' = x + 1 \land y' = y
$$
\n
$$
\mathbf{x}^- \colon x' = x - 1 \land y' = y
$$
\n
$$
\mathbf{y}^+ \colon y' = y + 1 \land x' = x
$$
\n
$$
\mathbf{y}^- \colon y' = y - 1 \land x' = x \}
$$
\n
\n- \n
$$
F \equiv x = 1 \land y = 1
$$
\n
\n

Language of a finite concurrent trace

A set of system runs such that a linearization of a concurrent trace can be mapped into a subsequence of a run, respecting constraints

\n- \n
$$
I \equiv x = 0 \land y = 0
$$
\n
\n- \n
$$
T \equiv \{ x^+ : x' = x + 1 \land y' = y
$$
\n
$$
x^- : x' = x - 1 \land y' = y
$$
\n
$$
y^+ : y' = y + 1 \land x' = x
$$
\n
$$
y^- : y' = y - 1 \land x' = x \}
$$
\n
\n- \n
$$
F \equiv x = 1 \land y = 1
$$
\n
\n

Language of a finite concurrent trace

A set of system runs such that a linearization of a concurrent trace can be mapped into a subsequence of a run, respecting constraints

\n- \n
$$
I \equiv x = 0 \land y = 0
$$
\n
\n- \n
$$
T \equiv \{ x^+ : x' = x + 1 \land y' = y
$$
\n
$$
x^- : x' = x - 1 \land y' = y
$$
\n
$$
y^+ : y' = y + 1 \land x' = x
$$
\n
$$
y^- : y' = y - 1 \land x' = x \}
$$
\n
\n- \n
$$
F \equiv x = 1 \land y = 1
$$
\n
\n

Accepted runs

- \bullet 1, $\mathsf{x}^\mathsf{+}$, $\mathsf{y}^\mathsf{+}$, F
- \bullet $1, y^+, x^+, F$
- $1, y^+, x^+, x^-, x^+, F$
- \bullet ...

Rejected runs

- \bullet $1, x^+, F$
- $1, x^+, y^+, x^+, F$
- $1, x^-, y^-, F$
- \bullet ...

\n- \n
$$
I \equiv x = 0 \land y = 0
$$
\n
\n- \n
$$
T \equiv \{ x^+ : x' = x + 1 \land y' = y
$$
\n
$$
x^- : x' = x - 1 \land y' = y
$$
\n
$$
y^+ : y' = y + 1 \land x' = x
$$
\n
$$
y^- : y' = y - 1 \land x' = x \}
$$
\n
\n- \n
$$
F \equiv x = 1 \land y = 1
$$
\n
\n

Accepted runs

- \bullet 1, $\mathsf{x}^\mathsf{+}$, $\mathsf{y}^\mathsf{+}$, F
- \bullet $1, y^+, x^+, F$
- $1, y^+, x^+, x^-, x^+, F$
- \bullet ...

Rejected runs

- \bullet $1, x^+, F$
- $1, x^+, y^+, x^+, F$
- $1, x^-, y^-, F$
- \bullet ...

\n- \n
$$
I \equiv x = 0 \land y = 0
$$
\n
\n- \n
$$
T \equiv \{ \mathbf{x}^{\dagger} : x' = x + 1 \land y' = y
$$
\n
$$
\mathbf{x}^{-}: x' = x - 1 \land y' = y
$$
\n
$$
\mathbf{y}^{\dagger}: y' = y + 1 \land x' = x
$$
\n
$$
\mathbf{y}^{-}: y' = y - 1 \land x' = x \}
$$
\n
\n- \n
$$
F \equiv x = 1 \land y = 1
$$
\n
\n

Accepted runs

- \bullet 1, $\mathsf{x}^\mathsf{+}$, $\mathsf{y}^\mathsf{+}$, F
- \bullet $1, y^+, x^+, F$
- $1, y^+, x^+, x^-, x^+, F$
- \bullet ...

Rejected runs

- \bullet $1, x^+, F$
- $1, x^+, y^+, x^+, F$
- $1, x^-, y^-, F$
- \bullet ...

\n- \n
$$
I \equiv x = 0 \land y = 0
$$
\n
\n- \n
$$
T \equiv \{ \mathbf{x}^{\dagger} : x' = x + 1 \land y' = y
$$
\n
$$
\mathbf{x}^{-}: x' = x - 1 \land y' = y
$$
\n
$$
\mathbf{y}^{\dagger} : y' = y + 1 \land x' = x
$$
\n
$$
\mathbf{y}^{-}: y' = y - 1 \land x' = x \}
$$
\n
\n- \n
$$
F \equiv x = 1 \land y = 1
$$
\n
\n

\n- \n
$$
I \equiv x = 0 \land y = 0
$$
\n
\n- \n
$$
T \equiv \{ \mathbf{x}^{\dagger} : x' = x + 1 \land y' = y
$$
\n
$$
\mathbf{x}^{-}: x' = x - 1 \land y' = y
$$
\n
$$
\mathbf{y}^{\dagger} : y' = y + 1 \land x' = x
$$
\n
$$
\mathbf{y}^{-}: y' = y - 1 \land x' = x \}
$$
\n
\n- \n
$$
F \equiv x = 1 \land y = 1
$$
\n
\n

Accepted run $I \qquad \qquad x^+ \qquad \qquad y$ ⁺ F $x = 0$ $= 0$ $y > x \rightarrow y$ y' $x = 1$ $y = 1$ $x > 0$ $y > 0$

\n- \n
$$
I \equiv x = 0 \land y = 0
$$
\n
\n- \n
$$
T \equiv \{ \mathbf{x}^+ : x' = x + 1 \land y' = y
$$
\n
$$
\mathbf{x}^- : x' = x - 1 \land y' = y
$$
\n
$$
\mathbf{y}^+ : y' = y + 1 \land x' = x
$$
\n
$$
\mathbf{y}^- : y' = y - 1 \land x' = x \}
$$
\n
\n- \n
$$
F \equiv x = 1 \land y = 1
$$
\n
\n

Accepted run y^+ x^+ $+$ F $x = 0$ $= 0$ $y > x \rightarrow y$ y' $x = 1$ $y = 1$ $x > 0$ $y > 0$

Finite concurrent traces

\n- \n
$$
I \equiv x = 0 \land y = 0
$$
\n
\n- \n
$$
T \equiv \{ \mathbf{x}^+ : x' = x + 1 \land y' = y
$$
\n
$$
\mathbf{x}^- : x' = x - 1 \land y' = y
$$
\n
$$
\mathbf{y}^+ : y' = y + 1 \land x' = x
$$
\n
$$
\mathbf{y}^- : y' = y - 1 \land x' = x \}
$$
\n
\n- \n
$$
F \equiv x = 1 \land y = 1
$$
\n
\n

Accepted run y^+ x^+ $+$ F $x = 0$ $= 0$ $y \rightarrow y$ $> x$ $x = 1$ $y = 1$ $y > 0$ $x > 0$

Finite concurrent traces

\n- \n
$$
I \equiv x = 0 \land y = 0
$$
\n
\n- \n
$$
T \equiv \{ \mathbf{x}^{\dagger} : x' = x + 1 \land y' = y
$$
\n
$$
\mathbf{x}^{-}: x' = x - 1 \land y' = y
$$
\n
$$
\mathbf{y}^{\dagger}: y' = y + 1 \land x' = x
$$
\n
$$
\mathbf{y}^{-}: y' = y - 1 \land x' = x \}
$$
\n
\n- \n
$$
F \equiv x = 1 \land y = 1
$$
\n
\n

Accepted run y^+ x^+ $x^ x^+$ \pm F $x = 0$ $= 0$ $y \rightarrow y$ $> x$ $x = 1$ $y = 1$ $y > 0$ $x > 0$

Finite concurrent traces

\n- \n
$$
I \equiv x = 0 \land y = 0
$$
\n
\n- \n
$$
T \equiv \{ \mathbf{x}^+ : x' = x + 1 \land y' = y
$$
\n
$$
\mathbf{x}^- : x' = x - 1 \land y' = y
$$
\n
$$
\mathbf{y}^+ : y' = y + 1 \land x' = x
$$
\n
$$
\mathbf{y}^- : y' = y - 1 \land x' = x \}
$$
\n
\n- \n
$$
F \equiv x = 1 \land y = 1
$$
\n
\n

Reachability analysis algorithm

[K., Finkbeiner, CONCUR 2013]

Proof rules: finite traces

Order split

Proof rules: finite traces

Safety

Theorem (Soundness)

If there exists a correct and complete causal trace tableau for a transition system S , then S is safe.

Theorem (Relative completeness)

If a transition system S is safe, then a correct and complete causal trace tableau for S can be constructed, provided that all necessary first-order formulas are given.

Theorem (Polynomiality for semaphore programs)

Causality-based verification algorithm proves the safety of the most general class of multi-threaded semaphore programs in deterministic polynomial time with respect to the number of threads and locks.

Termination of multi-threaded programs

• Parallel compilation (e.g. GNU Make)

gnu.org/software/make/

make $-i$ N

• Parallel computations in GPUs (OpenCL, CUDA)

developer.nvidia.com/cuda-zone/

• Distributed processing (e.g. the Map-Reduce architecture)

developers.google.com/appengine/docs/java/dataprocessing/

• Device drivers, leader election, . . .

Producer-Consumer (Map-Reduce architecture)

Producer-Consumer (Map-Reduce architecture)

Producer-Consumer (Map-Reduce architecture)

¹ Arctor : Abstraction Refinement of Concurrent Temporal Orderings (react.uni-saarland.de/tools/arctor/)

[Causality-based Verification of Multi-threaded Programs](#page-0-0) Andrey Kupriyanov Causality-based Verification of Multi-threaded Programs Andrey Kupriyanov

Infinite concurrent traces

Infinite concurrent traces

Termination analysis algorithm

[K., Finkbeiner, CAV 2014]

Termination: soundness and completeness

Theorem (Soundness)

If there exists a correct and complete causal trace tableau for a transition system S , then S is terminating.

Theorem (Relative completeness)

If a transition system S is terminating, then a correct and complete causal trace tableau for S can be constructed, provided that all necessary first-order formulas are given.

Experimental results: simple programs

Experimental results: models of industrial programs

• Parallel compilation (GNU Make)

• Parallel computations in GPUs (CUDA)

• Distributed processing (Map-Reduce)

No other termination prover can handle even 2 threads! Arctor

LTL Satisfiability/Validity

Applications

Specification debugging:

- detection of unsatisfiable specifications
- detection of vacuous specifications

Specification understanding:

• small models/countermodels

Can be used for finite-state LTL model checking by a simple reduction

Captures the LTL complexity

PSPACE-complete even for simple fragments $L(F, X)$, $L(U)$

Decision algorithms

- Tableau calculus [Schwendimann, 1998]
- Clausal temporal resolution [Fischer, Dixon, Peim, 2001]
- • Reduction to automata-based model checking [Rozier, Vardi, 2007]

LTL concurrent traces

LTL concurrent traces

LTL concurrent traces

LTL proof rules

Finally

Globally

LTL proof rules

Next

Until

[Schwendimann, 1998,

[Schwendimann, 1998,

 $(\top)^\omega$

[Schwendimann, 1998,

[Schwendimann, 1998,

$$
(\rho)^\omega
$$

[Schwendimann, 1998,

[Schwendimann, 1998,

 $\overline{}$ \overline{p}

 $(p \wedge \neg p)^{\omega}$

[Schwendimann, 1998,

[Schwendimann, 1998,

 \overline{p}

[Schwendimann, 1998,

LTL model checking

Automata-based LTL Model Checking

The standard way to model check a program P against an LTL property φ :

- \bullet translate $\neg \varphi$ into a Büchi automaton A
- • check for emptiness the synchronized product of A and P

LTL model checking

Automata-based LTL Model Checking

The standard way to model check a program P against an LTL property φ :

- \bullet translate $\neg \varphi$ into a Büchi automaton A
- \bullet check for emptiness the synchronized product of A and P

Main problem: LTL formulas are often not small!

They describe necessary assumptions of, e.g.:

- fairness
- termination
- allowed request/response pairs

Example: individual accessibility for semaphores

LTL Properties

Termination of critical sections: Individual Accessibility:

Fair scheduling:	$\varphi_F \equiv \Box \Diamond (at_2 \land r_{free}) \implies \Box \Diamond at_3$
Termination of critical sections:	$\varphi_T \equiv \Box (at_3 \implies \Diamond at_1)$
Individual Accessibility:	$\varphi_A \equiv \Box (at_2 \implies \Diamond at_3)$

$$
\varphi \equiv \bigwedge_{i \in 1..n} (\varphi_{F_i} \wedge \varphi_{T_i}) \implies \varphi_{A_1}
$$

Translation of $\neg \varphi$ into a Büchi automaton: Itl3ba

LTL concurrent traces over a theory

LTL concurrent traces over a theory

LTL model checking algorithm

Conclusion

Conclusion

Thank you for attention!