
Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Saarland University
Reactive Systems Group

August 28, 2013

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Introduction

Causality

The relation between two events (the cause and the effect), where the
second event is understood as a (necessary) consequence of the first.

In this talk

I Capturing causality by concurrent traces and their transformations

I Verification of concurrent programs based on causality

I How causality-based verification can bring exponential savings for
some classes of multi-threaded programs

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Introduction

Causality

The relation between two events (the cause and the effect), where the
second event is understood as a (necessary) consequence of the first.

In this talk

I Capturing causality by concurrent traces and their transformations

I Verification of concurrent programs based on causality

I How causality-based verification can bring exponential savings for
some classes of multi-threaded programs

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Introduction

Verification of Safety Properties

System S |= G safe ?

Different flavors:

I Synchronized product of finite automata

I Communicating processes

I Multi-threaded programs

Complexity
The problem is PSPACE-complete

Problem complexity is robust

I varying communication models (global/binary/shared vars)

I different sizes of the alphabet

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Introduction

Verification of Safety Properties for Concurrent Systems

S = P1 ‖ P2 ‖ . . . ‖ PN |= G safe ?

Different flavors:

I Synchronized product of finite automata

I Communicating processes

I Multi-threaded programs

Complexity
The problem is PSPACE-complete

Problem complexity is robust

I varying communication models (global/binary/shared vars)

I different sizes of the alphabet

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Introduction

Verification of Safety Properties for Concurrent Systems

S = P1 ‖ P2 ‖ . . . ‖ PN |= G safe ?

Different flavors:

I Synchronized product of finite automata

I Communicating processes

I Multi-threaded programs

Complexity
The problem is PSPACE-complete

Problem complexity is robust

I varying communication models (global/binary/shared vars)

I different sizes of the alphabet

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Introduction

Verification of Safety Properties for Concurrent Systems

S = P1 ‖ P2 ‖ . . . ‖ PN |= G safe ?

Different flavors:

I Synchronized product of finite automata

I Communicating processes

I Multi-threaded programs

Complexity
The problem is PSPACE-complete

Problem complexity is robust

I varying communication models (global/binary/shared vars)

I different sizes of the alphabet

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Introduction

Verification of Safety Properties for Concurrent Systems

S = P1 ‖ P2 ‖ . . . ‖ PN |= G safe ?

Different flavors:

I Synchronized product of finite automata

I Communicating processes

I Multi-threaded programs

Complexity
The problem is PSPACE-complete

Problem complexity is robust

I varying communication models (global/binary/shared vars)

I different sizes of the alphabet

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Motivation

I Unless P = PSPACE , there is no scalable algorithm for the
general-case concurrent verification problem

I It is easy to manually prove/disprove the correctness of many
concurrent programs

⇒ Investigate:

I Efficient (polynomial) proof techniques

I Classes of efficiently verifiable concurrent programs

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Motivation

I Unless P = PSPACE , there is no scalable algorithm for the
general-case concurrent verification problem

I It is easy to manually prove/disprove the correctness of many
concurrent programs

⇒ Investigate:

I Efficient (polynomial) proof techniques

I Classes of efficiently verifiable concurrent programs

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Multi-threaded Programs with Locks

Syntax Semantics

acquire li li = 0 ∧ l ′i = 1 ∧ pc ′ = pc + 1

release li l ′i = 0 ∧ pc ′ = pc + 1

if (ϕ) goto j (ϕ∧ pc ′ = j) ∨ (¬ϕ∧ pc ′ = pc + 1)

1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

A Polynomial Proof 1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

i

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

i

a1

a2

pc1 ∈ [2, 3, 4]

pc2 ∈ [2, 4]

i

a2

a3

pc2 ∈ [2, 4]

pc3 ∈ [2, 3]

i

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

OrderSplit

i r5

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

OrderSplit
NecessaryAction (l ′ = 1 l = 0)

i

a1

a3

r5

a2

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]pc2 ∈ [2, 4]

i

a1

a3

r5

a2

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]pc2 ∈ [2, 4]

NecessaryAction (pc ′
2 = 1 pc2 = 4)

Cover

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

A Polynomial Proof 1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

i

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

i

a1

a2

pc1 ∈ [2, 3, 4]

pc2 ∈ [2, 4]

i

a2

a3

pc2 ∈ [2, 4]

pc3 ∈ [2, 3]

i

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

OrderSplit

i r5

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

OrderSplit
NecessaryAction (l ′ = 1 l = 0)

i

a1

a3

r5

a2

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]pc2 ∈ [2, 4]

i

a1

a3

r5

a2

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]pc2 ∈ [2, 4]

NecessaryAction (pc ′
2 = 1 pc2 = 4)

Cover

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

A Polynomial Proof 1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

i

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

i

a1

a2

pc1 ∈ [2, 3, 4]

pc2 ∈ [2, 4]

i

a2

a3

pc2 ∈ [2, 4]

pc3 ∈ [2, 3]

i

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

OrderSplit

i r5

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

OrderSplit
NecessaryAction (l ′ = 1 l = 0)

i

a1

a3

r5

a2

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]pc2 ∈ [2, 4]

i

a1

a3

r5

a2

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]pc2 ∈ [2, 4]

NecessaryAction (pc ′
2 = 1 pc2 = 4)

Cover

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

A Polynomial Proof 1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

i

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

i

a1

a2

pc1 ∈ [2, 3, 4]

pc2 ∈ [2, 4]

i

a2

a3

pc2 ∈ [2, 4]

pc3 ∈ [2, 3]

i

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

OrderSplit

i r5

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

OrderSplit
NecessaryAction (l ′ = 1 l = 0)

i

a1

a3

r5

a2

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]pc2 ∈ [2, 4]

i

a1

a3

r5

a2

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]pc2 ∈ [2, 4]

NecessaryAction (pc ′
2 = 1 pc2 = 4)

Cover

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

A Polynomial Proof 1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

i

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

i

a1

a2

pc1 ∈ [2, 3, 4]

pc2 ∈ [2, 4]

i

a2

a3

pc2 ∈ [2, 4]

pc3 ∈ [2, 3]

i

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

OrderSplit

i r5

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

OrderSplit
NecessaryAction (l ′ = 1 l = 0)

i

a1

a3

r5

a2

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]pc2 ∈ [2, 4]

i

a1

a3

r5

a2

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]pc2 ∈ [2, 4]

NecessaryAction (pc ′
2 = 1 pc2 = 4)

Cover

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

A Polynomial Proof 1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

i

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

i

a1

a2

pc1 ∈ [2, 3, 4]

pc2 ∈ [2, 4]

i

a2

a3

pc2 ∈ [2, 4]

pc3 ∈ [2, 3]

i

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

OrderSplit

i r5

a1

a3

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]

OrderSplit
NecessaryAction (l ′ = 1 l = 0)

i

a1

a3

r5

a2

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]pc2 ∈ [2, 4]

i

a1

a3

r5

a2

pc1 ∈ [2, 3, 4]

pc3 ∈ [2, 3]pc2 ∈ [2, 4]

NecessaryAction (pc ′
2 = 1 pc2 = 4)

Cover

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Object

State
A tuple of state components s = 〈p1, p2, . . . , pN〉 ∈ |P1|×|P2|×. . .×|PN |

State Inclusion
s = 〈p1, . . . , pN〉 ⊆ s ′ = 〈p′

1, . . . , p
′
N〉 iff ∀i . pi ⊆ p′

i

Trace (implicitely defined, for forward search)

For a state s, an equivalence class of all traces, ending in s:

s1, t1, . . . , sk , tk , sss ≡ s ′1, t
′
1, . . . , s

′
m, t

′
m, sss

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Object

State
A tuple of state components s = 〈p1, p2, . . . , pN〉 ∈ |P1|×|P2|×. . .×|PN |

State Inclusion
s = 〈p1, . . . , pN〉 ⊆ s ′ = 〈p′

1, . . . , p
′
N〉 iff ∀i . pi ⊆ p′

i

Trace (implicitely defined, for forward search)

For a state s, an equivalence class of all traces, ending in s:

s1, t1, . . . , sk , tk , sss ≡ s ′1, t
′
1, . . . , s

′
m, t

′
m, sss

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Object

State
A tuple of state components s = 〈p1, p2, . . . , pN〉 ∈ |P1|×|P2|×. . .×|PN |

State Inclusion
s = 〈p1, . . . , pN〉 ⊆ s ′ = 〈p′

1, . . . , p
′
N〉 iff ∀i . pi ⊆ p′

i

Trace (implicitely defined, for forward search)

For a state s, an equivalence class of all traces, ending in s:

s1, t1, . . . , sk , tk , sss ≡ s ′1, t
′
1, . . . , s

′
m, t

′
m, sss

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Object

Concurrent Trace
A labeled, directed, acyclic graph A = 〈N,E , ν, η〉:

I 〈N,E〉 is a graph with actions N and edges E

I ν : N → Φ(V ∪ V ′)

I η : E → Φ(V ∪ V ′)
labelings of actions/edges with transition predicates

Trace Inclusion
A = 〈N,E , ν, η〉 ⊆λ A′ = 〈N ′,E ′, ν′, η′〉 iff

I ∃ λ = 〈λN : N ′ → N, λE : E ′ → E〉.
I for all n′ ∈ N ′ . ν(λN (n′)) =⇒ ν′(n′).

I for all e′ ∈ E ′ . η(λE (e′)) =⇒ η′(e′).

x ′ = 0
y ′ = 0

x + + y + +
x > 1
y > 1

x > 1

y > 1

x ′ = 0
y ′ = 0

x + +

y + +

x > 1
y > 1

x > 1

y > 1

x ′ = 0
y ′ = 0

x > 1
y > 1

⊆⊆⊆

⊆⊆ ⊆

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Object

Concurrent Trace
A labeled, directed, acyclic graph A = 〈N,E , ν, η〉:

I 〈N,E〉 is a graph with actions N and edges E

I ν : N → Φ(V ∪ V ′)

I η : E → Φ(V ∪ V ′)
labelings of actions/edges with transition predicates

Trace Inclusion
A = 〈N,E , ν, η〉 ⊆λ A′ = 〈N ′,E ′, ν′, η′〉 iff

I ∃ λ = 〈λN : N ′ → N, λE : E ′ → E〉.
I for all n′ ∈ N ′ . ν(λN (n′)) =⇒ ν′(n′).

I for all e′ ∈ E ′ . η(λE (e′)) =⇒ η′(e′).

x ′ = 0
y ′ = 0

x + + y + +
x > 1
y > 1

x > 1

y > 1

x ′ = 0
y ′ = 0

x + +

y + +

x > 1
y > 1

x > 1

y > 1

x ′ = 0
y ′ = 0

x > 1
y > 1

⊆⊆⊆

⊆⊆ ⊆

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Object

Concurrent Trace
A labeled, directed, acyclic graph A = 〈N,E , ν, η〉:

I 〈N,E〉 is a graph with actions N and edges E

I ν : N → Φ(V ∪ V ′)

I η : E → Φ(V ∪ V ′)
labelings of actions/edges with transition predicates

Trace Inclusion
A = 〈N,E , ν, η〉 ⊆λ A′ = 〈N ′,E ′, ν′, η′〉 iff

I ∃ λ = 〈λN : N ′ → N, λE : E ′ → E〉.
I for all n′ ∈ N ′ . ν(λN (n′)) =⇒ ν′(n′).

I for all e′ ∈ E ′ . η(λE (e′)) =⇒ η′(e′).

x ′ = 0
y ′ = 0

x + + y + +
x > 1
y > 1

x > 1

y > 1

x ′ = 0
y ′ = 0

x + +

y + +

x > 1
y > 1

x > 1

y > 1

x ′ = 0
y ′ = 0

x > 1
y > 1

⊆⊆⊆
⊆⊆ ⊆

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Rules

State Transition

For a state s: {t1, . . . , tn}, where s
t i

−→ s ′i are transitions, enabled in s.

Seen as Trace Transformations

s1, t1, . . . , sss

s1, t1, . . . , s, t
1, s ′1s ′1s ′1 s1, t1, . . . , s, t

n, s ′ns ′ns ′n

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Rules

State Transition

For a state s: {t1, . . . , tn}, where s
t i

−→ s ′i are transitions, enabled in s.

Seen as Trace Transformations

s1, t1, . . . , sss

s1, t1, . . . , s, t
1, s ′1s ′1s ′1 s1, t1, . . . , s, t

n, s ′ns ′ns ′n

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Rules

Causal Transition
τ : {τ1, . . . , τn} where τi : (L

ri−→ Ri), are trace productions sharing the
same left-hand side L. τ is sound if the following holds:

∀A . A ⊆m L =⇒ L(A) ⊆
⋃
τi∈τ

L
(
τm

i (A)
)

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Rules

Causal Transition
τ : {τ1, . . . , τn} where τi : (L

ri−→ Ri), are trace productions sharing the
same left-hand side L. τ is sound if the following holds:

∀A . A ⊆m L =⇒ L(A) ⊆
⋃
τi∈τ

L
(
τm

i (A)
)

L

a{φ′} b{¬φ}

R

a{φ′} b{¬φ}

x{φ ∧ ¬φ′}

Necessary Action
φ

¬φ

a

b

x

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Rules

Causal Transition
τ : {τ1, . . . , τn} where τi : (L

ri−→ Ri), are trace productions sharing the
same left-hand side L. τ is sound if the following holds:

∀A . A ⊆m L =⇒ L(A) ⊆
⋃
τi∈τ

L
(
τm

i (A)
)

L

a{φ′} b{¬φ}

Rfirst

a{φ′} b{¬φ}

x{φ ∧ ¬φ′}{φ ∧ φ′}

Necessary Action
φ

¬φ

a

b

x

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Rules

Causal Transition
τ : {τ1, . . . , τn} where τi : (L

ri−→ Ri), are trace productions sharing the
same left-hand side L. τ is sound if the following holds:

∀A . A ⊆m L =⇒ L(A) ⊆
⋃
τi∈τ

L
(
τm

i (A)
)

L

a{φ′} b{¬φ}

Rlast

a{φ′} b{¬φ}

x{φ ∧ ¬φ′} {¬φ
∧¬φ′}

Necessary Action
φ

¬φ

a

b

x

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Rules

Causal Transition
τ : {τ1, . . . , τn} where τi : (L

ri−→ Ri), are trace productions sharing the
same left-hand side L. τ is sound if the following holds:

∀A . A ⊆m L =⇒ L(A) ⊆
⋃
τi∈τ

L
(
τm

i (A)
)

L

a

b

R1

a b

Order Split

R2

b a

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Rules

Causal Transition
τ : {τ1, . . . , τn} where τi : (L

ri−→ Ri), are trace productions sharing the
same left-hand side L. τ is sound if the following holds:

∀A . A ⊆m L =⇒ L(A) ⊆
⋃
τi∈τ

L
(
τm

i (A)
)

L

a
{φ}

R1

a
{φ ∧ ψ}

Action Split

R2

a
{φ ∧ ¬ψ}

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Rules

Causal Transition
τ : {τ1, . . . , τn} where τi : (L

ri−→ Ri), are trace productions sharing the
same left-hand side L. τ is sound if the following holds:

∀A . A ⊆m L =⇒ L(A) ⊆
⋃
τi∈τ

L
(
τm

i (A)
)

L

a b
{φ}

x{ψ}

R

a b
{φ}

x{ψ ∧ φ}

Action Restriction

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Proof Rules

Causal Transition
τ : {τ1, . . . , τn} where τi : (L

ri−→ Ri), are trace productions sharing the
same left-hand side L. τ is sound if the following holds:

∀A . A ⊆m L =⇒ L(A) ⊆
⋃
τi∈τ

L
(
τm

i (A)
)

L

a b
{φ}

x y
{ψ}

R

a b
{φ}

x y
{ψ ∧ φ}

Edge Restriction

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Verification as a Search Problem: States vs Traces

begin
set Q ←− InitialAbstraction(S)
while not FixedPoint(Q) do

take some q from Q
if IsError(q) then

return unsafe
else

Q := Q ∪ Successors(q)

return safe

Search Object: State Concurrent Trace

InitialAbstraction(S): I I −→ E

IsError(q): q ∩ E 6= ∅ Linearizable(q)

Successors(q): StateTransition(q) CausalTransition(q)

FixedPoint(Q): ∀q ∈ Q .
Succesors(q) ⊆ Q

?

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Verification as a Search Problem: States vs Traces

begin
set Q ←− InitialAbstraction(S)
while not FixedPoint(Q) do

take some q from Q
if IsError(q) then

return unsafe
else

Q := Q ∪ Successors(q)

return safe

Search Object: State Concurrent Trace

InitialAbstraction(S): I I −→ E

IsError(q): q ∩ E 6= ∅ Linearizable(q)

Successors(q): StateTransition(q) CausalTransition(q)

FixedPoint(Q): ∀q ∈ Q .
Succesors(q) ⊆ Q

?

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Verification as a Search Problem: States vs Traces

begin
set Q ←− InitialAbstraction(S)
while not FixedPoint(Q) do

take some q from Q
if IsError(q) then

return unsafe
else

Q := Q ∪ Successors(q)

return safe

Search Object: State Concurrent Trace

InitialAbstraction(S): I I −→ E

IsError(q): q ∩ E 6= ∅ Linearizable(q)

Successors(q): StateTransition(q) CausalTransition(q)

FixedPoint(Q): ∀q ∈ Q .
Succesors(q) ⊆ Q

?

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Verification as a Search Problem: States vs Traces

begin
set Q ←− InitialAbstraction(S)
while not FixedPoint(Q) do

take some q from Q
if IsError(q) then

return unsafe
else

Q := Q ∪ Successors(q)

return safe

Search Object: State Concurrent Trace

InitialAbstraction(S): I I −→ E

IsError(q): q ∩ E 6= ∅ Linearizable(q)

Successors(q): StateTransition(q) CausalTransition(q)

FixedPoint(Q): ∀q ∈ Q .
Succesors(q) ⊆ Q

?

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Verification as a Search Problem: States vs Traces

begin
set Q ←− InitialAbstraction(S)
while not FixedPoint(Q) do

take some q from Q
if IsError(q) then

return unsafe
else

Q := Q ∪ Successors(q)

return safe

Search Object: State Concurrent Trace

InitialAbstraction(S): I I −→ E

IsError(q): q ∩ E 6= ∅ Linearizable(q)

Successors(q): StateTransition(q) CausalTransition(q)

FixedPoint(Q): ∀q ∈ Q .
Succesors(q) ⊆ Q

?

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Verification as a Search Problem: States vs Traces

begin
set Q ←− InitialAbstraction(S)
while not FixedPoint(Q) do

take some q from Q
if IsError(q) then

return unsafe
else

Q := Q ∪ Successors(q)

return safe

Search Object: State Concurrent Trace

InitialAbstraction(S): I I −→ E

IsError(q): q ∩ E 6= ∅ Linearizable(q)

Successors(q): StateTransition(q) CausalTransition(q)

FixedPoint(Q): ∀q ∈ Q .
Succesors(q) ⊆ Q

?

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Looking Closer into State Fixed-point...

State Fixed-point

∀q ∈ Q .Succesors(q) ⊆ Q

Seen as Trace Fixed-point

sss

s, t1, s1s1s1

s, t2, s2s2s2

s, t1, s1, t3, s3s3s3

s, t1, s1, t4, s4s4s4

s, t1, s1, t3, s3, t5, s5s5s5

s, t1, s1, t4, s4, t6, s6s6s6

s, t1, s1, t4, s4, t7, s7s7s7

Trace Fixed-point

There is no finite trace between I and E .

Alternatively: any trace between I and E should have infinite length!

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Looking Closer into State Fixed-point...

State Fixed-point

∀q ∈ Q .Succesors(q) ⊆ Q

Seen as Trace Fixed-point

sss

s, t1, s1s1s1

s, t2, s2s2s2

s, t1, s1, t3, s3s3s3

s, t1, s1, t4, s4s4s4

s, t1, s1, t3, s3, t5, s5s5s5

s, t1, s1, t4, s4, t6, s6s6s6

s, t1, s1, t4, s4, t7, s7s7s7

Trace Fixed-point

There is no finite trace between I and E .

Alternatively: any trace between I and E should have infinite length!

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Looking Closer into State Fixed-point...

State Fixed-point

∀q ∈ Q .Succesors(q) ⊆ Q

Seen as Trace Fixed-point

sss

s, t1, s1s1s1

s, t2, s2s2s2

s, t1, s1, t3, s3s3s3

s, t1, s1, t4, s4s4s4

s, t1, s1, t3, s3, t5, s5s5s5

s, t1, s1, t4, s4, t6, s6s6s6

s, t1, s1, t4, s4, t7, s7s7s7

Trace Fixed-point

There is no finite trace between I and E .

Alternatively: any trace between I and E should have infinite length!

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Unwindings 1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

1

2

3

4 5

6

⊥⊥⊥
7

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Unwindings 1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

1

2

3

4 5

6

⊥⊥⊥
7

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

pc1 = 2
pc2 = 2

i
e

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Unwindings 1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

1

2

3

4 5

6

⊥⊥⊥
7

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 1 ∧ pc ′
1 = 2

l = 0 ∧ l ′ = 1

a1

pc1 = 2
pc2 = 2

e
pc1 = 2

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Unwindings 1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

1

2

3

4 5

6

⊥⊥⊥
7

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i pc1 = 1 ∧ pc ′
1 = 2

l = 0 ∧ l ′ = 1

pc2 = 1 ∧ pc ′
2 = 2

l = 0 ∧ l ′ = 1

pc1 = 2
pc2 = 2

epc1 = 2

pc2 = 2

a1

a2

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Unwindings 1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

1

2

3

4

5

6

⊥⊥⊥
7

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 1 ∧ pc ′
1 = 2

l = 0 ∧ l ′ = 1

pc2 = 1 ∧ pc ′
2 = 2

l = 0 ∧ l ′ = 1

a1

a2

pc1 = 2
pc2 = 2

e
pc1 = 2

pc2 = 2

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Unwindings 1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

1

2

3

4 5

6

⊥⊥⊥
7

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 1 ∧ pc ′
1 = 2

l = 0 ∧ l ′ = 1

pc2 = 1 ∧ pc ′
2 = 2

l = 0 ∧ l ′ = 1

a1

a2

pc1 = 2
pc2 = 2

e

pc1 = 2

pc2 = 2

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Unwindings 1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

1

2

3

4 5

6

⊥⊥⊥
7

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 4 ∧ pc ′
1 = 5

l ′ = 0

pc1 = 1 ∧ pc ′
1 = 2

l = 0∧ l ′ = 1

pc2 = 1 ∧ pc ′
2 = 2

l = 0 ∧l ′ = 1

a1

a2

pc1 = 2
pc2 = 2

e

pc1 = 2

pc2 = 2

r1

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Unwindings 1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

1

2

3

4 5

6

⊥⊥⊥
7

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc2 = 2 ∧ pc ′
2 = 3

l ′ = 0

i
r2

pc1 = 1 ∧ pc ′
1 = 2

l = 0∧ l ′ = 1

pc2 = 1 ∧ pc ′
2 = 2

l = 0 ∧l ′ = 1

pc1 = 2

a1

a2

pc1 = 2
pc2 = 2

e

pc2 = 2

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Unwindings 1

2

3

4

5

a1 : ack l1

a4 : ack l2

r4 : rel l2

r1 : rel l1

1

2

3

4

5

a2 : ack l1

r2 : rel l1

a5 : ack l1

r5 : rel l1

1

2

3

4

5

a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3

1

2

3

4 5

6

⊥⊥⊥
7

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc2 = 2 ∧pc ′
2 = 3

l ′ = 0

i
r2

pc1 = 1 ∧ pc ′
1 = 2

l = 0∧ l ′ = 1

pc2 = 1 ∧ pc ′
2 = 2

l = 0 ∧l ′ = 1

pc1 = 2

a1

a2

pc1 = 2
pc2 = 2

e

pc2 = 2

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Unwindings

Theorem (Soundness of Trace Unwinding)

If there exists a correct causal trace unwinding for P, where every
causal path is either contradictory or unbounded, then P is safe.

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Unwindings

Theorem (Soundness of Trace Unwinding)

If there exists a correct causal trace unwinding for P, where every
causal path is either contradictory or unbounded, then P is safe.

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Unwindings

Theorem (Soundness of Trace Unwinding)

If there exists a correct causal trace unwinding for P, where every
causal path is either contradictory or unbounded, then P is safe.

⇓

Trace Tableau = Trace Unwinding
+ abstract labels + covering relation

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Tableaux

1

2

3

4 5

6

⊥⊥⊥
7

abstract

concrete

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Tableaux

1

2

3

4 5

6

⊥⊥⊥
7

abstract

concrete

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 2
pc2 = 2

e

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

pc1 = 2
pc2 = 2

i
e

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Tableaux

1

2

3

4 5

6

⊥⊥⊥
7

abstract

concrete

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 2
pc2 = 2

e

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 1 ∧ pc ′
1 = 2

l = 0 ∧ l ′ = 1

a1

pc1 = 2
pc2 = 2

e
pc1 = 2

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 1 ∧ pc ′
1 = 2

l = 0 ∧ l ′ = 1

a1

pc1 = 2
pc2 = 2

e
pc1 = 2

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Tableaux

1

2

3

4 5

6

⊥⊥⊥
7

abstract

concrete

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 2
pc2 = 2

e

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 1 ∧ pc ′
1 = 2

l = 0 ∧ l ′ = 1

a1

pc1 = 2
pc2 = 2

e
pc1 = 2

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i pc1 = 1 ∧ pc ′
1 = 2

l = 0 ∧ l ′ = 1

pc2 = 1 ∧ pc ′
2 = 2

l = 0 ∧ l ′ = 1

pc1 = 2
pc2 = 2

epc1 = 2

pc2 = 2

a1

a2

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Tableaux

1

2

3

4

5

6

⊥⊥⊥
7

abstract

concrete

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 2
pc2 = 2

e

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 1 ∧ pc ′
1 = 2

l = 0 ∧ l ′ = 1

a1

pc1 = 2
pc2 = 2

e
pc1 = 2

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 1 ∧ pc ′
1 = 2

l = 0 ∧ l ′ = 1

pc2 = 1 ∧ pc ′
2 = 2

l = 0 ∧ l ′ = 1

a1

a2

pc1 = 2
pc2 = 2

e
pc1 = 2

pc2 = 2

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Tableaux

1

2

3

4 5

6

⊥⊥⊥
7

abstract

concrete

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 2
pc2 = 2

e

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 1 ∧ pc ′
1 = 2

l = 0 ∧ l ′ = 1

a1

pc1 = 2
pc2 = 2

e
pc1 = 2

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 1 ∧ pc ′
1 = 2

l = 0 ∧ l ′ = 1

pc2 = 1 ∧ pc ′
2 = 2

l = 0 ∧ l ′ = 1

a1

a2

pc1 = 2
pc2 = 2

e

pc1 = 2

pc2 = 2

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Tableaux

1

2

3

4 5

6

⊥⊥⊥
7

abstract

concrete

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 2
pc2 = 2

e

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 1 ∧ pc ′
1 = 2

l = 0 ∧ l ′ = 1

a1

pc1 = 2
pc2 = 2

e
pc1 = 2

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 4 ∧ pc ′
1 = 5

l ′ = 0

pc1 = 1 ∧ pc ′
1 = 2

l = 0∧ l ′ = 1

pc2 = 1 ∧ pc ′
2 = 2

l = 0 ∧l ′ = 1

a1

a2

pc1 = 2
pc2 = 2

e

pc1 = 2

pc2 = 2

r1

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Tableaux

1

2

3

4 5

6

⊥⊥⊥
7

abstract

concrete

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 2
pc2 = 2

e

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 1 ∧ pc ′
1 = 2

l = 0 ∧ l ′ = 1

a1

pc1 = 2
pc2 = 2

e
pc1 = 2

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc2 = 2 ∧ pc ′
2 = 3

l ′ = 0

pc1 = 2
pc2 = 2

e
i

r2

pc1 = 1 ∧ pc ′
1 = 2

l = 0∧ l ′ = 1

pc2 = 1 ∧ pc ′
2 = 2

l = 0 ∧l ′ = 1

pc1 = 2

a1

a2

pc2 = 2

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Tableaux

1

2

3

4 5

6

⊥⊥⊥
7

abstract

concrete

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 2
pc2 = 2

e

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc1 = 1 ∧ pc ′
1 = 2

l = 0 ∧ l ′ = 1

a1

pc1 = 2
pc2 = 2

e
pc1 = 2

pc ′
1 = 1

pc ′
2 = 1

pc ′
3 = 1

i

pc2 = 2 ∧pc ′
2 = 3

l ′ = 0

pc1 = 2
pc2 = 2

e
i

r2

pc1 = 1 ∧ pc ′
1 = 2

l = 0∧ l ′ = 1

pc2 = 1 ∧ pc ′
2 = 2

l = 0 ∧l ′ = 1

pc1 = 2

a1

a2

pc2 = 2

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causal Trace Tableaux

Theorem (Soundness)

If there exists a correct and complete causal trace tableau for a parallel
program P, then P is safe.

Theorem (Completeness)

If a parallel program P with finite-state quotient is safe, then there
exists a correct and complete causal trace tableau for P.

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causality-based Verification: Conclusion

We propose to shift emphasis from state space exploration to
causality-based proof search:

+ We capture causality by concurrent traces and their transformations

+ More powerful proof object allows to better exhibit causal
relationships

+ More powerful proof rules lead to substantially shorter proofs

Causality-Based
Verification of
Multi-threaded

Programs

Andrey Kupriyanov
and Bernd Finkbeiner

Introduction

Motivation

Programs with Locks

Concurrent Proofs

Proof Object

Proof Rules

Verification Algorithm

States vs Traces

Trace Unwindings

Trace Tableaux

Conclusion

Causality-based Verification: Conclusion

We propose to shift emphasis from state space exploration to
causality-based proof search:

+ We capture causality by concurrent traces and their transformations

+ More powerful proof object allows to better exhibit causal
relationships

+ More powerful proof rules lead to substantially shorter proofs

Reduces the complexity from exponential to polynomial for the
important class of multi-threaded programs.

	Introduction
	Motivation
	Programs with Locks

	Concurrent Proofs
	Proof Object
	Proof Rules

	Verification Algorithm
	States vs Traces
	Trace Unwindings
	Trace Tableaux

	Conclusion

