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Introduction

Causality

The relation between two events (the cause and the effect), where the
second event is understood as a (necessary) consequence of the first.

In this talk

I Capturing causality by concurrent traces and their transformations

I Verification of concurrent programs based on causality

I How causality-based verification can bring exponential savings for
some classes of multi-threaded programs
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Introduction

Verification of Safety Properties

System S |= G safe ?

Different flavors:

I Synchronized product of finite automata

I Communicating processes

I Multi-threaded programs

Complexity
The problem is PSPACE-complete

Problem complexity is robust

I varying communication models (global/binary/shared vars)

I different sizes of the alphabet
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Motivation

I Unless P = PSPACE , there is no scalable algorithm for the
general-case concurrent verification problem

I It is easy to manually prove/disprove the correctness of many
concurrent programs

⇒ Investigate:

I Efficient (polynomial) proof techniques

I Classes of efficiently verifiable concurrent programs
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Multi-threaded Programs with Locks

Syntax Semantics

acquire li li = 0 ∧ l ′i = 1 ∧ pc ′ = pc + 1

release li l ′i = 0 ∧ pc ′ = pc + 1

if (ϕ) goto j (ϕ∧ pc ′ = j) ∨ (¬ϕ∧ pc ′ = pc + 1)
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a5 : ack l1

r5 : rel l1
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a3 : ack l1

a6 : ack l3

r3 : rel l1

r6 : rel l3
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Proof Object

State
A tuple of state components s = 〈p1, p2, . . . , pN〉 ∈ |P1|×|P2|×. . .×|PN |

State Inclusion
s = 〈p1, . . . , pN〉 ⊆ s ′ = 〈p′

1, . . . , p
′
N〉 iff ∀i . pi ⊆ p′

i

Trace (implicitely defined, for forward search)

For a state s, an equivalence class of all traces, ending in s:

s1, t1, . . . , sk , tk , sss ≡ s ′1, t
′
1, . . . , s

′
m, t

′
m, sss
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Proof Object

Concurrent Trace
A labeled, directed, acyclic graph A = 〈N,E , ν, η〉:

I 〈N,E〉 is a graph with actions N and edges E

I ν : N → Φ(V ∪ V ′)

I η : E → Φ(V ∪ V ′)
labelings of actions/edges with transition predicates

Trace Inclusion
A = 〈N,E , ν, η〉 ⊆λ A′ = 〈N ′,E ′, ν′, η′〉 iff

I ∃ λ = 〈λN : N ′ → N, λE : E ′ → E〉.
I for all n′ ∈ N ′ . ν(λN (n′)) =⇒ ν′(n′).

I for all e′ ∈ E ′ . η(λE (e′)) =⇒ η′(e′).

x ′ = 0
y ′ = 0

x + + y + +
x > 1
y > 1

x > 1

y > 1

x ′ = 0
y ′ = 0

x + +

y + +

x > 1
y > 1

x > 1

y > 1

x ′ = 0
y ′ = 0

x > 1
y > 1

⊆⊆⊆

⊆⊆ ⊆
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Proof Rules

State Transition

For a state s: {t1, . . . , tn}, where s
t i

−→ s ′i are transitions, enabled in s.

Seen as Trace Transformations

s1, t1, . . . , sss

s1, t1, . . . , s, t
1, s ′1s ′1s ′1 . . .. . .. . . s1, t1, . . . , s, t

n, s ′ns ′ns ′n
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begin
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Succesors(q) ⊆ Q
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Looking Closer into State Fixed-point...

State Fixed-point

∀q ∈ Q .Succesors(q) ⊆ Q

Seen as Trace Fixed-point

sss

s, t1, s1s1s1

s, t2, s2s2s2

s, t1, s1, t3, s3s3s3

s, t1, s1, t4, s4s4s4

s, t1, s1, t3, s3, t5, s5s5s5

s, t1, s1, t4, s4, t6, s6s6s6

s, t1, s1, t4, s4, t7, s7s7s7

Trace Fixed-point

There is no finite trace between I and E .

Alternatively: any trace between I and E should have infinite length!
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Causal Trace Tableaux

Theorem (Soundness)

If there exists a correct and complete causal trace tableau for a parallel
program P, then P is safe.

Theorem (Completeness)

If a parallel program P with finite-state quotient is safe, then there
exists a correct and complete causal trace tableau for P.
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Causality-based Verification: Conclusion

We propose to shift emphasis from state space exploration to
causality-based proof search:

+ We capture causality by concurrent traces and their transformations

+ More powerful proof object allows to better exhibit causal
relationships

+ More powerful proof rules lead to substantially shorter proofs
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Causality-based Verification: Conclusion

We propose to shift emphasis from state space exploration to
causality-based proof search:

+ We capture causality by concurrent traces and their transformations

+ More powerful proof object allows to better exhibit causal
relationships

+ More powerful proof rules lead to substantially shorter proofs

Reduces the complexity from exponential to polynomial for the
important class of multi-threaded programs.
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