Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Saarland University Reactive Systems Group

August 28, 2013

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causality

The relation between two events (the *cause* and the *effect*), where the second event is understood as a (necessary) consequence of the first.

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causality

The relation between two events (the *cause* and the *effect*), where the second event is understood as a (necessary) consequence of the first.

In this talk

- Capturing causality by concurrent traces and their transformations
- Verification of concurrent programs based on causality
- How causality-based verification can bring exponential savings for some classes of multi-threaded programs

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Verification of Safety Properties

System
$$S \models \mathbf{G}$$
 safe ?

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Verification of Safety Properties for Concurrent Systems

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Verification of Safety Properties for Concurrent Systems

$$S = P_1 \parallel P_2 \parallel \dots \parallel P_N \models \mathbf{G} \text{ safe } ?$$

Different flavors:

- Synchronized product of finite automata
- Communicating processes
- Multi-threaded programs

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object

rioor itules

States vs Traces Trace Unwindings Trace Tableaux

Verification of Safety Properties for Concurrent Systems

$$S = P_1 \parallel P_2 \parallel \dots \parallel P_N \models \mathbf{G} \text{ safe } ?$$

Different flavors:

- Synchronized product of finite automata
- Communicating processes
- Multi-threaded programs

Complexity

The problem is **PSPACE-complete**

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Verification of Safety Properties for Concurrent Systems

$$S = [P_1] \parallel [P_2] \parallel \dots \parallel [P_N] \models \mathbf{G}$$
 safe?

Different flavors:

- Synchronized product of finite automata
- Communicating processes
- Multi-threaded programs

Complexity

The problem is PSPACE-complete

Problem complexity is robust

- varying communication models (global/binary/shared vars)
- different sizes of the alphabet

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Motivation

- Unless P = PSPACE, there is no scalable algorithm for the general-case concurrent verification problem
- It is easy to manually prove/disprove the correctness of many concurrent programs

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Motivation

- Unless P = PSPACE, there is no scalable algorithm for the general-case concurrent verification problem
- It is easy to manually prove/disprove the correctness of many concurrent programs

 \Rightarrow Investigate:

- Efficient (polynomial) proof techniques
- Classes of efficiently verifiable concurrent programs

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Multi-threaded Programs with Locks

Syntax	Semantics
acquire l _i	$l_i=0 \wedge l_i'=1 \ \wedge pc'=pc+1$
release l _i	$l_i'=0 \ \wedge ho c'= ho c+1$
if $(arphi)$ goto j	$(arphi \wedge oldsymbol{pc}' = j) \ arphi (eg \wedge oldsymbol{pc}' = oldsymbol{pc} + 1)$
$\begin{array}{c} \downarrow \\ 1 \\ a_1 : ack \ l_1 \\ \hline 2 \\ a_4 : ack \ l_2 \\ \hline 3 \\ r_4 : rel \ l_2 \\ \hline 4 \\ r_1 : rel \ l_1 \\ \hline 5 \end{array}$	$\begin{array}{c} 1 \\ 1 \\ 2 \\ r_2 : rel \ l_1 \\ 3 \\ a_5 : ack \ l_1 \\ 4 \\ r_5 : rel \ l_1 \\ 5 \end{array} \qquad \begin{array}{c} 1 \\ a_3 : ack \ l_1 \\ 2 \\ a_6 : ack \ l_3 \\ 3 \\ r_3 : rel \ l_1 \\ 4 \\ r_6 : rel \ l_3 \\ 5 \end{array}$

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

A Polynomial Proof

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

A Polynomial Proof

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

State

A tuple of state components $s = \langle p_1, p_2, \dots, p_N \rangle \in |P_1| \times |P_2| \times \dots \times |P_N|$

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs

Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

State

A tuple of state components $s = \langle p_1, p_2, \dots, p_N \rangle \in |P_1| \times |P_2| \times \dots \times |P_N|$

State Inclusion

$$s = \langle p_1, \dots, p_N \rangle \subseteq s' = \langle p'_1, \dots, p'_N \rangle$$
 iff $\forall i . p_i \subseteq p'_i$

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs

Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

State

A tuple of state components $s = \langle p_1, p_2, \dots, p_N \rangle \in |P_1| \times |P_2| \times \dots \times |P_N|$

State Inclusion

$$s = \langle p_1, \dots, p_N \rangle \subseteq s' = \langle p'_1, \dots, p'_N \rangle$$
 iff $\forall i . p_i \subseteq p'_i$

Trace (implicitely defined, for forward search)

For a state s, an equivalence class of all traces, ending in s:

$$s_1, t_1, \ldots, s_k, t_k, s \equiv s'_1, t'_1, \ldots, s'_m, t'_m, s$$

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs

Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Concurrent Trace

A labeled, directed, acyclic graph $A = \langle N, E, \nu, \eta \rangle$:

- $\langle N, E \rangle$ is a graph with *actions* N and edges E
- ▶ $\nu: N \rightarrow \Phi(V \cup V')$
- $\eta: E \to \Phi(V \cup V')$

labelings of actions/edges with transition predicates

Trace Inclusion $A = \langle N, E, \nu, \eta \rangle \subseteq_{\lambda} A' = \langle N', E', \nu', \eta' \rangle \text{ iff}$ $\Rightarrow \exists \lambda = \langle \lambda_N : N' \to N, \lambda_E : E' \to E \rangle.$ $\Rightarrow \text{ for all } n' \in N' \cdot \nu(\lambda_N(n')) \Longrightarrow \nu'(n').$ $\Rightarrow \text{ for all } e' \in E' \cdot \eta(\lambda_E(e')) \Longrightarrow \eta'(e').$

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs

Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Concurrent Trace

A labeled, directed, acyclic graph $A = \langle N, E, \nu, \eta \rangle$:

- $\langle N, E \rangle$ is a graph with *actions* N and edges E
- $\blacktriangleright \nu: N \to \Phi(V \cup V')$
- ▶ $\eta: E \to \Phi(V \cup V')$ labelings of actions/edges with transition predicates

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs

Proof Object Proof Rules

Verification Algorithn States vs Traces

Trace Unwindings Trace Tableaux

Concurrent Trace

A labeled, directed, acyclic graph $A = \langle N, E, \nu, \eta \rangle$:

- $\langle N, E \rangle$ is a graph with *actions* N and edges E
- $\blacktriangleright \nu: N \to \Phi(V \cup V')$
- ▶ $\eta: E \to \Phi(V \cup V')$ labelings of actions/edges with transition predicates

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs

Proof Object Proof Rules

States vs Traces Trace Unwindings

State Transition

For a state s: $\{t^1, \ldots, t^n\}$, where $s \xrightarrow{t^i} s'_i$ are transitions, enabled in s.

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

State Transition For a state s: $\{t^1, \ldots, t^n\}$, where $s \xrightarrow{t^i} s'_i$ are transitions, enabled in s.

Seen as Trace Transformations s_1, t_1, \dots, s $s_1, t_1, \dots, s, t^n, s'_n$

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causal Transition

 $\tau : \{\tau_1, \ldots, \tau_n\}$ where $\tau_i : (L \xrightarrow{r_i} R_i)$, are trace productions sharing the same left-hand side *L*. τ is *sound* if the following holds:

$$\forall A . A \subseteq_m L \implies \mathcal{L}(A) \subseteq \bigcup_{\tau_i \in \tau} \mathcal{L}(\tau_i^m(A))$$

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causal Transition $\tau : \{\tau_1, \ldots, \tau_n\}$ where $\tau_i : (L \xrightarrow{r_i} R_i)$, are trace productions sharing the same left-hand side L. τ is *sound* if the following holds:

$$\forall A . A \subseteq_m L \implies \mathcal{L}(A) \subseteq \bigcup_{\tau_i \in \tau} \mathcal{L}(\tau_i^m(A))$$

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causal Transition $\tau : \{\tau_1, \ldots, \tau_n\}$ where $\tau_i : (L \xrightarrow{r_i} R_i)$, are trace productions sharing the same left-hand side L. τ is *sound* if the following holds:

$$\forall A . A \subseteq_m L \implies \mathcal{L}(A) \subseteq \bigcup_{\tau_i \in \tau} \mathcal{L}(\tau_i^m(A))$$

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causal Transition $\tau : \{\tau_1, \ldots, \tau_n\}$ where $\tau_i : (L \xrightarrow{r_i} R_i)$, are trace productions sharing the same left-hand side L. τ is *sound* if the following holds:

$$\forall A . A \subseteq_m L \implies \mathcal{L}(A) \subseteq \bigcup_{\tau_i \in \tau} \mathcal{L}(\tau_i^m(A))$$

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causal Transition $\tau : \{\tau_1, \ldots, \tau_n\}$ where $\tau_i : (L \xrightarrow{r_i} R_i)$, are trace productions sharing the same left-hand side L. τ is *sound* if the following holds:

$$\forall A . A \subseteq_m L \implies \mathcal{L}(A) \subseteq \bigcup_{\tau_i \in \tau} \mathcal{L}(\tau_i^m(A))$$

Order Split

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causal Transition $\tau : \{\tau_1, \ldots, \tau_n\}$ where $\tau_i : (L \xrightarrow{r_i} R_i)$, are trace productions sharing the same left-hand side L. τ is *sound* if the following holds:

$$\forall A . A \subseteq_m L \implies \mathcal{L}(A) \subseteq \bigcup_{\tau_i \in \tau} \mathcal{L}(\tau_i^m(A))$$

Action Split

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causal Transition

 $\tau : \{\tau_1, \ldots, \tau_n\}$ where $\tau_i : (L \xrightarrow{r_i} R_i)$, are trace productions sharing the same left-hand side L. τ is *sound* if the following holds:

$$\forall A . A \subseteq_m L \implies \mathcal{L}(A) \subseteq \bigcup_{\tau_i \in \tau} \mathcal{L}(\tau_i^m(A))$$

Action Restriction

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causal Transition

 $\tau : \{\tau_1, \ldots, \tau_n\}$ where $\tau_i : (L \xrightarrow{r_i} R_i)$, are trace productions sharing the same left-hand side L. τ is *sound* if the following holds:

$$\forall A . A \subseteq_m L \implies \mathcal{L}(A) \subseteq \bigcup_{\tau_i \in \tau} \mathcal{L}(\tau_i^m(A))$$

Edge Restriction

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

begin

```
set Q \leftarrow InitialAbstraction(S)

while not FixedPoint(Q) do

take some q from Q

if IsError(q) then

| return unsafe

else

Q := Q \cup Successors(q)

return safe
```

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Conclusior

begin

set $Q \leftarrow InitialAbstraction(S)$ while not FixedPoint(Q) do take some q from Q if IsError(q) then | return unsafe else Q := Q \cup Successors(q) return safe

Search Object:

State

Concurrent Trace

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causality-Based Verification of Multi-threaded Programs

begin

set $Q \leftarrow InitialAbstraction(S)$				
while not FixedPoint(Q) do				
take some q from Q				
if <i>lsError</i> (q) then				
return unsafe				
else				
$ \ \ \ \ \ \ \ \ \ \ \ \ \$				
return safe				

Search Object:	State	Concurrent Trace
InitialAbstraction(S):	T	$I \longrightarrow E$
lsError(q):	$q \cap E eq \emptyset$	Linearizable(q)

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

begin

set $Q \leftarrow InitialAbstraction(S)$				
while not $FixedPoint(Q)$ do				
take some q from Q				
if $lsError(q)$ then				
return unsafe				
else				
$ \ Q := Q \cup Successors(q) $				
return safe				

Search Object:	State	Concurrent Trace
InitialAbstraction(S):	1	$I \longrightarrow E$
lsError(q):	$q \cap E \neq \emptyset$	Linearizable(q)
Successors(q):	StateTransition(q)	CausalTransition(q)

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

begin

Search Object:	State	Concurrent Trace
InitialAbstraction(S):	T	$I \longrightarrow E$
lsError(q):	$q \cap E eq \emptyset$	Linearizable(q)
Successors(q):	StateTransition(q)	CausalTransition(q)
FixedPoint(Q):	$orall q \in Q$. Succesors $(q) \subseteq Q$?

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Looking Closer into State Fixed-point...

State Fixed-point $\forall q \in Q$. Succesors $(q) \subseteq Q$ Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Looking Closer into State Fixed-point...

State Fixed-point $\forall q \in Q$. Succesors $(q) \subseteq Q$

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Looking Closer into State Fixed-point...

State Fixed-point $\forall q \in Q$. Succesors $(q) \subseteq Q$

Trace Fixed-point

There is no finite trace between I and E.

Alternatively: any trace between I and E should have infinite length!

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

/erification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

States vs Traces Trace Unwindings

Trace Tableau>

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

States vs Traces Trace Unwindings

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

States vs Traces Trace Unwindings Trace Tableaux

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

States vs Traces Trace Unwindings Trace Tableaux

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm States vs Traces Trace Unwindings

Trace Tableaux

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

/erification Algorithn States vs Traces

Trace Unwindings Trace Tableaux

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithr States vs Traces Trace Unwindings

Trace Tableaux

 $pc_2 = 1 \land pc'_2 = 2$ $l = 0 \land l' = 1$

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

States vs Traces Trace Unwindings

Theorem (Soundness of Trace Unwinding)

If there exists a correct causal trace unwinding for \mathcal{P} , where every causal path is either contradictory or unbounded, then \mathcal{P} is safe.

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings

Theorem (Soundness of Trace Unwinding)

If there exists a correct causal trace unwinding for \mathcal{P} , where every causal path is either contradictory or unbounded, then \mathcal{P} is safe.

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings

Theorem (Soundness of Trace Unwinding)

If there exists a correct causal trace unwinding for \mathcal{P} , where every causal path is either contradictory or unbounded, then \mathcal{P} is safe.

Trace Tableau = Trace Unwinding + abstract labels + covering relation Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introduction

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Conclusior

abstract

concrete

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Conclusion

$\begin{array}{c} i \\ pc_1' = 1 \\ pc_2' = 1 \\ pc_3' = 1 \end{array}$

2

abstract

concrete

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm States vs Traces Trace Unwindings Trace Tableaux

2

3

abstract

concrete

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithn States vs Traces Trace Unwindings Trace Tableaux

2

3

abstract

concrete

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Trace Tableaux

abstract

concrete Conclu

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object

Verification Algorithn States vs Traces Trace Unwindings Trace Tableaux

abstract

Conclusio

Trace Tableaux

Causality-Based

Verification of Multi-threaded Programs

Andrey Kupriyanov

and Bernd Finkbeiner

abstract

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm States vs Traces Trace Unwindings Trace Tableaux

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithn States vs Traces Trace Unwindings Trace Tableaux

Theorem (Soundness)

If there exists a correct and complete causal trace tableau for a parallel program \mathcal{P} , then \mathcal{P} is safe.

Theorem (Completeness)

If a parallel program \mathcal{P} with finite-state quotient is safe, then there exists a correct and complete causal trace tableau for \mathcal{P} .

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causality-based Verification: Conclusion

We propose to shift emphasis from state space exploration to causality-based proof search:

- $+\,$ We capture causality by concurrent traces and their transformations
- + More powerful proof object allows to better exhibit causal relationships
- + More powerful proof rules lead to substantially shorter proofs

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux

Causality-based Verification: Conclusion

We propose to shift emphasis from state space exploration to causality-based proof search:

- $+\,$ We capture causality by concurrent traces and their transformations
- + More powerful proof object allows to better exhibit causal relationships
- + More powerful proof rules lead to substantially shorter proofs

Reduces the complexity from exponential to polynomial for the important class of multi-threaded programs.

Causality-Based Verification of Multi-threaded Programs

Andrey Kupriyanov and Bernd Finkbeiner

Introductio

Motivation Programs with Locks

Concurrent Proofs Proof Object Proof Rules

Verification Algorithm

States vs Traces Trace Unwindings Trace Tableaux