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Overview: evolution of the causality-based method

LTL Model Checking

X Full LTL

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
(atl2∧r>0) =⇒ atl3

Safety/Reachability

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
¬(atl3 ∧ atm3 )

[CONCUR 2013]

Liveness/Termination

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
atl2 =⇒ atl3
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Safety: the class of multi-threaded programs with binary locks and arbitrary control flow is analyzable in PTIME.
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Safety: the class of multi-threaded programs with binary locks and arbitrary control flow is analyzable in PTIME.

Termination: the first termination prover that scales to a large number of non-trivial concurrent threads.

Terminator T2 AProVE Arctor 1

Threads Time(s) Mem.(MB) Time(s) Mem.(MB) Time(s) Mem.(MB) Time(s) Mem.(MB)

1 3.37 26 2.42 38 3.17 237 0.002 2.3
2 1397 1394 3.25 44 6.79 523 0.002 2.6
3 × MO U(29.2) 253 U(26.6) 1439 0.002 2.6
4 × MO U(36.6) 316 U(71.2) 1455 0.003 2.7
5 × MO U(30.7) 400 U(312) 1536 0.007 2.7

10 × MO Z3-TO × × MO 0.027 3.0
20 × MO Z3-TO × × MO 0.30 4.2
40 × MO Z3-TO × × MO 4.30 12.7
60 × MO Z3-TO × × MO 20.8 35
80 × MO Z3-TO × × MO 67.7 145

100 × MO Z3-TO × × MO 172 231

1Arctor : Abstraction Refinement of Concurrent Temporal Orderings (react.uni-saarland.de/tools/arctor/)
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LTL model checking

Automata-based LTL Model Checking

The standard way to model check a program P against an LTL property ϕ:
1 translate ¬ϕ into a Büchi automaton A
2 check for emptiness the synchronized product of A and P

Main problem: LTL formulas are often not small!

They describe necessary assumptions of fairness, termination, event sequences, . . .

Example: individual accessibility for semaphores

Fair scheduling : (at2 ∧ rfree) =⇒ at3

Termination of critical sections: (at3 =⇒ at1)
Individual accessibility : (at2 =⇒ at3)

ϕ ≡
∧

i∈1..n(Scheduling i ∧ Terminationi ) =⇒ Accessibility1

Translation of ¬ϕ
into a Büchi automaton, ltl3ba:

Threads Time (sec) |Automaton| (MB)
2 0.005 0.002
3 0.09 0.38
4 9.6 8.6
5 1295 185
6 TO X
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Our approach

Causality

A relationship between two events, when the occurrence of first event is recognized as
a necessary prerequisite for the occurrence of the second

• Proof objects: concurrent traces
compactly represent sets of program runs, by specifying
events that should necessarily occur in the run, and the
partial order between them

x = 0 ∧
(x<0)

x ′ = y

( y ′ > y )
ω

y > 0

• Proof rules based on causality
goal-directed, language-preserving trace transformations x = 0

x ′ = y

x < 0 ( y ′ > y )
ω

y > 0

• Proof construction: tableau search based on causal loops
causal loops ≡ infinitely-looping trace transformations

• root trace captures all possible counterexamples
• tableau branches according to applications of proof rules
• termination when all leaves are contradictory,

or covered by causal loops

i fc

i a f

c

i b f

c

i

a

b f

c

i

b

¬c f

c
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b

f f
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LTL Model Checking Algorithm
Transition system S

Pick a trace?

Construct initial
trace tableau

Propagate
tableau premises

return Property holds
no

Coverable?

yes

Trace inclusion

Apply
trace cover

yes

Linearizable?

SMT, unsat core,
Craig interpolation

no
Safety

refinement

no

LTL unsat?

LTL path checking

LTL
refinement

yes

Terminating?

Ranking function synthesis

yes

no

Liveness
refinement

yes

return Possible counterexample

no
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Conclusion

LTL Model Checking

X Full LTL

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
(atl2∧r>0) =⇒ atl3

Safety/Reachability

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
¬(atl3 ∧ atm3 )

[CONCUR 2013]

Result: the class of multi-
threaded programs with binary
locks is analyzable in PTIME

Liveness/Termination

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
atl2 =⇒ atl3

[CAV 2014]

Result: the first termination
prover that scales to a large
number of concurrent threads

Preliminary results: exponentially
more concise proofs for some classes
of programs, compared to standard
automata-based methods

check my PhD thesis
(coming soon)

Want to learn more? See the poster, and talk to me!
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