Causality-based LTL Model Checking without Automata

joint work with Bernd Finkbeiner

Andrey Kupriyanov

Saarland University
Reactive Systems Group

October 23, 2014

UNIVERSITAT H
DES geaﬁctlve
SAARLANDES yStems

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

Context
L]

Overview: evolution of the causality-based method

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

Context
L]

Overview: evolution of the causality-based method

e 7
Safety/Reachability

+ Vr.0¢ / In.Od
V' Infinite-state
v Multi-threading

Tl I T k=
O-(atyy A atms)

[CONCUR 2013]

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

Context
L]

Overview: evolution of the causality-based method

e 7
Safety/Reachability

+ Vr.0¢ / In.Od
V' Infinite-state
v Multi-threading

Tl I T k=
O-(atyy A atms)

[CONCUR 2013]

Safety: the class of multi-threaded programs with binary locks and arbitrary control flow is analyzable in PTIME.

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

-
Safety/Reachability

~

+ Vr.0¢ / In.Od
V' Infinite-state
v Multi-threading

Tl I T k=
O-(atyy A atms)

[CONCUR 2013]

Context
L]

Overview: evolution of the causality-based method

-
Liveness/ Termination

~

+ Vr. O / Ir.O¢
V' Infinite-state
v' Multi-threading

Tl |l To
at, — <>2t/3

[CAV 2014]

Safety: the class of multi-threaded programs with binary locks and arbitrary control flow is analyzable in PTIME.

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

Context
L]

Overview: evolution of the causality-based method

-
Safety/Reachability

~

+ Vr.0¢ / In.Od
V' Infinite-state
v Multi-threading

Tl I T k=
O-(atyy A atms)

[CONCUR 2013]

-
Liveness/ Termination

~

+ Vr. O / Ir.O¢
V' Infinite-state
v' Multi-threading

Tl |l To
at, — <>at,3

[CAV 2014]

Safety: the class of multi-threaded programs with binary locks and arbitrary control flow is analyzable in PTIME.

Termination: the first termination prover that scales to a large number of non-trivial concurrent threads.

[i Terminator i T2 i AProVE i Arctor !

[Threads || Time(s) | Mem.(MB) |[Time(s) | Mem.(MB) || Time(s) | Mem.(MB) || Time(s) | Mem.(MB) |
T 337 26 242 38 317 237 0.002 23
2 1397 1394 3.25 44 6.79 523 0.002 2.6
3 x MO U(29.2) 253 U(26.6) 1439 0.002 2.6
4 x MO U(36.6) 316 U(71.2) 1455 0.003 2.7
5 x MO U(30.7) 400 U312) 1536 0.007 2.7
10 x MO 7370 x x MO 0.027 3.0
20 x MO 73-TO x x MO 0.30 4.2
40 x MO 73-TO x x MO 430 12.7
60 x MO 73-T0 x x MO 20.8 35
80 x MO 73-T0 x x MO 67.7 145
100 x MO 73-T0 x x MO 172 231

LArctor : Abstraction Refinement of Concurrent Temporal Orderings (react.uni-saarland.de/tools/arctor/)

ased LTL Model Checking with

Automata

Context [[\Igorithm Conclusion

Overview: evolution of the causality-based method

e 7 d 7 e 7
Safety/Reachability LTL Model Checking Liveness/ Termination
+ Vr.0¢ / In.Od v' Full LTL + Vr. O / Ir.O¢
V' Infinite-state V' Infinite-state V' Infinite-state
v Multi-threading ? v Multi-threading 3 v' Multi-threading
Toll - Il T = Tl T E Toll- Il Ta =
O-(aty, A atmy) O(at, Ar>0) = OO aty, at, = Oaty,
- J & J - J
[CONCUR 2013] [CAV 2014]

Safety: the class of multi-threaded programs with binary locks and arbitrary control flow is analyzable in PTIME.

Termination: the first termination prover that scales to a large number of non-trivial concurrent threads.

[i Terminator i T2 i AProVE i Arctor !

[Threads || Time(s) | Mem.(MB) |[Time(s) | Mem.(MB) || Time(s) | Mem.(MB) || Time(s) | Mem.(MB) |
T 337 26 242 38 317 237 0.002 23
2 1397 1394 3.25 44 6.79 523 0.002 2.6
3 x MO U(29.2) 253 U(26.6) 1439 0.002 2.6
4 x MO U(36.6) 316 U(71.2) 1455 0.003 2.7
5 x MO U(30.7) 400 U312) 1536 0.007 2.7
10 x MO 7370 x x MO 0.027 3.0
20 x MO 73-TO x x MO 0.30 4.2
40 x MO 73-TO x x MO 430 12.7
60 x MO 73-T0 x x MO 20.8 35
80 x MO 73-T0 x x MO 67.7 145
100 x MO 73-T0 x x MO 172 231

LArctor : Abstraction Refinement of Concurrent Temporal Orderings (react.uni-saarland.de/tools/arctor/)

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

Motivation
(]

LTL model checking

Automata-based LTL Model Checking

The standard way to model check a program P against an LTL property ¢:
® translate —p into a Biichi automaton A
@® check for emptiness the synchronized product of A and P

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

Motivation
(]

LTL model checking

Automata-based LTL Model Checking

The standard way to model check a program P against an LTL property ¢:
® translate —p into a Biichi automaton A
@® check for emptiness the synchronized product of A and P

Main problem: LTL formulas are often not small!

They describe necessary assumptions of fairness, termination, event sequences, ...

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

Motivation Causali \lgorithm

LTL model checking

Automata-based LTL Model Checking

The standard way to model check a program P against an LTL property ¢:
® translate —p into a Biichi automaton A
@® check for emptiness the synchronized product of A and P

Main problem: LTL formulas are often not small!

They describe necessary assumptions of fairness, termination, event sequences, ...

Example: individual accessibility for semaphores

Fair scheduling: OO (at2 A rree) = O at3
Termination of critical sections: [(at3 — <>aty)
Individual accessibility: O(ata = $ats)

¢ = Ajc1..,(Scheduling; A Termination;) = Accessibility,

Threads || Time (sec) | |Automaton| (MB)
Translation of — 2 (Lg0s 0902
3 0.09 0.38
into a Biichi automaton, ItI3ba: 4 96 8.6
5 1295 185
6 TO X

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

Causality
L]

Our approach

A relationship between two events, when the occurrence of first event is recognized as
a necessary prerequisite for the occurrence of the second

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

Causality
L]

Our approach

A relationship between two events, when the occurrence of first event is recognized as
a necessary prerequisite for the occurrence of the second

e Proof objects: concurrent traces
compactly represent sets of program runs, by specifying oA ()w
events that should necessarily occur in the run, and the O (x<0) y>0 L=V

partial order between them

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

Causality
L]

Our approach

A relationship between two events, when the occurrence of first event is recognized as
a necessary prerequisite for the occurrence of the second

e Proof objects: concurrent traces P
compactly represent sets of program runs, by specifying x=0A - w
. . >
events that should necessarily occur in the run, and the O (x<0) y>0 ()

partial order between them

o Proof rules based on causality w
goal-directed, language-preserving trace transformations [x= OQ@/}—:(‘y/ > y‘)

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

Causality
L]

Our approach

A relationship between two events, when the occurrence of first event is recognized as
a necessary prerequisite for the occurrence of the second

e Proof objects: concurrent traces
compactly represent sets of program runs, by specifying x=0A
events that should necessarily occur in the run, and the
partial order between them

o Proof rules based on causality w
goal-directed, language-preserving trace transformations [x= OQ@/}—:(‘y/ > y‘)

y>0

e Proof construction: tableau search based on causal loops) Y
causal loops = infinitely-looping trace transformations / ﬂ« \\\\\

) O—E—m m—E—m N

® root trace captures all possible counterexamples § //31 g 9
e tableau branches according to applications of proof rules lL V. & \ n
e termination when all leaves are contradictory, U !

[2]
or covered by causal loops
1
Causality-based LTL Model Checking without Automata Andrey Kupriyanov

Algorithm
o

LTL Model Checking Algorithm

Transition system S

trace tableau

l Construct initial

return return Property holds

LTL
refinement

LTL path checking Trace inclusion

Safety]

[refinement no

Liveness
refinement

Terminating? Linearizable?

SMT, unsat core,

Ranking function synthesis
Craig interpolation

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

Conclusion
o

Conclusion

e 7
Safety/Reachability

LTL Model Checking

e 7
Liveness/ Termination

+ Vr.O0d / In.OP
V' Infinite-state
v Multi-threading

v Full LTL
V' Infinite-state
v' Multi-threading

+ Vr. O / Ir.Od
V' Infinite-state
v Multi-threading

Tull . I Ta = Tl Il T E Tl Th E
O-(aty, A atmy) OO(at, Ar>0) = OO aty, at, = <aty,

- J & J - J
[CONCUR 2013] [CAV 2014]

Result: the class of multi-

threaded programs with binary

locks is analyzable in PTIME

Result: the first termination
prover that scales to a large
number of concurrent threads

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

Conclusion

Conclusion

e 7
Safety/Reachability

LTL Model Checking

e 7
Liveness/ Termination

+ Vr.O0d / In.OP
V' Infinite-state

v Multi-threading ?

v Full LTL
V' Infinite-state
v' Multi-threading

+ Vr. O / Ir.Od
V' Infinite-state
v Multi-threading

Tl Il Te

Tl I T =

Tl Ta b=

O-(aty, A atmy) OO(at, Ar>0) = OO aty, at, = <aty,
- J & J - J

[CONCUR 2013] [CAV 2014]

Preliminary results: exponentially
more concise proofs for some classes
of programs, compared to standard
automata-based methods

Result: the first termination
prover that scales to a large
number of concurrent threads

Result: the class of multi-
threaded programs with binary
locks is analyzable in PTIME

Andrey Kupriyanov

based LTL Model Checking without Automata

Conclusion
o

Conclusion
e 7 d 7 e 7
Safety/Reachability LTL Model Checking Liveness/ Termination
+ Vr.O0d / In.OP v Full LTL + Vr. O / Ir.Od
V' Infinite-state V' Infinite-state V' Infinite-state
v Multi-threading ? v' Multi-threading < v Multi-threading
Tl Ta Tl .l Ta Tl I To
O-(aty, A atmy) OO(at, Ar>0) = OO aty, at, = <aty,
& J A / & J
[CONCUR 2013] [CAV 2014]
Preliminary results: exponentially
Result: the class of multi- more concise proofs for some classes Result: the first termination
threaded programs with binary of programs, compared to standard prover that scales to a large
locks is analyzable in PTIME automata-based methods number of concurrent threads

|
check my PhD thesis
(coming soon)

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

Conclusion
o

Conclusion
e 7 d 7 e 7
Safety/Reachability LTL Model Checking Liveness/ Termination
+ Vr.O0d / In.OP v Full LTL + Vr. O / Ir.Od
V' Infinite-state V' Infinite-state V' Infinite-state
v Multi-threading ? v' Multi-threading < v Multi-threading
Tl Ta Tl .l Ta Tl I To
O-(aty, A atmy) OO(at, Ar>0) = OO aty, at, = <aty,
& J A / & J
[CONCUR 2013] [CAV 2014]
Preliminary results: exponentially
Result: the class of multi- more concise proofs for some classes Result: the first termination
threaded programs with binary of programs, compared to standard prover that scales to a large
locks is analyzable in PTIME automata-based methods number of concurrent threads

|
check my PhD thesis
(coming soon)

Want to learn more? See the poster, and talk to me!

Causality-based LTL Model Checking without Automata Andrey Kupriyanov

	Context
	Motivation
	Causality
	Algorithm
	Conclusion

