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Safety: the class of multi-threaded programs with binary locks and arbitrary control flow is analyzable in PTIME.
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Safety: the class of multi-threaded programs with binary locks and arbitrary control flow is analyzable in PTIME.

Termination: the first termination prover that scales to a large number of non-trivial concurrent threads.

[ i Terminator i T2 i AProVE i Arctor !

[ Threads || Time(s) | Mem.(MB) |[ Time(s) | Mem.(MB) || Time(s) | Mem.(MB) || Time(s) | Mem.(MB) |
T 337 26 242 38 317 237 0.002 23
2 1397 1394 3.25 44 6.79 523 0.002 2.6
3 x MO U(29.2) 253 U(26.6) 1439 0.002 2.6
4 x MO U(36.6) 316 U(71.2) 1455 0.003 2.7
5 x MO U(30.7) 400 U312) 1536 0.007 2.7
10 x MO 7370 x x MO 0.027 3.0
20 x MO 73-TO x x MO 0.30 4.2
40 x MO 73-TO x x MO 430 12.7
60 x MO 73-T0 x x MO 20.8 35
80 x MO 73-T0 x x MO 67.7 145
100 x MO 73-T0 x x MO 172 231

LArctor : Abstraction Refinement of Concurrent Temporal Orderings (react.uni-saarland.de/tools/arctor/)
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Automata-based LTL Model Checking

The standard way to model check a program P against an LTL property ¢:
® translate —p into a Biichi automaton A
@® check for emptiness the synchronized product of A and P

Main problem: LTL formulas are often not small!

They describe necessary assumptions of fairness, termination, event sequences, ...

Example: individual accessibility for semaphores

Fair scheduling: OO (at2 A rree) = O at3
Termination of critical sections: [(at3 — <>aty)
Individual accessibility: O(ata = $ats)

¢ = Ajc1..,(Scheduling; A Termination;) = Accessibility,

Threads || Time (sec) | |Automaton| (MB)
Translation of — 2 (Lg0s 0902
# 3 0.09 0.38
into a Biichi automaton, ItI3ba: 4 96 8.6
5 1295 185
6 TO X
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Our approach
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a necessary prerequisite for the occurrence of the second
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Our approach

A relationship between two events, when the occurrence of first event is recognized as
a necessary prerequisite for the occurrence of the second

e Proof objects: concurrent traces
compactly represent sets of program runs, by specifying x=0A
events that should necessarily occur in the run, and the
partial order between them

o Proof rules based on causality w
goal-directed, language-preserving trace transformations [x= OQ@/}—:( ‘y/ > y‘)

y>0

e Proof construction: tableau search based on causal loops ) Y
causal loops = infinitely-looping trace transformations / ﬂ« \\\\\

) O—E—m m—E—m N

® root trace captures all possible counterexamples § //31 g 9
e tableau branches according to applications of proof rules lL V. & \ n
e termination when all leaves are contradictory, U !

[2]
or covered by causal loops
1
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Result: the class of multi-

threaded programs with binary

locks is analyzable in PTIME

Result: the first termination
prover that scales to a large
number of concurrent threads
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Preliminary results: exponentially
more concise proofs for some classes
of programs, compared to standard
automata-based methods

Result: the first termination
prover that scales to a large
number of concurrent threads

Result: the class of multi-
threaded programs with binary
locks is analyzable in PTIME
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check my PhD thesis
(coming soon)
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Want to learn more? See the poster, and talk to me!
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