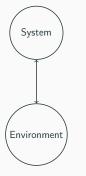
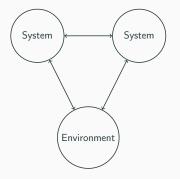


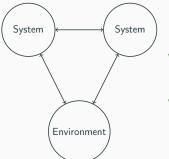
# Efficient Trace Encodings of Bounded Synthesis for Asynchronous Distributed Systems

Jesko Hecking-Harbusch, **Niklas O. Metzger** October 30, 2019

Saarland University - Reactive Systems Group





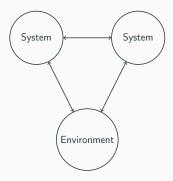


- Distributed Systems are hard to synthesize <sup>1</sup>
- ✓ Petri games as framework for distributed synthesis <sup>2</sup>
- ✓ Bounded Synthesis for Petri games<sup>3</sup>

<sup>&</sup>lt;sup>1</sup>Pnueli and Rosner, "Distributed Reactive Systems Are Hard to Synthesize".

<sup>&</sup>lt;sup>2</sup>Finkbeiner and Olderog, "Petri Games: Synthesis of Distributed Systems with Causal Memory".

<sup>&</sup>lt;sup>3</sup>Finkbeiner, "Bounded Synthesis for Petri Games".

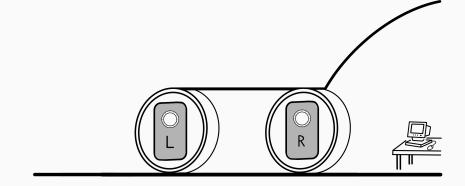


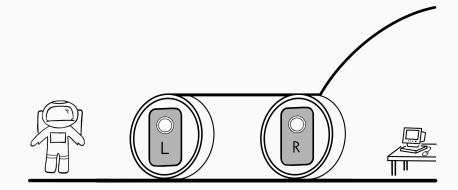
- Distributed Systems are hard to synthesize <sup>1</sup>
- ✓ Petri games as framework for distributed synthesis <sup>2</sup>
- ✓ Bounded Synthesis for Petri games<sup>3</sup>
- Asynchronous nature is encoded to interleaving

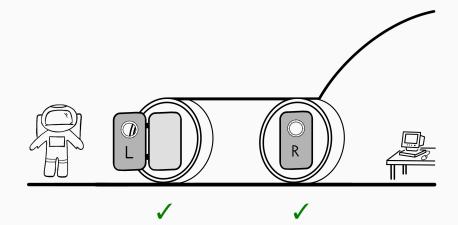
<sup>3</sup>Finkbeiner, "Bounded Synthesis for Petri Games".

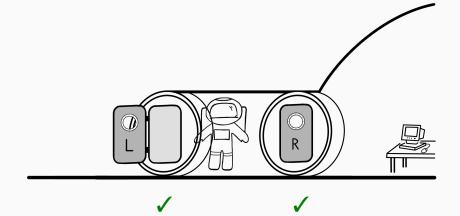
<sup>&</sup>lt;sup>1</sup>Pnueli and Rosner, "Distributed Reactive Systems Are Hard to Synthesize".

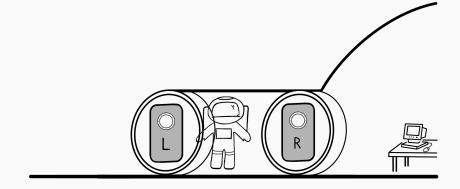
<sup>&</sup>lt;sup>2</sup>Finkbeiner and Olderog, "Petri Games: Synthesis of Distributed Systems with Causal Memory".

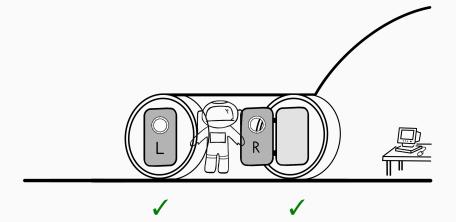


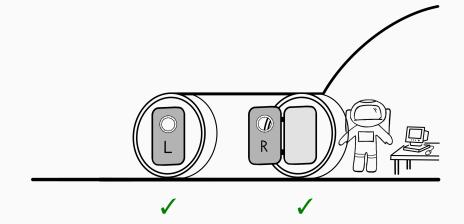


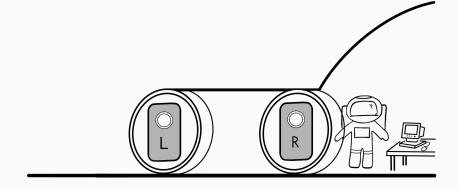


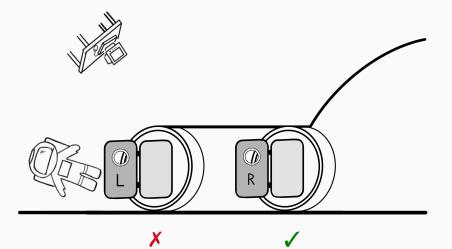


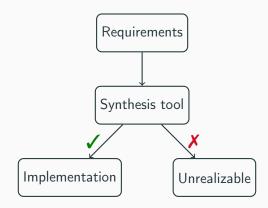




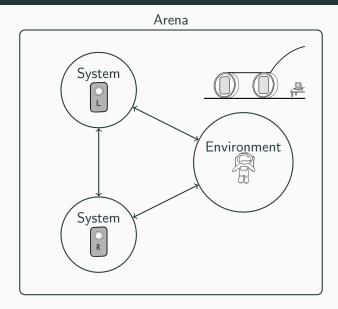




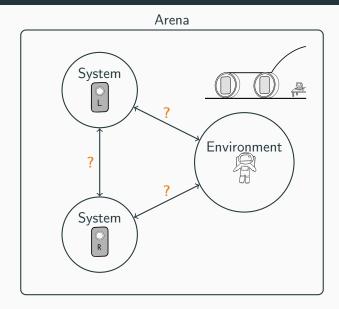




## Synthesis of Distributed Systems as a Game



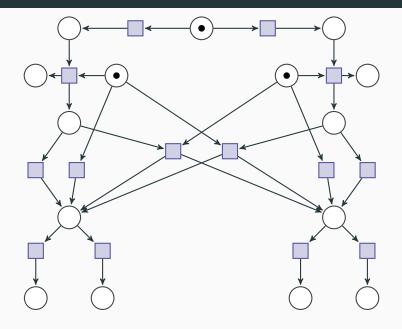
## Synthesis with Local Information



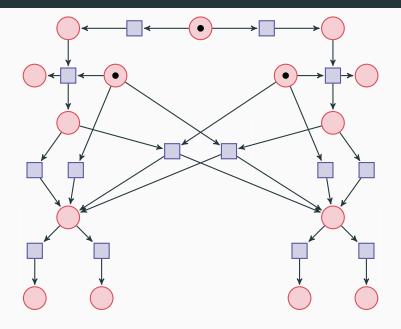
- 1. Petri Games
- 2. Bounded Synthesis
- 3. True Concurrency in Petri Games
- 4. True Concurrency in Bounded Synthesis of Petri Games

Petri Games

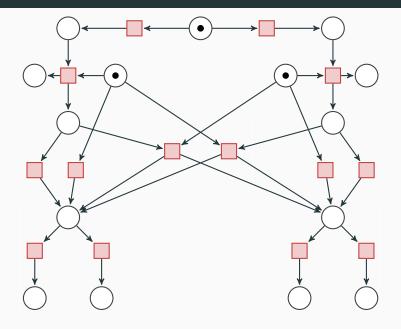
## Petri Net as Game Arena of Petri Game



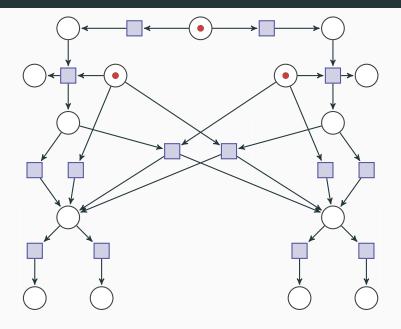
# Places $\mathscr{P}$ in a Petri Net



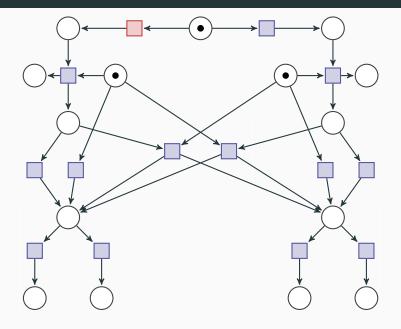
# Transitions $\mathcal{T}$ in a Petri Net



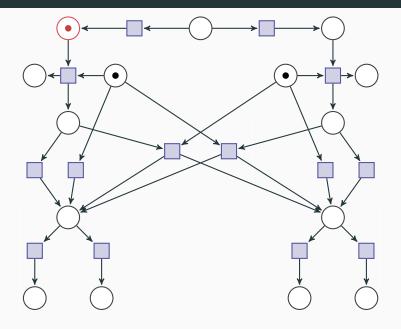
## Tokens in a Petri Net



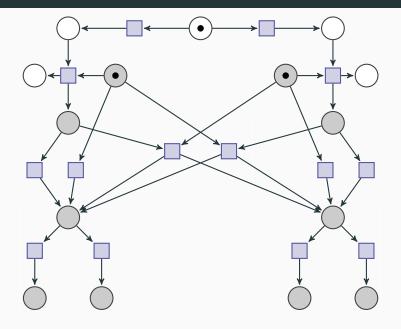
# An enabled transition...



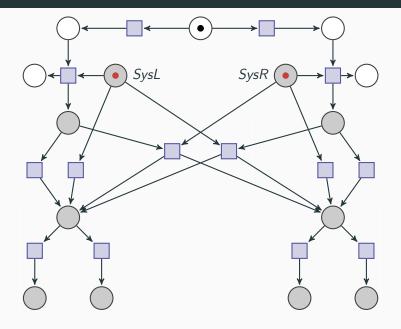
# ...can be fired in a Petri Net



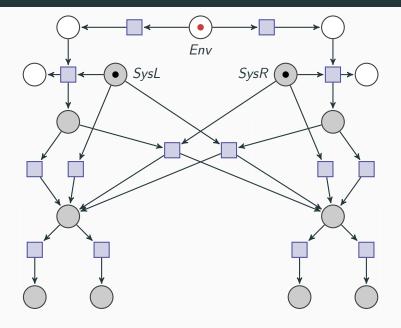
# From Net to Game



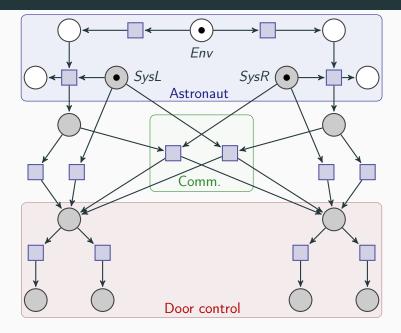
## Two System Players



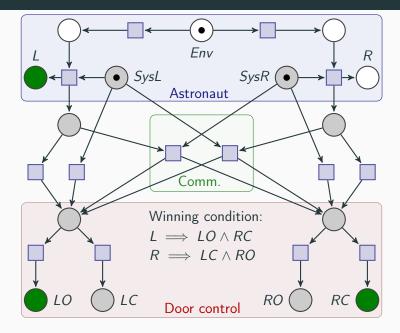
## **One Environment Player**



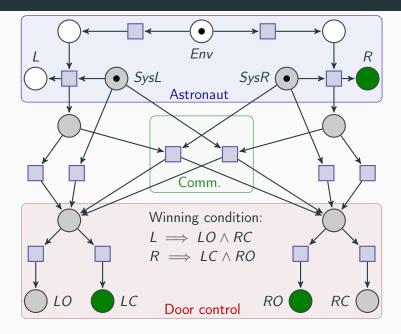
## Airlock as Petri Game



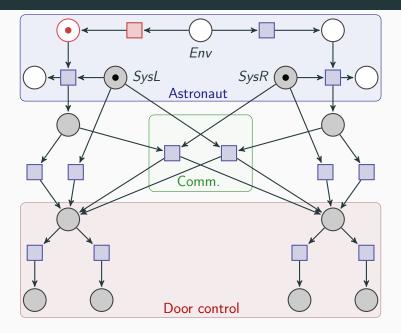
## Winning Conditions of the Petri Game



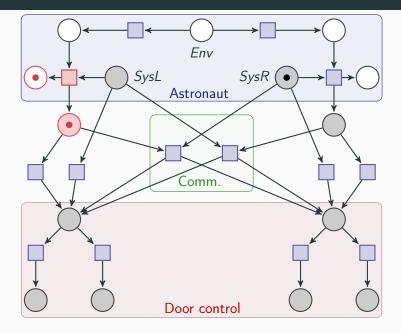
## Winning Conditions of the Petri Game



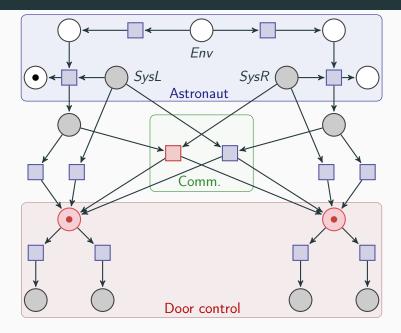
## Decision for left Door



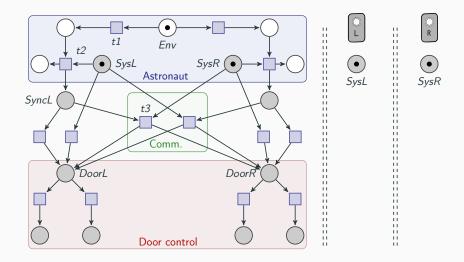
## Synchronization with the System



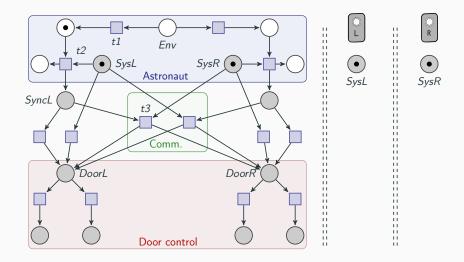
# Exchange of Information



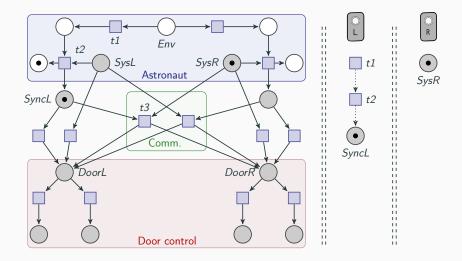
#### Memory Model of Petri Games: Causal Past



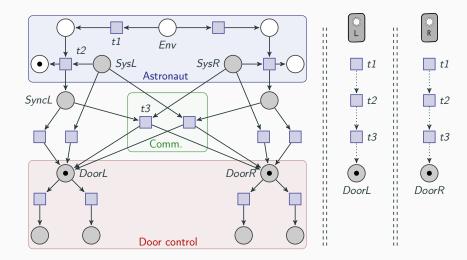
#### Memory Model of Petri Games: Causal Past



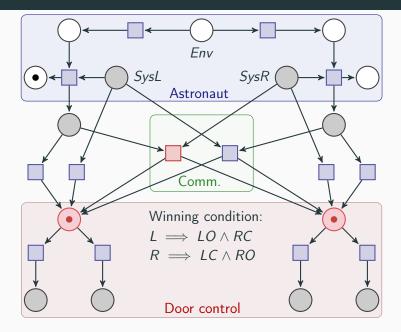
### Memory Model of Petri Games: Causal Past



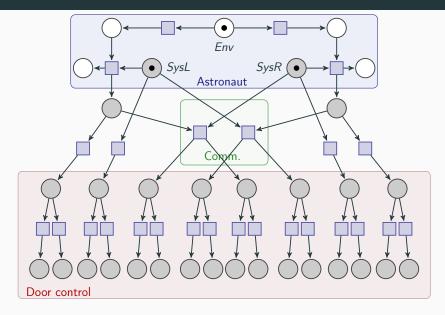
### Memory Model of Petri Games: Causal Past



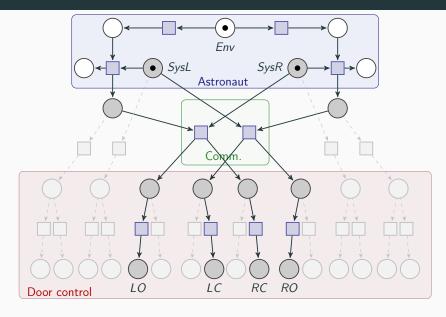
#### Refuse transitions based on Causal Past



## Unfolding of Airlock



## Winning Strategy of Airlock $\sigma$



#### **Reachable Markings**

$$\mathscr{R}(\mathscr{N}) = \{ M \subseteq \mathscr{P} \mid \exists t_1, ..., t_n \in \mathscr{T} : \exists M_1, ..., M_n \subseteq \mathscr{P} : \\ In[t_1 \rangle M_1 ... [t_n \rangle M_n = M \}$$

#### Winning Safety Condition

A system strategy  $\sigma$  is winning for the condition safety ( $\mathscr{B}$ ) iff

$$\forall M \in \mathscr{R}(\mathscr{N}^{\sigma}) : \sigma[M] \cap \mathscr{B} = \emptyset.$$

#### **Reachable Markings**

$$\mathscr{R}(\mathscr{N}) = \{ M \subseteq \mathscr{P} \mid \exists t_1, ..., t_n \in \mathscr{T} : \exists M_1, ..., M_n \subseteq \mathscr{P} : \\ In[t_1 \rangle M_1 ... [t_n \rangle M_n = M \}$$

#### Winning Safety Condition

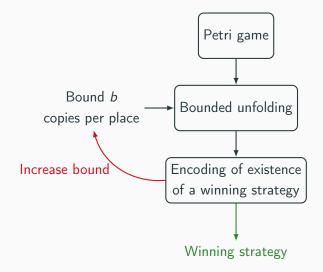
A system strategy  $\sigma$  is winning for the condition safety ( $\mathscr{B}$ ) iff

$$\forall M \in \mathscr{R}(\mathscr{N}^{\sigma}) : \sigma[M] \cap \mathscr{B} = \emptyset.$$

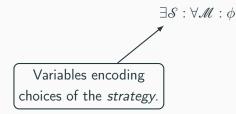
A Petri game  $\mathcal G$  is winning iff there exists a winning strategy.

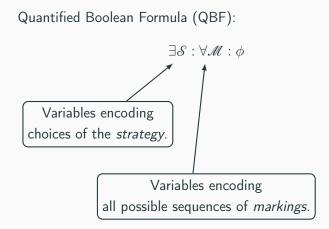
# **Bounded Synthesis**

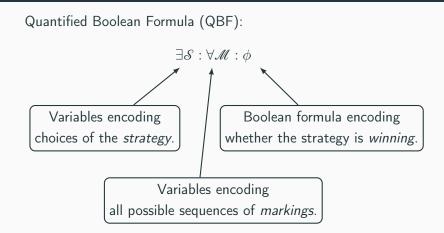
### Bounded Synthesis for Petri Games

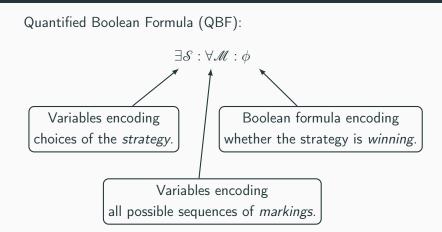


#### Quantified Boolean Formula (QBF):





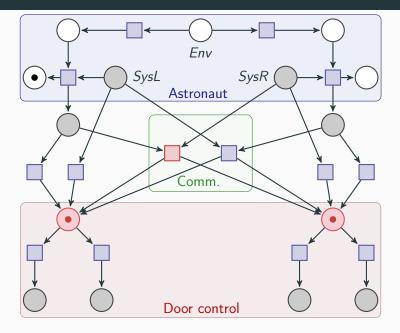




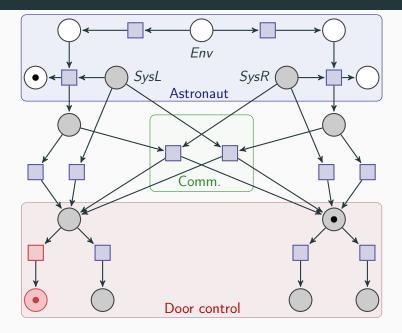
 $\phi = validStrategy \land validSequence \land terminating \land winningStrategy$ 

# True Concurrency in Petri Games

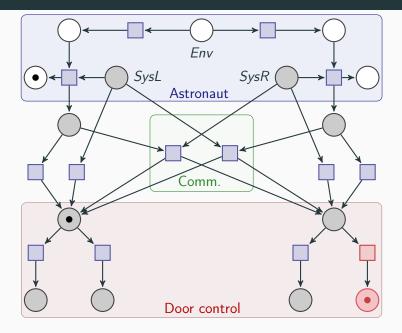
## Which Player progresses Next?



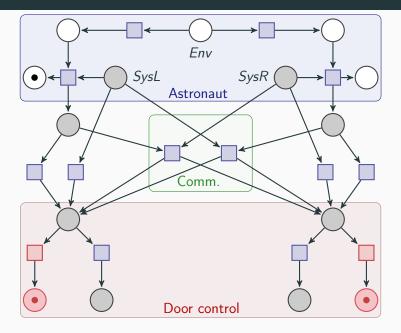
### Left Door can be First

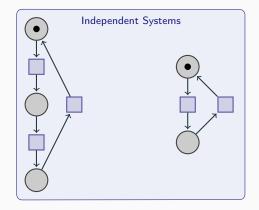


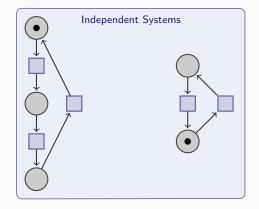
### Right Door can be First

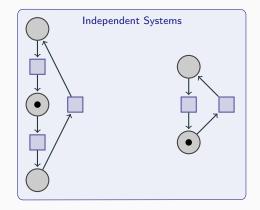


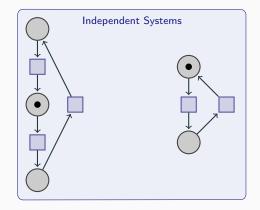
## Both System Players

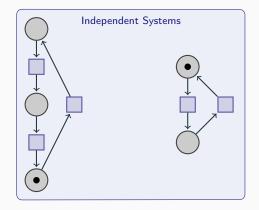


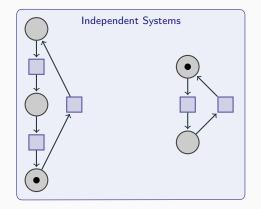




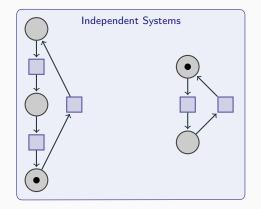




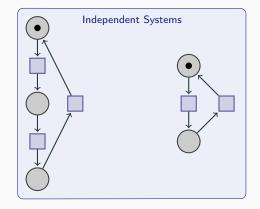


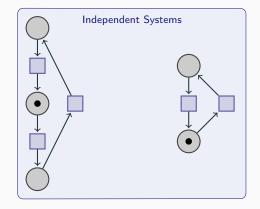


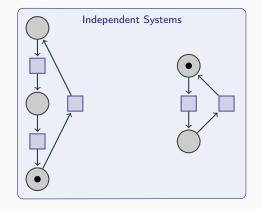
### Many interleavings with same causal past!

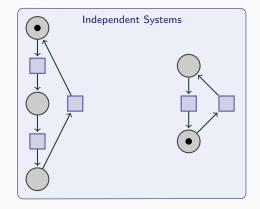


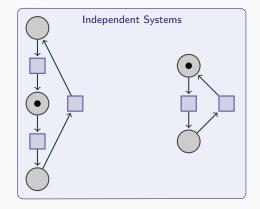
## Many interleavings with same causal past! Fire all enabled transitions

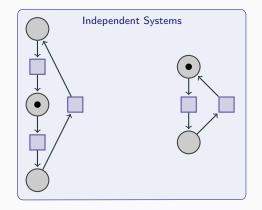






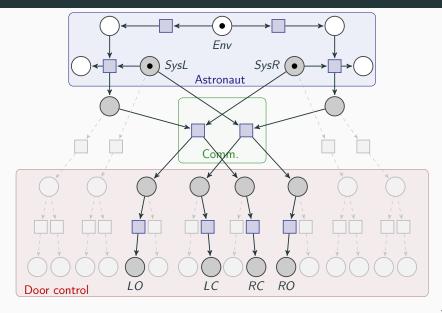




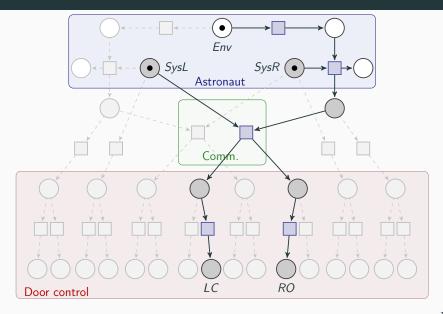


#### How to remain correct?

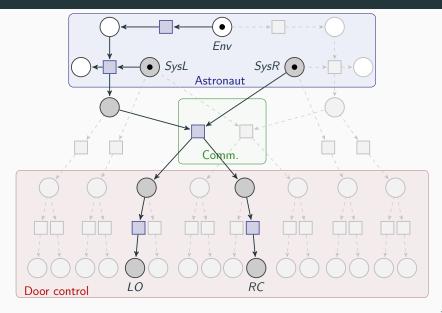
## **Environment Strategies for Airlock**



## **Environment Strategies for Airlock**



## **Environment Strategies for Airlock**



## **Environment Strategy**

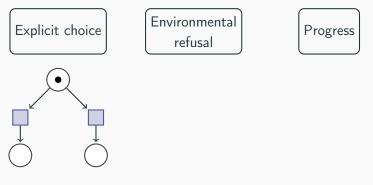
#### Definition

An environment strategy  $\gamma$  is a subnet of a system strategy  $\sigma$  that satisfies the conditions explicit choice, environmental refusal, and progress.

## **Environment Strategy**

#### Definition

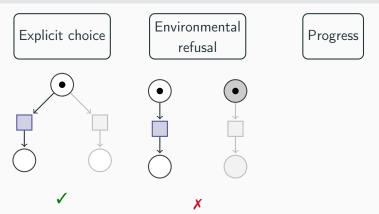
An environment strategy  $\gamma$  is a subnet of a system strategy  $\sigma$  that satisfies the conditions explicit choice, environmental refusal, and progress.



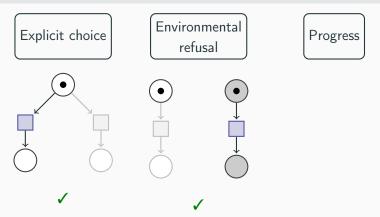
#### Definition



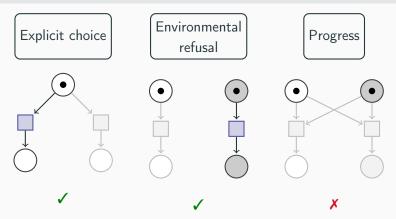
#### Definition



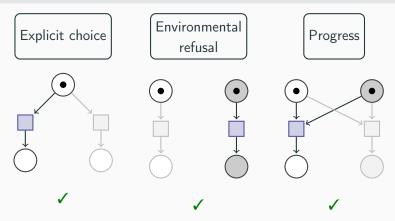
#### Definition



#### Definition



#### Definition

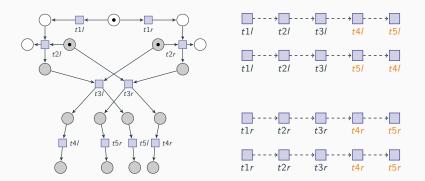


#### Theorem

An environment strategy  $\gamma$  leads to a *unique sequence* of fired transitions up to reordering of independent transitions.

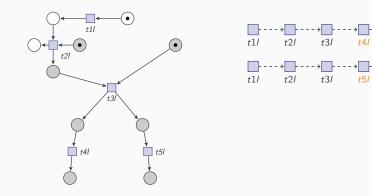
#### Theorem

An environment strategy  $\gamma$  leads to a *unique sequence* of fired transitions up to reordering of independent transitions.



#### Theorem

An environment strategy  $\gamma$  leads to a *unique sequence* of fired transitions up to reordering of independent transitions.

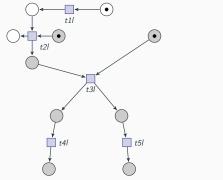


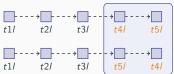
t5l

t4l

#### Theorem

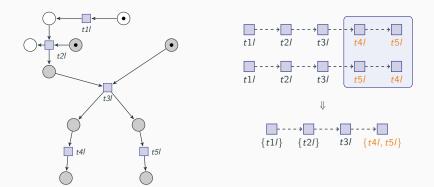
An environment strategy  $\gamma$  leads to a *unique sequence* of fired transitions up to reordering of independent transitions.





#### Theorem

An environment strategy  $\gamma$  leads to a *unique sequence* of fired transitions up to reordering of independent transitions.



$$\mathscr{R}^{seq}(\mathscr{N}) = \{ M \subseteq \mathscr{P} \mid \exists t_1, ..., t_n \in \mathscr{T} : \exists M_1, ..., M_n \subseteq \mathscr{P} : \\ In[t_1 \rangle M_1 ... [t_n \rangle M_n = M \}$$

 $\mathscr{R}^{tc}(\mathscr{N}) = \{ M \subseteq \mathscr{P} \mid \exists T_1, \dots, T_n \subseteq \mathscr{T} : \exists M_1, \dots, M_n \subseteq \mathscr{P} : \\ In[T_1 \rangle M_1 \dots [T_n \rangle M_n = M \}$ 

#### A system strategy $\sigma$ is winning for the condition safety ( $\mathscr{B}$ ) iff

$$\forall \boldsymbol{\gamma} : \forall \boldsymbol{M} \in \mathscr{R}(\mathscr{N}^{\sigma \boldsymbol{\gamma}}) : \sigma \boldsymbol{\gamma}[\boldsymbol{M}] \cap \mathscr{B} = \emptyset.$$

#### Theorem

$$\forall \gamma : \forall M \in \mathscr{R}^{tc}(\mathscr{N}^{\sigma\gamma}) : \sigma\gamma[M] \cap \mathscr{B} = \emptyset$$
$$\Leftrightarrow$$
$$\forall M \in \mathscr{R}^{seq}(\mathscr{N}^{\sigma}) : \sigma[M] \cap \mathscr{B} = \emptyset$$

#### Theorem

$$\forall \gamma : \forall M \in \mathscr{R}^{tc}(\mathscr{N}^{\sigma\gamma}) : \sigma\gamma[M] \cap \mathscr{B} = \emptyset$$
$$\Leftrightarrow$$
$$\forall M \in \mathscr{R}^{seq}(\mathscr{N}^{\sigma}) : \sigma[M] \cap \mathscr{B} = \emptyset$$

$$\mathscr{R}^{\mathsf{seq}}(\mathscr{N}^{\sigma}) = \bigcup_{\gamma \in \mathscr{N}^{\sigma}} (\mathscr{R}^{\mathsf{seq}}(\mathscr{N}^{\sigma\gamma}))$$

#### Theorem

$$\begin{split} \forall \gamma : \forall M \in \mathscr{R}^{tc}(\mathscr{N}^{\sigma\gamma}) : \sigma\gamma[M] \cap \mathscr{B} = \emptyset \\ \Leftrightarrow \\ \forall M \in \mathscr{R}^{seq}(\mathscr{N}^{\sigma}) : \sigma[M] \cap \mathscr{B} = \emptyset \end{split}$$

$$egin{aligned} \mathscr{R}^{\mathsf{seq}}(\mathscr{N}^{\sigma}) &= igcup_{\gamma \in \mathscr{N}^{\sigma}}(\mathscr{R}^{\mathsf{seq}}(\mathscr{N}^{\sigma\gamma})) \ \mathscr{R}^{\mathsf{seq}}(\mathscr{N}^{\sigma}) \supseteq igcup_{\gamma \in \mathscr{N}^{\sigma}}(\mathscr{R}^{\mathsf{tc}}(\mathscr{N}^{\sigma\gamma})) \end{aligned}$$

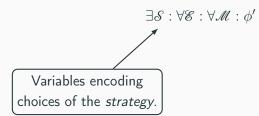
#### Theorem

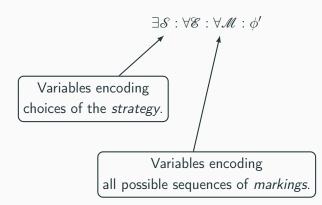
$$\begin{split} \forall \gamma : \forall M \in \mathscr{R}^{tc}(\mathscr{N}^{\sigma\gamma}) : \sigma\gamma[M] \cap \mathscr{B} = \emptyset \\ \Leftrightarrow \\ \forall M \in \mathscr{R}^{seq}(\mathscr{N}^{\sigma}) : \sigma[M] \cap \mathscr{B} = \emptyset \end{split}$$

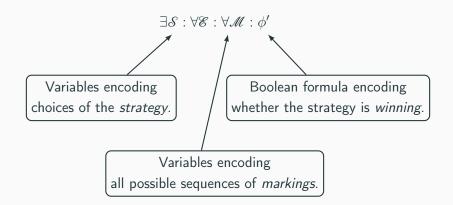
$$\mathcal{R}^{seq}(\mathcal{N}^{\sigma}) = \bigcup_{\gamma \in \mathcal{N}^{\sigma}} (\mathcal{R}^{seq}(\mathcal{N}^{\sigma\gamma}))$$
$$\mathcal{R}^{seq}(\mathcal{N}^{\sigma}) \supseteq \bigcup_{\gamma \in \mathcal{N}^{\sigma}} (\mathcal{R}^{tc}(\mathcal{N}^{\sigma\gamma}))$$
$$\bigcup_{M \in \mathcal{R}^{seq}(\mathcal{N}^{\sigma})} \bigcup_{p \in M} p = \bigcup_{M \in \bigcup_{\gamma \in \mathcal{N}^{\sigma}} (\mathcal{R}^{tc}(\mathcal{N}^{\sigma\gamma}))} \bigcup_{p \in M} p$$

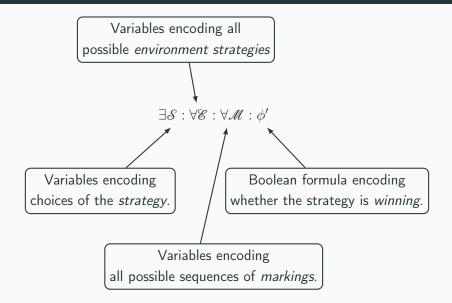
# True Concurrency in Bounded Synthesis of Petri Games

#### $\exists \mathcal{S} : \forall \mathcal{E} : \forall \mathcal{M} : \phi'$









# $\phi' = validEnvStrategy \Rightarrow$

(validStrategy  $\land$  validSequence  $\land$  terminating  $\land$  winningStrategy)

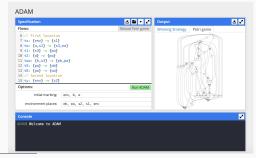
# $\phi' = \textit{validEnvStrategy} \Rightarrow$

(validStrategy  $\land$  validSequence  $\land$  terminating  $\land$  winningStrategy)

validEnvStrategy: filters invalid environment strategiesvalidSequence: encodes true concurrent firing semanticsterminating: encodes termination of SCCs

# Bounded Synthesis Implementation ADAM<sup>4</sup>

- Implementation of Petri game decision procedures
- Online interface for bounded synthesis
- Try it online: https://react.uni-saarland.de/ADAM

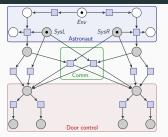


<sup>4</sup>Finkbeiner, Gieseking, and Olderog, "Adam: Causality-Based Synthesis of Distributed Systems".

# **Experimental Evaluation**

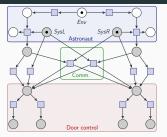
|                     |           | Sequential |                    | True Concurrent |                    |
|---------------------|-----------|------------|--------------------|-----------------|--------------------|
| Benchmark           | Parameter | Iteration  | Runtime in seconds | Iteration       | Runtime in seconds |
| Alarm System        | 2         | 7          | 13.26              | 6               | 11.15              |
|                     | 3         | -          | timeout            | -               | timeout            |
| Collision Avoidance | 2         | 8          | 7.27               | 5               | 6.25               |
|                     | 3         | -          | timeout            | 6               | 14.21              |
|                     | 4         | -          | timeout            | 7               | 346.23             |
|                     | 5         | -          | timeout            | -               | timeout            |
| Disjoint Routing    | 2         | 8          | 6.16               | 7               | 6.05               |
|                     | 3         | 11         | 11.03              | 9               | 10.07              |
|                     | 4         | 14         | 69.50              | 11              | 65.31              |
|                     | 5         | -          | timeout            | -               | timeout            |
| Production Line     | 1         | 4          | 5.59               | 4               | 5.59               |
|                     | 2         | 5          | 6.08               | 4               | 5.85               |
|                     |           |            |                    |                 |                    |
|                     | 5         | 8          | 87.33              | 4               | 41.95              |
|                     | 6         | -          | timeout            | 4               | 742.36             |
|                     | 7         | -          | timeout            | -               | timeout            |
| Document Workflow   | 1         | 8          | 5.90               | 7               | 5.79               |
|                     | 2         | 10         | 6.58               | 9               | 6.44               |
|                     |           |            |                    |                 |                    |
|                     | 10        | 26         | 716.61             | 25              | 823.94             |
|                     | 11        | 28         | 1304.14            | -               | timeout            |
|                     | 12        | -          | timeout            | -               | timeout            |

Airlock as Petri Game



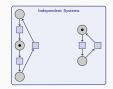
4

Airlock as Petri Game



#### True Concurrent Firing

4

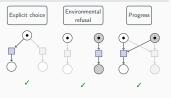


How to remain correctness?

#### Environment Strategy

#### Definition

An environment strategy  $\gamma$  is a subnet of a system strategy  $\sigma$ that satisfies the conditions explicit choice, environmental refusal, and progess.

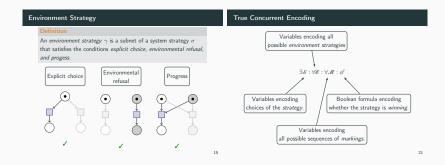


15

#### True Concurrent Encoding Environment Strategy Definition Variables encoding all An environment strategy $\gamma$ is a subnet of a system strategy $\sigma$ possible environment strategies that satisfies the conditions explicit choice, environmental refusal, and progess. Environmental $\exists \mathcal{S}: \forall \mathcal{E}: \forall \mathcal{M}: \partial'$ Explicit choice Progress refusal • Variables encoding Boolean formula encoding • • . choices of the strategy. whether the strategy is winning. Variables encoding all possible sequences of markings. 1 1 1

15

21



# It is beneficial to implement asynchronicity as true concurrency in distributed synthesis!

# References

- Beutner, Raven, Bernd Finkbeiner, and Jesko Hecking-Harbusch. "Translating Asynchronous Games for Distributed Synthesis". In: Proceedings of CONCUR. 2019, 22:1–22:16.
- Finkbeiner, Bernd. "Bounded Synthesis for Petri Games". In: Correct System Design. 2015, pp. 223–237.
- Finkbeiner, Bernd, Manuel Gieseking, and Ernst-Rüdiger Olderog. "Adam: Causality-Based Synthesis of Distributed Systems". In: Proceedings of CAV. 2015, pp. 433–439.
  - Finkbeiner, Bernd and Paul Gölz. "Synthesis in Distributed Environments". In: *Proceedings of FSTTCS*. 2017, 28:1–28:14.

Finkbeiner, Bernd and Ernst-Rüdiger Olderog. "Petri Games: Synthesis of Distributed Systems with Causal Memory". In: Proceedings Fifth International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2014, Verona, Italy, September 10-12, 2014. 2014, pp. 217–230. DOI: 10.4204/EPTCS.161.19. URL:

https://doi.org/10.4204/EPTCS.161.19.

 Pnueli, A. and R. Rosner. "Distributed Reactive Systems Are Hard to Synthesize". In: Proceedings of the 31st Annual Symposium on Foundations of Computer Science. SFCS '90. Washington, DC, USA: IEEE Computer Society, 1990, 746–757 vol.2. ISBN: 0-8186-2082-X. DOI: 10.1109/FSCS.1990.89597. URL: https://doi.org/10.1109/FSCS.1990.89597.

# Known Decidability Classes of Petri Games

- 1 environment player, bounded system players  $\Rightarrow$  EXPTIME-complete<sup>5</sup>
- bounded environment players, 1 system player  $\Rightarrow$  EXPTIME-complete<sup>6</sup>
- Acyclic communication
  - $\Rightarrow \mathsf{Non-elementary}^7$

<sup>&</sup>lt;sup>5</sup>Finkbeiner and Olderog, "Petri Games: Synthesis of Distributed Systems with Causal Memory".

<sup>&</sup>lt;sup>6</sup>Finkbeiner and Gölz, "Synthesis in Distributed Environments".

<sup>&</sup>lt;sup>7</sup>Beutner, Finkbeiner, and Hecking-Harbusch, "Translating Asynchronous Games for Distributed Synthesis".