
Preprint

FORMAL SPECIFICATIONS FROM NATURAL LANGUAGE

Christopher Hahn∗

Stanford University
Stanford, CA, USA
hahn@cs.stanford.edu

Frederik Schmitt∗
CISPA Helmholtz Center for Information Security
Saarbrücken, Germany
frederik.schmitt@cispa.de

Julia J. Tillman∗

Saarland University
Saarbrücken, Germany
s8jutill@stud.uni-saarland.de

Niklas Metzger
CISPA Helmholtz Center for Information Security
Saarbrücken, Germany
niklas.metzger@cispa.de

Julian Siber
CISPA Helmholtz Center for Information Security
Saarbrücken, Germany
julian.siber@cispa.de

Bernd Finkbeiner
CISPA Helmholtz Center for Information Security
Saarbrücken, Germany
finkbeiner@cispa.de

ABSTRACT

We study the generalization abilities of language models when translating natural
language into formal specifications with complex semantics. In particular, we fine-
tune language models on three datasets consisting of English sentences and their
corresponding formal representation: 1) regular expressions (regex), frequently
used in programming and search; 2) First-order logic (FOL), commonly used
in software verification and theorem proving; and 3) linear-time temporal logic
(LTL), which forms the basis for industrial hardware specification languages. Our
experiments show that, in these diverse domains, the language models maintain
their generalization capabilities from pre-trained knowledge of natural language
to generalize, e.g., to new variable names or operator descriptions. Additionally,
they achieve competitive performance, and even outperform the state-of-the-art
for translating into regular expressions, with the benefits of being easy to access,
efficient to fine-tune, and without a particular need for domain-specific reasoning.

1 INTRODUCTION

Translating natural language into formal languages is a long-standing goal of artificial intelligence
research dating back to the 1960s (e.g., Weizenbaum (1966); Winograd (1971)). Due to recent
progress in deep learning (especially Vaswani et al. (2017)) and the development of language models
(LMs), the field has seen significant improvements, for instance, in the translation from natural
language into coding languages or formal mathematics (e.g., Lewkowycz et al. (2022); Chowdhery
et al. (2022); Chen et al. (2021); Wu et al. (2022)). In this paper, we study the generalization abilities
of a pre-trained LM when translating natural language into formal specification languages.

Formal specification languages are used in various computer science fields to describe a system’s
desired behavior, including fields such as systems design, requirements analysis, and automated
reasoning. Examples include specification languages based on logics, such as Alloy (Jackson, 2002)
and LTL (Pnueli, 1977), system specification languages based on state charts, such as SDL (Fonseca i
Casas et al., 2013), or text processing specifications based on regular languages, omega-regular
languages, and automata theory (Aho, 1991; Thomas, 1990). Compared to natural language, the
benefit of a formal specification language is its unambiguous semantics making it accessible for
algorithmic work that relies on a specification as input. Examples are high-performance SAT and
SMT solvers (e.g., Sorensson & Een (2005); Biere et al. (2013); Audemard & Simon (2018); Moura
& Bjørner (2008); Barrett et al. (2011)), planning tools LaValle (2006), model checkers (e.g., Cimatti

∗Equal contribution. Alphabetical order.

1

Preprint

natural language (ID) lines having a character and the string 'dog' in them
regex prediction (correct) ((.)&(dog).*
natural language (OOD) lines with words with a letter before the string'eye' or the string 'time'

regex prediction (correct) ([A-Za-z]).*((eye) |(time)).*

natural language (ID) Globally it is the case that if a holds then eventually a and b hold.
LTL prediction (correct) (a ! (a ^ b))
natural language (OOD) Whenever x does not hold, o9 will eventually hold.
LTL prediction (correct) (: x ! o9)

Figure 1: An ID example of a regex model trained solely on the noun “dog”, tested OOD on new
nouns “eye” and “time”; and an ID example of an LTL model trained on variablesi 0 to i 4 ando0 to
o4, tested OOD on new variables and operator descriptions (bottom). OOD fragments are highlighted.

et al. (2002); Holzmann (1997); Behrmann et al. (2006)), hardware synthesis tools (e.g., Bohy et al.
(2012); Faymonville et al. (2017); Meyer et al. (2018)), or automatic theorem provers (e.g., Bertot
& Castéran (2013); Nipkow et al. (2002)). Despite their bene�ts and various application areas,
formal speci�cation languages are still almost exclusively used by domain experts as their application
requires signi�cant domain-speci�c knowledge and extensive manual work. With the success of LMs,
the goal of making the techniques mentioned above available to a broader user base to increase the
correctness, trust, and assurance in computer systems is �nally getting closer.

So far, efforts in utilizing deep learning to translate natural language into formal speci�cations have
relied on training neural networks from scratch (e.g., Singh et al. (2020); He et al. (2022)). Such
approaches are naturally limited in their generalization capabilities. The natural questions arise:
1) Can off-the-shelf LMs achieve competitive performance when �ne-tuned on this challenging
translation task? 2) How well will they generalize with their pre-trained knowledge of natural
language? In this work, we initiate a study on this topic by �ne-tuning the open-source transformer
language model T5 (Raffel et al., 2020). The transformer architecture (Vaswani et al., 2017) has
proven itself to be the most powerful general-purpose model at the moment of writing, setting new
standards in many application domains such as computer vision (e.g., Dosovitskiy et al. (2020)),
speech recognition (e.g., Dong et al. (2018)), and, especially, natural language processing (e.g., Brown
et al. (2020)). Additionally, T5 is open-source and the trained models are easily accessible to a broad
audience.

We have picked three common yet diverse formal representations used widely in software and
hardware domains: 1) regular expressions, frequently used in programming and text manipulation,
2) First-order logic, which is a standard formalism used in software domains, such as theorem
proving, and 3) Linear-time temporal logic, which is used in hardware domains, such as model
checking of sequential circuits. Regular expressions (regex), introduced by Kleene et al. (1956), are
sequences commonly used for text manipulation. For example,(a|b) * reads as “all sequences
with no symbols other than a and b, including the empty string”. First-order logic (FOL) extends
propositional logic with predicates and quanti�cation. With the foundations developed independently
by Gottlob Frege and Charles Peirce (Peirce, 1933), FOL is a formal system of high importance in
mathematics, computer science, and linguistics. For example, the formula8x:9y:: (x = y) denotes
that for everyx, there is ay, which is not equal tox. Linear-time temporal logic (LTL) (Pnueli,
1977) is a hardware speci�cation language widely used by the veri�cation community. It forms the
basis for industrial speci�cation languages like the IEEE standard PSL (IEEE-Commission et al.,
2005). LTL extends propositional logic with temporal operators, specifying behavior over time. For
example, when considering a controller for a shared resource, the formula(r ! g) denotes that
it is “always the case that a requestr is eventually followed by a grantg”.

Our experiments show that the �ne-tuned LM achieves competitive performance on all tasks and
even improves state-of-the-art performance in translating natural language to regex by6 percentage
points. Additionally, the models can utilize pre-trained knowledge of natural language. For example,
Figure 1 shows hand-picked in-distribution (ID) and out-of-distribution (OOD) examples for models
trained on translating natural language to regex and LTL, respectively. The regex model generalizes
to new nouns that were not present during �ne-tuning. The LTL model was �ne-tuned on “globally”
and “always” as the translation of the LTL operator, on “implies” and “if then” as the translation of

2

Preprint

the implication! , and on variablesi 0 to i 4 ando0 to o4. It generalized to new variable names and
operator descriptions, recognizingx ando9 as variables, “whenever” as a synonym for “globally”,
and a simple comma as a synonym for “implies”. We provide detailed experiments in Section 4
showing, for example, that the regex model achieves the same accuracy on a held-out test set (> 88%)
when being trained on only four out of16occurring nouns in the test set (c.f., Figure 2 in Section 4).

In summary, we make the following contributions. We provide the �rst �ne-tuned off-the-shelf
language models for translating natural language into formal speci�cations, including a new state-of-
the-art model for translating into regular expressions. We contribute two novel datasets for translating
natural language into FOL and two for translating natural language into LTL. Furthermore, we analyze
the generalization capabilities of the pre-trained language models by conducting generalization
experiments on new variables, nouns, and operator descriptions, as well as out-of-distribution
instances.

2 RELATED WORK

Natural language to regex.Similarly to FOL, there were early rule-based techniques for regex
translation (Ranta, 1998). The regex datasets have been made more amenable to translation using
semantic parsing for decomposition (Kushman & Barzilay, 2013). Training has been guided towards
semantically equivalent (Zhong et al., 2018) or approximately equivalent regular expressions (Park
et al., 2019); the natural language descriptions have been enriched by paraphrases generated by
crowdsourcing (Locascio et al., 2016). The latter work is the most closely related to ours, as it also
does not use domain-speci�c reasoning such as, e.g., semantic equivalence. Ye et al. (2020) have
proposed to solely learn generation of regex sketches, and to relegate the construction of the �nal,
correct regular expression to a program synthesis procedure; their dataset is not publically available.

Natural language to FOL.The task of translating natural language into logics, for example with
rule-based (e.g., Johnson (1984); Woods (1973); Thompson et al. (1969); Waltz (1978); Hendrix et al.
(1978); Templeton & Burger (1983)) or statistical approaches (Zelle & Mooney, 1996; Thompson,
2003; Zettlemoyer & Collins, 2007; 2012; Kwiatkowksi et al., 2010), and recently also neural
methods (Ko�cisk�y et al., 2016; Buys & Blunsom, 2017; Cheng et al., 2017; Liu et al., 2018; Li et al.,
2018) has been studied extensively in the past in the area of semantic parsing Kamath & Das (2018).
In this work, we rely on the FOL translation (Kamp & Reyle, 2013) ofboxer 's output (Bos, 2015).
Closest to our work on FOL translations is the �rst approach of translating natural language to FOL
presented by Singh et al. (2020). They construct a dataset using semantic parsing, but clean up the
representation ofboxer 's FOL output, and train a highly specialized LSTM-based architecture. At
the time of writing, no code or dataset are publically available for a direct comparison. Han et al.
(2022) independently developed a few-shot learning approach using very large language models,
achieving a similar accuracy on novel datasets.

Natural language to LTL.Other approaches to the problem of translating from natural language
to LTL focus on the robotics domain, such as temporal aspects in grounded robotics (Wang et al.,
2020) and planning (Patel et al., 2019). A survey of earlier research beyond neural approaches is
provided by Brunello et al. (2019). Grammar-based approaches to translate LTL into structured
natural language (Konrad & Cheng, 2005; Grunske, 2008) inspired the design of our grammar for
constructing the dataset. Gavran et al. (2020) present an interactive method for translating into LTL
speci�cations from example traces by combining SMT solving and semantic parsing. Cherukuri et al.
(2022) consider the inverse direction: translating from LTL formulas to natural language.

Deep Learning in formal reasoning tasks.The term autoformalization (Wang et al., 2018; Szegedy,
2020; Wu et al., 2022) has been coined for tasks of translating between natural language and formal
mathematics. Deep learning approaches were able to handle symbolic representations such as
logical formulas in SAT-solving (Selsam et al., 2019; Selsam & Bjørner, 2019), expressions in
mathematics (Lample & Charton, 2020), formalizations in theorem proving (Polu & Sutskever,
2020), speci�cations in hardware synthesis (Hahn et al., 2020; 2021), or even code in software
generation (Li et al., 2022; Chen et al., 2021). Transformer models have successfully been trained on
programming language translation (Roziere et al., 2020), on source code to learn representations of
programs (Hellendoorn et al., 2020), and on code synthesis (Li et al., 2022; Chen et al., 2021; Nijkamp
et al., 2022) all lacking a training for formal representation of their speci�cations. Saxton et al. (2019);
Schlag et al. (2019) study to solve math problems given in natural language. Transformers were

3

Preprint

also trained on symbolic integration and solving differential equations (Lample & Charton, 2020).
Transformers have been applied to formal mathematics (Rabe et al., 2020).

3 DATA SETS

We consider three formal speci�cation domains: 1) regular expressions (regex) frequently used in
programming or search, 2) First-order logic (FOL), which is a standard formalism used in software
domains, such as theorem proving, and 3) Linear-time Temporal Logic (LTL), which is used in
veri�cation, such as hardware model checking. We train on six datasets, two for each considered
domain (see Table 2 in the appendix for an overview). For regular expressions, we used the existing
benchmark setsRegex-synthetic andRegex-turk . The FOL andLTL datasets are new
contributions. In the following, we give background on the respective domains and describe the
existing datasets and our data generation methods in detail.

3.1 NATURAL LANGUAGE AND REGEX PAIRS

Regular expressions (regex) are sequences that describe a search pattern for natural language text.
They are commonly used in programming, for example, for string-searching or �nd-and-replace
operations. They have been introduced by Kleene et al. (1956) and are used extensively in text editors,
and are even supported natively in many programming languages. For example,(a|b) * reads as
“all sequences with no symbols other than a and b, including the empty string”. We follow the regex
representation de�ned in previous work (see Figure 5 in the appendix).

TheRegex-synthetic dataset was synthetically generated by Locascio et al. (2016). They used
a manually-crafted grammar based on the smaller dataset from Kushman & Barzilay (2013). Two
randomly drawn samples from this dataset are “lines with a number or the string `dog', zero or more
times” paired with(([0-9])|(dog)) * and “lines not starting with a character, 2 or more times”
paired with� (((.)(. *))2,) . Regex-turk is a dataset that Locascio et al. (2016) generated
based on paraphrases of the natural language descriptions inRegex-synthetic , collected through
crowdsourcing at Amazon Mechanical Turk. Two randomly drawn samples from this dataset are “a let-
ter appears before a number in the lines” paired with. * ([A-Za-z]). * ([0-9]). * . * and “lines
do not start with the string `dog' nor the string `truck”' paired with� (((dog)(. *))&(truck)) .

3.2 NATURAL LANGUAGE AND FOL FORMULA PAIRS

First-order logic (FOL) extends propositional logic with predicates and quanti�cation. With the
foundations being developed independently by Gottlob Frege and Charles Peirce (Peirce, 1933), FOL
is a formal system of high importance in mathematics, computer science, and linguistics. First-order
terms and formulas are de�ned relative to a given signature. A �rst-order signature is a pair of disjoint
setsF andP of function and predicate symbols, respectively, as well as an arity functionF [P ! N.
Given a signature, the FOL alphabet consists of the elements ofF andP as well as standard logical
connectives(: ; _ ; ^ ; ! ; > ; ?), quanti�ers8 and9, the equality symbol= , and an in�nite set of
variablesf x1; x2; : : :g. The syntax of a well-de�ned formula is given as follows:

t ::= x j c j f (t1; : : : ; tn)
� ::= Q j P(t1; : : : ; tn) j = (t1; t2) j > j ? j : � j � 1 ^ � 2 j 9x:� ;

wherex is a variable,c is a constant,f is ann-ary function,Q is a nullary predicate andP an
1 � n-ary predicate. The boolean connectives_, ! , and$ as well as the quanti�er8 can be derived.
For example, the formula8x:9y:: = (x; y) denotes that forallx, there is ay, which is not equal tox.

We generated FOL formulas from natural language sentences using thecandc (Clark & Curran,
2004) andboxer (Bos, 2015) toolchain.candc is a wide-coverage Combinatory Categorial
Grammar (CCG) parser. A CCG (Steedman, 2001) is a lexicalized grammar where every word in
a sentence is assigned an elementary syntactic structure. A derivation of this CCG is then given
to boxer , which provides a semantic framework to output various formal derivations of the input
sentence, e.g., in �rst-order logic. Both datasetsFOL-mnli andFOL-codesc are generated
using this toolchain. The datasetFOL-mnli consists of small sentences taken from the hypothesis
predictions of the glue/mnli dataset (Williams et al., 2018). Two randomly drawn examples are “The

4

Preprint

fans do not bring any support.” and “No one will ever understand how continental plates form.”. The
datasetFOL-codesc consists of pairs of natural language sentences of java code snippets and their
�rst-order translations. We sampled the pairs from the recently published Codesc (Hasan et al., 2021)
dataset consisting of 4.2M datapoints. We cut off the natural language descriptions after the �rst
sentence and translated them into an FOL formula with thecandc-boxer toolchain. This results
in a highly challenging dataset, which we believe to be close to practical applications. For example,
two randomly drawn instances are “deletes a certi�cate from a speci�ed key vault” and “sets the base
dir for the volume”.

3.3 NATURAL LANGUAGE AND LTL FORMULA PAIRS

Linear-time temporal logic (LTL) (Pnueli, 1977) is a temporal logic for the veri�cation of hardware
systems. LTL extends propositional logic with temporal operators, specifying behavior over time.
LTL formulas are de�ned over a set of variablesAP called atomic propositions. The alphabet consists
of elements ofAP , standard logical connectives(: ; _ ; ^ ; ! ; > ; ?), and temporal operators (next)
andU (until). The syntax of an LTL formula is given as follows:

' ::= p j : ' j ' 1 _ ' 2 j ' j ' 1 U ' 2 ;

wherep 2 AP is an atomic proposition and ' means that the subformula' holds in the next
timestep or cycle and' 1 U ' 2 means that' 1 holds until' 2 holds. We additionally use the derived
operaterseventually ' = > U ' andglobally ' = : : ' . For example, when considering a
controller for a shared resource, the formula(r ! g) denotes that “it is always the case that a
grant to the resourceg eventually follows a process' requestr ”.

We generated pairs of natural language sentences and LTL formulas with two different methods. In
the �rst data generation method (LTL-pattern), we utilized these speci�cation patterns commonly
de�ned in the literature (Dwyer et al., 1998; Etessami & Holzmann, 2000; Hole�cek et al., 2004;
Pelánek, 2007), which are provided by thespot library (Duret-Lutz et al., 2016). For example,
the speci�cation pattern (a ! b) states that at every timestep, whenevera holds,b has to hold
as well and the speci�cation pattern a states thata has to hold in�nitely often. Since an LTL
speci�cation typically consists of a conjunction of such patterns, we followed the approach in the
literature and conjoined up to4 patterns and their translations (Li et al., 2013). In the second dataset,
we constructed pairs of natural language sentences and formulas using a straight-forward grammar
with minimal domain-speci�c knowledge (Konrad & Cheng, 2005; Grunske, 2008) (see Appendix D
in the appendix). The grammar restricts formulas to only contain negations directly in front of atomic
propositions, which is dictated by the structure of the English language, as verbs follow a different
conjugation depending on whether they are used in a positive or a negated case. For instance,a is
translated to “Globally a holds” and : a is translated to “Globally a does not hold”. To translate LTL
formulas automatically, we used a natural language grammar that is structurally the same as the LTL
grammar. The interested reader can �nd the grammar and a detailed explanation in Appendix D. The
datasetLTL-synthesis consists of pairs of a natural language translation with our grammar (see
Appendix D) and their LTL hardware synthesis speci�cation. These hardware synthesis speci�cations
are taken from a recently published dataset, where the authors trained a Transformer to predict
hardware circuits directly from LTL speci�cations (Schmitt et al., 2021). The synthesis speci�cations
consist of an LTL formula expressing the assumptions posed on the environment and an LTL formula
expressing the desired guarantees of the system. They can be combined into a single LTL formula by
implication.

4 EXPERIMENTS

We �ne-tuned thebase version of the open-source language model T5 Raffel et al. (2020) with220
million parameters on an NVIDIA DGX A100 system for around1 hour each run with a learning rate
of 0:001. We needed to use thesmall version for our baseline experiments on an untrained T5 model
to achieve stable training. We use PyTorch (Paszke et al., 2019) and the huggingface transformers
library (Wolf et al., 2020) to �ne-tune the models. We report accuracy of the best-performing models
(see Appendix A for ablations). In general, achieving stable training for the baseline T5 model was
challenging and required much more engineering effort compared to the pre-trained version of T5 (c.f
Figure 3). We split the data into90%training,5%validation, and5%test data. Table 1 summarizes

5

Preprint

the test results. We used the following prompt, respectively: "translate natural language
to {FOL | LTL | a regular expression}: ".

4.1 REGULAR EXPRESSIONS

New state-of-the-art by semantic generalization.The �ne-tuned language model achieves a new
state-of-the-art in translating natural language to regular expressions on both datasets. This even
holds true when comparing against state-of-the-art reinforcement learning approaches (Zhong et al.,
2018; Park et al., 2019); indicated in Table 1 by (RL). A natural language sentence has multiple
correct translations into a regular expression. For example, the following prediction is correct, yet
different from the training target:

natural language descriptionlines starting with a character followed by a vowel, 7 or more times
model prediction (correct) ((..*[AEIOUaeiou].*){7,})(.*)

training target ((..*[AEIOUaeiou].*)(.*)){7,}

To account for such predictions, the accuracy of the regex models is evaluated with an equivalence
check, called semantic accuracy Locascio et al. (2016). On the synthetically generated dataset
Regex-synthetic , the LM achieves94:01%semantic accuracy; on theRegex-turk dataset,
the language model achieves64:20%semantic accuracy. Due to the model's generalization to the
semantic, its performance increased from90:62%to 94:01%and47:00%to 64:20%, respectively,
being the decisive factor in beating the state-of-the-art. This is exceptionally substantial on the
Regex-turk dataset. Figure 3 (top left) depicts the accuracy per sequence of the best performing
models during training. While the baseline model achieves the same accuracy (with longer training)
on Regex-synthetic , the pre-trained model outperforms the baseline onRegex-turk by a
signi�cant margin. Note that we incorporate no additional training objective in contrast to previous
work (Zhong et al., 2018; Park et al., 2019).

Generalization to new nouns.The high accuracy of the �ne-tuned LM on this task poses the question
if the model does “forget” its knowledge of the natural language during �ne-tuning (see, e.g., He
et al. (2021)). In this experiment, we tested the models generalization to English nouns that were
not present during �ne-tuning, but certainly during pre-training. Figure 2 shows the results of this
experiment for the pre-trained T5 model (left) and the baseline T5 model (right). The �rst three
nouns are the ones present in the datasets, i.e., “dog”, “truck”, and “ring”. When �ne-tuning on
only four nouns, by adding another commonly used noun, namely “time”, the model generalizes
seamlessly to16nouns. The additional nouns were drawn from the25most common English nouns.
Unsurprisingly, the baseline T5 model shows limited generalization capabilities to novel nouns and
the pre-trained model consistently performs better, also for less nouns during training. Figure 3
(bottom right) shows the accuracies on the respective validation set. A similar observation can be
made when testing on numbers that were not present during �ne-tuning:

natural language description lines with the string 'dog' or a letter,9 or more times
model prediction (correct) ((dog)|([A-Za-z])){9 ,}

Table 1: Accuracy of the best runs for �ne-tuned T5 language models on held-out test sets, where
steps denote the number of training steps; accuracy is reported as the accuracy per sequence.

dataset previous SOTA baseline T5 (steps) �ne-tuned T5 (steps)

Regex-synthetic 88:7 = 91:6 (RL) 94:01 (5K) 94:01 (1K)
Regex-turk 58:2 = 62:8 (RL) 58:0 (5K) 64:20 (1K)

FOL-mnli 56:10 (estimated) 46:87 (10K) 53:91 (5K)
FOL-codesc - 58:59 (10K) 58:98 (3K)

LTL-pattern - 100:00 (5K) 100:00 (1K)
LTL-synthesis - 87:50 (5K) 87:90 (1K)

6

Preprint

Figure 2: Syntactic accuracy of pre-trained T5 regex models (left) and baseline T5 regex models
(right) trained on variations ofRegex-synthetic with proper subsets of nouns.

OOD-testing across datasets.As a �nal experiment in the regex domain, we cross-tested the models
on the regex datasets. Such out-of-distribution (OOD) tests are known to be challenging for neural
networks. It is especially interesting if a model trained onRegex-synthetic , which is purely
synthetic, can translate instances ofRegex-turk , which is constructed by humans. The model
trained on the syntactic data achieved a semantic accuracy of49:20%, which is only15percentage
points behind the models accuracy that was trained on this dataset, and only9 percentage points
behind the previous state-of-the-art. Interestingly, the model can interpret ambiguous natural language
sentences differently than its human counterpart and even corrects buggy targets, probably due to
being trained on a slightly different dataset. For example:

natural language description lines with a number that comes before a letter, and a vowel,
and the string 'dog'

model prediction (“incorrect”) ([0-9]).*((([A-Za-z])&([AEIOUaeiou])&(dog)).*
training target (([AEIOUaeiou])&(dog)&([0-9])).*([A-Za-z]).*

In the “easier” direction, the model trained onRegex-turk achieved an accuracy of83:83%falling
only 10 percentage points short behind the model trained on this dataset and4 percentage points
behind the previous state-of-the-art. However, it is only fair to note that T5 was trained on an internet
corpus, making it likely that the model has seen regular expressions during pre-training, which
probably contributes to the model's high accuracy. In the next sections, we will consider FOL and
LTL, where it is much more unlikely that the network has seen many instances during pre-training.

4.2 FIRST-ORDERLOGIC (FOL)

Comparability to the state-of-the-art.Singh et al. (2020) achieved an estimated semantic accuracy
of 56:10%on their138K large dataset with a specialized architecture and an array of optimizations.
Their dataset is similarly constructed as our150K large datasetFOL-mnli , but they heuristically
estimate their semantic accuracy with a matching algorithm. For best reproducibility, we thus only
report on the syntactic accuracy of T5 in this paper as, at the time of writing, their dataset and
code were not publically available. Their FOL formulas are represented as a reduced mapping of
thecandc-boxer output while we train on the raw output end-to-end in this work. On a held-
out dataset, the �ne-tuned LM achieved a syntactic accuracy of53:91%, falling only 2 percentage
points short of the semantically estimated state-of-the-art. On theFOL-codesc dataset, which was
constructed to mimic code snippets, our best model achieved an accuracy of58:98%(see Figure 3 top
right). It will be interesting to see how specialized approaches perform on this new dataset. Since this
is a newly contributed dataset, we provide two randomly sampled successful and failed translation
attempts while evaluating the best model on a held-out test set ofFOL-codesc :

7

	Introduction
	Related Work
	Data Sets
	Natural language and regex pairs
	Natural language and FOL formula pairs
	Natural language and LTL formula pairs

	Experiments
	Regular Expressions
	First-order Logic (FOL)
	Linear-time Temporal Logic (LTL)

	Limitations and Conclusion
	Ablations
	Datasets Overview
	Regex Definition
	Natural Language Grammars

