
Maximilian Schwenger 
Joint Work With Corto Mascle, Daniel Neider, Paulo Tabuada,  
Alexander Weinert, Martin Zimmermann

FROM LTL TO rLTL MONITORING



WHY rLTL RATHER THAN LTL?

2

⟹ GuaranteeAssumption
⟹ Always Stay on LaneView Always Unobstructed

⟹ G(on lane)G(unobs. view)



WHY rLTL RATHER THAN LTL?

2

⟹ GuaranteeAssumption
⟹ Always Stay on LaneView Always Unobstructed

⟹ G(on lane)G(unobs. view)

Problem 1: ⟹ Do Whatever  
You Want

One Frame  
Camera Glitch



WHY rLTL RATHER THAN LTL?

2

⟹ GuaranteeAssumption
⟹ Always Stay on LaneView Always Unobstructed

⟹ G(on lane)G(unobs. view)

Problem 1: ⟹ Do Whatever  
You Want

One Frame  
Camera Glitch

Problem 2: ⟺ Drive PerfectlyCrash Immediately



WHY rLTL RATHER THAN LTL?

2

⟹ GuaranteeAssumption
⟹ Always Stay on LaneView Always Unobstructed

⟹ G(on lane)G(unobs. view)

Problem 1: ⟹ Do Whatever  
You Want

One Frame  
Camera Glitch

Problem 2: ⟺ Drive PerfectlyCrash Immediately

LTL to rLTL:
More Robustness
More Information



rLTL on 
Finite Traces

Lift Monitoring from LTL to rLTL

3

Construction 
of an rLTL 
Monitor

Case Study:
LTL v. rLTL



rLTL on 
Finite Traces

rLTL on 
Finite Traces

Lift Monitoring from LTL to rLTL

3

Construction 
of an rLTL 
Monitor

Case Study:
LTL v. rLTL



What you need to know about (r)LTL semantics

4

a ∈ Σ, AP = 2Σ, trace π ∈ APω

Example

φ ≡ a π = {a} * * *

LTL

Manna, Pnueli. “Temporal verification of reactive systems”. 1995.



What you need to know about (r)LTL semantics

4

a ∈ Σ, AP = 2Σ, trace π ∈ APω

Example

φ ≡ a π = {a} * * *

LTL

Manna, Pnueli. “Temporal verification of reactive systems”. 1995.

φ ≡ Ga π = {a}{a}{a}{a}G



What you need to know about (r)LTL semantics

4

a ∈ Σ, AP = 2Σ, trace π ∈ APω

Example

φ ≡ a π = {a} * * *

LTL

Manna, Pnueli. “Temporal verification of reactive systems”. 1995.

φ ≡ Ga π = {a}{a}{a}{a}G

φ ≡ Ga π = {} {} {a} *F



What you need to know about (r)LTL semantics

4

a ∈ Σ, AP = 2Σ, trace π ∈ APω

Example

φ ≡ a π = {a} * * *

Output:  1/0

LTL

Manna, Pnueli. “Temporal verification of reactive systems”. 1995.

φ ≡ Ga π = {a}{a}{a}{a}G

φ ≡ Ga π = {} {} {a} *F



φ ≡ Ga π = {a}{a}{a}{a}G

What you need to know about (r)LTL semantics

5

a ∈ Σ, AP = 2Σ, trace π ∈ APω

Example
rLTL

Tabuada, Neider. "Robust linear temporal logic”. CSL 2016



φ ≡ Ga π = {a}{a}{a}{a}G

What you need to know about (r)LTL semantics

5

a ∈ Σ, AP = 2Σ, trace π ∈ APω

Example

Output: “Ga” “FGa” “GFa” “Fa” 

rLTL

Tabuada, Neider. "Robust linear temporal logic”. CSL 2016



φ ≡ Ga π = {a}{a}{a}{a}G

What you need to know about (r)LTL semantics

5

a ∈ Σ, AP = 2Σ, trace π ∈ APω

Example

Output:  1/0    1/0    1/0   1/0
Output: “Ga” “FGa” “GFa” “Fa” 

rLTL

Tabuada, Neider. "Robust linear temporal logic”. CSL 2016



Finite Semantics: Ternary Output

6

1 — Already Satisfied         0 — Already Falsified         ? — Don’t Know

Bauer, Leucker, Schallhart. “Runtime verification for LTL and TLTL”.  ACM Trans. Softw. Eng. Methodol. 2011



Finite Semantics: Ternary Output

6

1 — Already Satisfied         0 — Already Falsified         ? — Don’t Know

Formula Prefix LTL rLTL 
(G, FG, GF, F)

Ga

ε ? ????

{a} ? ???1

{a}{ } 0 0??1

Bauer, Leucker, Schallhart. “Runtime verification for LTL and TLTL”.  ACM Trans. Softw. Eng. Methodol. 2011



Questions:  What truth values might occur?

Finite Semantics: Ternary Output

6

1 — Already Satisfied         0 — Already Falsified         ? — Don’t Know

Formula Prefix LTL rLTL 
(G, FG, GF, F)

Ga

ε ? ????

{a} ? ???1

{a}{ } 0 0??1

Bauer, Leucker, Schallhart. “Runtime verification for LTL and TLTL”.  ACM Trans. Softw. Eng. Methodol. 2011



Finite Semantics: Realizable Verdicts

7

From LTL to rLTL Monitoring HSCC’20, April 21-24, 2020, Sydney, Australia

Table 1: Realizable truth values. For every truth value � , the next two columns show pre�xes u and formulas � such that
Vm
r (u,�) = � , or that � is unrealizable.

Value Pre�x Formula Value Pre�x Formula

0000 � a ^ ¬a 0?11 ;{a} a _ ¬a

000? � a ^ ¬ a 0111 ;{a} aRa

0001 unrealizable ???? � a

00?? � a ^ ¬a ???1 {a} a

00?1 ;{a} a ^ ¬a ??11 � a _ ¬ a

0011 unrealizable ?111 � a _ ¬ ¬ ¬a

0??? ; a 1111 � a _ ¬a

0??1 ;{a} a

by adding dots to the temporal operators. To this end note that we
have both Vr (;{s}�;� ,�) = 1111 and Vr (;{s}�{s}� ,�) = 0000 for
every � 2 �⇤. Hence, Vm

r (;{s}�,�) = ???? for every such � , i.e.,
;{s} is indeed ugly and � therefore not rLTL-monitorable.

Thus, there are formulas that are unmonitorable under LTL se-
mantics, butmonitorable under rLTL semantics and there are formu-
las that are unmonitorable under rLTL semantics, but monitorable
under LTL semantics. Using these formulas one can also construct
a formula that is unmonitorable under both semantics.

To this end, �x LTL formulas �` and �r over disjoint sets of
propositions and a fresh proposition p not used in either formula
such that

• �` has an ugly pre�x u` under LTL semantics, and
• �r (with dotted operators) has an ugly pre�x ur under rLTL
semantics.

We can assume both pre�xes to be non-empty, as ugliness is closed
under �nite extensions. Let � = (p ^ �`) _ (¬p ^ �r ). Then, the
pre�x obtained from u` by adding the proposition p to the �rst
letter is ugly for � under LTL semantics and ur is ugly for � (with
dotted operators) under rLTL semantics.

As a �nal example, recall that we have shown that s is rLTL-
monitorable and consider its negation ¬ s . It is not hard to see
that Vm

r (u,�) = ???? holds for every pre�x u. Hence, � is an ugly
pre�x for the formula, i.e., we have found another unmonitorable
rLTL formula. In particular, the example shows that, unlike for LTL,
rLTL-monitorability is not preserved under negation.

After having studied properties of rLTL monitorability, we next
show our main result: The robust monitoring semanticsVm

r can be
implemented by �nite-state machines.

4 CONSTRUCTION OF RLTL MONITORS
An rLTL monitor is an implementation of the robust monitoring
semantics Vm

r in form of a �nite-state machine with output. More
precisely, an rLTL monitor for an rLTL formula � is a �nite-state
machine M� that on reading an input u 2 �⇤ outputs Vm

r (u,�).
In this section, we show how to construct rLTL monitors and that
this construction is asymptotically not more expensive than the
construction of LTL monitors. Let us �x an rLTL formula � for the
remainder of this section.

Our rLTLmonitor construction is inspired by Bauer et al. [? ] and
generates a sequence of �nite-state machines (i.e., Büchi automata
over in�nite words, (non)deterministic automata over �nite words,
and Moore machines). Underlying these machines are transition
structures T = (Q,qI ,�) consisting of a nonempty, �nite set Q of
states, an initial stateqI 2 Q , and a transition relation � ✓ Q⇥�⇥Q .
An (in�nite) run of T on a word � = a0a1a2 · · · 2 �� is a sequence
� = q0q1 · · · of states such that q0 = qI and (qj ,aj ,qj+1) 2 �
for j 2 N. Finite runs on �nite words are de�ned analogously.
The transition structure T is deterministic if (a) (q,a,q0) 2 � and
(q,a,q00) 2 � imply q0 = q00 and (b) for each q 2 Q and a 2 � there
exists a (q,a,q0) 2 �. We then replace the transition relation � by
a function � : Q ⇥ � ! Q . Finally, we de�ne the size of a transition
structure T as |T | = |Q | in order to measure its complexity.

Our construction then proceeds in three steps:

(1) We bring � into an operational form by constructing Büchi
automata A

�
� for each truth value � 2 B4 that can decide

the valuation Vr (� ,�) of in�nite words � 2 �� .
(2) Based on these Büchi automata, we then construct nondeter-

ministic automata B�
� that can decide whether a �nite word

u 2 �⇤ can still be extended to an in�nite word u� 2 ��

with Vr (u� ,�) = � .
(3) We determinize the nondeterministic automata obtained in

Step 2 and combine them into a single Moore machine that
computes Vm

r (u,�).

Let us now describe each of these steps in detail.

Step 1: We �rst translate the rLTL formula � into several Büchi
automata using a construction by Tabuada and Neider [? ], sum-
marized in Theorem ?? below. A Büchi automaton is a four-tuple
A = (Q,qI ,�, F ) where T = (Q,qI ,�) is a transition structure and
F ✓ Q is a set of accepting states. A run � of A on � 2 �� is a run
of T on � , and we say that � is accepting if it contains in�nitely
many states from F . The automaton A accepts a word � if there
exists an accepting run of A on � . The language L(A) is the set of
all words accepted by A, and the size of A is de�ned as |A| = |T |.

T������ 4.1 (T������ ��� N����� [? ]). Given a truth value
� 2 B4, one can construct a Büchi automaton A

�
� with 2O(|� |) states
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� for each truth value � 2 B4 that can decide

the valuation Vr (� ,�) of in�nite words � 2 �� .
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u 2 �⇤ can still be extended to an in�nite word u� 2 ��
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Step 2 and combine them into a single Moore machine that
computes Vm

r (u,�).

Let us now describe each of these steps in detail.

Step 1: We �rst translate the rLTL formula � into several Büchi
automata using a construction by Tabuada and Neider [? ], sum-
marized in Theorem ?? below. A Büchi automaton is a four-tuple
A = (Q,qI ,�, F ) where T = (Q,qI ,�) is a transition structure and
F ✓ Q is a set of accepting states. A run � of A on � 2 �� is a run
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many states from F . The automaton A accepts a word � if there
exists an accepting run of A on � . The language L(A) is the set of
all words accepted by A, and the size of A is de�ned as |A| = |T |.

T������ 4.1 (T������ ��� N����� [? ]). Given a truth value
� 2 B4, one can construct a Büchi automaton A

�
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Theorem: An rLTL Monitor cannot yield 0001 nor 0011.
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Questions:  How do values “evolve”?
 Theorem: Up to four refinements are possible. 
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LTL-MON DOES NOT IMPLY rLTL-MON

(Ga ∧ G¬a):  Contradiction
(Ga ∧ G¬a) ⟹ (FGa ∧ FG¬a):  Tautology

Ugly Prefix { }{a} 
∀ρ: { }{a}ρ{s}ω yields 1111 
∀ρ: { }{a}ρ{a}ω yields 0000

rLTL-Ugly Prefix: Every continuation yields ????
rLTL-Monitorable: There are no rLTL-Ugly Prefixes

 (Ga ∧ G¬a) ⟹ (FGa ∧ FG¬a) 

Not rLTL-mon

LTL-mon

10
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Figure 1: Comparison of rLTL-mon and LTL3 tools on Bauer et al.’s benchmarks [? ]

runtime gap partly to the overhead caused by repeatedly start-
ing the Java virtual machine, which is not required in the case of
LTL3 tools. Note that this is not a concern in practice as a monitor
is only constructed once before it is deployed.

Finally, our analysis answers our second question: rLTL monitors
are only slightly larger than the corresponding LTL monitors and
although they require considerably more time to construct, the overall
construction time was negligible for almost all benchmarks.

6 CONCLUSION
We adapted the three-valued LTL monitoring semantics of Bauer
et al. to rLTL, proved that the construction of monitors is asymptot-
ically no more expensive than the one for LTL, and validated our
approach on the benchmark of Bauer et al.: All formulas are rLTL-
monitorable and the rLTL monitor is strictly more informative than
its LTL counterpart for 77% of their formulas.

Recall Theorem ??, which states that the truth values 0011 and
0001 are not realizable. This points to a drawback regarding the
two middle bits: When considering the formula a, the second bit
represents a and the third bit a. A pre�x cannot possibly
provide enough information to distinguish these two formulas. On
the other hand, the truth value ??11 is realizable, which shows that
the middle bits can be relevant. In further work, we will investigate
the role of the middle bits in rLTL monitoring.

Moreover, the informedness of a monitor can be increased fur-
ther when attributing a special role to the last position(s) of a pre�x.
Even though a pre�x of the form ;

+
{a}+ does not fully satisfy

a, neither does it fully violate it. If the system just now reached
a state in which {a} always holds, an in�nite continuation of the
execution would satisfy the speci�cation. So rather than reporting
an undetermined result, the monitor could indicate that an in�-
nite repetition of the last position of the pre�x would satisfy the
speci�cation. Similarly, for a pre�x {a}+;, the speci�cation a
is undetermined. While an in�nite repetition of the last position

({a}+;� ) does not satisfy the speci�cation, an in�nite repetition of
the last two positions ({a}+(;{a})� ) would. We plan to investigate
an extension of rLTL which takes this observation into account.

Bauer et al. [? ] proposed an orthogonal approach with the logic
RV-LTL. Here, the speci�cation can contain the strong (weak) next-
operator whose operand is consider violated (satis�ed) at the last
position of the trace. A formula that is undetermined under the
strong semantics and satis�ed (violated) under the weak semantics
is considered potentially true (potentially false). Incorporating one
of these approaches into rLTL monitoring could re�ne its output
and thus increase its level of informedness.

Moreover, desired properties for cyber-physical systems often
include real-time components such as “touch the ground at most
15 seconds after receiving a landing command”. Monitors for logics
taking real-time into account [? ], such as STL [? ? ], induce high
computational overhead at runtime when compared to LTL and
rLTL monitors. Thus, a real-time extension for rLTL retaining its
low runtime cost would greatly increase its viability as speci�cation
language.
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Finally, our analysis answers our second question: rLTL monitors
are only slightly larger than the corresponding LTL monitors and
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