0100010 7

Maximilian Schwenger

OSARES

Joint Work With Corto Mascle, Daniel Neider, Paulo Tabuada, Alexander Weinert, Martin Zimmermann

LI11000 01000

View Always Unobstructed \implies Always Stay on Lane

Assumption \implies Guarantee

$G(unobs.view) \implies G(on lane)$

View Always Unobstructed \implies Always Stay on Lane

Problem 1:

One Frame Camera Glitch

 \Rightarrow

Assumption \implies Guarantee

$G(unobs.view) \implies G(on lane)$

Do Whatever You Want

View Always Unobstructed \implies Always Stay on Lane

One Frame Problem 1: Camera Glitch Problem 2: Crash Immediately ↔ Drive Perfectly

Assumption \implies Guarantee

$G(unobs.view) \implies G(on lane)$

Do Whatever You Want

View Always

LTL to rLTL: on Lane More Robustness More Information

One Frame Problem 1: Camera Glitch Problem 2: Crash Immediately ↔ Drive Perfectly

Do Whatever You Want

Lift Monitoring from LTL to rLTL

rLTL on Finite Traces

Construction of an rLTL Monitor

Case Study: LTL v. rLTL

Lift Monitoring from LTL to rLTL

rLTL on **Finite Traces**

Construction of an rLTL Monitor

Case Study: LTL v. rLTL

 $a \in \Sigma$, $AP = 2^{\Sigma}$, trace $\pi \in AP^{\omega}$

$\varphi \equiv a$

Manna, Pnueli. "Temporal verification of reactive systems". 1995.

Example

 $\pi = \{a\} \ast \ast \ast$

 $a \in \Sigma$, $AP = 2^{\Sigma}$, trace $\pi \in AP^{\omega}$

$\varphi \equiv a$ $\varphi \equiv Ga$

Manna, Pnueli. "Temporal verification of reactive systems". 1995.

Example

 $\pi = \{a\} \ast \ast \ast$

 $\pi = \{a\} \{a\} \{a\} \{a\}$

 $a \in \Sigma$, $AP = 2^{\Sigma}$, trace $\pi \in AP^{\omega}$

$\varphi \equiv a$ $\varphi \equiv Ga$ $\varphi \equiv \mathbf{F} \, a$

Manna, Pnueli. "Temporal verification of reactive systems". 1995.

Example

 $\pi = \{a\} \ast \ast \ast$

- $\pi = \{a\}\{a\}\{a\}\{a\}$
- $\pi = \{ \} \{ \} \{ a \} *$

 $a \in \Sigma$, $AP = 2^{\Sigma}$, trace $\pi \in AP^{\omega}$

$\varphi \equiv a$ $\varphi \equiv Ga$ $\varphi \equiv \mathbf{F} \, a$

Output: 1/0

Manna, Pnueli. "Temporal verification of reactive systems". 1995.

Example

 $\pi = \{a\} \ast \ast \ast$

- $\pi = \{a\}\{a\}\{a\}\{a\}$
- $\pi = \{\} \{\} \{a\} *$

 $a \in \Sigma$, $AP = 2^{\Sigma}$, trace $\pi \in AP^{\omega}$

 $\varphi \equiv Ga$

Tabuada, Neider. "Robust linear temporal logic". CSL 2016

Example $\pi = \{a\} \{a\} \{a\} \{a\}$

 $a \in \Sigma$, $AP = 2^{\Sigma}$, trace $\pi \in AP^{\omega}$

$\pi = \{a\}\{a\}\{a\}\{a\}$ $\varphi \equiv Ga$ "Ga" "FGa" "GFa" "Fa"

Tabuada, Neider. "Robust linear temporal logic". CSL 2016

Example

 $a \in \Sigma$, $AP = 2^{\Sigma}$, trace $\pi \in AP^{\omega}$

$\varphi \equiv Ga$ $\pi = \{a\} \{a\} \{a\} \{a\}$ "Ga" "FGa" "GFa" "Fa" Output:

Tabuada, Neider. "Robust linear temporal logic". CSL 2016

Example

Finite Semantics: Ternary Output

1 – Already Satisfied 0 – Already Falsified ? – Don't Know

Bauer, Leucker, Schallhart. "Runtime verification for LTL and TLTL". ACM Trans. Softw. Eng. Methodol. 2011

Bauer, Leucker, Schallhart. "Runtime verification for LTL and TLTL". ACM Trans. Softw. Eng. Methodol. 2011

Iready Falsified ? – Don't Kr			
	LTL	rLTL (G, FG, GF, F)	
	?	????	
	?	???1	
	0	0??1	

Questions: What truth values might occur?

Bauer, Leucker, Schallhart. "Runtime verification for LTL and TLTL". ACM Trans. Softw. Eng. Methodol. 2011

Iready Falsified ? – Don't K			
	LTL	rLTL (G, FG, GF, F)	
	?	????	
	?	???1	
	0	0??1	

Finite Semantics: Realizable Verdicts

Value	Prefix	Formula	Value	Prefix	Formula
0000	Е	$a \wedge \neg a$	0?11	$\emptyset\{a\}$	$\bullet a \vee \bullet \neg a$
000?	E	$\textcircled{\bullet} \boxdot a \land \textcircled{\bullet} \neg \textcircled{\bullet} a$	0111	$\emptyset\{a\}$	aRa
0001	unrealiz	zable	????	E	$\cdot a$
00??	E	$\bullet a \land \bullet \neg a$???1	$\{a\}$	\cdot a
00?1	$\emptyset\{a\}$	$\bullet a \land \bullet \neg a$??11	E	$\boxdot a \lor \diamondsuit \neg \diamondsuit a$
0011	unrealiz	zable	?111	E	$\boxdot a \lor \neg \diamondsuit \neg \diamondsuit$
0???	Ø	$\cdot a$	1111	E	$a \vee \neg a$
0??1	$\emptyset\{a\}$	$\bullet a$			

Finite Semantics: Realizable Verdicts

Value	Prefix	Formula	Value	Prefix	Formula
0000	Е	$a \wedge \neg a$	0?11	$\emptyset\{a\}$	$\bullet a \vee \bullet \neg a$
000?	E	$\textcircled{\bullet} \boxdot a \land \textcircled{\bullet} \neg \textcircled{\bullet} a$	0111	$\emptyset\{a\}$	aRa
0001	unrealiz	zable	????	E	$\cdot a$
00??	E	$\bullet a \land \bullet \neg a$???1	$\{a\}$	$\cdot a$
00?1	$\emptyset\{a\}$	$\bullet a \land \bullet \neg a$??11	E	$\boxdot a \lor \diamondsuit \neg \diamondsuit a$
0011	unrealiz	zable	?111	E	$\boxdot a \lor \neg \diamondsuit \neg \diamondsuit$
0???	Ø	$\cdot a$	1111	E	$a \vee \neg a$
0??1	$\emptyset\{a\}$	$\cdot a$			

Theorem: An rLTL Monitor cannot yield 0001 nor 0011.

Finite Semantics: Ternary Output

eady Falsified		? – Undetei	rmir
	LTL	rLTL (G, FG, GF, F)	
	?	????	
	?	???1	
	0	0??1	

ea	dy Falsified	? – Undetermir
	LTL	rLTL (G, FG, GF, F)
	?	????
	?	???1
	0	0??1

Questions: How do values "evolve"?

ea	dy Falsified	? – Undetermin
	LTL	rLTL (G, FG, GF, F)
	?	????
	?	???1
	0	0??1

Questions: How do values "evolve"?

Theorem: Up to four refinements are possible.

LTL Monitorable Not LTL Monitorable Ga **GFa** $(p \land \varphi_{LTL}) \lor (\neg p \land \varphi_{rLTL})$

rLTL-Ugly Prefix: Every continuation yields ????rLTL-Monitorable: There are no rLTL-Ugly Prefixes

LTL Mor

rLTL: "Adding { } will

rLTL Monitorable

LTL: "Adding { } will

Not rLTL Monitorable (Ga \land G \neg a) \Longrightarrow

nitorable	Not LTL Monitorable
always yield 0***" Sa always yield 0"	GFa
> (FGa ∧ FG¬a)	(p^φιτι)/(¬p ^ φrιτι)

rLTL-Ugly Prefix: Every continuation yields ????rLTL-Monitorable: There are no rLTL-Ugly Prefixes

LTL Mor

rLTL: "Adding { } will

rLTL Monitorable

LTL: "Adding { } will

Not rLTL Monitorable (Ga \land G \neg a) \Longrightarrow

nitorable	Not LTL Monitorable
always yield 0***" Ja always yield 0"	rLTL: "Adding {a} will yield 1 in las GFa LTL: "Depends on infinite behavio
> (FGa ∧ FG¬a)	(p∧φιτι)∨(¬p ∧ φrιτι)

LTL-MON DOES NOT IMPLY rLTL-MON

$$(\mathbf{Ga} \land \mathbf{G} \neg \mathbf{a}) \Longrightarrow (\mathbf{FGa} \land \mathbf{F}\underline{\mathbf{G}} \neg \mathbf{a})$$

Ugly Prefix { }{a} $\forall \rho: \{ \} \{a\} \rho \{ \}^{\omega} \text{ yields } 1111$ { }{a}p{a}^{\overline{3}} yields 0000

LTL-mon

Not rLTL-mon

rLTL-Ugly Prefix: Every continuation yields ???? **r**LTL-Monitorable: There are no **r**LTL-Ugly Prefixes

(Ga A Gaa): Contradiction

$(Ga \land G \neg a) \Longrightarrow (FGa \land FG \neg a)$: Tautology

rLTL-Ugly Prefix: Every continuation yields ????rLTL-Monitorable: There are no rLTL-Ugly Prefixes

LTL Mor

rLTL: "Adding { } will

rLTL Monitorable

LTL: "Adding { } will

Not rLTL Monitorable (Ga \land G \neg a) \Longrightarrow

nitorable	Not LTL Monitorable
always yield 0***" Ja always yield 0"	rLTL: "Adding {a} will yield 1 in las GFa LTL: "Depends on infinite behavio
> (FGa ∧ FG¬a)	(p∧φιτι)∨(¬p ∧ φrιτι)

Lift Monitoring from LTL to rLTL

rLTL on **Finite Traces**

Construction of an rLTL Monitor

Case Study: LTL v. rLTL

Lift Monitoring from LTL to rLTL

rLTL on Finite Traces

Construction of an rLTL Monitor

Case Study: LTL v. rLTL

rLTL

φ

rLTL

Büchi

rLTL

Büchi

 $2^{O(|\varphi|)}$

G¬a ¬а a

rLTL

Büchi

 $2^{O(|\varphi|)}$

Det. Moore

 $\rightarrow \mathcal{C}_G$

Det. Moore

Det. Moore

 $2^{O(|\mathscr{B}|)}$

 $2^{O(|\mathscr{B}|)}$ $O(|\mathscr{C}|)$

 $2^{O(|\mathscr{B}|)}$ $O(|\mathscr{C}|)$

 $O(|\mathcal{M}|\log(|\mathcal{M}|))$

Lift Monitoring from LTL to rLTL

rLTL on Finite Traces

Construction of an rLTL Monitor

Case Study: LTL v. rLTL

Lift Monitoring from LTL to rLTL

rLTL on Finite Traces

Construction of an rLTL Monitor

Case Study: LTL v. rLTL

Benchmark

Dwyer et al [1]: 97 LTL formulas frequent specification patterns

[1] Dwyer, Avrunin, Corbett. "Patterns in property specifications for finite-state verification". ICSE 1999

Benchmark

Dwyer et al [1]: 97 LTL formulas frequent specification patterns

55.7% LTL-monitorable [2] **100% rLTL**-monitorable versus

[1] Dwyer, Avrunin, Corbett. "Patterns in property specifications for finite-state verification". ICSE 1999 [2] Bauer, Leucker, Schallhart. "Runtime verification for LTL and TLTL". ACM Trans. Softw. Eng. Methodol. 2011

Analysis of the monitor construction for the 54 formulas that are both LTL-monitorable and rLTL-monitorable

Number of states

Histogram of the number of monitors with respect to their size

Summary

Summary

Det. Moore

55.7% LTL-monitorable

From LTL to rLTL: nitorable More Information; Same (Asymptotic) Cost 2110 2 0 1 0 3 4 5 6 7 8

Number of states

