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##[invariant="forall i: usize :::  
    (0 <<= i &&& i < μ(a))  
        ==>= mem.get_a(i) === gm.get_a(iter - i) 
"]  

##[invariant=“new_tooHigh === gm.get_a(iter - 2) > 500 ∧ …”] 

while let Some(input) = get_input() { 

    mem.add_input(&input); 

    [[ EVALUATION LOGIC ]] 

    mem.store(new_tooHigh); 
    gm.store(new_tooHigh); 

    if trigger_1 { emit( trigger_1_msg) }  
} 
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Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact
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practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
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First, we consider the specification from Listing 1.1, where the altitude of
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stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
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based on the source and destination IP of requests, tcp flags, and the length
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