
C I S PA
HELMHOLTZ CENTER FOR
INFORMATION SECURITY

Bernd Finkbeiner, Stefan Oswald,
Noemi Passing, Maximilian Schwenger

VERIFIED RUST MONITORS
FOR LOLA SPECIFICATIONS

AN AGE-OLD QUESTION

QUIS CUSTODIET IPSOS
CUSTODES?

~ Juvenal (100-200ad)

QUIS CUSTODIET IPSOS CUSTODES?

3

Cannot be trusted! MONITOR

observes

QUIS CUSTODIET IPSOS CUSTODES?

3

Cannot be trusted!

Why trust
the monitor?

MONITOR

observes

QUIS CUSTODIET IPSOS CUSTODES?

3

Cannot be trusted!

Why trust
the monitor?

MONITOR

observes

Our Goal:
Verify the Monitor!

QUIS CUSTODIET IPSOS CUSTODES?

4

01010010
01010110
00110010
00110000

Never injure humans. Obey orders. Protect yourself.

Lola
Specification

observes MONITOR

Our Goal:
Verify the Monitor!

QUIS CUSTODIET IPSOS CUSTODES?

4

01010010
01010110
00110010
00110000

Never injure humans. Obey orders. Protect yourself.

Lola
Specification

observes

Impl Monitor {
 ##[invariant = …]
 while let Some(i)
 = get_input() {
 …
 }}

Rust
Code

MONITOR

Our Goal:
Verify the Monitor!

Compilation

QUIS CUSTODIET IPSOS CUSTODES?

4

01010010
01010110
00110010
00110000

Never injure humans. Obey orders. Protect yourself.

Lola
Specification

observes

Impl Monitor {
 ##[invariant = …]
 while let Some(i)
 = get_input() {
 …
 }}

Rust
Code

MONITOR

Our Goal:
Verify the Monitor!

Compilation

+ Annotation
+ Generation

QUIS CUSTODIET IPSOS CUSTODES?

4

01010010
01010110
00110010
00110000

Never injure humans. Obey orders. Protect yourself.

Lola
Specification

observes

Impl Monitor {
 ##[invariant = …]
 while let Some(i)
 = get_input() {
 …
 }}

Rust
Code

verifies MONITOR

Our Goal:
Verify the Monitor!

Compilation

+ Annotation
+ Generation

QUIS CUSTODIET IPSOS CUSTODES?

4

01010010
01010110
00110010
00110000

Never injure humans. Obey orders. Protect yourself.

Lola
Specification

observes

Impl Monitor {
 ##[invariant = …]
 while let Some(i)
 = get_input() {
 …
 }}

Rust
Code

verifies MONITOR

Our Goal:
Verify the Monitor!

Compilation

+ Annotation
+ Generation

t1,8t1,7t1,5 t1,6t1,4t1,3t1,2t1,1

o2,8o2,7o2,5 o2,6o2,4o2,3o2,2o2,1

o1,8o1,7o1,5 o1,6o1,4o1,3o1,2o1,1

i3,8i3,7i3,5 i3,6i3,4i3,3i3,2i3,1

i2,8i2,7i2,5 i2,6i2,4i2,3i2,2i2,1

i1,8i1,7i1,5 i1,6i1,4i1,3i1,2i1,1

STREAM-BASED MONITORING WITH LOLA

5

input i1

input i2

input i3

output o1 ::= i3 + 3

output o2 ::= i1 + i2 + o1

trigger o2 > 7

sensors

t1,8t1,7t1,5 t1,6t1,4t1,3t1,2t1,1

o2,8o2,7o2,5 o2,6o2,4o2,3o2,2o2,1

o1,8o1,7o1,5 o1,6o1,4o1,3o1,2o1,1

i3,8i3,7i3,5 i3,6i3,4i3,3i3,2i3,1

i2,8i2,7i2,5 i2,6i2,4i2,3i2,2i2,1

i1,8i1,7i1,5 i1,6i1,4i1,3i1,2i1,1

STREAM-BASED MONITORING WITH LOLA

5

input i1

input i2

input i3

output o1 ::= i3 + 3

output o2 ::= i1 + i2 + o1

trigger o2 > 7

sensors

o2,8o2,7o2,5 o2,6o2,4o2,3o2,2o2,1

o1,8o1,7o1,5 o1,6o1,4o1,3o1,2o1,1

i3,8i3,7i3,5 i3,6i3,4i3,3i3,2i3,1

i2,8i2,7i2,5 i2,6i2,4i2,3i2,2i2,1

i1,8i1,7i1,5 i1,6i1,4i1,3i1,2i1,1

STREAM-BASED MONITORING WITH LOLA

5

input i1

input i2

input i3

output o1 ::= i3 + 3

output o2 ::= i1 + i2 + o1

trigger o2 > 7

sensors

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

STREAM-BASED MONITORING WITH LOLA

6

sensors
input alt

output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500

trigger tooHigh

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

STREAM-BASED MONITORING WITH LOLA

6

sensors
input alt

output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500

trigger tooHigh

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

STREAM-BASED MONITORING WITH LOLA

6

fails @ t=1

fails @ t=|σ|

sensors
input alt

output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500

trigger tooHigh

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

STREAM-BASED MONITORING WITH LOLA

6

fails @ t=1

fails @ t=|σ|

never fails

sensors
input alt

output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500

trigger tooHigh

THREE PHASES

7PREFIX MONITOR LOOP POSTFIX

fn postfix() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

fn prefix() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

THREE CODE FRAGMENTS

8MONITOR LOOPPREFIX POSTFIX

while let Some(…)
 = get_input() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

fn postfix() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

fn prefix() {
 0 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

THREE CODE FRAGMENTS

8MONITOR LOOPPREFIX POSTFIX

while let Some(…)
 = get_input() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

fn postfix() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

fn prefix() {
 0 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

THREE CODE FRAGMENTS

8MONITOR LOOPPREFIX POSTFIX

while let Some(…)
 = get_input() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

fn prefix() {
 0 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

fn postfix() {
 a-1 > 500
 ∧ a0 > 500
 ∧ 0 > 500
}

THREE CODE FRAGMENTS

8MONITOR LOOPPREFIX POSTFIX

while let Some(…)
 = get_input() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

fn prefix() {
 0 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

fn postfix() {
 a-1 > 500
 ∧ a0 > 500
 ∧ 0 > 500
}

THREE CODE FRAGMENTS

8MONITOR LOOPPREFIX POSTFIX

while let Some(…)
 = get_input() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

I. ERADICATE MOST CONDITIONALS
II. MEMORY ACCESSES BECOME CONSTANTS

PERFORMANCE BENEFITS

9

Interpretation
[CAV’19]

Compilation

438ns

6ns
(1.4%)

1.535μs

63ns
(4%)

VERIFICATION

10

LOLA

RUST

t = 0

stream ≜ infinite sequence of values

VERIFICATION

10

LOLA

RUST

t = 0

stream ≜ infinite sequence of values

memory ≜ finite excerpt of stream

VERIFICATION

11

LOLA

RUST

t = 0

stream ≜ infinite sequence of values

memory ≜ finite excerpt of stream

VIPER
t = 0

= = = = = = =

= = = =

GHOST
MEMORY

GHOST MEMORY IN ACTION

12

##[invariant="forall i: usize :::
 (0 <<= i &&& i < μ(a))
 ==>= mem.get_a(i) === gm.get_a(iter - i)
"]

##[invariant=“new_tooHigh === gm.get_a(iter - 2) > 500 ∧ …”]

while let Some(input) = get_input() {

 mem.add_input(&input);

 [[EVALUATION LOGIC]]

 mem.store(new_tooHigh);
 gm.store(new_tooHigh);

 if trigger_1 { emit(trigger_1_msg) }
}

EXPERIMENTS

13

altitude

EXPERIMENTS

13

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

altitude

EXPERIMENTS

13

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

altitude

EXPERIMENTS

13

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

altitude flight phase

EXPERIMENTS

13

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

altitude flight phase

Detected implicit assumption
on input stream!

EXPERIMENTS

13

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

altitude

On corrected spec:

6 – 16min
1.38 – 1.66GB

2 T/O (10%)
4 fails (20%)

flight phase

Detected implicit assumption
on input stream!

EXPERIMENTS

13

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

altitude

On corrected spec:

6 – 16min
1.38 – 1.66GB

2 T/O (10%)
4 fails (20%)

flight phase

I. SUCCESSFULLY DETECTED SPECIFICATION ERROR
II. VERIFIED MONITORS FOR COMPLEX SPECIFICATIONS

Detected implicit assumption
on input stream!

CONCLUSION

EXPERIMENTS

13

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

altitude

On corrected spec:
6 – 16min

1.38 – 1.66GB
2 T/O (10%)
4 fails (20%)

flight phase

Detected implicit assumption
on input stream

MORE INFORMATION:
Compiled Code:
• Github → Lola2RustArtifact
In Paper:
• Specification Analysis
• Concurrent Implementation

BOTTOM LINE:
• Quis Custodiet Ipsos Custodes?

Viper does!
• Successful verification
• Highly performant Code

QUIS CUSTODIET IPSOS CUSTODES?

5

01010010
01010110
00110010
00110000

Never injure humans. Obey orders. Protect yourself.

Lola
Specification

observes
Impl Monitor {
 #"invariant = …]
 while let Some(i)
 = get_input() {
 …
 }}

Rust
Code

verifies MONITOR

Our Goal:
Prove the Monitor Correct!

