
C I S PA
HELMHOLTZ CENTER FOR
INFORMATION SECURITY

Maximilian Schwenger

MONITORING CYBER-PHYSICAL SYSTEMS:
FROM DESIGN TO INTEGRATION

2

2

BLOCK I

3

OVERVIEW

BLOCK I

TYPE-
CHECK

INTER-
PRETATION

SPECIFICATION

BLOCK II

HARDWARE

SOFTWARE

BLOCK III

INTEGRATION

POST-MORTEM

BLOCK I

4

MONITORSYSTEM HEALTH

S
PEC

1. Never injure humans. 2.Obey orders. 3.Protect yourself

ANALYSIS

OUR SETUP

BLOCK I SPECIFICATION

5

BLOCK I

TYPE-
CHECK

INTER-
PRETATION

SPECIFICATION

BLOCK II

HARDWARE

SOFTWARE

BLOCK III

INTEGRATION

POST-MORTEM

BLOCK I

Sensor Level Mission Level

Timeliness Critical Lax

Arithmetic
Challenge

Low
(bounds checks, counting)

High
(statistics, prediction)

Input Data Raw Refined

Locality Local Inter-
component System-wide

Example
Data Validation:

“Altimeter must produce
positives values.”

Mission Statistics:
“Low correlation between WP

distance and relative path
deviation.”

PROPERTY SPECTRUM

6

BLOCK I

Sensor Level Mission Level

Timeliness Critical Lax

Arithmetic
Challenge

Low
(bounds checks, counting)

High
(statistics, prediction)

Input Data Raw Refined

Locality Local Inter-
component System-wide

Example
Data Validation:

“Altimeter must produce
positives values.”

Mission Statistics:
“Low correlation between WP

distance and relative path
deviation.”

PROPERTY SPECTRUM

6

BLOCK I

Sensor Level Mission Level

Timeliness Critical Lax

Arithmetic
Challenge

Low
(bounds checks, counting)

High
(statistics, prediction)

Input Data Raw Refined

Locality Local Inter-
component System-wide

Example
Data Validation:

“Altimeter must produce
positives values.”

Mission Statistics:
“Low correlation between WP

distance and relative path
deviation.”

PROPERTY SPECTRUM

6

BLOCK I

Sensor Level Mission Level

Timeliness Critical Lax

Arithmetic
Challenge

Low
(bounds checks, counting)

High
(statistics, prediction)

Input Data Raw Refined

Locality Local Inter-
component System-wide

Example
Data Validation:

“Altimeter must produce
positives values.”

Mission Statistics:
“Low correlation between WP

distance and relative path
deviation.”

PROPERTY SPECTRUM

6

BLOCK I

Sensor Level Mission Level

Timeliness Critical Lax

Arithmetic
Challenge

Low
(bounds checks, counting)

High
(statistics, prediction)

Input Data Raw Refined

Locality Local Inter-
component System-wide

Example
Data Validation:

“Altimeter must produce
positives values.”

Mission Statistics:
“Low correlation between WP

distance and relative path
deviation.”

PROPERTY SPECTRUM

6

BLOCK I

Sensor Level Mission Level

Timeliness Critical Lax

Arithmetic
Challenge

Low
(bounds checks, counting)

High
(statistics, prediction)

Input Data Raw Refined

Locality Local Inter-
component System-wide

Example
Data Validation:

“Altimeter must produce
positives values.”

Mission Statistics:
“Low correlation between WP

distance and relative path
deviation.”

PROPERTY SPECTRUM

6

BLOCK I ONE LANGUAGE TO RULE THEM ALL?

7

BLOCK I ONE LANGUAGE TO RULE THEM ALL?

7

Control + Guarantees Expressiveness
Logics General-Purpose Languages

BLOCK I
Points to consider:
❖ Output Quality → Stream-based + Quantitative
❖ Expressiveness → Arithmetic + Clarity
❖ Integration → HW + SW compilation
❖ Guarantees → Const Space + Const Time per event
❖ Certifiability → SW verified; prelim results for HW

ONE LANGUAGE TO RULE THEM ALL?

7

Control + Guarantees Expressiveness
Logics General-Purpose Languages

BLOCK I
Points to consider:
❖ Output Quality → Stream-based + Quantitative
❖ Expressiveness → Arithmetic + Clarity
❖ Integration → HW + SW compilation
❖ Guarantees → Const Space + Const Time per event
❖ Certifiability → SW verified; prelim results for HW

ONE LANGUAGE TO RULE THEM ALL?

7

Control + Guarantees Expressiveness
Logics General-Purpose Languages

BLOCK I
Points to consider:
❖ Output Quality → Stream-based + Quantitative
❖ Expressiveness → Arithmetic + Clarity
❖ Integration → HW + SW compilation
❖ Guarantees → Const Space + Const Time per event
❖ Certifiability → SW verified; prelim results for HW

ONE LANGUAGE TO RULE THEM ALL?

7

Control + Guarantees Expressiveness
Logics General-Purpose Languages

BLOCK I
Points to consider:
❖ Output Quality → Stream-based + Quantitative
❖ Expressiveness → Arithmetic + Clarity
❖ Integration → HW + SW compilation
❖ Guarantees → Const Space + Const Time per event
❖ Certifiability → SW verified; prelim results for HW

ONE LANGUAGE TO RULE THEM ALL?

7

Control + Guarantees Expressiveness
Logics General-Purpose Languages

BLOCK I
Points to consider:
❖ Output Quality → Stream-based + Quantitative
❖ Expressiveness → Arithmetic + Clarity
❖ Integration → HW + SW compilation
❖ Guarantees → Const Space + Const Time per event
❖ Certifiability → SW verified; prelim results for HW

ONE LANGUAGE TO RULE THEM ALL?

7

Control + Guarantees Expressiveness
Logics General-Purpose Languages

BLOCK I
Points to consider:
❖ Output Quality → Stream-based + Quantitative
❖ Expressiveness → Arithmetic + Clarity
❖ Integration → HW + SW compilation
❖ Guarantees → Const Space + Const Time per event
❖ Certifiability → SW verified; prelim results for HW

ONE LANGUAGE TO RULE THEM ALL?

7

Control + Guarantees Expressiveness
Logics General-Purpose Languages

BLOCK I

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.

RTLOLA BY EXAMPLE I

8

BLOCK I

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.

RTLOLA BY EXAMPLE I

8

input pressure: Float32
output read_ps @ 1Hz ::= pressure.aggregate(over: 1s, using: count)
trigger read_ps > 11 ∨ read_ps < 9 “Barometer count irregular.”

Sensor Validation 2: Barometer must produce 9 — 11 readings per second.

BLOCK I

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.

RTLOLA BY EXAMPLE I

8

input pressure: Float32
output read_ps @ 1Hz ::= pressure.aggregate(over: 1s, using: count)
trigger read_ps > 11 ∨ read_ps < 9 “Barometer count irregular.”

Sensor Validation 2: Barometer must produce 9 — 11 readings per second.

BLOCK I

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.

RTLOLA BY EXAMPLE I

8

input pressure: Float32
output read_ps @ 1Hz ::= pressure.aggregate(over: 1s, using: count)
trigger read_ps > 11 ∨ read_ps < 9 “Barometer count irregular.”

Sensor Validation 2: Barometer must produce 9 — 11 readings per second.

Barometer must produce 4 readings per second.

1s 2s 3s 4s

BLOCK I

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.

RTLOLA BY EXAMPLE I

8

input pressure: Float32
output read_ps @ 1Hz ::= pressure.aggregate(over: 1s, using: count)
trigger read_ps > 11 ∨ read_ps < 9 “Barometer count irregular.”

Sensor Validation 2: Barometer must produce 9 — 11 readings per second.

Barometer must produce 4 readings per second.

1s 2s 3s 4s

BLOCK I

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.

RTLOLA BY EXAMPLE I

8

input pressure: Float32
output read_ps @ 1Hz ::= pressure.aggregate(over: 1s, using: count)
trigger read_ps > 11 ∨ read_ps < 9 “Barometer count irregular.”

Sensor Validation 2: Barometer must produce 9 — 11 readings per second.

Barometer must produce 4 readings per second.

1s 2s 3s 4s

BLOCK I

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.

RTLOLA BY EXAMPLE I

8

input pressure: Float32
output read_ps @ 1Hz ::= pressure.aggregate(over: 1s, using: count)
trigger read_ps > 11 ∨ read_ps < 9 “Barometer count irregular.”

Sensor Validation 2: Barometer must produce 9 — 11 readings per second.

Barometer must produce 4 readings per second.

1s 2s 3s 4s

Semantically different!

BLOCK I COST OF CONSTANT MEMORY

9

Every request needs to be granted within a second.

1s 2s0.07s

? ? ? ? ?? ? ? ??? ?

MTL: □(r → ◇1s g)

BLOCK I COST OF CONSTANT MEMORY

9

Every request needs to be granted within a second.

1s 2s0.07s

? ? ? ? ?? ? ? ??? ?

MTL: □(r → ◇1s g)

MTL:

BLOCK I

Check t = 1.12 Check t = 1.25Check t = 1.39Check t = 1.47Check t = 1.58Check t = 1.62Check t = 1.72Check t = 1.75Check t = 1.79Check t = 1.83Check t = 1.90 Check t = 1.93

COST OF CONSTANT MEMORY

9

Every request needs to be granted within a second.

1s 2s0.07s

? ? ? ? ?? ? ? ??? ?

MTL: □(r → ◇1s g)

MTL:

BLOCK I

Check t = 1.12 Check t = 1.25Check t = 1.39Check t = 1.47Check t = 1.58Check t = 1.62Check t = 1.72Check t = 1.75Check t = 1.79Check t = 1.83Check t = 1.90 Check t = 1.93

COST OF CONSTANT MEMORY

9

Every request needs to be granted within a second.

1s 2s0.07s

? ? ? ? ?? ? ? ??? ?

MTL: □(r → ◇1s g)

MTL: RTLola:

BLOCK I

Check t = 1.12 Check t = 1.25Check t = 1.39Check t = 1.47Check t = 1.58Check t = 1.62Check t = 1.72Check t = 1.75Check t = 1.79Check t = 1.83Check t = 1.90 Check t = 1.93

COST OF CONSTANT MEMORY

9

Every request needs to be granted within a second.

1s 2s0.07s

? ? ? ? ?? ? ? ??? ?

MTL: □(r → ◇1s g)

MTL: RTLola: Check t = 1.07

BLOCK I

Check t = 1.12 Check t = 1.25Check t = 1.39Check t = 1.47Check t = 1.58Check t = 1.62Check t = 1.72Check t = 1.75Check t = 1.79Check t = 1.83Check t = 1.90 Check t = 1.93

COST OF CONSTANT MEMORY

9

Every request needs to be granted within a second.

1s 2s0.07s

? ? ? ? ?? ? ? ??? ?

MTL: □(r → ◇1s g)

MTL: RTLola: Check t = 1.07

RTLOLA RESTRICTS THE SPECIFIER TO ENABLE STATIC
MEMORY BOUND

→ ENFORCEMENT THROUGH TYPE SYSTEM

BLOCK I RTLOLA’S TYPE SYSTEM I

10

Any

NumericBool

IntegerFloat64

UnsignedFloat32 Int64

UInt64Int32

…

Any

Periodic Event

a ∧ b

a b

a ∨ b

1Hz

3Hz 2Hz

6Hz

VALUE TYPE PACING TYPE
… …

BLOCK I 2-DIMENSIONAL TIME

11

2s 4s1s 3s

0-order
hold

γ

e1: event

e2: event

p1: periodic

p2: periodic

BLOCK I 2-DIMENSIONAL TIME

11

2s 4s1s 3s

0-order
hold

γ

e1: event

e2: event

p1: periodic

p2: periodic

❖ Synchronous: Default; Couples timing; Infallible
❖ Holds + aggregations: Decouple timing; Fallible
❖ Aggregations only permitted in periodic streams

BLOCK I RTLOLA’S TYPE SYSTEM II

12

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.

BLOCK I RTLOLA’S TYPE SYSTEM II

12

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.
Float32 | altitude

BLOCK I RTLOLA’S TYPE SYSTEM II

12

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.
Float32 | altitude

Bool | altitude

BLOCK I RTLOLA’S TYPE SYSTEM II

12

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.
Float32 | altitude

Bool | altitude Ensures
timeliness

BLOCK I RTLOLA’S TYPE SYSTEM II

12

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.

input pressure: Float32
output read_ps @ 1Hz ::= pressure.aggregate(over: 1s, using: count)
trigger read_ps > 11 ∨ read_ps < 9 “Barometer count irregular.”

Sensor Validation 2: Barometer must produce 9 — 11 readings per second.

Float32 | altitude

Bool | altitude

BLOCK I RTLOLA’S TYPE SYSTEM II

12

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.

input pressure: Float32
output read_ps @ 1Hz ::= pressure.aggregate(over: 1s, using: count)
trigger read_ps > 11 ∨ read_ps < 9 “Barometer count irregular.”

Sensor Validation 2: Barometer must produce 9 — 11 readings per second.

Float32 | altitude

Bool | altitude

Float32 | pressure

BLOCK I RTLOLA’S TYPE SYSTEM II

12

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.

input pressure: Float32
output read_ps @ 1Hz ::= pressure.aggregate(over: 1s, using: count)
trigger read_ps > 11 ∨ read_ps < 9 “Barometer count irregular.”

Sensor Validation 2: Barometer must produce 9 — 11 readings per second.

Float32 | altitude

Bool | altitude

Float32 | pressure UInt32 | 1Hz

BLOCK I RTLOLA’S TYPE SYSTEM II

12

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.

input pressure: Float32
output read_ps @ 1Hz ::= pressure.aggregate(over: 1s, using: count)
trigger read_ps > 11 ∨ read_ps < 9 “Barometer count irregular.”

Sensor Validation 2: Barometer must produce 9 — 11 readings per second.

Float32 | altitude

Bool | altitude

Float32 | pressure UInt32 | 1Hz

Bool | 1Hz

BLOCK I RTLOLA’S TYPE SYSTEM II

12

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.

input pressure: Float32
output read_ps @ 1Hz ::= pressure.aggregate(over: 1s, using: count)
trigger read_ps > 11 ∨ read_ps < 9 “Barometer count irregular.”

Sensor Validation 2: Barometer must produce 9 — 11 readings per second.

Float32 | altitude

Bool | altitude

Float32 | pressure UInt32 | 1Hz

Bool | 1Hz

output x ::= pressure.aggregate(…)
output y ::= read_ps * pressure

BLOCK I RTLOLA’S TYPE SYSTEM II

12

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.

input pressure: Float32
output read_ps @ 1Hz ::= pressure.aggregate(over: 1s, using: count)
trigger read_ps > 11 ∨ read_ps < 9 “Barometer count irregular.”

Sensor Validation 2: Barometer must produce 9 — 11 readings per second.

Float32 | altitude

Bool | altitude

Float32 | pressure UInt32 | 1Hz

Bool | 1Hz

output x ::= pressure.aggregate(…)
output y ::= read_ps * pressure

aggregation w/o period

BLOCK I RTLOLA’S TYPE SYSTEM II

12

input altitude: Float32
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1: Altimeter readings must be non-negative.

input pressure: Float32
output read_ps @ 1Hz ::= pressure.aggregate(over: 1s, using: count)
trigger read_ps > 11 ∨ read_ps < 9 “Barometer count irregular.”

Sensor Validation 2: Barometer must produce 9 — 11 readings per second.

Float32 | altitude

Bool | altitude

Float32 | pressure UInt32 | 1Hz

Bool | 1Hz

output x ::= pressure.aggregate(…)
output y ::= read_ps * pressure

aggregation w/o period
mixes periodic and events

BLOCK I

input velo_1, velo_2: Int32

output deviation’ @ velo_1 ∧ velo_2 ::= abs(velo_1 - velo_2)

RTLOLA’S TYPE SYSTEM III

13

Int32 | velo_1 Int32 | velo_2

BLOCK I

input velo_1, velo_2: Int32

output deviation’ @ velo_1 ∧ velo_2 ::= abs(velo_1 - velo_2)

RTLOLA’S TYPE SYSTEM III

13

Int32 | velo_1 Int32 | velo_2

UInt32 | velo_1 ∧ velo_2

BLOCK I

input velo_1, velo_2: Int32

output deviation’ @ velo_1 ∧ velo_2 ::= abs(velo_1 - velo_2)

output deviation’ @ velo_1 ∨ velo_2
 ::= abs(velo_1.hold(or: 0) - velo_2.hold(or: 0))

RTLOLA’S TYPE SYSTEM III

13

Int32 | velo_1 Int32 | velo_2

UInt32 | velo_1 ∧ velo_2

UInt32 | velo_1 ∨ velo_2

BLOCK I

input velo_1, velo_2: Int32

output deviation’ @ velo_1 ∧ velo_2 ::= abs(velo_1 - velo_2)

output deviation’ @ velo_1 ∨ velo_2
 ::= abs(velo_1.hold(or: 0) - velo_2.hold(or: 0))

RTLOLA’S TYPE SYSTEM III

13

Int32 | velo_1 Int32 | velo_2

UInt32 | velo_1 ∧ velo_2

UInt32 | velo_1 ∨ velo_2

BLOCK I

input velo_1, velo_2: Int32

output deviation’ @ velo_1 ∧ velo_2 ::= abs(velo_1 - velo_2)

output deviation’ @ velo_1 ∨ velo_2
 ::= abs(velo_1.hold(or: 0) - velo_2.hold(or: 0))

RTLOLA’S TYPE SYSTEM III

13

Int32 | velo_1 Int32 | velo_2

UInt32 | velo_1 ∧ velo_2

UInt32 | velo_1 ∨ velo_2

Int32 | Any Int32 | Any

BLOCK I

input velo_1, velo_2: Int32

output deviation’ @ velo_1 ∧ velo_2 ::= abs(velo_1 - velo_2)

output deviation’ @ velo_1 ∨ velo_2
 ::= abs(velo_1.hold(or: 0) - velo_2.hold(or: 0))

RTLOLA’S TYPE SYSTEM III

13

Int32 | velo_1 Int32 | velo_2

UInt32 | velo_1 ∧ velo_2

UInt32 | velo_1 ∨ velo_2

Int32 | Any Int32 | Any

STRONG TYPE SYSTEM SUPPORTS SPECIFIER.
→ INCREASES CONFIDENCE IN SPEC.

BLOCK I

input wp, pos: (Float64, Float64)

output wp_dist ::= abs(wp - wp.offset(by: -1, dft: wp))
output dist_total ::= pos - pos.offset(by: -1, dft: START)
 + dist_total.offset(by: -1, dft: 0)
output total_dist_at_wp @ wp ::= dist_total.hold(or: 0)
output devi @ wp ::= abs(wp_dist.offset(by: -1, dft: 0) -
 (total_dist_at_wp - total_dist_at_wp.offset(by: -1, dft: 0))

output dist_v_devi @ wp ::= (wp_dist, devi)
output cov @ 1Hz ::= dist_v_devi.aggregate(over: ∞, using: cov)
output var_dist @ 1Hz ::= wp_dist.aggregate(over: ∞, using: var)
output var_devi @ 1Hz ::= devi.aggregate(over: ∞, using: var)
output corr ::= cov / (var_devi^2 * var_dist^2)

RTLOLA BY EXAMPLE II

14

Mission Statistic: Does the WP-distance correlate with
 the relative path deviation?

BLOCK I

input wp, pos: (Float64, Float64)

output wp_dist ::= abs(wp - wp.offset(by: -1, dft: wp))
output dist_total ::= pos - pos.offset(by: -1, dft: START)
 + dist_total.offset(by: -1, dft: 0)
output total_dist_at_wp @ wp ::= dist_total.hold(or: 0)
output devi @ wp ::= abs(wp_dist.offset(by: -1, dft: 0) -
 (total_dist_at_wp - total_dist_at_wp.offset(by: -1, dft: 0))

output dist_v_devi @ wp ::= (wp_dist, devi)
output cov @ 1Hz ::= dist_v_devi.aggregate(over: ∞, using: cov)
output var_dist @ 1Hz ::= wp_dist.aggregate(over: ∞, using: var)
output var_devi @ 1Hz ::= devi.aggregate(over: ∞, using: var)
output corr ::= cov / (var_devi^2 * var_dist^2)

RTLOLA BY EXAMPLE II

14

Mission Statistic: Does the WP-distance correlate with
 the relative path deviation?

BLOCK I

input wp, pos: (Float64, Float64)

output wp_dist ::= abs(wp - wp.offset(by: -1, dft: wp))
output dist_total ::= pos - pos.offset(by: -1, dft: START)
 + dist_total.offset(by: -1, dft: 0)
output total_dist_at_wp @ wp ::= dist_total.hold(or: 0)
output devi @ wp ::= abs(wp_dist.offset(by: -1, dft: 0) -
 (total_dist_at_wp - total_dist_at_wp.offset(by: -1, dft: 0))

output dist_v_devi @ wp ::= (wp_dist, devi)
output cov @ 1Hz ::= dist_v_devi.aggregate(over: ∞, using: cov)
output var_dist @ 1Hz ::= wp_dist.aggregate(over: ∞, using: var)
output var_devi @ 1Hz ::= devi.aggregate(over: ∞, using: var)
output corr ::= cov / (var_devi^2 * var_dist^2)

RTLOLA BY EXAMPLE II

14

Mission Statistic: Does the WP-distance correlate with
 the relative path deviation?

BLOCK I

input wp, pos: (Float64, Float64)

output wp_dist ::= abs(wp - wp.offset(by: -1, dft: wp))
output dist_total ::= pos - pos.offset(by: -1, dft: START)
 + dist_total.offset(by: -1, dft: 0)
output total_dist_at_wp @ wp ::= dist_total.hold(or: 0)
output devi @ wp ::= abs(wp_dist.offset(by: -1, dft: 0) -
 (total_dist_at_wp - total_dist_at_wp.offset(by: -1, dft: 0))

output dist_v_devi @ wp ::= (wp_dist, devi)
output cov @ 1Hz ::= dist_v_devi.aggregate(over: ∞, using: cov)
output var_dist @ 1Hz ::= wp_dist.aggregate(over: ∞, using: var)
output var_devi @ 1Hz ::= devi.aggregate(over: ∞, using: var)
output corr ::= cov / (var_devi^2 * var_dist^2)

RTLOLA BY EXAMPLE II

14

Mission Statistic: Does the WP-distance correlate with
 the relative path deviation?

BLOCK I

input wp, pos: (Float64, Float64)

output wp_dist ::= abs(wp - wp.offset(by: -1, dft: wp))
output dist_total ::= pos - pos.offset(by: -1, dft: START)
 + dist_total.offset(by: -1, dft: 0)
output total_dist_at_wp @ wp ::= dist_total.hold(or: 0)
output devi @ wp ::= abs(wp_dist.offset(by: -1, dft: 0) -
 (total_dist_at_wp - total_dist_at_wp.offset(by: -1, dft: 0))

output dist_v_devi @ wp ::= (wp_dist, devi)
output cov @ 1Hz ::= dist_v_devi.aggregate(over: ∞, using: cov)
output var_dist @ 1Hz ::= wp_dist.aggregate(over: ∞, using: var)
output var_devi @ 1Hz ::= devi.aggregate(over: ∞, using: var)
output corr ::= cov / (var_devi^2 * var_dist^2)

RTLOLA BY EXAMPLE II

14

Mission Statistic: Does the WP-distance correlate with
 the relative path deviation?

BLOCK I

input wp, pos: (Float64, Float64)

output wp_dist ::= abs(wp - wp.offset(by: -1, dft: wp))
output dist_total ::= pos - pos.offset(by: -1, dft: START)
 + dist_total.offset(by: -1, dft: 0)
output total_dist_at_wp @ wp ::= dist_total.hold(or: 0)
output devi @ wp ::= abs(wp_dist.offset(by: -1, dft: 0) -
 (total_dist_at_wp - total_dist_at_wp.offset(by: -1, dft: 0))

output dist_v_devi @ wp ::= (wp_dist, devi)
output cov @ 1Hz ::= dist_v_devi.aggregate(over: ∞, using: cov)
output var_dist @ 1Hz ::= wp_dist.aggregate(over: ∞, using: var)
output var_devi @ 1Hz ::= devi.aggregate(over: ∞, using: var)
output corr ::= cov / (var_devi^2 * var_dist^2)

RTLOLA BY EXAMPLE II

14

Mission Statistic: Does the WP-distance correlate with
 the relative path deviation?

BLOCK I

input wp, pos: (Float64, Float64)

output wp_dist ::= abs(wp - wp.offset(by: -1, dft: wp))
output dist_total ::= pos - pos.offset(by: -1, dft: START)
 + dist_total.offset(by: -1, dft: 0)
output total_dist_at_wp @ wp ::= dist_total.hold(or: 0)
output devi @ wp ::= abs(wp_dist.offset(by: -1, dft: 0) -
 (total_dist_at_wp - total_dist_at_wp.offset(by: -1, dft: 0))

output dist_v_devi @ wp ::= (wp_dist, devi)
output cov @ 1Hz ::= dist_v_devi.aggregate(over: ∞, using: cov)
output var_dist @ 1Hz ::= wp_dist.aggregate(over: ∞, using: var)
output var_devi @ 1Hz ::= devi.aggregate(over: ∞, using: var)
output corr ::= cov / (var_devi^2 * var_dist^2)

RTLOLA BY EXAMPLE II

14

RTLOLA PROVIDES PRIMITIVES FOR ABSTRACT,
MISSION-LEVEL PROPERTIES.

Mission Statistic: Does the WP-distance correlate with
 the relative path deviation?

15

Great, we’ve got a spec and the type
checker is happy.

What next?
A) Further increase confidence B) Analyze complexity

BLOCK I

16

VALIDATION VIA INTERPRETATION

BLOCK I

16

VALIDATION VIA INTERPRETATION

GPS frequency validation

GPS/IMU jump detection

Hover phase detection

SPECIFICATION:

433,000 events

1,545ns per event @ 146%

Stack size < 1kB, no heap

�
�
�
��
��

��
� �
��	
���� �

�
���

�
��
	
�����������

��

��
��
� �

���������

�
�
�
�
�
��

������ �

�
�
�

RESULTS:

BLOCK I

16

VALIDATION VIA INTERPRETATION

GPS frequency validation

GPS/IMU jump detection

Hover phase detection

SPECIFICATION:

433,000 events

1,545ns per event @ 146%

Stack size < 1kB, no heap

�
�
�
��
��

��
� �
��	
���� �

�
���

�
��
	
�����������

��

��
��
� �

���������

�
�
�
�
�
��

������ �

�
�
�

RESULTS:

ENABLES RAPID DEVELOPMENT.

BLOCK I SPECIFICATION ANALYSIS

17

wp

pos

wp_dist

d_total

devi

di_v_de

cov

var_dist var_dist

corr

td@wp

-1

-1

-10

0

BLOCK I SPECIFICATION ANALYSIS

17

wp

pos

wp_dist

d_total

devi

di_v_de

cov

var_dist var_dist

corr

td@wp

-1

-1

-10

0

BLOCK I SPECIFICATION ANALYSIS

17

wp

pos

wp_dist

d_total

devi

di_v_de

cov

var_dist var_dist

corr

td@wp

-1

-1

-10

0

Stream #values Size Windows Total
pos 2 128 256
wp 2 128 256
d_total 2 64 128
wp_dist 1 64 64
d_s_wp 1 64 64
devi 1 64 64
var_dist 1 64 128 192
di_v_de 1 64 64
var_dist 1 64 128 192
cov 1 64 128 192
corr 1 64 64

BLOCK I SPECIFICATION ANALYSIS

17

wp

pos

wp_dist

d_total

devi

di_v_de

cov

var_dist var_dist

corr

td@wp

-1

-1

-10

0

Stream #values Size Windows Total
pos 2 128 256
wp 2 128 256
d_total 2 64 128
wp_dist 1 64 64
d_s_wp 1 64 64
devi 1 64 64
var_dist 1 64 128 192
di_v_de 1 64 64
var_dist 1 64 128 192
cov 1 64 128 192
corr 1 64 64

Σ 1536B

BLOCK I SUMMARY RTLOLA

18

BLOCK IBLOCK I

Sensor Level Mission Level

Timeliness Critical Lax

Arithmetic
Challenge

Low
(bounds checks, counting)

High
(statistics, prediction)

Input Data Raw Refined

Locality Local Inter-
component System-wide

Example
Data Validation:

“Altimeter must produce
positives values.”

Mission Statistics:
“Low correlation between WP

distance and relative path
deviation.”

PROPERTY SPECTRUM

6

SUMMARY RTLOLA

18

BLOCK IBLOCK I

Sensor Level Mission Level

Timeliness Critical Lax

Arithmetic
Challenge

Low
(bounds checks, counting)

High
(statistics, prediction)

Input Data Raw Refined

Locality Local Inter-
component System-wide

Example
Data Validation:

“Altimeter must produce
positives values.”

Mission Statistics:
“Low correlation between WP

distance and relative path
deviation.”

PROPERTY SPECTRUM

6

SUMMARY RTLOLA

18

BLOCK I

Check t = 1.12 Check t = 1.25Check t = 1.39Check t = 1.47Check t = 1.58Check t = 1.62Check t = 1.72Check t = 1.75Check t = 1.79Check t = 1.83Check t = 1.90 Check t = 1.93

COST OF CONSTANT MEMORY

9

Every request needs to be granted within a second.

1s 2s0.07s

? ? ? ? ?? ? ? ??? ?

MTL: □(r → ◇1s g)

MTL: RTLola: Check t = 1.07

BLOCK IBLOCK I

Sensor Level Mission Level

Timeliness Critical Lax

Arithmetic
Challenge

Low
(bounds checks, counting)

High
(statistics, prediction)

Input Data Raw Refined

Locality Local Inter-
component System-wide

Example
Data Validation:

“Altimeter must produce
positives values.”

Mission Statistics:
“Low correlation between WP

distance and relative path
deviation.”

PROPERTY SPECTRUM

6

SUMMARY RTLOLA

18

BLOCK I

Check t = 1.12 Check t = 1.25Check t = 1.39Check t = 1.47Check t = 1.58Check t = 1.62Check t = 1.72Check t = 1.75Check t = 1.79Check t = 1.83Check t = 1.90 Check t = 1.93

COST OF CONSTANT MEMORY

9

Every request needs to be granted within a second.

1s 2s0.07s

? ? ? ? ?? ? ? ??? ?

MTL: □(r → ◇1s g)

MTL: RTLola: Check t = 1.07

BLOCK I 2-DIMENSIONAL TIME

11

2s 4s1s 3s

0-order
hold

γ

e1: event

e2: event

p1: periodic

p2: periodic

BLOCK IBLOCK I

Sensor Level Mission Level

Timeliness Critical Lax

Arithmetic
Challenge

Low
(bounds checks, counting)

High
(statistics, prediction)

Input Data Raw Refined

Locality Local Inter-
component System-wide

Example
Data Validation:

“Altimeter must produce
positives values.”

Mission Statistics:
“Low correlation between WP

distance and relative path
deviation.”

PROPERTY SPECTRUM

6

SUMMARY RTLOLA

18

BLOCK I

Check t = 1.12 Check t = 1.25Check t = 1.39Check t = 1.47Check t = 1.58Check t = 1.62Check t = 1.72Check t = 1.75Check t = 1.79Check t = 1.83Check t = 1.90 Check t = 1.93

COST OF CONSTANT MEMORY

9

Every request needs to be granted within a second.

1s 2s0.07s

? ? ? ? ?? ? ? ??? ?

MTL: □(r → ◇1s g)

MTL: RTLola: Check t = 1.07

BLOCK I 2-DIMENSIONAL TIME

11

2s 4s1s 3s

0-order
hold

γ

e1: event

e2: event

p1: periodic

p2: periodic

BLOCK I

16

VALIDATION VIA INTERPRETATION

GPS frequency validation
GPS/IMU jump detection
Hover phase detection

SPECIFICATION:

433,000 events
1,545ns per event @ 146%
Stack size < 1kB, no heap

�
�
�
��
��

��
� �
��	
���� �

�
���

�
��
	
�����������

��

��
��
� �
���������

�
�
�
�
�
��

������ �

�
�
�

RESULTS:

BLOCK IBLOCK I

Sensor Level Mission Level

Timeliness Critical Lax

Arithmetic
Challenge

Low
(bounds checks, counting)

High
(statistics, prediction)

Input Data Raw Refined

Locality Local Inter-
component System-wide

Example
Data Validation:

“Altimeter must produce
positives values.”

Mission Statistics:
“Low correlation between WP

distance and relative path
deviation.”

PROPERTY SPECTRUM

6

SUMMARY RTLOLA

18

BLOCK I

Check t = 1.12 Check t = 1.25Check t = 1.39Check t = 1.47Check t = 1.58Check t = 1.62Check t = 1.72Check t = 1.75Check t = 1.79Check t = 1.83Check t = 1.90 Check t = 1.93

COST OF CONSTANT MEMORY

9

Every request needs to be granted within a second.

1s 2s0.07s

? ? ? ? ?? ? ? ??? ?

MTL: □(r → ◇1s g)

MTL: RTLola: Check t = 1.07

BLOCK I 2-DIMENSIONAL TIME

11

2s 4s1s 3s

0-order
hold

γ

e1: event

e2: event

p1: periodic

p2: periodic

BLOCK I

16

VALIDATION VIA INTERPRETATION

GPS frequency validation
GPS/IMU jump detection
Hover phase detection

SPECIFICATION:

433,000 events
1,545ns per event @ 146%
Stack size < 1kB, no heap

�
�
�
��
��

��
� �
��	
���� �

�
���

�
��
	
�����������

��

��
��
� �
���������

�
�
�
�
�
��

������ �

�
�
�

RESULTS:

BLOCK I SPECIFICATION ANALYSIS

17

wp

pos

wp_dist

d_total

devi

di_v_de

cov

var_dist var_dist

corr

td@wp

-1

-1

-10

0

Stream #values Size Windows Total
pos 2 128 256
wp 2 128 256
d_total 2 64 128
wp_dist 1 64 64
d_s_wp 1 64 64
devi 1 64 64
var_dist 1 64 128 192
di_v_de 1 64 64
var_dist 1 64 128 192
cov 1 64 128 192
corr 1 64 64

Σ 1536B

BLOCK II

19

OVERVIEW

BLOCK I

TYPE-
CHECK

INTER-
PRETATION

SPECIFICATION

BLOCK II

HARDWARE

SOFTWARE

BLOCK III

INTEGRATION

POST-MORTEM

BLOCK II

20

01010010
01010110
00110010
00110000

Never injure humans. Obey orders. Protect yourself.

Specification

Observes MONITOR

INTERPRETATION V COMPILATION

Interprets

BLOCK II

High Level Code

20

01010010
01010110
00110010
00110000

Never injure humans. Obey orders. Protect yourself.

Specification

Observes

Impl Monitor {

 while let Some(i)
 = get_input() {
 …
 }}

MONITOR

Compilation

INTERPRETATION V COMPILATION

BLOCK II

VHDL Code

20

01010010
01010110
00110010
00110000

Never injure humans. Obey orders. Protect yourself.

Specification

Observes

Impl Monitor {

 while let Some(i)
 = get_input() {
 …
 }}

MONITOR

Compilation

INTERPRETATION V COMPILATION

BLOCK II

21

CHALLENGES

 Periodic
 versus
 Event-Based

 Utilize
 Parallel
 Executionp1 p2

 Reduce
 Circuit
 Cost

BLOCK II

22

VHDL COMPILATION OVERVIEW

MONITOR

SYSTEM HEALTH

S
PEC

1. Never injure humans. 2.Obey orders. 3.Protect yourself

LLC

QUEUE

HLC

Reception

Q-Conn
idle

pop

eval

idle

1

2.0

2.λ*

Input 1

Input n

Output λ1,1

Output λ1,n

Output λλ*,1

Output λλ*,n

p1 p2

Challenges:

BLOCK II

23

VHDL COMPILATION OVERVIEW

p1 p2

Challenges:
LLC

QUEUE

HLC

Reception

Q-Conn
idle

pop

eval

idle

1

2.0

2.λ*

Input 1

Input n

Output λ1,1

Output λ1,n

Output λλ*,1

Output λλ*,n

BLOCK II

23

VHDL COMPILATION OVERVIEW

p1 p2

Challenges:

LLC

QUEUE

HLC

Reception

Q-Conn
idle

pop

eval

idle

1

2.0

2.λ*

Input 1

Input n

Output λ1,1

Output λ1,n

Output λλ*,1

Output λλ*,n

BLOCK II

23

VHDL COMPILATION OVERVIEW

p1 p2

LLC

QUEUE

HLC

Reception

Q-Conn
idle

pop

eval

idle

1

2.0

2.λ*

Input 1

Input n

Output λ1,1

Output λ1,n

Output λλ*,1

Output λλ*,n

BLOCK II

24

HIGH-LEVEL CONTROLLER

QUEUE

HLC

Reception

Q-Conn

push

din Σ(si+1) + sts + nout

BLOCK II

input velo_1: Int64
input velo_2: Int64
output devi ::= abs(velo_1 - velo_2)
output lasting_devi ::= devi > 5
 ∧ devi.offset(by: -1, dft: 0) > 5
 ∧ devi.offset(by: -2, dft: 0) > 5
trigger lasting_devi "Lasting deviation in measured velocities."
output avg_devi @10mHz ::= devi.aggregate(over: 10min, using: avg)
trigger avg_devi > 4 "High average deviation." 24

HIGH-LEVEL CONTROLLER

QUEUE

HLC

Reception

Q-Conn

push

din Σ(si+1) + sts + nout

BLOCK II

input velo_1: Int64
input velo_2: Int64
output devi ::= abs(velo_1 - velo_2)
output lasting_devi ::= devi > 5
 ∧ devi.offset(by: -1, dft: 0) > 5
 ∧ devi.offset(by: -2, dft: 0) > 5
trigger lasting_devi "Lasting deviation in measured velocities."
output avg_devi @10mHz ::= devi.aggregate(over: 10min, using: avg)
trigger avg_devi > 4 "High average deviation." 24

HIGH-LEVEL CONTROLLER

QUEUE

HLC

Reception

Q-Conn

push

din Σ(si+1) + sts + nout

064+1, velo2, 1, ts, 00000

velo1, 1, velo2, 1, ts, 11100

064+1,064+1, ts, 00011

{velo2} :

{velo1, velo2} :

t = 100s :

BLOCK II

input velo_1: Int64
input velo_2: Int64
output devi ::= abs(velo_1 - velo_2)
output lasting_devi ::= devi > 5
 ∧ devi.offset(by: -1, dft: 0) > 5
 ∧ devi.offset(by: -2, dft: 0) > 5
trigger lasting_devi "Lasting deviation in measured velocities."
output avg_devi @10mHz ::= devi.aggregate(over: 10min, using: avg)
trigger avg_devi > 4 "High average deviation." 24

HIGH-LEVEL CONTROLLER

QUEUE

HLC

Reception

Q-Conn

push

din Σ(si+1) + sts + nout

064+1, velo2, 1, ts, 00000

velo1, 1, velo2, 1, ts, 11100

064+1,064+1, ts, 00011

{velo2} :

{velo1, velo2} :

t = 100s :

BLOCK II

25

LOW-LEVEL CONTROLLER

LLC

QUEUE
idle

pop

eval

idle

1

2.0

2.λ*

Input 1

Input n

Output λ1,1

Output λ1,n

Output λλ*,1

Output λλ*,n

input velo_1: Int64
input velo_2: Int64
output devi ::= abs(velo_1 - velo_2)
output lasting_devi ::= devi > 5
 ∧ devi.offset(by: -1, dft: 0) > 5
 ∧ devi.offset(by: -2, dft: 0) > 5
trigger lasting_devi "Lasting deviation in measured velocities."
output avg_devi @10mHz ::= devi.aggregate(over: 10min, using: avg)
trigger avg_devi > 4 "High average deviation."

BLOCK II

26

PARALLEL COMPUTATION

idle

1

2.0

2.2

velo_1

velo_2

devi

trigger 1

trigger 2

2.1
lasting_devi

avg_devi

velo_1 velo_2

devi

last_davg_d

trig_1 trig_2

BLOCK II

26

PARALLEL COMPUTATION

p1 p2

idle

1

2.0

2.2

velo_1

velo_2

devi

trigger 1

trigger 2

2.1
lasting_devi

avg_devi

velo_1 velo_2

devi

last_davg_d

trig_1 trig_2

BLOCK II

input velo_1: Int64
input velo_2: Int64
output devi ::= abs(velo_1 - velo_2)
output lasting_devi ::= devi > 5
 ∧ devi.offset(by: -1, dft: 0) > 5
 ∧ devi.offset(by: -2, dft: 0) > 5
trigger lasting_devi "Lasting deviation in measured velocities."
output avg_devi @10mHz ::= devi.aggregate(over: 10min, using: avg)
trigger avg_devi > 4 "High average deviation." 27

LOW-LEVEL CONTROLLER

LLC

QUEUE
idle

pop

eval

idle

1

2.0

2.2

velo_1

velo_2

devi

trigger 1

trigger 2

2.1
lasting_devi

avg_devi

BLOCK II

28

EMPIRICAL EVALUATION

FF LUT MUX CA MULT Pwr [W] Time [μs]

Drone

Mon 3036 3685 26 656 10

1.620 4.28
HLC 901 156 0 22 0
Q 543 442 0 43 0

LLC 1281 2820 0 576 10

Network

Mon 1905 1533 23 226 23

1.570 3.20
HLC 550 161 0 37 0
Q 330 342 0 28 0

LLC 895 927 0 161 0

Cmd
Resp
Par

Mon 6379 13794 0 849 0

1.582 3.77
HLC 936 232 0 30 0
Q 540 326 0 28 0

LLC 4903 13236 0 971 0

Cmd
Resp
Seq

Mon 6909 14768 0 851 0

1.581 43.83
HLC 936 232 0 30 0
Q 534 326 0 28 0

LLC 5433 14210 0 973 0

BLOCK II

29

SUMMARY HW COMPILATION

MONITOR

SYSTEM HEALTH

S
PEC

1. Never injure humans. 2.Obey orders. 3.Protect yourself

LLC

QUEUE

HLC

Reception

Q-Conn
idle

pop

eval

idle

1

2.0

2.λ*

Input 1

Input n

Output λ1,1

Output λ1,n

Output λλ*,1

Output λλ*,n

p1 p2

Challenges:

BLOCK II

Impl Monitor {
 ##[invariant = …]
 while let Some(i)
 = get_input() {
 …
 }}

30

SOFTWARE COMPILATION

01010010
01010110
00110010
00110000

Never injure humans. Obey orders. Protect yourself.

Lola
Specification

observes

High Level Code

MONITOR

Compilation

BLOCK II

Impl Monitor {
 ##[invariant = …]
 while let Some(i)
 = get_input() {
 …
 }}

30

SOFTWARE COMPILATION

01010010
01010110
00110010
00110000

Never injure humans. Obey orders. Protect yourself.

Lola
Specification

observes MONITOR

Compilation

Rust
Code

BLOCK II

Impl Monitor {
 ##[invariant = …]
 while let Some(i)
 = get_input() {
 …
 }}

30

SOFTWARE COMPILATION

01010010
01010110
00110010
00110000

Never injure humans. Obey orders. Protect yourself.

Lola
Specification

observes MONITOR

Compilation

+ Annotation
+ Generation

Rust
Code

BLOCK II

Impl Monitor {
 ##[invariant = …]
 while let Some(i)
 = get_input() {
 …
 }}

30

SOFTWARE COMPILATION

01010010
01010110
00110010
00110000

Never injure humans. Obey orders. Protect yourself.

Lola
Specification

observes MONITOR

Compilation

+ Annotation
+ Generation

Rust
Code

verifies

BLOCK II

Impl Monitor {
 ##[invariant = …]
 while let Some(i)
 = get_input() {
 …
 }}

30

SOFTWARE COMPILATION

01010010
01010110
00110010
00110000

Never injure humans. Obey orders. Protect yourself.

Lola
Specification

observes MONITOR

Compilation

+ Annotation
+ Generation

Rust
Code

verifies

BLOCK II

input alt

output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500

trigger tooHigh

31

THE ORIGINAL LOLA

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

sensors

BLOCK II

input alt

output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500

trigger tooHigh

31

THE ORIGINAL LOLA

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

sensors

BLOCK II

input alt

output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500

trigger tooHigh

31

THE ORIGINAL LOLA

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

sensors

— REAL-TIME
— NO ASYNCHRONY
+ FUTURE OFFSETS

BLOCK II

32

SHIFT & MEMORY REQUIREMENT

input alt
output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500
trigger tooHigh

alt

tooHigh

trig

+10-1

0

BLOCK II

32

SHIFT & MEMORY REQUIREMENT

input alt
output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500
trigger tooHigh

alt

tooHigh

trig

+10-1

0

BLOCK II

32

SHIFT & MEMORY REQUIREMENT

input alt
output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500
trigger tooHigh

Def Shift:
Δ(s) = max(0, max{w + Δ(s’) | (s,w,s’) ∈ R})
Δ(alt) = 0
Δ(tooHigh) = Δ(trig) = 1

alt

tooHigh

trig

+10-1

0

BLOCK II

32

SHIFT & MEMORY REQUIREMENT

input alt
output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500
trigger tooHigh

Def Shift:
Δ(s) = max(0, max{w + Δ(s’) | (s,w,s’) ∈ R})
Δ(alt) = 0
Δ(tooHigh) = Δ(trig) = 1

alt

tooHigh

trig

+10-1

0

Def Memory Requirement:
μ(s) = max{Δ(s’) - Δ(s) - w | (s’,w,s) ∈ E}
μ(alt) = 2
μ(tooHigh) = Δ(trig) = 0

BLOCK II

input alt

output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500

trigger tooHigh

33

(IN-)FALLIBLE ACCESSES

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

sensors

BLOCK II

input alt

output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500

trigger tooHigh

33

(IN-)FALLIBLE ACCESSES

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

sensors

BLOCK II

input alt

output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500

trigger tooHigh

33

(IN-)FALLIBLE ACCESSES

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

sensors

BLOCK II

fails @ t=1

fails @ t=|σ|

input alt

output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500

trigger tooHigh

33

(IN-)FALLIBLE ACCESSES

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

sensors

BLOCK II

fails @ t=1

fails @ t=|σ|

input alt

output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500

trigger tooHigh

33

(IN-)FALLIBLE ACCESSES

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

sensors

BLOCK II

fails @ t=1

fails @ t=|σ|

input alt

output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500

trigger tooHigh

33

(IN-)FALLIBLE ACCESSES

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

sensors

BLOCK II

fails @ t=1

fails @ t=|σ|

never fails

input alt

output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500

trigger tooHigh

33

(IN-)FALLIBLE ACCESSES

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

sensors

BLOCK II

let alt_past =
 mem.get_alt(-1).unwrap_or(0);

let alt_future =
 mem.get_alt(+1).unwrap_or(0);

let alt_current = mem.get_alt_sync(0);

let tooHigh =
 alt_past > 500
 &&& alt_current > 500
 &&& alt_future > 500

34

(IN-)FALLIBLE ACCESSES

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

sensors

BLOCK II

let alt_past =
 mem.get_alt(-1).unwrap_or(0);

let alt_future =
 mem.get_alt(+1).unwrap_or(0);

let alt_current = mem.get_alt_sync(0);

let tooHigh =
 alt_past > 500
 &&& alt_current > 500
 &&& alt_future > 500

34

(IN-)FALLIBLE ACCESSES

tH2,8tH2,7tH2,5 tH2,6tH2,4tH2,3tH2,2tH2,1

a1,8a1,7a1,5 a1,6a1,4a1,3a1,2a1,1

sensors

BLOCK II

35

THREE PHASES

PREFIX MONITOR LOOP POSTFIX

BLOCK II

36

THREE PHASES

fn postfix() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

fn prefix() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

MONITOR LOOPPREFIX POSTFIX

while let Some(…)
 = get_input() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

BLOCK II

36

THREE PHASES

fn postfix() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

fn prefix() {
 0 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

MONITOR LOOPPREFIX POSTFIX

while let Some(…)
 = get_input() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

BLOCK II

36

THREE PHASES

fn postfix() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

fn prefix() {
 0 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

MONITOR LOOPPREFIX POSTFIX

while let Some(…)
 = get_input() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

BLOCK II

36

THREE PHASES

fn prefix() {
 0 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

fn postfix() {
 a-1 > 500
 ∧ a0 > 500
 ∧ 0 > 500
}

MONITOR LOOPPREFIX POSTFIX

while let Some(…)
 = get_input() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

BLOCK II

36

THREE PHASES

fn prefix() {
 0 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

fn postfix() {
 a-1 > 500
 ∧ a0 > 500
 ∧ 0 > 500
}

MONITOR LOOPPREFIX POSTFIX

while let Some(…)
 = get_input() {
 a-1 > 500
 ∧ a0 > 500
 ∧ a+1 > 500
}

I. ERADICATE MOST CONDITIONALS
II. REPLACE MEMORY ACCESSES WITH CONSTANTS

BLOCK II

37

PERFORMANCE BENEFIT

Interpreter

Compilation

438ns

6ns
(1.4%)

1.535μs

63ns
(4%)

BLOCK II

38

VERIFICATION — IDEA

LOLA

RUST

t = 0

stream ≜ infinite sequence of values

BLOCK II

38

VERIFICATION — IDEA

LOLA

RUST

t = 0

stream ≜ infinite sequence of values

memory ≜ finite excerpt of stream

μ(s)

BLOCK II

39

VERIFICATION — IDEA

LOLA

RUST

t = 0

stream ≜ infinite sequence of values

memory ≜ finite excerpt of stream

VIPER
t = 0

GHOST
MEMORY

μ(s)

BLOCK II

39

VERIFICATION — IDEA

LOLA

RUST

t = 0

stream ≜ infinite sequence of values

memory ≜ finite excerpt of stream

VIPER
t = 0

GHOST
MEMORY

μ(s)

= = = = 1

BLOCK II

39

VERIFICATION — IDEA

LOLA

RUST

t = 0

stream ≜ infinite sequence of values

memory ≜ finite excerpt of stream

VIPER
t = 0

GHOST
MEMORY

μ(s)

= = = = 1

= = = = = = = 2

BLOCK II

##[invariant="forall i: usize :::
 (0 <<= i &&& i < μ(a))
 ==>= mem.get_a(i) === gm.get_a(iter - i)
"]

##[invariant=“new_tooHigh === gm.get_a(iter - 2) > 500 ∧ …”]

while let Some(input) = get_input() {

 mem.add_input(&input);

 [[EVALUATION LOGIC]]

 mem.store(new_tooHigh);
 gm.store(new_tooHigh);

 if trigger_1 { emit(trigger_1_msg) }
}

40

VERIFICATION — REALIZATION

BLOCK II

##[invariant="forall i: usize :::
 (0 <<= i &&& i < μ(a))
 ==>= mem.get_a(i) === gm.get_a(iter - i)
"]

##[invariant=“new_tooHigh === gm.get_a(iter - 2) > 500 ∧ …”]

while let Some(input) = get_input() {

 mem.add_input(&input);

 [[EVALUATION LOGIC]]

 mem.store(new_tooHigh);
 gm.store(new_tooHigh);

 if trigger_1 { emit(trigger_1_msg) }
}

40

VERIFICATION — REALIZATION

1

BLOCK II

##[invariant="forall i: usize :::
 (0 <<= i &&& i < μ(a))
 ==>= mem.get_a(i) === gm.get_a(iter - i)
"]

##[invariant=“new_tooHigh === gm.get_a(iter - 2) > 500 ∧ …”]

while let Some(input) = get_input() {

 mem.add_input(&input);

 [[EVALUATION LOGIC]]

 mem.store(new_tooHigh);
 gm.store(new_tooHigh);

 if trigger_1 { emit(trigger_1_msg) }
}

40

VERIFICATION — REALIZATION

2

1

BLOCK II

41

VIABILITY

altitude

BLOCK II

41

VIABILITY

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

altitude

BLOCK II

41

VIABILITY

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

altitude

BLOCK II

41

VIABILITY

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

altitude flight phase

BLOCK II

41

VIABILITY

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

altitude flight phase

Detected implicit assumption
on input stream!

BLOCK II

42

VIABILITY

input time
input sensor

output δtime ::=
 abs(time - time.offset(by: -1, dft: 0))
output δsensor ::=
 abs(sensor - sensor.offset(by: -1, dft: 0))
output diff ::= δsensor / δtime

flight phase

Detected implicit assumption
on input stream!

BLOCK II

42

VIABILITY

input time
input sensor

output δtime ::=
 abs(time - time.offset(by: -1, dft: 0))
output δsensor ::=
 abs(sensor - sensor.offset(by: -1, dft: 0))
output diff ::= δsensor / δtime

flight phase

Detected implicit assumption
on input stream!

BLOCK II

43

VIABILITY

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

altitude flight phase

Detected implicit assumption
on input stream!

BLOCK II

43

VIABILITY

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

altitude

On corrected spec:

6 – 16min
1.38 – 1.66GB

2 T/O (10%)
4 fails (20%)

flight phase

Detected implicit assumption
on input stream!

BLOCK II

43

VIABILITY

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

Verified Rust Monitors for Lola Specifications 15

Time [s] Memory [MB]

0

200

400

600

800

1,000

(a) Altitude Monitor

Time [s] Memory [MB]

0

1,000

2,000

3,000

4,000

5,000

(b) Network Traffic Monitor

Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact

altitude

On corrected spec:

6 – 16min
1.38 – 1.66GB

2 T/O (10%)
4 fails (20%)

flight phase

I. SUCCESSFULLY DETECTED SPECIFICATION ERROR
II. VERIFIED MONITORS FOR COMPLEX SPECIFICATIONS

Detected implicit assumption
on input stream!

BLOCK II

44

CONCURRENT EVALUATION

input alt
input pressure

output tooHigh ::=
 alt.offset(by: -1, dft: 0) > 500
 ∧ alt > 500
 ∧ alt.offset(by: +1, dft: 0) > 500

trigger tooHigh
trigger pressure < 0

alt

tooHigh

trig_1

0-1

0

press

trig_2

0 +1

BLOCK II

45

CONCURRENT EVALUATION

let (v_1,, v_n) = crossbeam:::scope(|scope| {
 let handle_tooHigh = scope.spawn(move |_| {
 eval_tooHigh(&memory)
 });
 let handle_trigger_2 = scope.spawn(move |_| {
 eval_trigger_2(&memory)
 });
 (
 handle_s1.join().unwrap(),
 ,
 handle_sn.join().unwrap()
)
}).unwrap()

alt

tooHigh

trig_1

0-1

0

press

trig_2

0 +1

BLOCK II

46

A DOUBLE-EDGED SWORD

alt

tooHigh

trig_1

0-1

0

press

trig_2

0 +1

velo_1 velo_2

devi

last_davg_d

trig_1 trig_2

wp

pos

wp_dist

d_total

devi

di_v_de

cov

var_dist var_dist

corr

d_s_wp

-1

-1

-10

0

BLOCK II

46

A DOUBLE-EDGED SWORD

alt

tooHigh

trig_1

0-1

0

press

trig_2

0 +1

velo_1 velo_2

devi

last_davg_d

trig_1 trig_2

wp

pos

wp_dist

d_total

devi

di_v_de

cov

var_dist var_dist

corr

d_s_wp

-1

-1

-10

0

I. ENABLING SOFTWARE PARALLELIZATION IS A
DOUBLE-EDGED SWORD.

II. HARDWARE PARALLELIZATION IS A NO-BRAINER.

BLOCK II

47

SUMMARY SW COMPILATION

S 31

BLOCK II

Impl Monitor {
 #)invariant = …]
 while let Some(i)
 = get_input() {
 …
 }}

30

SOFTWARE COMPILATION

01010010
01010110
00110010
00110000

Never injure humans. Obey orders. Protect yourself.

Lola
Specification

observes MONITOR

Compilation

+ Annotation
+ Generation

Rust
Code

verifies

BLOCK III

48

INTEGRATION

BLOCK I

TYPE-
CHECK

INTER-
PRETATION

SPECIFICATION

BLOCK II

HARDWARE

SOFTWARE

BLOCK III

INTEGRATION

POST-MORTEM

BLOCK III: DLR’S SUPERARTIS

BLOCK III: DLR’S SUPERARTIS

BLOCK III: DLR’S SUPERARTIS

BLOCK III

50

DLR’S SUPERARTIS

Position
Estimation

Logger

HD

Camera

Lidar

GNSS …

IMU

BLOCK III

50

DLR’S SUPERARTIS

Monitor

Position
Estimation

Logger

HD

Camera

Lidar

GNSS …

IMU

BLOCK III

51

INSTRUMENTATION

Monitor

Position
Estimation

Logger

HD

Camera

Lidar

GNSS …

IMU

Snooping v Messages

Factors:
❖ Bus Utilization / Bus Allocation
❖ Resource Availability

BLOCK III

52

SPECS I: (CROSS-) VALIDATION

Position
Estimation

Logger

HD

Camera

Lidar

GNSS …

IMU

BLOCK III

53

SPECS II: GEO-FENCING

Lo
ng

itu
de

Latitude

BLOCK III

53

SPECS II: GEO-FENCING

Lo
ng

itu
de

Latitude

BLOCK III

53

SPECS II: GEO-FENCING

Lo
ng

itu
de

Latitude

I. ARITHMETICALLY CHALLENGING
II. HIGHLY PARALLEL

BLOCK III

54

RESOURCE CONSUMPTION

FF (%) LUT MUX Pwr Idle [mW] Pwr Peak [W]

2,853 (3) 26,181
(71) 4 149 1.871

4,792 (5) 34,630
(67) 104 156 2.085

3,441 (4) 23,261
(46) 99 150 1.911

GNSS

IMU

GNSS IMU

BLOCK III

54

RESOURCE CONSUMPTION

FF (%) LUT MUX Pwr Idle [mW] Pwr Peak [W]

2,853 (3) 26,181
(71) 4 149 1.871

4,792 (5) 34,630
(67) 104 156 2.085

3,441 (4) 23,261
(46) 99 150 1.911

GNSS

IMU

GNSS IMU

BLOCK III

54

RESOURCE CONSUMPTION

FF (%) LUT MUX Pwr Idle [mW] Pwr Peak [W]

2,853 (3) 26,181
(71) 4 149 1.871

4,792 (5) 34,630
(67) 104 156 2.085

3,441 (4) 23,261
(46) 99 150 1.911

GNSS

IMU

GNSS IMU

BLOCK III

54

RESOURCE CONSUMPTION

FF (%) LUT MUX Pwr Idle [mW] Pwr Peak [W]

2,853 (3) 26,181
(71) 4 149 1.871

4,792 (5) 34,630
(67) 104 156 2.085

3,441 (4) 23,261
(46) 99 150 1.911

GNSS

IMU

GNSS IMU

BLOCK III

54

RESOURCE CONSUMPTION

FF (%) LUT MUX Pwr Idle [mW] Pwr Peak [W]

2,853 (3) 26,181
(71) 4 149 1.871

4,792 (5) 34,630
(67) 104 156 2.085

3,441 (4) 23,261
(46) 99 150 1.911

GNSS

IMU

GNSS IMU

BLOCK III

55

POST-MORTEM ANALYSIS

BLOCK III

55

POST-MORTEM ANALYSIS

I. (QUANTITATIVE) STREAM-BASED RV SUPERIOR TO
BOOLEAN VERDICTS

II. MONITOR NATURALLY REFINES AND FILTERS DATA.

III. ACCESS TO CRUCIAL DATA.

BLOCK III

BLOCK I

TYPE-
CHECK

INTER-
PRETATION

SPECIFICATION

BLOCK II

HARDWARE

SOFTWARE

BLOCK III

INTEGRATION

POST-MORTEM

56

CONCLUSION

BLOCK III

BLOCK I

TYPE-
CHECK

INTER-
PRETATION

SPECIFICATION

BLOCK II

HARDWARE

SOFTWARE

BLOCK III

INTEGRATION

POST-MORTEM

56

CONCLUSION

For a Monitor To Show its Full
Potential, It Needs To Be Co-

Developed With the CPS!

