MONITORING CYBER-PHYSICAL SYSTEMS: FROM DESIGN TO INTEGRATION Maximilian Schwenger

CISPA HELMHOLTZ CENTER FOR INFORMATION SECURITY

OVERVIEW

HARDWARE **POST-MORTEM** SOFTWARE INTEGRATION **BLOCK II BLOCK III**

OUR SETUP

BLOCK I SPECIFICATION

HARDWARE **POST-MORTEM** SOFTWARE INTEGRATION **BLOCK II BLOCK III**

Sensor Level

Timeliness

Arithmetic Challenge

Input Data

Locality

Example

Mission Level

Sensor Level

Timeliness

Arithmetic Challenge

Input Data

Locality

Example

Data Validation: "Altimeter must produce positives values."

Mission Level

Sensor Level

Timeliness

Critical

Arithmetic Challenge

Input Data

Locality

Example

Data Validation: "Altimeter must produce positives values."

Mission Level

Lax

Sensor	
J C11301	

Timeliness	Critical
Arithmetic	Low
Challenge	(bounds checks, counting)

Input Data

Locality

Example

Data Validation: "Altimeter must produce positives values."

Mission Level

Lax

High (statistics, prediction)

	Sensor Level
meliness	Critical
rithmetic	Low
hallenge	(bounds checks, counting)
put Data	Raw

Locality

In

Example

Data Validation: "Altimeter must produce positives values."

Mission Level

Lax

High (statistics, prediction)

Refined

	Sensor Level
Timeliness	Critical
Arithmetic	Low
Challenge	(bounds checks, counting)
Input Data	Raw
Locality	Local
	Data Validation.

Example

"Altimeter must produce positives values."

Mission Level

Lax

High (statistics, prediction)

Refined

Intercomponent

System-wide

Control + Guarantees Logics

General-Purpose Languages

Expressiveness

Points to consider:

- Output Quality
- Expressiveness
- Integration
- Guarantees
- Certifiability

Control + Guarantees Logics

General-Purpose Languages

Expressiveness

Points to consider:

- Expressiveness
- Integration
- Guarantees
- Certifiability

Control + Guarantees Logics

Points to consider:

- Integration
- Guarantees
- Certifiability

Control + Guarantees Logics

* Output Quality \rightarrow Stream-based + Quantitative

Points to consider:

- \Rightarrow Expressiveness \rightarrow Arithmetic + Clarity
- * Integration \rightarrow HW + SW compilation
- Guarantees
- Certifiability

Control + Guarantees Logics

* Output Quality \rightarrow Stream-based + Quantitative

Points to consider:

- * Integration \rightarrow HW + SW compilation
- Certifiability

Control + Guarantees Logics

* Output Quality \rightarrow Stream-based + Quantitative \ast Guarantees \rightarrow Const Space + Const Time per event

Points to consider:

- * Integration \rightarrow HW + SW compilation

Control + Guarantees Logics

* Output Quality \rightarrow Stream-based + Quantitative \bullet Guarantees \rightarrow Const Space + Const Time per event \ast Certifiability \rightarrow SW verified; prelim results for HW

Sensor Validation 1: Altimeter readings must be non-negative.

input altitude: Float32 trigger altitude < 0 "Altimeter reports negative values."

Sensor Validation 1: Altimeter readings must be non-negative.

input altitude: Float32 trigger altitude < 0 "Altimeter reports negative values."

Sensor Validation 2: Barometer must produce 9 – 11 readings per second.

input pressure: Float32 output read_ps @ 1Hz := pressure.aggregate(over: 1s, using: count) trigger read_ps > 11 v read_ps < 9 "Barometer count irregular."

Sensor Validation 1: Altimeter readings must be non-negative.

input altitude: Float32 trigger altitude < 0 "Altimeter reports negative values."

Sensor Validation 2: Barometer must produce 9 – 11 readings per second.

input pressure: Float32 output read_ps(@ 1Hz) := pressure.aggregate(over: 1s, using: count) trigger read_ps > 11 v read_ps < 9 "Barometer count irregular."

Barometer must produce 4 readings per second. trigger a title eee and a time teee and a second second to be the second s 1s 2s

Sensor Validation 2: Barometer must produce 9 - 11 readings per second.

input pressure: Float32 output read_ps(@ 1Hz) := pressure.aggregate(over: 1s, using: count) trigger read_ps > 11 v read_ps < 9 "Barometer count irregular."

Sensor Validation 2: Barometer must produce 9 – 11 readings per second.

input pressure: Float32
output read_ps(a) 1Hz := pressure.aggregate(over: 1s, using: count)
trigger read_ps > 11 v read_ps < 9 "Barometer count irregular."</pre>

Sensor Validation 2: Barometer must produce 9 - 11 readings per second.

input pressure: Float32 output read_ps(@ 1Hz) := pressure.aggregate(over: 1s, using: count) trigger read_ps > 11 v read_ps < 9 "Barometer count irregular."

output read_ps(@ 1Hz) := pressure.aggregate(over: 1s, using: count) trigger read_ps > 11 v read_ps < 9 "Barometer count irregular."

Every request needs to be granted within a second.

MTL:

Every request needs to be granted within a second.

Every request needs to be granted within a second.

Every request needs to be granted within a second.

MTL: \Box (r \rightarrow \diamond_{1s} g)

RTLola:

Every request needs to be granted within a second.

MTL: \Box (r \rightarrow \diamond_{1s} g)

Check t = 1.07RTLola:

Every request needs to be granted within a second.

BLOCK I RTLOLA'S TYPE SYSTEM I

PACING TYPE

BLOCK I 2-DIMENSIONAL TIME

BLOCK I 2-DIMENSIONAL TIME

Sensor Validation 1: Altimeter readings must be non-negative.

input altitude: Float32
trigger altitude < 0 "Altimeter reports negative values."</pre>

Sensor Validation 1: Altimeter readings must be non-negative.

input altitude: Float32 Float32 altitude trigger altitude < 0 "Altimeter reports negative values."

Sensor Validation 1: Altimeter readings must be non-negative.

input altitude: Float32 Float32 altitude trigger altitude < 0 "Altimeter reports negative values."

Bool altitude

Sensor Validation 1: Altimeter readings must be non-negative.

input altitude: Float32 Float32 altitude trigger altitude < 0 "Altimeter reports negative values." Bool altitude Ensures timeliness

Sensor Validation 1: Altimeter readings must be non-negative. input altitude: Float32 Float32 altitude trigger altitude < 0 "Altimeter reports negative values." Bool altitude

Sensor Validation 2: Barometer must produce 9 – 11 readings per second.

input pressure: Float32 output read_ps @ 1Hz := pressure.aggregate(over: 1s, using: count) trigger read_ps > 11 v read_ps < 9 "Barometer count irregular."

Sensor Validation 1: Altimeter readings must be non-negative. input altitude: Float32 Float32 altitude trigger altitude < 0 "Altimeter reports negative values."

Sensor Validation 2: Barometer must produce 9 - 11 readings per second.

input pressure: Float32 Float32 pressure output read_ps @ 1Hz := pressure.aggregate(over: 1s, using: count) trigger read_ps > 11 v read_ps < 9 "Barometer count irregular."

- Bool altitude

Sensor Validation 1: Altimeter readings must be non-negative. input altitude: Float32 Float32 altitude trigger altitude < 0 "Altimeter reports negative values." Bool altitude

Sensor Validation 2: Barometer must produce 9 - 11 readings per second.

input pressure: Float32 Float32 pressure UInt32 1Hz output read_ps @ 1Hz := pressure.aggregate(over: 1s, using: count) trigger read_ps > 11 v read_ps < 9 "Barometer count irregular."

Sensor Validation 1: Altimeter readings must be non-negative. input altitude: Float32 Float32 altitude trigger altitude < 0 "Altimeter reports negative values." Bool altitude

Sensor Validation 2: Barometer must produce 9 - 11 readings per second.

input pressure: Float32 Float32 pressure UInt32 1Hz output read_ps @ 1Hz := pressure.aggregate(over: 1s, using: count) trigger read_ps > 11 v read_ps < 9 "Barometer count irregular." Bool | 1Hz

Sensor Validation 1: Altimeter readings must be non-negative. input altitude: Float32 Float32 altitude trigger altitude < 0 "Altimeter reports negative values." Bool altitude

Sensor Validation 2: Barometer must produce 9 - 11 readings per second.

input pressure: Float32 Float32 pressure UInt32 1Hz output read_ps @ 1Hz := pressure.aggregate(over: 1s, using: count) trigger read_ps > 11 v read_ps < 9 "Barometer count irregular." Bool | 1Hz

output x := pressure.aggregate(...) output y := read_ps * pressure

Sensor Validation 1: Altimeter readings must be non-negative. input altitude: Float32 Float32 altitude trigger altitude < 0 "Altimeter reports negative values." Bool altitude

Sensor Validation 2: Barometer must produce 9 - 11 readings per second.

input pressure: Float32 Float32 pressure UInt32 1Hz output read_ps @ 1Hz := pressure.aggregate(over: 1s, using: count) trigger read_ps > 11 v read_ps < 9 "Barometer count irregular." Bool | 1Hz

output x ·- pressure.aggregate(...) aggregation w/o period output y := read_ps * pressure

Sensor Validation 1: Altimeter readings must be non-negative. input altitude: Float32 Float32 altitude trigger altitude < 0 "Altimeter reports negative values." Bool altitude

Sensor Validation 2: Barometer must produce 9 - 11 readings per second.

input pressure: Float32 Float32 pressure UInt32 1Hz output read_ps @ 1Hz := pressure.aggregate(over: 1s, using: count) trigger read_ps > 11 v read_ps < 9 "Barometer count irregular." Bool | 1Hz

(...) aggregation w/o period OUTDUT V •pressure.aggregate(...) mixes periodic and events output y := read_ps * pressure

Int32 velo_1 Int32 velo_2 input velo_1, velo_2: Int32

output deviation

i= abs(velo_1 - velo_2)

Int32 velo_1 Int32 velo_2 input velo_1, velo_2: Int32

UInt32 velo_1 ^ velo_2 output deviation @ velo_1 ^ velo_2 := abs(velo_1 - velo_2)

Int32 velo_1 Int32 velo_2 input velo_1, velo_2: Int32

UInt32 velo_ $1 \land velo_2$ output deviation \hat{a} velo_1 \wedge velo_2 := abs(velo_1 - velo_2)

UInt32 velo_1 v velo_2 output deviation' @ velo_1 v velo_2 := abs(velo_1 - velo_2

Int32 velo_1 Int32 velo_2 input velo_1, velo_2: Int32

UInt32 velo_ $1 \land velo_2$ output deviation @ velo_1 ^ velo_2 := abs(velo_1 - velo_2)

UInt32 velo_1 v velo_2

output deviation' @ velo_1 v velo_2 i= abs(velo_1.hold(or: 0) - velo_2.hold(or: 0))

Int32 velo_1 Int32 velo_2 input velo_1, velo_2: Int32

UInt32 velo_ $1 \land velo_2$ output deviation \Im velo_1 \land velo_2 := abs(velo_1 - velo_2)

UInt32 velo_1 v velo_2

output deviation' @ velo_1 v velo_2 i= abs(velo_1.hold(or: 0) - velo_2.hold(or: 0))

Int32 Any

Int32 velo_1 Int32 velo_2 input velo_1, velo_2: Int32

UInt32 velo_ $1 \land velo_2$ output deviation @ velo_1 ^ velo_2 := abs(velo_1 - velo_2)

UInt32 velo_1 v velo_2

output deviation' @ velo_1 v velo_2 i= abs(velo_1.hold(or: 0) - velo_2.hold(or: 0))

Int32 Any

STRONG TYPE SYSTEM SUPPORTS SPECIFIER. \rightarrow INCREASES CONFIDENCE IN SPEC.

BLOCK I RTLOLA BY EXAMPLE II

Mission Statistic: Does the WP-distance correlate with the relative path deviation? input wp, pos: (Float64, Float64)

BLOCK I RTLOLA BY EXAMPLE II

- **Mission Statistic:** Does the WP-distance correlate with the relative path deviation? input wp, pos: (Float64, Float64)
 - output wp_dist := abs(wp wp.offset(by: -1, dft: wp))

BLOCK I RILOLA BY EXAMPLE II

- Mission Statistic: Does the WP-distance correlate with the relative path deviation? input wp, pos: (Float64, Float64)
 - output wp_dist := abs(wp wp.offset(by: -1, dft: wp)) output dist_total := pos - pos.offset(by: -1, dft: START)

+ dist_total.offset(by: -1, dft: 0)

BLOCK I RILOLA BY EXAMPLE II

- Mission Statistic: Does the WP-distance correlate with the relative path deviation? input wp, pos: (Float64, Float64)
 - output wp_dist := abs(wp wp.offset(by: -1, dft: wp)) output dist_total := pos - pos.offset(by: -1, dft: START)
 - output total_dist_at_wp @ wp := dist_total.hold(or: 0)

+ dist_total.offset(by: -1, dft: 0)

BLOCK I RILOLA BY EXAMPLE II

- **Mission Statistic:** Does the WP-distance correlate with the relative path deviation? input wp, pos: (Float64, Float64)
 - output wp_dist := abs(wp wp.offset(by: -1, dft: wp)) output dist_total := pos - pos.offset(by: -1, dft: START)
 - output total_dist_at_wp @ wp := dist_total.hold(or: 0) output devi @ wp := abs(wp_dist.offset(by: -1, dft: 0) -

+ dist_total.offset(by: -1, dft: 0) (total_dist_at_wp - total_dist_at_wp.offset(by: -1, dft: 0))

BLOCK I RTLOLA BY EXAMPLE II

- **Mission Statistic:** Does the WP-distance correlate with the relative path deviation? input wp, pos: (Float64, Float64)
 - output wp_dist := abs(wp wp.offset(by: -1, dft: wp)) output dist_total := pos - pos.offset(by: -1, dft: START)
 - output total_dist_at_wp @ wp := dist_total.hold(or: 0) output devi @ wp := abs(wp_dist.offset(by: -1, dft: 0) -

output dist_v_devi @ wp := (wp_dist, devi) output cov @ 1Hz := dist_v_devi.aggregate(over: ∞, using: cov) output var_dist @ 1Hz := wp_dist.aggregate(over: ∞, using: var) output var_devi @ 1Hz := devi.aggregate(over: ∞, using: var) output corr := cov / (var_devi^2 * var_dist^2)

+ dist total.offset(by: -1, dft: 0) (total_dist_at_wp - total_dist_at_wp.offset(by: -1, dft: 0))

BLOCK I RTLOLA BY EXAMPLE II

- **Mission Statistic:** Does the WP-distance correlate with the relative path deviation? input wp, pos: (Float64, Float64)
 - output wp_dist := abs(wp wp.offset(by: -1, dft: wp)) output dist_total := pos - pos.offset(by: -1, dft: START)
 - output total_dist_at_wp @ wp := dist_total.hold(or: 0) output devi @ wp := abs(wp_dist.offset(by: -1, dft: 0) -

+ dist_total.offset(by: -1, dft: 0) (total_dist_at_wp - total_dist_at_wp.offset(by: -1, dft: 0))

RTLOLA PROVIDES PRIMITIVES FOR ABSTRACT, MISSION-LEVEL PROPERTIES.

Great, we've got a spec and the type checker is happy. What next?

A) Further increase confidence B) Analyze complexity

BLOCK I VALIDATION VIA INTERPRETATION

BLOCK I VALIDATION VIA

SPECIFICATION: GPS frequency validation GPS/IMU jump detection Hover phase detection

RESULTS:

433,000 events

1,545ns per event @ 146% Stack size < 1kB, no heap

BLOCK I VALIDATION VIA INTERPRETATION

SPECIFICATION: GPS frequency validation GPS/IMU jump detection Hover phase detection

ENABLES RAPID DEVELOPMENT.

RESULTS:

433,000 events

1,545ns per event @ 146%

DEVELOPMENT

Stream	#values	Size	Windows	Total
pos	2	128		256
wp	2	128		256
d_total	2	64		128
wp_dist	1	64		64
d_s_wp	1	64		64
devi	1	64		64
var_dist	1	64	128	192
di_v_de	1	64		64
var_dist	1	64	128	192
COV	1	64	128	192
COrr	1	64		64

Stream	#values	Size	Windows	Total	
pos	2	128		256	0
wp	2	128		256	(wp) (
d_total	2	64		128	0 -1
wp_dist	1	64		64	wp_dist
d_s_wp	1	64		64	
devi	1	64		64	
var_dist	1	64	128	192	
di_v_de	1	64		64	var_dist di_v_de
var_dist	1	64	128	192	
COV	1	64	128	192	COV
COrr	1	64		64	
				Σ 1536Ε	3 Corr

Sensor Level							
Timeliness	Critical						
Arithmetic Challenge	Low (bounds checks, counting)						
Input Data	Raw						
Locality	Local	Inter- component					
Example	Data Validation: "Altimeter must produce positives values."						

Mission Level

Lax

High (statistics, prediction)

Refined

System-wide

Mission Statistics: "Low correlation between WP distance and relative path deviation."

BLOCK I SUMMARY RTLOLA

RESULTS:

433,000 events 1,545ns per event @ 146% Stack size < 1kB, no heap

BLOCK I SUMMARY RTLOLA

e	Windows	Total	
8		256	
8		256	
4		128	
4		64	
4		64	
4		64	
4	128	192	
4		64	
4	128	192	
4	128	192	
4		64	
		Σ 1536B	

BLOCK II OVERVIEW

HARDWARE **POST-MORTEM** SOFTWARE INTEGRATION **BLOCK II BLOCK III**

BLOCK II INTERPRETATION V COMPILATION

Specification

BLOCK II INTERPRETATION V COMPILATION

Compilation

Impl	Мс	ni	t)]
whil	.e	le	et	
		=	ge	et
•••				
}}				

Specification

High Level Code

BLOCK II INTERPRETATION V COMPILATION

Compilation

Impl	Мс	ni	t) I
whil	_e	le	et	
		=	ge	et
•••				
}}				

Specification

VHDL Code

BLOCK II CHALLENGES

Periodic versus **Event-Based**

Challenges:

Challenges:

23

input velo_1: Int64 input velo_2: Int64 output devi := abs(velo_1 - velo_2) output lasting_devi := devi > 5 ^ devi.offset(by: -1, dft: 0) > 5 ^ devi.offset(by: -2, dft: 0) > 5 trigger lasting_devi "Lasting deviation in measured velocities." output avg_devi @10mHz := devi.aggregate(over: 10min, using: avg) trigger avg_devi > 4 "High average deviation."

 $\{velo_2\}:$ 0⁶⁴⁺¹, velo₂, 1, ts, 00000 {velo₁, velo₂}: velo₁, 1, velo₂, 1, ts, 11100 input velo_1: Int64 input velo_2: Int64 $0^{64+1}, 0^{64+1}, ts, 00011$ t = 100s : output devi := abs(velo_1 - velo_2) output lasting_devi := devi > 5 \wedge devi.offset(by: -1, dft: 0) > 5 \wedge devi.offset(by: -2, dft: 0) > 5 trigger lasting_devi "Lasting deviation in measured velocities." output avg_devi @10mHz := devi.aggregate(over: 10min, using: avg) trigger avg_devi > 4 "High average deviation."

0⁶⁴⁺¹, velo₂, 1, ts, 00000 {velo₁, velo₂}: velo₁, 1, velo₂, 1, ts, 11100 input velo_1: Int64 input velo_2: Int64 $0^{64+1}, 0^{64+1}, ts, 00011$ t = 100s : output devi := abs(velo_1 - velo_2) output lasting_devi := devi > 5 \wedge devi.offset(by: -1, dft: 0) > 5 \wedge devi.offset(by: -2, dft: 0) > 5 trigger lasting_devi "Lasting deviation in measured velocities." output avg_devi @10mHz := devi.aggregate(over: 10min, using: avg) trigger avg_devi > 4 "High average deviation."

BLOCK II LOW-LEVEL CONTROLLER

QUEUE

input velo_1: Int64 input velo_2: Int64 output devi := abs(velo_1 - velo_2) output lasting_devi := devi > 5 \wedge devi.offset(by: -1, dft: 0) > 5 \wedge devi.offset(by: -2, dft: 0) > 5 trigger lasting_devi "Lasting deviation in measured velocities." output avg_devi @10mHz := devi.aggregate(over: 10min, using: avg) trigger avg_devi > 4 "High average deviation."

BLOCK II PARALLEL COMPUTATION

BLOCK II PARALLEL COMPUTATION

BLOCK II LOW-LEVEL CONTROLLER

QUEUE

BLOCK II EMPIRICAL EVALUATION

		FF	LUT	MUX	CA	MULT	Pwr [W]	Time [µs]
	Mon	3036	3685	26	656	10		
	HLC	901	156	0	22	0	1.620	1. 20
Drone	Q	543	442	0	43	0		4.20
	LLC	1281	2820	0	576	10		
	Mon	1905	1533	23	226	23		
	HLC	550	161	0	37	0	1.570	<u>ר כ</u>
Network	Q	330	342	0	28	0		5.20
	LLC	895	927	0	161	0		
	Mon	6379	13794	0	849	0	1.582	
	HLC	936	232	0	30	0		רד כ
Resp Dor	Q	540	326	0	28	0		5.//
	LLC	4903	13236	0 971 0				
	Mon	6909	14768	0	851	0	1 5 0 1	
Cma	HLC	936	232	0	30	0		(2.02
Resp	Q	534	326	0	28	0	1.301	43.03
Seq	LLC	5433	14210	0	973	0		

BLOCK II SUMMARY HW COMPILATION

Challenges:

Compilation

Impl	Мс	oni	tc) ľ
whil	Le	le	et	
		=	ge	et
•••				
}}				

Lola Specification

High Level Code

Compilation

Impl	Мс	oni	ito) I
whi	le	le	et	
		=	ge	et
••• ר ר				
} }				

Lola Specification

Rust Code

Compilation

+ Annotation Generation

Rust Code

Lola Specification

BLOCK II THE ORIGINAL LOLA

tH_{2,1} tH_{2,2} tH_{2,3} tH_{2,4} tH_{2,5} tH_{2,6} tH_{2,7} tH_{2,8}

input alt

output tooHigh := alt.offset(by: -1, dft: 0) > 500 ^ alt > 500 \wedge alt.offset(by: +1, dft: 0) > 500

BLOCK II THE ORIGINAL LOLA

input alt

output tooHigh := alt.offset(by: -1, dft: 0) > 500 ^ alt > 500 \wedge alt.offset(by: +1, dft: 0) > 500

BLOCK II THE ORIGINAL LOLA

input alt

output tooHigh := alt.offset(by: -1, dft: 0) > 500 ^ alt > 500 \wedge alt.offset(by: +1, dft: 0) > 500

input alt output tooHigh := alt.offset(by: -1, dft: 0) > 500 ∧ alt > 500 ^ alt.offset(by: +1, dft: 0) > 500 trigger tooHigh

input alt output tooHigh := alt.offset(by: -1, dft: 0) > 500 ^ alt > 500 ^ alt.offset(by: +1, dft: 0) > 500 trigger tooHigh

input alt output tooHigh := alt.offset(by: -1, dft: 0) > 500 ^ alt > 500 ^ alt.offset(by: +1, dft: 0) > 500 trigger tooHigh

Def Shift:

- $\Delta(s) = \max(0, \max\{w + \Delta(s') \mid (s, w, s') \in R\})$
- $\Delta(alt) = 0$
- $\Delta(\text{tooHigh}) = \Delta(\text{trig}) = 1$

Def Shift:

- $\Delta(s) = \max(0, \max\{w + \Delta(s') \mid (s, w, s') \in R\})$
- $\Delta(alt) = 0$
- $\Delta(\text{tooHigh}) = \Delta(\text{trig}) = 1$
- Def Memory Requirement:
- $\mu(s) = \max\{\Delta(s') \Delta(s) w \mid (s', w, s) \in E\}$
- $\mu(alt) = 2$
- μ (tooHigh) = Δ (trig) = 0

BLOCK II (IN-)FALLIBLE ACCESSES

tH_{2,1} tH_{2,2} tH_{2,3} tH_{2,4} tH_{2,5} tH_{2,6} tH_{2,7} tH_{2,8}

input alt

output tooHigh := alt.offset(by: -1, dft: 0) > 500 ^ alt > 500 \wedge alt.offset(by: +1, dft: 0) > 500

BLOCK II (IN-)FALLIBLE ACCESSES

$tH_{2,1}$ $tH_{2,2}$ $tH_{2,3}$ $tH_{2,4}$ $tH_{2,5}$ $tH_{2,6}$ $tH_{2,7}$ $tH_{2,8}$

input alt

output tooHigh := alt.offset(by: -1, dft: 0) > 500____ ^ alt > 500 \wedge alt.offset(by: +1, dft: 0) > 500

BLOCK II (IN-)FALLIBLE ACCESSES

input alt

output tooHigh := alt.offset(by: -1, dft: 0) > 500____ ^ alt > 500 \wedge alt.offset(by: +1, dft: 0) > 500

input alt

output tooHigh := fails @ t=1 alt.offset(by: -1, dft: 0) > 500 ^ alt > 500 ^ alt.offset(by: +1, dft: 0) > 500 fails @ $t = \sigma$

input alt

output tooHigh := fails @ t=1 alt.offset(by: -1, dft: 0) > 500___ ∧ alt > 500 ^ alt.offset(by: +1, dft: 0) > 500 fails @ $t = \sigma$

input alt

output tooHigh := fails @ t=1 alt.offset(by: -1, dft: 0) > 500 ∧ alt > 500 ^ alt.offset(by: +1, dft: 0) > 500 fails @ $t = \sigma$

input alt

output tooHigh := fails (0 t=1) alt.offset(by: -1, dft: 0) > 500 ^ alt > 500 never fails \wedge alt.offset(by: +1, dft: 0) > 500 fails (a) $t = \sigma$

let alt_past = mem.get_alt(-1).unwrap_or(0); let alt_future = mem.get_alt(+1).unwrap_or(0); let alt_current = mem.get_alt_sync(0);

let tooHigh = alt_past > 500 & alt_current > 500 & alt_future > 500

let alt_past = mem.get_alt(-1).unwrap_or(0);

let alt_future = mem.get_alt(+1).unwrap_or(0);

let alt_current = mem.get_alt_sync(0);

let tooHigh = alt_past > 500 & alt_current > 500 & alt_future > 500

= get_input() {

MONITOR LOOP

fn postfix() { a₋₁ > 500 $ha_{0} > 500$ ∧ a₊₁ > 500

Postfix

= get_input() {

MONITOR LOOP

fn postfix() { a₋₁ > 500 $ha_{0} > 500$ ∧ a₊₁ > 500

Postfix

= get_input() {

MONITOR LOOP

fn postfix() { a₋₁ > 500 $ha_0 > 500$ ∧ a₊₁ > 500

Postfix

= get_input() {

MONITOR LOOP

Postfix

fn postfix() {

 $\Lambda a_0 > 500$

0 > 500

 $a_1 > 500$

Λ

ERADICATE MOST CONDITIONALS II. REPLACE MEMORY ACCESSES WITH CONSTANTS while let Some(...) fn prefix() { = get_input() { > 500 $a_1 > 500$ a₋₁ > 500 $\Lambda a_0 > 500$ $^{\Lambda} a_{0} > 500$ ∧ a₊₁ > 500 Λ ∧ a₊₁ > 500 MONITOR LOOP Postfix PREFIX

fn postfix() { $\wedge a_0 > 500$ 0 > 500

BLOCK II PERFORMANCE BENEFIT

Interpreter

Compilation

6ns (1.4%)

438ns

1.535µs

63ns (4%)

stream \le infinite sequence of values

38

38

BLOCK II VERIFICATION – REALIZATION

while let Some(input) = get_input() {

mem.add_input(&input);

[[EVALUATION LOGIC]]

mem.store(new_tooHigh); gm.store(new_tooHigh);

if trigger_1 { emit(trigger_1_msg) }

BLOCK II VERIFICATION – REALIZATION

#[invariant="forall i: usize :: $(0 \leq i \delta i < \mu(a))$ \implies mem.get_a(i) = gm.get_a(iter - i) ר יי

while let Some(input) = get_input() {

mem.add_input(&input);

[[EVALUATION LOGIC]]

mem.store(new tooHigh); gm.store(new_tooHigh);

if trigger_1 { emit(trigger_1_msg) }

BLOCK II VERIFICATION – REALIZATION

#[invariant="forall i: usize :: $(0 \leq i \delta t < \mu(a))$ \implies mem.get_a(i) = gm.get_a(iter - i) ר יי #[invariant="new_tooHigh == gm.get_a(iter - 2) > 500 ^ ..."]

while let Some(input) = get_input() {

mem.add_input(&input);

[[EVALUATION LOGIC]]

mem.store(new tooHigh); gm.store(new_tooHigh);

if trigger_1 { emit(trigger_1_msg) }

input time input sensor

output δ time := abs(time - time.offset(by: -1, dft: 0)) output δ sensor := abs(sensor - sensor.offset(by: -1, dft: 0)) output diff := $\delta \text{sensor} / \delta \text{time}$

input time input sensor

output δ time := abs(time - time.offset(by: -1, dft: 0)) output δ sensor := abs(sensor - sensor.offset(by: -1, dft: 0)) output diff := $\delta sensor / \delta time$

BLOCK II CONCURRENT EVALUATION

input alt input pressure

output tooHigh := alt.offset(by: -1, dft: 0) > 500 ^ alt > 500 \wedge alt.offset(by: +1, dft: 0) > 500

trigger tooHigh trigger pressure < 0

BLOCK II CONCURRENT EVALUATION

```
let (v_1, ..., v_n) = crossbeam::scope( scope {
    let handle_tooHigh = scope.spawn(move |_ {
        eval_tooHigh(&memory)
    });
    let handle_trigger_2 = scope.spawn(move [ ] {
        eval_trigger_2(&memory)
    });
        handle_s1.join().unwrap(),
         \bullet \bullet \bullet
        handle_sn.join().unwrap()
}).unwrap()
```


BLOCK II A DOUBLE-EDGED SWORD

BLOCK II A DOUBLE-EDGED SWORD

BLOCK II SUMMARY SW COMPILATION

47
BLOCK III INTEGRATION

HARDWARE **POST-MORTEM** SOFTWARE INTEGRATION **BLOCK II BLOCK III**

BLOCK III DLR'S SUPERARTIS

BLOCK III DLR'S SUPERARTIS

BLOCK III INSTRUMENTATION

Snooping v Messages

Factors:

Bus Utilization / Bus Allocation
 Bosource Availability

Resource Availability

BLOCK III SPECS I: (CROSS-) VALIDATION

BLOCK III SPECS II: GEO-FENCING

Latitude

BLOCK III SPECS II: GEO-FENCING

Latitude

BLOCK III SPECS II: GEO-FENCING

ARITHMETICALLY CHALLENGING ___ II. HIGHLY PARALLEL

Latitude

(4

MUX Pwr Idle [mW] Pwr Peak [W]

31 1)	4	149	1.871
30 7)	104	156	2.085
61 6)	99	150	1.911

MUX Pwr Idle [mW] Pwr Peak [W]

31 1)	4	149	1.871
30 7)	104	156	2.085
61 6)	99	150	1.911

54

BLOCK III POST-MORTEM ANALYSIS

BLOCK III POST-MORTEM ANALYSIS

I. (QUANTITATIVE) STREAM-BASED RV SUPERIOR TO BOOLEAN VERDICTS II. MONITOR NATURALLY REFINES AND FILTERS DATA. III. ACCESS TO CRUCIAL DATA.

BLOCK III CONCLUSION

HARDWARE **POST-MORTEM** SOFTWARE INTEGRATION **BLOCK II BLOCK III**

BLOCK III CONCLUSION

For a Monitor To Show its Full Potential, It Needs To Be Co-Developed With the CPS!

