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Semantically different!
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RTLOLA RESTRICTS THE SPECIFIER TO ENABLE STATIC 
MEMORY BOUND 

→ ENFORCEMENT THROUGH TYPE SYSTEM
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2s 4s1s 3s

0-order  
hold

γ

e1: event

e2: event

p1: periodic

p2: periodic

❖ Synchronous: Default; Couples timing; Infallible 
❖ Holds + aggregations: Decouple timing; Fallible 
❖ Aggregations only permitted in periodic streams
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input altitude: Float32 
trigger altitude < 0 “Altimeter reports negative values.”

Sensor Validation 1:  Altimeter readings must be non-negative.

input pressure: Float32 
output read_ps @ 1Hz ::= pressure.aggregate(over: 1s, using: count) 
trigger read_ps > 11 ∨ read_ps < 9 “Barometer count irregular.”

Sensor Validation 2:  Barometer must produce 9 — 11 readings per second.

Float32 | altitude

Bool | altitude

Float32 | pressure UInt32 | 1Hz

Bool | 1Hz

output x ::= pressure.aggregate(…) 
output y ::= read_ps * pressure

aggregation w/o period
mixes periodic and events
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    (total_dist_at_wp - total_dist_at_wp.offset(by: -1, dft: 0) ) 
 
output dist_v_devi @ wp ::= (wp_dist, devi) 
output cov @ 1Hz ::= dist_v_devi.aggregate(over: ∞, using: cov) 
output var_dist @ 1Hz ::= wp_dist.aggregate(over: ∞, using: var) 
output var_devi @ 1Hz ::= devi.aggregate(over: ∞, using: var) 
output corr ::= cov / (var_devi^2 * var_dist^2)

RTLOLA BY EXAMPLE II

14

RTLOLA PROVIDES PRIMITIVES FOR ABSTRACT, 
MISSION-LEVEL PROPERTIES.

Mission Statistic:  Does the WP-distance correlate with  
                              the relative path deviation?
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Great, we’ve got a spec and the type 
checker is happy. 

What next?
A) Further increase confidence        B) Analyze complexity
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trigger avg_devi > 4 "High average deviation." 24
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EMPIRICAL EVALUATION

FF LUT MUX CA MULT Pwr [W] Time [μs]

Drone

Mon 3036 3685 26 656 10

1.620 4.28
HLC 901 156 0 22 0
Q 543 442 0 43 0

LLC 1281 2820 0 576 10

Network

Mon 1905 1533 23 226 23

1.570 3.20
HLC 550 161 0 37 0
Q 330 342 0 28 0

LLC 895 927 0 161 0

Cmd 
Resp 
Par

Mon 6379 13794 0 849 0

1.582 3.77
HLC 936 232 0 30 0
Q 540 326 0 28 0

LLC 4903 13236 0 971 0

Cmd 
Resp 
Seq

Mon 6909 14768 0 851 0

1.581 43.83
HLC 936 232 0 30 0
Q 534 326 0 28 0

LLC 5433 14210 0 973 0
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let alt_past = 
      mem.get_alt(-1).unwrap_or(0); 

let alt_future = 
      mem.get_alt(+1).unwrap_or(0); 

let alt_current = mem.get_alt_sync(0); 

let tooHigh =  
          alt_past > 500  
       &&& alt_current > 500  
       &&& alt_future > 500
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fn postfix() { 
 a-1 > 500 
  ∧ a0 > 500 
  ∧ a+1 > 500 
}

fn prefix() { 
 a-1 > 500 
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}

MONITOR LOOPPREFIX POSTFIX

while let Some(…)  
          = get_input() { 
  a-1 > 500 
    ∧ a0 > 500 
    ∧ a+1 > 500 
}
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##[invariant="forall i: usize :::  
    (0 <<= i &&& i < μ(a))  
        ==>= mem.get_a(i) === gm.get_a(iter - i) 
"]  

##[invariant=“new_tooHigh === gm.get_a(iter - 2) > 500 ∧ …”] 

while let Some(input) = get_input() { 

    mem.add_input(&input); 

    [[ EVALUATION LOGIC ]] 

    mem.store(new_tooHigh); 
    gm.store(new_tooHigh); 

    if trigger_1 { emit( trigger_1_msg) }  
} 
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Fig. 4: Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of
the specification, where the altitude of a drone is monitored (cf. Listing 1.1),
and the network traffic monitor specification.

is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact
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is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.
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The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
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code using Prusti and the Viper toolkit takes significant time and memory. While
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is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.
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is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.

5 https://github.com/reactive-systems/Lola2RustArtifact
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is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.
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is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [6]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.
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is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core Intel
i5 processor with 16GB of ram. The artifacts for the evaluation are available on
github.5 In all experiments, the compilation itself has a negligible running time
of under ten milliseconds and memory consumption of less than 4MB, mainly
due to the RTLola frontend. As expected, the verification of the annotated rust
code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.
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consumption for 20 runs are depicted in Figure 4a. Note that the y-axis displays
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megabytes (right plot). The plot shows that the running time never exceeds
600s with a median of 225s. The memory consumption is significantly more
stable ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
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github.5 In all experiments, the compilation itself has a negligible running time
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code using Prusti and the Viper toolkit takes significant time and memory. While
the translation into the smt model is deterministic and can be parallelized, the
verification with Z3 exhibits generally high and unpredictable running time.

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
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CONCURRENT EVALUATION

input alt 
input pressure 
 
output tooHigh ::=  
    alt.offset(by: -1, dft: 0) > 500 
  ∧ alt > 500 
  ∧ alt.offset(by: +1, dft: 0) > 500 
 
trigger tooHigh 
trigger pressure < 0
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CONCURRENT EVALUATION

let (v_1, ....., v_n) = crossbeam:::scope(|scope| {  
    let handle_tooHigh = scope.spawn(move |_| {  
        eval_tooHigh(&memory)  
    });  
    let handle_trigger_2 = scope.spawn(move |_| {  
        eval_trigger_2(&memory)  
    }); 
    ( 
        handle_s1.join().unwrap(),  
        .....,  
        handle_sn.join().unwrap() 
    )  
}).unwrap() 
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I. ENABLING SOFTWARE PARALLELIZATION IS A 
DOUBLE-EDGED SWORD. 

II. HARDWARE PARALLELIZATION IS A NO-BRAINER.
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SUMMARY SW COMPILATION
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BLOCK II

Impl Monitor { 
 #)invariant = … ] 
 while let Some(i)  
       = get_input() { 
  … 
 }}
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SOFTWARE COMPILATION
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Factors: 
❖ Bus Utilization / Bus Allocation 
❖ Resource Availability



BLOCK III

52

SPECS I: (CROSS-) VALIDATION

Position 
Estimation

Logger

HD

Camera

Lidar

GNSS …

IMU



BLOCK III

53

SPECS II: GEO-FENCING

Lo
ng

itu
de

Latitude



BLOCK III

53

SPECS II: GEO-FENCING

Lo
ng

itu
de

Latitude



BLOCK III

53

SPECS II: GEO-FENCING

Lo
ng

itu
de

Latitude

I. ARITHMETICALLY CHALLENGING 
II. HIGHLY PARALLEL
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POST-MORTEM ANALYSIS

I. (QUANTITATIVE) STREAM-BASED RV SUPERIOR TO 
BOOLEAN VERDICTS 

II. MONITOR NATURALLY REFINES AND FILTERS DATA. 

III. ACCESS TO CRUCIAL DATA.
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CONCLUSION

For a Monitor To Show its Full 
Potential, It Needs To Be Co-

Developed With the CPS!


