& Steel-2-Rust (S2R)

Unit 05b

structuring Your Data

Rust-Saar Meetup - November 2020

Ferris Becker

Rust-Saar Meetup - 1/ 20

structuring Your Data @}7

What you are going to learn ahout in this talk:

o Structs: declaration, field access, implementation

¢ Nesting structs and enums

Project: Define a CPS with sensors.

Rust-Saar Meetup - 2 / 20

Syntax: Old but gold

Structs in C:

CStruct {
type_1 field_1,

type_n field_n,

Rust-Saar Meetup - 3 /20

Syntax: Old but gold

Structs in C:

CStruct {
type_1 field_1,

type_n field_n,

Rust syntax heavily leans on C's.

RustStruct {
field_1: type_1,

field_n: type_n,

Rust-Saar Meetup - 3 /20

Syntax: Old but gold

Structs in C:

CStruct {
type_1 field_1,

type_n field_n,

Rust syntax heavily leans on C's.

RustStruct {
field_1: type_1,

field_n: type_n,

Cps {
name: String,
version: u32,
// sensors: Vec<Sensor>,

Rust-Saar Meetup - 3 /20

Structs: Explicit Greation

Cps {
name: String,

You can create a struct by defining all fields.

() -> (Cps, Cps) {
Cps { name: String::from("R2U2"), version: 1 };
{ version: 1, name: String::from("C3P0") };

Cps

Rust-Saar Meetup - 4 / 20

Structs: Explicit Greation

You can create a struct by defining all fields.

() -> (Cps, Cps) {
r2 = Cps { name: String::from("R2U2"), version: 1 };
c3 = Cps { version: 1, name: String::from("C3P0") };
(r2, c3)

If a field name matches a variable, you do not need to repeat the name.

(name: String) -> Cps {

Cps { name, version: 1 }

Rust-Saar Meetup - 4 / 20

Field Access and Modification @})

The . operator is your bread and butter when working with structs.
There is no ->.

(cps: Cps) {
println!("{}", cps.name);

(cps: &Cps) {
println!("{}", cps.name);

Rust-Saar Meetup - 5 / 20

Field Access and Modification

The . operator is your bread and butter when working with structs.
There is no ->.

(cps: Cps) {
println!("{}", cps.name);

(cps: &Cps) {
println!("{}", cps.name);

Modification requires mut, as expected.

r2 = Cps { name: String::from("R2U2"), version: 1 };
r2.name = String::from("BB8"); // Won't compile!

r2 = Cps { name: String::from("R2U2"), version: 1 };
r2.name = String::from("BB8"); // Works just fine.

Rust-Saar Meetup - 5 / 20

&

Let's Add Periphery to Our CPS!

Rust-Saar Meetup - 6 / 20

Sensor {
Altimeter(f64),
Gnss(fe4, f64, f64),

(sensor: Sensor) -> f64 {

sensor {
Sensor::Altimeter(a) => a,
Sensor::Gnss(_, _, z) => z,

Rust-Saar Meetup - 7 / 20

Sensor {
Altimeter(f64),
Gnss(fe4, f64, f64),

(sensor: Sensor) -> f64 {

sensor {
Sensor::Altimeter(a) => a,
Sensor::Gnss(_, _, z) => z,

Implicit assumptions are awful. Use named fields instead.

Rust-Saar Meetup - 7 / 20

Combining enums and structs

Sensor {
Altimeter(f64),
Gnss(Position),

Position {
fe4,
fe4,
f64,

(sensor: Sensor) -> f64 {

sensor {
t:Altimeter(a) => a,
pos.z,

Rust-Saar Meetup - 8 / 20

Combining enums and structs

Sensor {
Altimeter(f64),
Gnss(Position),

Position {
. fe4,
: fe4,
: fe4,

(sensor: Sensor) -> f64 {

sensor {
Sensor::Altimeter(a) => a,
Sensor::Gnss(pos) => pos.z,

“£: Greater maintainability

“': The two declarations do not reflect that Position is only relevant for
Sensor: :Gnss.

Rust-Saar Meetup - 8 / 20

Anonymous Structs

You can use anonymous structs instead!

Sensor {
Altimeter(f64),
Gnss { x: f64, y: f64, z: f64 },

(sensor: Sensor) -> f64 {
sensor {

Sensor: :Altimeter(a) => a,
Sensor::Gnss { _x, _y, z } => z,

(x: fe4, y: f64, z: f64) -> Sensor {
Sensor { x, y, z }

Rust-Saar Meetup - 9/ 20

Matching Over Structs Q

Sensor {
Altimeter(f64),

Gnss { x: f64, y: fe4, z: f64 },

Just as for enums, you can match over (anonymous) structs.

e Gnss { _x, _y, z }binds the field z to the local variable z and ignores the x and
y fields. These fields must be present, though!

e Gnss { _x, _y, z: something } binds the field z to the local variable something
and ignores the x and y fields.

e Gnss { _, _, _ }ignores exactly three fields.

e Gnss { z, .. } binds the field z to the local variable z and ignores any other
field Gnss might have.

Rust-Saar Meetup - 10 / 20

Let's Add Logic to Structs!

Rust-Saar Meetup - 11 /20

Define functions in impl blocks.

Cps {
name: String,
versi u32,
sensors: Vec<Sensor>,

Cps {

(name: String, version: u32) {
Cps { name, version, sensors: Vec::new() }

(name: String, version: u32, sensors: Vec<Sensor>) {
Cps { name, version, sensors }

Rust-Saar Meetup - 12 / 20

Define functions in impl blocks.

Cps {
name: String,
u32,
: Vec<Sensor>,

are associate functions bc they do not require a

(name: String, version: u32) {
Cps { name, version, sensors: Vec::new() }

(name: String, version: u32, sensors: Vec<Sensor>) {
Cps { name, version, sensors }

]
Recall: the new function is merely a convention.

Rust-Saar Meetup - 12 / 20

Methods

Methods take a special first argument: self

Cps {
name: String,
versi u32,
sensors: Vec<Sensor>,

Cps {

(name: String, version: u32, sensors: Vec<Sensor>) {
Cps { name, version, sensors }

) -> usize {
.sensors.len()

Rust-Saar Meetup - 13 /20

Methods

Methods take a special first argument: self

Cps {
name: String,
vers u32,
sensors: Vec<Sensor>,

Cps {

(name: String, version: u32, sensors: Vec<Sensor>) {
Cps { name, version, sensors }

) -> usize {
.sensors.len()

c3 = Cps::new(String::from("C3P0"), 12, vec![Sensor::Altimeter(3.0)]);
println!("Number of sensors: {}", c3.num_of_sensors());
println!("Name: {}", c3.name);

Rust-Saar Meetup - 13 /20

Methods

Methods take a special first argument: self

Cps {
name: String,
1 u32,
Vec<Sensor>,

(name: String, version: u32, sensors: Vec<Sensor>) {
Cps { name, version, sensors }

) -> usize {
.sensors.len()

c3 = Cps::new(String::from("C3P0"), 12, vec![Sensor::Altimeter(3.0)]);
println!("Number of sensors: {}", c3.num_of_sensors());
println!("Name: {}", c3.name);

sellf takes ownership!

Rust-Saar Meetup - 13 /20

Rustacious Trinity

There are three flavors: self, &self, and &mut self.

Cps {
name: String,
u32,
Vec<Sensor>,

(&) -> usize {
.sensors.len()

Cps {
name: .name,
version: .version + 1,
sensors: .sensors

(&) 1

.sensors = Vec::new();

Rust-Saar Meetup - 14 / 20

Invoking Functions

Cps { name: String, version: u32, sensors: Vec<Sensor> }

Cps {

(name: String, version: u32, sensors: Vec<Sensor>) {

s
Cps { name, version, sensors }

(&) -> usize {
.sensors.len()

(&) {

.sensors = Vec::new();

Use :: for associated functions and . for methods.

glados = Cps::without_sensors(String::from("GLaD0S"), 3);

glados.remove_sensors();

Rust-Saar Meetup - 15 /20

Invoking Functions

Cps { name: String, version: u32, sensors: Vec<Sensor> }

ate function bc it dc not require a "Cps’ as
(name: String, version: u32, sensors: Vec<Sensor>) {
Cps { name, version, sensors }

(&) -> usize {
.sensors.len()

(&) {

.sensors = Vec::new();

Use :: for associated functions and . for methods.

glados = Cps::without_sensors(String::from("GLaD0S"), 3);

glados.remove_sensors();
// OR: Cps::remov nsors(&mut glados);

Why would you want to use the clumsy syntax?

Rust-Saar Meetup - 15/ 20

Invoking Functions

Cps { name: String, version: u32, sensors: Vec<Sensor> }

ate function bc it does not require a "Cps’ as
: String, version: u32, sensors: Vec<Sensor>) {
{ name, version, sensors }

(&) -> usize {
.sensors.len()

(&) {

.sensors = Vec::new();

Use :: for associated functions and . for methods.

glados = Cps::without_sensors(String::from("GLaD0S"), 3);
glados.remove_sensors();
// OR: Cps::remove_sensors(&mut glados);

Why would you want to use the clumsy syntax?

all.{te}(s.map(\cpsl cps.num_sensors()).collect();
all.iter().map(Cps::num_sensors).collect();

numbers: Vec<usize>

all: Vec<Cps> = vec![/
numbers: Vec<usize> =

For iterators, of course. L 4

Rust-Saar Meetup - 15/ 20

Invoking Functions

Cps { name: String, version: u32, sensors: Vec<Sensor> }

Cps {
// This is an associate function bc it does not require a 'Cps’ as argument.
(name: String, version: u32, sensors: Vec<Sensor>) {
Cps { name, version, sensors }

(&) -> usize {
.sensors.len()

(&) {

.sensors = Vec::new();

!
In summary: Use : : for accessing instance-agnotic data; the .-operator always
requires an instance, both for methods and field accesses.

glados = Cps::without_sensors(String::from("GLaD0S"), 3);
glados.remove_sensors();

all: Vec<Cps> = vec'[/ &
numbers: Vec<usize> = all Lter() map(Cps: :num_sensors).collect();

Rust-Saar Meetup - 16 / 20

Handling Structs like a Pro

Cps { name: String, version: u32, sensors: Vec<Sensor> }

Cps {
() ->
// The compiler won't like t . We'll it Later™.
Cps {

name: .name,
version: .version + 1,
sensors: .sensors

?
Any idea what the problem might be?

Rust-Saar Meetup - 17 / 20

Handling Structs like a Pro

Cps { name: String, version: u32, sensors: Vec<Sensor> }

Cps {
(self) -> { ,
// The compiler won't like this. We'll fix it Later™.
Cps {

name: .name,
version: .version + 1,
sensors: .sensors

?
Any idea what the problem might be?

self.name moves the string invalidating self.

Rust-Saar Meetup - 17 / 20

Handling Structs like a Pro: Q
Updates

Cps { name: String, version: u32, sensors: Vec<Sensor> }

Cps {

) ->

Cps { version: .version + 1, ..

Semantics: Copy every field of self over to the new Cps except the ones explicitly
stated.

Rust-Saar Meetup - 18 / 20

Handling Structs like a Pro: Q
Updates

Cps { name: String, version: u32, sensors: Vec<Sensor> }

Cps {

) ->

Cps { version: .version + 1, ..

Semantics: Copy every field of self over to the new Cps except the ones explicitly
stated.

?

For people with a critical eye: is this a general solution for the problem or does it
just happen to work?

Rust-Saar Meetup - 18 / 20

Handling Structs like a Pro: Q
Updates

Cps { name: String, version: u32, sensors: Vec<Sensor> }

Cps {

) ->

Cps { version: .version + 1, ..

Semantics: Copy every field of self over to the new Cps except the ones explicitly
stated.

?

For people with a critical eye: is this a general solution for the problem or does it
just happen to work?

It only works because self.version is u32 and can thus be copied.

Rust-Saar Meetup - 18 / 20

Handling Structs like a Pro:
Destruction

Cps { name: String, version: u32, sensors: Vec<Sensor> }

Cps {
) ->

Cps { name, version, sensors } = 5
Cps { name, version: version + 1, sensor }

The first line takes ownership over self and provides three local variables. This
enables fine-grained control over ownership.

Rust-Saar Meetup - 19/ 20

Handling Structs like a Pro:
Destruction

Cps { name: String, version: u32, sensors: Vec<Sensor> }

Cps {
) ->

Cps { name, version, sensors } = 5
Cps { name, version: version + 1, sensor }

The first line takes ownership over self and provides three local variables. This
enables fine-grained control over ownership.

!
Simple and effective, yet rarely used by newcomers.
And the best part: match syntax applies!

Rust-Saar Meetup - 19/ 20

B Travelogue

B What did you learn?

¢ How to structure your data with
structs, enums, and combinations
thereof.

¢ How to create structs and access
their fields and methods.

&

& Where can you learn more?

¢ Rust-Book: Chapter 5
¢ Programming Rust: 9

Y= What should you do next?
* Extend the CPS struct:

1. Add some fields

2. Provide a function for removing one
or all sensors...

3. ...and one for adding a sensor

4. Design a function computing the
average measured altitude

Don't forget: Florian will be disappointed
unless you properly unit-test these
functions.

Rust-Saar Meetup - 20 / 20

