

Temporal Causality in Reactive Systems

Norine Coenen¹, Bernd Finkbeiner¹, Hadar Frenkel¹, Christopher Hahn², Niklas Metzger¹, and <u>Julian Siber</u>¹

¹CISPA Helmholtz Center for Information Security ²Stanford University

ATVA 2023 | 27 October 2023 | In Proceedings of ATVA 2022

Temporal Properties as Causes

Trace: $(\{i_1, i_2\}\{i_1, i_2, o_1\})^{\omega}$

Does $\diamondsuit i_1$ cause $\square \neg o_2$?

Causes as Explanations for Model Checking

The *causes* for $\neg \varphi$ can explain the counterexample.

One solution: Highlighting

$$\{a, \mathbf{b}\}\{a\}(\{a, \mathbf{b}\})^{\omega}$$

$$\Diamond b$$
 ?

$$b \land \bigcirc \bigcirc b$$
?

Causes as Explanations for Model Checking

The *causes* for $\neg \varphi$ can explain the counterexample.

One solution: Highlighting

$$\{a, \textcolor{red}{b}\}\{a\}(\{a, \textcolor{red}{b}\})^\omega$$

Our Solution: Property causes

Outline

Define causality for trace properties

Algorithm for checking causality

Actual Causality^{1,2}

For finite sets of events $(a, n) \in AP \times \mathbb{N}$ (proposition and time-point).

SAT: Cause and Effect have happened.

CF: If the cause had not happened (but everything else stayed the same), the effect would not have happened either.

MIN: There is no subset that satisfies the above.

¹Causes and Explanations: A Structural-Model Approach. Halpern and Pearl (2005).

²A Modification of the Halpern-Pearl Definition of Causality. Halpern (2015).

${\cal C}$ is a Cause for ${\cal E}$ iff...

SAT: π satisfies C and E .

CF: If the cause had not happened (but everything else stayed the same), the effect would not have happened either.

MIN: There is no smaller cause candidate that satisfies the above.

Distance Metrics

An adaption of similarity relations^{3,4}.

$$\pi = (\{i_1, i_2\}\{i_1, i_2, o_1\})^{\omega}$$

A distance metric $<^{C}_{\pi}$ orders traces w.r.t. their similarity to π .

$$\pi_1 <_{\pi}^{C} \pi_2 \quad \text{iff} \quad zip(\pi, \pi_1, \pi_2) \models \\ \qquad \qquad \Box \bigwedge_{i \in I} \left((i_{\pi} \not \leftrightarrow i_{\pi_1}) \to (i_{\pi} \not \leftrightarrow i_{\pi_2}) \right) \land \diamondsuit \bigvee_{i \in I} (i_{\pi_1} \not \leftrightarrow i_{\pi_2}) \\ \qquad \qquad \Rightarrow \text{Causality is a } \textit{hyperproperty}.$$

³A Theory of Counterfactuals. Stalnaker (1968).

⁴Counterfactuals. Lewis (1973).

Counterfactual Input Sequences

$$\pi = (\{i_1, i_2\}\{i_1, i_2, o_1\})^{\omega}$$

The counterfactual input sequences are the closest sequences that negate C:

$$C_1 = i_1 \lor \bigcirc i_1 \quad \blacktriangleright \quad \sigma_{\neg C_1} = \{i_2\}\{i_2\}\{i_1,i_2\}^\omega$$
 and not, e.g.: $\{i_2\}\{i_2\}\{i_2\}^\omega$

$$C_2 = i_1 \land \bigcirc i_1 \quad \bullet \quad \sigma^1_{\neg C_2} = \{i_2\}\{i_1, i_2\}\{i_1, i_2\}^{\omega}$$
$$\sigma^2_{\neg C_2} = \{i_1, i_2\}\{i_2\}\{i_1, i_2\}^{\omega}$$

Limit Assumption

$$\pi = (\{i_1, i_2\}\{i_1, i_2, o_1\})^{\omega}$$

The naive distance metric could be vacuously satisfied:

$$C_3 = \Box \diamondsuit i_1 \quad \blacktriangleright \quad \sigma_{\neg C_3}^1 = \{i_2\}^\omega \quad \text{is closer than}$$

$$\sigma_{\neg C_3}^2 = \{i_1, i_2\} \{i_2\}^\omega \quad \text{is closer than}$$

$$\sigma_{\neg C_3}^k = \{i_1, i_2\}^k \{i_2\}^\omega \quad \text{is closer than}$$

$$\sigma_{\neg C_3}^k = \{i_1, i_2\}^k \{i_2\}^\omega \quad \text{is closer than}$$

We propose an extension that satisfies the *limit assumption*. (See our recent work⁵ on how to accommodate more general metrics).

Contingencies on Traces

Counterfactuals alone are often imprecise.

Consider: $E = \bigcirc(o_1 \lor o_2)$ and $\pi = \{i_1, i_2\}\{o_1\}\{\}^{\omega}$.

$$\pi_{\neg i_1} = \{i_1, i_2\}\{o_2\}\{\}^{\omega}$$

 $\implies C = i_1$ alone does not negate the effect.

Contingencies on Traces

Counterfactuals alone are often imprecise.

Consider: $E = \bigcirc(o_1 \lor o_2)$ and $\pi = \{i_1, i_2\}\{o_1\}\{\}^{\omega}$.

$$\pi_{\neg(i_1 \lor i_2)} = \{i_1, i_2\}\{\}\{\}^{\omega}$$

 $\implies C = i_1 \vee i_2$ works but is too imprecise.

Contingencies on Traces

Counterfactuals alone are often imprecise.

Consider:
$$E=\bigcirc(o_1\vee o_2)$$
 and $\pi=\{i_1,i_2\}\{o_1\}\{\}^\omega$. Contingency resets value.

 $\implies C = i_1$ with the *contingency* $\bigcirc \neg o_2$ works.

${\cal C}$ is a Cause for ${\cal E}$ iff...

SAT: π satisfies C and E .

CF: For every counterfactual input sequence σ , there exists a contingency trace π' such that $\sigma=_{inputs}\pi'$ and π' does not satisfy E .

MIN: There is no smaller cause candidate that satisfies the above.

Minimality

SAT and **CF** define a lot of potential causes.

$$\pi_{\neg(i_1\lor i_2)}=\{\{i_1,i_2\}\{\}\}\}$$
 $\Longrightarrow C=i_1\lor i_2$ works but is too imprecise.

$$\pi_{\neg i_1}^{cont.} = \{i_1, i_2\}\{\delta_2\}\{\}^{\omega} \Longrightarrow C = i_1 \text{ with the contingency } \bigcirc \neg o_2 \text{ works.}$$

Solution: prefer semantically minimal properties as causes, i.e., check:

$$i_1 \rightarrow (i_1 \lor i_2)$$

${\cal C}$ is a Cause for ${\cal E}$ iff...

SAT: π satisfies C and E .

CF: For every counterfactual input sequence σ , there exists a contingency trace π' such that $\sigma=_{inputs}\pi'$ and π' does not satisfy E .

MIN: There does not exist a C' such that $C \to C'$ and C' satisfies SAT and CF.

Temporal Properties as Causes

$$\pi = (\{i_1, i_2\}\{i_1, i_2, o_1\})^{\omega}$$

Does $\diamondsuit i_1$ cause $\square \neg o_2$ on π in \mathcal{T} ?

SAT:

Checking Temporal Causality

Conclusion

