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.’ Counterfactuals

AT\

“If Y had been true, then ¥ would have been true, too.”

[




"’ Counterfactuals Modulo Temporal Logics

LS

“If the car had moved straight at the first time point,
then it would have reached its goal eventually.”

(straight) (O (Fgoal)




.~ Counterfactuals = Variably Strict Conditionals

- J ﬁ — (straight) 1 (F goal)

because the closest counterfactual world is:

PRI )



.~ Counterfactuals = Variably Strict Conditionals

- J ﬁ — (straight) 1 (F goal)

counterfactual worlds further away do not matter:

i =) ﬁ Sfar el =) ﬁ
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. Applications of Counterfactual Reasoning

%>

\6 Analyzing causality [Halpern '15], [Leitner-Fischer '15],
[Coenen et al. '22]

Generating explanations for, e.g., model checkers
[Beer et al. '09], [Wachter et al. 18]

m Counterfactual fairness [Kusner et al. '17]
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- Applications of Counterfactual Reasoning

%>

\9 Analyzing causality [Halpern '15], [Leitner-Fischer '15],
[Coenen et al. '22]

Definition 3.1: (Actual cause) X = Zis an actual cause of
win (M,u) if the following three conditions hold:

ACL. (M,@) | (X = Z) A . (Thatis, both X = Z and
(p are true in the actual world.)

AC2. There exists a partition (Z, W) of V with X C Z
. . and some setting (Z', ") of the variables in (X, W)
Definition 5 (Property Causality). Let T be a system, m € traces(T) a suchthatif (M, @) | Z = =* for Z € Z, then

trace, C C (21)“ a cause property, and E C (29)¥ an effect property. We say
that C is a cause of E on w in T if the following three conditions hold:

@) (M,@) £ [X « &#,W — &)-. In words,
changing (X, W) from (Z, ) to (&', ') changes
o from true to false,

b M) E [X — ZW « @', 2" — )p for
all subsets Z’ of Z. In words, setting W to '
should have no effect on ¢ as long as X is kept

PC1: 7 EC and 7 E E, i.e., cause property and effect property are satisfied by
the actual trace.
PC2: For every counterfactual input sequence o € V,f:, there is some contin-

gency ™' € CZ s.t. @ ¥ E, i.e., the counterfactual trace under contingency at its current value Z, even if all the variables in

does not satisfy the effect property. an arbitrary subset of Z are set to their original
PC3: There is no C' s.t. C' € C and C' satisfies PC1 and PC2. values in the context @.

AC3. X is minimal; no subset of X satisfies conditions

! AC1 and AC2. Minimality ensures that only those

[Coe nen et d I 22] elements of the conjunction X = 7 that are essential

for changing ¢ in AC2(a) are considered part of a
cause; inessential elements are pruned. il

[Halpern&Pearl| 'O5]




. Applications of Counterfactual Reasoning

%>

\9 Analyzing causality [Halpern '15], [Leitner-Fischer '15],
[Coenen et al. '22]

© NP N

AN (0B, W) (m O )

V (= O 1))

[Coenen et al. '22]

[Halpern "15]
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_ Overview

%W

Decision
procedures for
satisfiability and

trace checking

of counterfactual

QPTL (w-regular)
properties

é )
Lewis’ Counterfactuals
[Lewis "73]

-

Specification toolbox for, e.g., temporal causality
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Similarity Relation < fa,fr(O) ( Lewis’ Counterfactuals
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.;”N: ‘Would’ Operator Lewis’ Counterfactuals

p =

All closest worlds satisfying ¥
have to satisfy v .

Worlds in spheres further
away do not matter.

1
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‘Might’ Operator

p O—> P

Some closest world satisfying ¥
has to satisfy .

Again, worlds in spheres
further away do not
matter.

Lewis' Counterfactuals




:/ : The Limit Assumption Lewis' Counterfactuals

“There always exist well-defined
closest worlds satisfying ¥ .

< far < far

o ® i O

O O




:/ : The Limit Assumption Lewis' Counterfactuals

“There always exist well-defined
closest worlds satisfying ¥ .

< far < far

@ : O

x = 0.0 O

Generally not satisfied and
already rejected by Lewis.

r < 3.0




2;;“\; Semantics of ‘Would’ Lewis' Counterfactuals

OFvpl—vy Iiff

o ® i O

There is a threshold world after which all closer ¥ -worlds satisfy 1 .

)@ @FEoAVO: O</er @= (0O F ¢ = 1)

15
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" Semantics of ‘Would

OFpl—vy iff

O
O
O
O

Or: There are no ¥-worlds (vacuous case).

Mor2:YO: O F ¢

16



"’ Semantics of ‘Might’
OF pO—y  iff

< far < far

O
O

O O

For any ¥ -world (and there is at least one) there exists a closer world satisfying (P

J10: 0O FEAVO: OEFEv=10 . @ <far O N@® = ¢

17




:/ : The Limit Assumption Lewis' Counterfactuals

“There always exist well-defined
closest worlds satisfying ¥ .

< far < far

O O O @ O

1 O

Also does not hold for
temporal properties.




_ The Problem with Linearity (Lewis’ Counterfactuals)

INn practice, counterfactual worlds are often incomparable.

19
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., . The Problem with Linearity

N
-

Applying Lewis’ semantics
to non-total orders leads
to unintuitive judgements.
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1@ @ELAVO: O<t0r @= (O E ¢ — )
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. _ The Problem with Linearity

Applying Lewis’ semantics
to non-total orders leads
to unintuitive judgements.
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. _ The Problem with Linearity

Applying Lewis’ semantics
to non-total orders leads
to unintuitive judgements.
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... Fixing Lewis’ Semantics (Won-totat sty reftions )

The semantics of [J— is too weak and of <>—> too strong to
capture the intended meaning on non-total relations.

We introduce operators with an additional level of guantification:

— ‘Universal Would'’
“If [...], under all circumstances, ¥ would have been true
as well.”

&o—

‘Existential Might'’
“If [...], under some circumstance, ¥ might have been
true, too.”

23
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Semantics of ‘Universal Would’

We quantify universally
over ¥ -worlds and require
a closer threshold world @
for all of them.

O E o1 iff:

VO OFp=31@:
‘Sfafr’O/\‘ :SO/\\VIO:

Oéfa’r ‘=>(O=SO%¢)
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\

- semantics of ‘Universal Would’

%>

We quantify universally
over ¥ -worlds and require
a closer threshold world @
for all of them.

O !gp T 1) iff:

VO: OEFEp=1@: """""""
@</ ON@EOAYO: T |
O<far @= (0O F¢— )

25
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Semantics of ‘Existential Might’

A\

We quantify existentially
over ¥ -worlds and require
ever-closer worlds @ for
one world only.

O :‘/gp%w iff:

10: O EeAYQ: ~ N T -
O <tONOE¢y=31@: I
@ </(rO N@® =

26
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. Minimality (vimimat courvriacuas

For causality, causes are counterfactuals that describe the
minimal changes necessary to avoid the effect.

<fa7‘ <fa7’
= e
Ball is thrown and Ball is not thrown. Ball is not thrown
bottle breaks. and is red.

| ~(e=)ne0%|

Antecedent is not minimal.

v
%

—(®=)

27
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': Minimal Counterfactuals

%1\

\Il

A counterfactual is
minimal if its antecedent
describes the largest set
that qualifies, e.qg.,

O F ¢k, ¥ iff:

O EwvE—=Y A

28
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29

': Minimal Counterfactuals

A counterfactual is
minimal if its antecedent
describes the largest set
that qualifies, e.qg.,

O F ¢k, ¥ iff:

O EwvE—=Y A
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': Minimal Counterfactuals

A counterfactual is
minimal if its antecedent
describes the largest set
that qualifies, e.qg.,

O F ¢k, ¥ iff:

O EwvE—=Y A
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. Minimal Counterfactuals

%1\

The SO quantification can
be avoided by searching

for worlds (2) that could
be added to ¥.

O E ¢, ¥ iff

Large FO-formula (V/34 Q)
See our paper!

3]
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Moving to Temporal Logics ( Counterfactual TL )

/] |

e[~ wp (straight) O—(F goal)
O = |assotrace eg. m = {a,b}{}({a,b})”
O =P infinite traces, eg. 7 = {a,b}{a,b} ...

o §fa,,n(7r) P » QPTL formula, e.g. /\ (a6 > ax) — (a, # ar)

ac AP

V/3Q w V/3 T (hyperproperty)

32



-,/”\ Satisfiability ( Counterfactual TL )

(Xad— . Gb)A... =) v/30

Counterfactuals Modulo QPTL FO formula

4

T ..
_>C/< Ao , V/dm

HyperQPTL Model Checking Prenex HyperQPTL
[Beutner&Finkbeiner, LPAR 23]

58



s Trace Checking ( Counterfactual TL )

(Xad— . Gb)A... =) v/30

Counterfactuals Modulo QPTL FO formula

_’@TA O - v/3T

HyperQPTL Model Checking Prenex HyperQPTL
[Beutner&Finkbeiner, LPAR 23]

34
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Conclusion

==
%1\

A . L .
E Uniform specification language for counterfactual reasoning
N, e.g., causality, fairness etc.

Automatic decision procedures for the resulting theory
modulo QPTL.

2 System-Level Counterfactuals
e @@LPAR: Counterfactuals Modulo Theories?
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