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Parity Games
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Deciding winner in UP ∩ co-UP Positional Strategies

Example due to (Fijalkow and Chatterjee, Infinite-state games, 2013)
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Finitary Parity Games
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Goal for Player 0: Bound response times

Example due to (Fijalkow and Chatterjee, Infinite-state games, 2013)
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Decision Problem

Theorem (Chatterjee et al., Finitary Winning, 2009)

The following decision problem is in PTime:

Input: Finitary parity game G = (A,FinParity(Ω))

Question: Does there exist a strategy σ with Cst(σ) <∞?

Theorem
The following decision problem is PSpace-complete:

Input: Finitary parity game G = (A,FinParity(Ω)),
bound b ∈ N

Question: Does there exist a strategy σ with Cst(σ) ≤ b?
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From Finitary Parity to Parity

Given: Finitary parity game G = (A,FinParity(Ω)), bound b ∈ N.

Lemma
Deciding if Player 0 has strategy σ with Cst(σ) ≤ b is in PSpace.

Idea: Simulate game, keeping track of open requests.

Lemma
Player 0 has such a strategy iff she “survives” p(|G|) steps in
extended game G′.
Algorithm:
Simulate all plays in G′ on-the-fly for p(|G|) steps using an
alternating Turing machine.

⇒ Problem is in APTime
(Chandra et al., Alternation, 1981)

⇒ Problem is in PSpace
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PSPACE-completeness

Lemma
The given decision problem is PSpace-hard.

Idea: Reduction from Quantified Boolean Formulas, e.g.:

∀x ∃y . ( x ∨ ¬y ) ∧ ( ¬x ∨ y )
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Memory Requirements (for Player 0)

Theorem
Optimal strategies for parity games require exponential memory.

Sufficiency: Corollary of proof of PSpace-membership

Necessity: Construct family Gd :

G1 G0G1 · · · · · · G0

d times d times

(Fijalkow and Chatterjee, Infinite-state games, 2013)

Player 0 needs to store d choices of d possible values each
⇒ Player 0 requires ≈ 2d many memory states
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Conclusion

Parity Finitary Parity

Winning Optimal

Complexity UP ∩ co-UP PTime PSpace-comp.
Strategies 1 1 Exp.

Take-away: Forcing Player 0 to answer quickly in (finitary) parity
games makes it harder

to decide whether she can satisfy the bound

for her to play the game
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Tradeoffs

G1 G0G1 · · · · · · G0

Winning Optimal

Size 1 d · · · 2d−1 2d

Cost 3d 3d − 1 · · · 2d + 1 2d
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Parity Games with Cost
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Finitary parity games are special case

⇒ PSpace-hard ⇒ Exp. memory necessary

Algorithm for solving finitary games works as well

⇒ In PSpace ⇒ Exp. memory sufficient
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Conclusion

Parity Cost-Parity

Winning Optimal

Complexity UP ∩ co-UP UP ∩ co-UP PSpace-comp.
Strategies 1 1 Exp.

Take-away: Forcing Player 0 to answer quickly in parity games
makes it harder

to decide whether she can satisfy the bound

for her to play the game
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