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Goal for Player 0: Bound response times
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Decision Problem

Theorem (Chatterjee et al., Finitary Winning, 2009)
The following decision problem is in PTIME:
Input: Finitary parity game G = (A, FinParity(Q2))
Question: Does there exist a strategy o with Cst(c) < co?

Theorem
The following decision problem is PSPACE-complete:

Input: Finitary parity game G = (A, FinParity(Q)),
bound b € N

Question: Does there exist a strategy o with Cst(c) < b?
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Lemma
Deciding if Player O has strategy o with Cst(c) < b is in PSPACE.

Idea: Simulate game, keeping track of open requests.

Lemma

Player O has such a strategy iff she “survives” p(|G|) steps in
extended game G'.

Algorithm:

Simulate all plays in G’ on-the-fly for p(|G|) steps using an
alternating Turing machine.

= Problem is in APTIME
(Chandra et al., Alternation, 1981)
= Problem is in PSPACE
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Memory Requirements (for Player 0)

Theorem
Optimal strategies for parity games require exponential memory.

Sufficiency: Corollary of proof of PSPACE-membership
Necessity: Construct family G4:

d times d times

Player 0 needs to store d choices of d possible values each
= Player 0 requires ~ 2¢ many memory states
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Take-away: Forcing Player 0 to answer quickly in parity games
makes it harder
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