How Much Lookahead is Needed to Win Infinite Games?

(Partially) joint work with Felix Klein (Saarland University)

Martin Zimmermann

Saarland University

August 26th, 2015

Aalborg University, Aalborg, Denmark

$$
\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

$$
\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

i: *b*
O:

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$
\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

l: *b*

 $O: a$

$$
\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

i: *b* a
0: a

$$
\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

i: *b* a
0: *a* a

$$
\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

i: *b* a b
0: a a

$$
\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

\n1: b a b ...
\n0: a a ...
\n1 wins

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$
\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

l: *b a b* ...

$$
O: a \quad a \quad \cdots
$$

I wins

- **Many possible extensions: non-zero-sum,** $n > 2$ **players, type** of winning condition, concurrency, imperfect information, etc.
- We consider two:

Interaction: one player may delay her moves.

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$
\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

 $I: b a b \cdots I: b$ Q : a a \cdots Q

I wins

- **Many possible extensions: non-zero-sum,** $n > 2$ **players, type** of winning condition, concurrency, imperfect information, etc.
- We consider two:

Interaction: one player may delay her moves.

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$
\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

I: b a b · · · I: b a $O: a \quad a \quad \cdots \quad O:$

I wins

- **Many possible extensions: non-zero-sum,** $n > 2$ **players, type** of winning condition, concurrency, imperfect information, etc.
- We consider two:

Interaction: one player may delay her moves.

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$
\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

 $I: b a b \cdots I: b a b$ $O: a \quad a \quad \cdots \quad O:$

I wins

- **Many possible extensions: non-zero-sum,** $n > 2$ **players, type** of winning condition, concurrency, imperfect information, etc.
- We consider two:

Interaction: one player may delay her moves.

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$
\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

 $I: b a b \cdots I: b a b$ $O: a \quad a \quad \cdots \quad O: b$

I wins

- **Many possible extensions: non-zero-sum,** $n > 2$ **players, type** of winning condition, concurrency, imperfect information, etc.
- We consider two:

Interaction: one player may delay her moves.

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$
\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

l: *b a b u*: *b a b b*

$$
O: a \quad a \quad \cdots \qquad O: b
$$

I wins

- **Many possible extensions: non-zero-sum,** $n > 2$ **players, type** of winning condition, concurrency, imperfect information, etc.
- We consider two:

Interaction: one player may delay her moves.

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$
\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

I: b a b · · · I: b a b b $O: a \quad a \quad \cdots \quad O: b \quad b$

I wins

- **Many possible extensions: non-zero-sum,** $n > 2$ **players, type** of winning condition, concurrency, imperfect information, etc.
- We consider two:

Interaction: one player may delay her moves.

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$
\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

l: *b a b ... l*: *b a b b a*

$$
O: a \quad a \quad \cdots \qquad O: b \quad b
$$

I wins

- **Many possible extensions: non-zero-sum,** $n > 2$ **players, type** of winning condition, concurrency, imperfect information, etc.
- We consider two:

Interaction: one player may delay her moves.

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$
\begin{pmatrix} \alpha(0) \\ \beta(0) \end{pmatrix} \begin{pmatrix} \alpha(1) \\ \beta(1) \end{pmatrix} \cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$

i: *b* a b ... *i*: *b* a b b a

 $O: a \times a \times b \times b \times b$

I wins

- **Many possible extensions: non-zero-sum,** $n > 2$ **players, type** of winning condition, concurrency, imperfect information, etc.
- We consider two:

Interaction: one player may delay her moves.

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$
\begin{pmatrix}\n\alpha(0) \\
\beta(0)\n\end{pmatrix}\n\begin{pmatrix}\n\alpha(1) \\
\beta(1)\n\end{pmatrix}\n\cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$
\n*I*: *b a b b a b*\n*O*: *a a ... C*: *b b a*\n*J* wins

- **Many possible extensions: non-zero-sum,** $n > 2$ **players, type** of winning condition, concurrency, imperfect information, etc.
- We consider two:

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$
\begin{pmatrix}\n\alpha(0) \\
\beta(0)\n\end{pmatrix}\n\begin{pmatrix}\n\alpha(1) \\
\beta(1)\n\end{pmatrix}\n\cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$
\n*I*: *b a b b a b*\n*O*: *a a ...*\n*I*: *b a b b a b*\n*O*: *a a ...*\n*O*: *b b a b*\n*I* wins

- **Many possible extensions: non-zero-sum,** $n > 2$ **players, type** of winning condition, concurrency, imperfect information, etc.
- We consider two:

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

 α(0) β(0)α(1) β(1) · · · ∈ L, if β(i) = α(i + 2) for every i I: b a b · · · I: b a b b a b a O: a a · · · O: b b a b I wins

- **Many possible extensions: non-zero-sum,** $n > 2$ **players, type** of winning condition, concurrency, imperfect information, etc.
- We consider two:

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$
\begin{pmatrix}\n\alpha(0) \\
\beta(0)\n\end{pmatrix}\n\begin{pmatrix}\n\alpha(1) \\
\beta(1)\n\end{pmatrix}\n\cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$
\n1: *b* a b b a b a b a\n0: a a ... 0: *b* b a b a b a\n1 wins

- **Many possible extensions: non-zero-sum,** $n > 2$ **players, type** of winning condition, concurrency, imperfect information, etc.
- We consider two:

Büchi-Landweber: The winner of a zero-sum two-player game of infinite duration with ω -regular winning condition can be determined effectively.

$$
\begin{pmatrix}\n\alpha(0) \\
\beta(0)\n\end{pmatrix}\n\begin{pmatrix}\n\alpha(1) \\
\beta(1)\n\end{pmatrix}\n\cdots \in L, \text{ if } \beta(i) = \alpha(i+2) \text{ for every } i
$$
\n1: *b* a b b a b a b a ...
\n0: *a* a ...
\n*l* wins
\n*l* wins
\n*l* wins

- **Many possible extensions: non-zero-sum,** $n > 2$ **players, type** of winning condition, concurrency, imperfect information, etc.
- We consider two:

- Delay function: $f : \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^\omega$.
- Two players: Input (I) vs. Output (O) .

- Delay function: $f : \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^\omega$.
- Two players: Input (I) vs. Output (O) .
- \blacksquare In round i:
	- *I* picks word $u_i \in \sum_{l}^{f(i)}$ $\iota_I^{(1)}$ (building $\alpha = u_0 u_1 \cdots$).
	- \blacksquare O picks letter $v_i \in \Sigma_O$ (building $\beta = v_0v_1 \cdots$).

- Delay function: $f : \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^\omega$.
- Two players: Input (I) vs. Output (O) .
- \blacksquare In round i:
	- *I* picks word $u_i \in \sum_{l}^{f(i)}$ $\iota_I^{(1)}$ (building $\alpha = u_0 u_1 \cdots$).
	- \blacksquare O picks letter $v_i \in \Sigma_O$ (building $\beta = v_0v_1 \cdots$).
- O wins iff $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L$.

- Delay function: $f : \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^\omega$.
- Two players: Input (I) vs. Output (O) .
- \blacksquare In round i:
	- *I* picks word $u_i \in \sum_{l}^{f(i)}$ $\iota_I^{(1)}$ (building $\alpha = u_0 u_1 \cdots$).
	- \blacksquare O picks letter $v_i \in \Sigma_O$ (building $\beta = v_0v_1 \cdots$).
- O wins iff $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L$.

Definition:

- **f** is constant, if $f(i) = 1$ for every $i > 0$.
- **F** is bounded, if $f(i) = 1$ for almost all *i*.

- Delay function: $f : \mathbb{N} \to \mathbb{N}_+$.
- ω -language $L \subseteq (\Sigma_I \times \Sigma_O)^\omega$.
- Two players: Input (I) vs. Output (O) .
- \blacksquare In round i:
	- *I* picks word $u_i \in \sum_{l}^{f(i)}$ $\iota_I^{(1)}$ (building $\alpha = u_0 u_1 \cdots$).
	- **■** O picks letter $v_i \in \Sigma_O$ (building $\beta = v_0v_1 \cdots$).
- O wins iff $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots \in L$.

Definition:

- **f** is constant, if $f(i) = 1$ for every $i > 0$.
- **F** is bounded, if $f(i) = 1$ for almost all *i*.

Questions we are interested in:

- Given L, is there an f such that O wins $\Gamma_f(L)$?
- How *large* does f have to be?
- How hard is the problem to solve?

Another Example

 $\mathbf{\Sigma}_I = \{0, 1, \#\}$ and $\mathbf{\Sigma}_O = \{0, 1, \ast\}.$ Input block: $\#w$ with $w \in \{0,1\}^+$. Length: $|w|$. Output block:

$$
\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}
$$

for $\alpha(j) \in \{0,1\}$. Length: *n*.

Another Example

\n- $$
\Sigma_I = \{0, 1, \#\}
$$
 and $\Sigma_O = \{0, 1, *\}$.
\n- Input block: $\#w$ with $w \in \{0, 1\}^+$. Length: $|w|$.
\n- Output block:
\n

$$
\binom{\#}{\alpha(n)} \binom{\alpha(1)}{*} \binom{\alpha(2)}{*} \cdots \binom{\alpha(n-1)}{*} \binom{\alpha(n)}{\alpha(n)}
$$

for $\alpha(j) \in \{0,1\}$. Length: *n*.

Define language L_0 : if infinitely many $#$ and arbitrarily long input blocks, then arbitrarily long output blocks.

Another Example

 $\mathbb{E}_{I} = \{0, 1, \#\}$ and $\Sigma_{\Omega} = \{0, 1, *\}.$ Input block: $\#w$ with $w \in \{0,1\}^+$. Length: $|w|$. Output block:

$$
\binom{\#}{\alpha(n)} \binom{\alpha(1)}{*} \binom{\alpha(2)}{*} \cdots \binom{\alpha(n-1)}{*} \binom{\alpha(n)}{\alpha(n)}
$$
\nfor $\alpha(i) \in \{0, 1\}$. Length: *n*.

Define language L_0 : if infinitely many $\#$ and arbitrarily long input blocks, then arbitrarily long output blocks.

O wins $\Gamma_f(L_0)$ for every unbounded f:

- If I produces arbitrarily long input blocks, then the lookahead will contain arbitrarily long input blocks.
- \blacksquare Thus, O can produce arbitrarily long output blocks.

Previous Results

Theorem (Hosch & Landweber '72)

The following problem is decidable: Given ω -regular L, does O win $\Gamma_f(L)$ for some constant f?

Previous Results

Theorem (Hosch & Landweber '72)

The following problem is decidable: Given ω -regular L, does O win $\Gamma_f(L)$ for some constant f?

Theorem (Holtmann, Kaiser & Thomas '10)

- 1. TFAE for L given by deterministic parity automaton A :
	- \blacksquare O wins $\Gamma_f(L)$ for some f.
	- O wins $\Gamma_f(L)$ for some constant f with $f(0) \leq 2^{2|A|}$.
- **2.** Deciding whether this is the case is in 2 EXPTIME.

Previous Results

Theorem (Hosch & Landweber '72)

The following problem is decidable: Given ω -regular L, does O win $\Gamma_f(L)$ for some constant f?

Theorem (Holtmann, Kaiser & Thomas '10)

- 1. TFAE for L given by deterministic parity automaton A :
	- \blacksquare O wins $\Gamma_f(L)$ for some f.
	- O wins $\Gamma_f(L)$ for some constant f with $f(0) \leq 2^{2|A|}$.
- **2.** Deciding whether this is the case is in 2 EXPTIME.

Theorem (Fridman, Löding & Z. '11)

The following problem is undecidable: Given (one-counter, weak, visibly, deterministic) context-free L, does O win $\Gamma_f(L)$ for some f?

Uniformization of Relations

A strategy σ for O in $\Gamma_f(L)$ induces a mapping $f_{\sigma} \colon \Sigma_I^{\omega} \to \Sigma_O^{\omega}$ σ is winning \Leftrightarrow $\{ {\mathcal L}_{f_{\sigma}(\alpha)}^{\alpha}) \mid \alpha \in \Sigma_{I}^{\omega} \} \subseteq L$ $(f_{\sigma}$ uniformizes L)

Uniformization of Relations

A strategy σ for O in $\Gamma_f(L)$ induces a mapping $f_{\sigma} \colon \Sigma_I^{\omega} \to \Sigma_O^{\omega}$ σ is winning \Leftrightarrow $\{ {\mathcal L}_{f_{\sigma}(\alpha)}^{\alpha}) \mid \alpha \in \Sigma_{I}^{\omega} \} \subseteq L$ $(f_{\sigma}$ uniformizes L)

Continuity in terms of strategies:

Strategy without lookahead: *i*-th letter of $f_{\sigma}(\alpha)$ only depends on first *i* letters of α (very strong notion of continuity).
Uniformization of Relations

A strategy σ for O in $\Gamma_f(L)$ induces a mapping $f_{\sigma} \colon \Sigma_I^{\omega} \to \Sigma_O^{\omega}$ σ is winning \Leftrightarrow $\{ {\mathcal L}_{f_{\sigma}(\alpha)}^{\alpha}) \mid \alpha \in \Sigma_{I}^{\omega} \} \subseteq L$ $(f_{\sigma}$ uniformizes L)

Continuity in terms of strategies:

- Strategy without lookahead: *i*-th letter of $f_{\sigma}(\alpha)$ only depends on first *i* letters of α (very strong notion of continuity).
- Strategy with constant delay: f_{σ} Lipschitz-continuous.

Uniformization of Relations

A strategy σ for O in $\Gamma_f(L)$ induces a mapping $f_{\sigma} \colon \Sigma_I^{\omega} \to \Sigma_O^{\omega}$ σ is winning \Leftrightarrow $\{ {\mathcal L}_{f_{\sigma}(\alpha)}^{\alpha}) \mid \alpha \in \Sigma_{I}^{\omega} \} \subseteq L$ $(f_{\sigma}$ uniformizes L)

Continuity in terms of strategies:

- Strategy without lookahead: *i*-th letter of $f_{\sigma}(\alpha)$ only depends on first *i* letters of α (very strong notion of continuity).
- Strategy with constant delay: f_{σ} Lipschitz-continuous.
- Strategy with arbitrary (finite) delay: f_{σ} (uniformly) continuous.

Uniformization of Relations

A strategy σ for O in $\Gamma_f(L)$ induces a mapping $f_{\sigma} \colon \Sigma_I^{\omega} \to \Sigma_O^{\omega}$ σ is winning \Leftrightarrow $\{ {\mathcal L}_{f_{\sigma}(\alpha)}^{\alpha}) \mid \alpha \in \Sigma_{I}^{\omega} \} \subseteq L$ $(f_{\sigma}$ uniformizes L)

Continuity in terms of strategies:

- Strategy without lookahead: *i*-th letter of $f_{\sigma}(\alpha)$ only depends on first *i* letters of α (very strong notion of continuity).
- Strategy with constant delay: f_{σ} Lipschitz-continuous.
- Strategy with arbitrary (finite) delay: f_{σ} (uniformly) continuous.

Holtmann, Kaiser, Thomas: for ω -regular L

L uniformizable by continuous function

⇔

L uniformizable by Lipschitz-continuous function

Outline

1. ω [-regular Winning conditions](#page-39-0)

- 2. [Max-regular Winning Conditions](#page-60-0)
- 3. [Determinacy](#page-88-0)
- 4. [Conclusion](#page-92-0)

Theorem (Klein & Z. '15)

- 1. TFAE for L given by deterministic parity automaton $\mathcal A$ with k colors:
	- \Box O wins $\Gamma_f(L)$ for some f.
	- O wins $\Gamma_f(L)$ for some constant f with $f(0) \leq 2^{|A| \cdot k}$.
- 2. Deciding whether this is the case is EXPTIME-complete.

Theorem (Klein & Z. '15)

- 1. TFAE for L given by deterministic parity automaton $\mathcal A$ with k colors:
	- \Box O wins $\Gamma_f(L)$ for some f.
	- O wins $\Gamma_f(L)$ for some constant f with $f(0) \leq 2^{|A| \cdot k}$.
- 2. Deciding whether this is the case is EXPTIME-complete.
- 3. Matching lower bound on necessary lookahead (already for reachability and safety).

Theorem (Klein & Z. '15)

- 1. TFAE for L given by deterministic parity automaton $\mathcal A$ with k colors:
	- \Box O wins $\Gamma_f(L)$ for some f.
	- O wins $\Gamma_f(L)$ for some constant f with $f(0) \leq 2^{|A| \cdot k}$.
- 2. Deciding whether this is the case is EXPTIME-complete.
- 3. Matching lower bound on necessary lookahead (already for reachability and safety).
- 4. Solving reachability delay games is PSPACE-complete.

Theorem

For every $n > 1$ there is a language L_n such that

- \blacksquare L_n is recognized by some deterministic reachability automaton A_n with $|A_n| \in \mathcal{O}(n)$,
- \blacksquare O wins $\lceil f(f_n) \rceil$ for some constant delay function f, but
- I wins $\Gamma_f(L_n)$ for every delay function f with $f(0) \leq 2^n$.

Theorem

For every $n > 1$ there is a language L_n such that

- \blacksquare L_n is recognized by some deterministic reachability automaton A_n with $|A_n| \in \mathcal{O}(n)$,
- \blacksquare O wins $\Gamma_f(L_n)$ for some constant delay function f, but
- I wins $\Gamma_f(L_n)$ for every delay function f with $f(0) \leq 2^n$.

Proof:

I

$$
\mathbf{I} \Sigma_I = \Sigma_O = \{1,\ldots,n\}.
$$

 $w \in \Sigma_I^*$ contains bad j-pair ($j \in \Sigma_I$) if there are two occurrences of j in w such that no $j' > j$ occurs in between.

Theorem

For every $n > 1$ there is a language L_n such that

- \blacksquare L_n is recognized by some deterministic reachability automaton A_n with $|A_n| \in \mathcal{O}(n)$,
- \blacksquare O wins $\Gamma_f(L_n)$ for some constant delay function f, but
- I wins $\Gamma_f(L_n)$ for every delay function f with $f(0) \leq 2^n$.

Proof:

I

$$
\mathbf{Z}_I=\Sigma_O=\{1,\ldots,n\}.
$$

 $w \in \Sigma_I^*$ contains bad j-pair ($j \in \Sigma_I$) if there are two occurrences of j in w such that no $j' > j$ occurs in between.

$$
\blacksquare w \in \Sigma_O^*
$$
 has no bad j-pair for any $j \Rightarrow |w| \leq 2^n - 1$.

Exists $w_n \in \Sigma_O^*$ with $|w_n| = 2^n - 1$ and without bad j-pair.

 $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots\in L_n$ iff $\alpha(1)\alpha(2)\cdots$ contains a bad $\beta(0)$ -pair.

 $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots\in L_n$ iff $\alpha(1)\alpha(2)\cdots$ contains a bad $\beta(0)$ -pair.

O wins $\Gamma_f(L_n)$, if $f(0) > 2^n$: In first round, I picks u_0 s.t. u_0 without its first letter has bad i -pair. O picks i in first round.

 $\binom{\alpha(0)}{\beta(0)}\binom{\alpha(1)}{\beta(1)}\cdots\in L_n$ iff $\alpha(1)\alpha(2)\cdots$ contains a bad $\beta(0)$ -pair.

- O wins $\Gamma_f(L_n)$, if $f(0) > 2^n$: In first round, I picks u_0 s.t. u_0 without its first letter has bad i -pair. O picks i in first round.
- *I* wins $\Gamma_f(L_n)$, if $f(0) \leq 2^n$:
	- I l picks prefix of $1w_n$ of length $f(0)$ in first round,
	- \Box O answers by some *j*.
	- *I* finishes w_n and then picks some $j' \neq j$ ad infinitum.

Theorem

TFAE for L recognized by a parity automaton with k colors:

- 1. O wins $\Gamma_f(L)$ for some f.
- **2.** 0 wins $\Gamma_f(L)$ for the constant f with $f(0) = 2^{(|\mathcal{A}|k)^2}$.

Theorem

TFAE for L recognized by a parity automaton with k colors:

1. O wins $\Gamma_f(L)$ for some f.

2. 0 wins $\Gamma_f(L)$ for the constant f with $f(0) = 2^{(|\mathcal{A}|k)^2}$.

3. O wins parity game G.

Furthermore, G can be constructed and solved in exponential time.

Theorem

TFAE for L recognized by a parity automaton with k colors:

1. O wins $\Gamma_f(L)$ for some f.

2. 0 wins $\Gamma_f(L)$ for the constant f with $f(0) = 2^{(|\mathcal{A}|k)^2}$.

3. O wins parity game G.

Furthermore, G can be constructed and solved in exponential time.

Proof Idea:

Capture behavior of $\mathcal A$, i.e., state changes and maximal color seen on run \Rightarrow equivalence relation \equiv over Σ^* of exponential index.

Theorem

TFAE for L recognized by a parity automaton with k colors:

1. O wins $\Gamma_f(L)$ for some f.

2. 0 wins $\Gamma_f(L)$ for the constant f with $f(0) = 2^{(|\mathcal{A}|k)^2}$.

3. O wins parity game G.

Furthermore, G can be constructed and solved in exponential time.

Proof Idea:

Capture behavior of $\mathcal A$, i.e., state changes and maximal color seen on run \Rightarrow equivalence relation \equiv over Σ^* of exponential index.

Lemma

Let $(x_i)_{i\in\mathbb{N}}$ and $(x'_i)_{i\in\mathbb{N}}$ be two sequences of words over Σ^* with $x_i \equiv x'_i$ for all i. Then,

$$
x_0x_1x_2\dots \in L(\mathcal{A}) \Leftrightarrow x_0'x_1'x_2'\dots \in L(\mathcal{A}).
$$

- In \mathcal{A} , project away Σ_O and construct equivalence \equiv over $\Sigma_I^*.$
- Define parity game \mathcal{G} :
	- \blacksquare / picks equivalence classes,
	- \Box O constructs run on representatives (always one step behind to account for delay).
	- \Box O wins, if run is accepting.

- In \mathcal{A} , project away Σ_O and construct equivalence \equiv over $\Sigma_I^*.$
- **D**efine parity game G :
	- \blacksquare / picks equivalence classes,
	- \Box O constructs run on representatives (always one step behind to account for delay).
	- \Box O wins, if run is accepting.

Lemma

O wins $\Gamma_f(L(\mathcal{A}))$ for some constant $f \Leftrightarrow$ she wins G.

- In \mathcal{A} , project away Σ_O and construct equivalence \equiv over $\Sigma_I^*.$
- **D**efine parity game G :
	- \blacksquare / picks equivalence classes,
	- \Box O constructs run on representatives (always one step behind to account for delay).
	- \Box O wins, if run is accepting.

Lemma

O wins $\Gamma_f(L(\mathcal{A}))$ for some constant $f \Leftrightarrow$ she wins G.

 G is delay-free parity game of exponential size with k colors.

- In \mathcal{A} , project away Σ_O and construct equivalence \equiv over $\Sigma_I^*.$
- **D**efine parity game G :
	- \blacksquare / picks equivalence classes,
	- \Box O constructs run on representatives (always one step behind to account for delay).
	- \Box O wins, if run is accepting.

Lemma

O wins $\Gamma_f(L(\mathcal{A}))$ for some constant $f \Leftrightarrow$ she wins G.

 G is delay-free parity game of exponential size with k colors.

Corollary

Winner can be determined in EXPTIME.

Further Results

Applying both directions of equivalence between $\Gamma_f(L(\mathcal{A}))$ and $\mathcal G$ yields upper bound on lookahead.

Corollary

Let $L = L(A)$ where A is a deterministic parity automaton with k colors. The following are equivalent:

- 1. O wins $\Gamma_f(L)$ for some delay function f.
- 2. O wins $\Gamma_f(L)$ for some constant delay function f with $f(0) \leq 2^{(|\mathcal{A}|k)^2}$.

Further Results

Applying both directions of equivalence between $\Gamma_f(L(\mathcal{A}))$ and G yields upper bound on lookahead.

Corollary

Let $L = L(A)$ where A is a deterministic parity automaton with k colors. The following are equivalent:

- 1. O wins $\Gamma_f(L)$ for some delay function f.
- 2. O wins $\Gamma_f(L)$ for some constant delay function f with $f(0) \leq 2^{(|\mathcal{A}|k)^2}$.

Note: $f(0) \leq 2^{2|A|k+2} + 2$ achievable by direct pumping argument.

Outline

1. ω [-regular Winning conditions](#page-39-0)

2. [Max-regular Winning Conditions](#page-60-0)

- 3. [Determinacy](#page-88-0)
- 4. [Conclusion](#page-92-0)

Bojańczyk: Let's add a new quantifier to (weak) monadic second order logic (WMSO/MSO)

■ $UX\varphi(X)$ holds, if there are arbitrarily large finite sets X such that $\varphi(X)$ holds.

Bojańczyk: Let's add a new quantifier to (weak) monadic second order logic (WMSO/MSO)

■ $UX\varphi(X)$ holds, if there are arbitrarily large finite sets X such that $\varphi(X)$ holds.

 $L = \{a^{n_0}ba^{n_1}ba^{n_2}b \cdots | \text{ lim sup}_{i} n_i = \infty \}$

Bojańczyk: Let's add a new quantifier to (weak) monadic second order logic (WMSO/MSO)

■ $UX\varphi(X)$ holds, if there are arbitrarily large finite sets X such that $\varphi(X)$ holds.

$$
L = \{a^{n_0}ba^{n_1}ba^{n_2}b\cdots | \limsup_i n_i = \infty\}
$$

L defined by

$$
\forall x \exists y (y > x \land P_b(y)) \land
$$

UX
$$
[\forall x \forall y \forall z (x < y < z \land x \in X \land z \in X \rightarrow y \in X)
$$

$$
\land \forall x (x \in X \rightarrow P_a(x))]
$$

Bojańczyk: Let's add a new quantifier to (weak) monadic second order logic (WMSO/MSO)

■ $UX\varphi(X)$ holds, if there are arbitrarily large finite sets X such that $\varphi(X)$ holds.

$$
L = \{a^{n_0}ba^{n_1}ba^{n_2}b\cdots | \limsup_i n_i = \infty\}
$$

L defined by

$$
\forall x \exists y (y > x \land P_b(y)) \land
$$

UX
$$
[\forall x \forall y \forall z (x < y < z \land x \in X \land z \in X \rightarrow y \in X)
$$

$$
\land \forall x (x \in X \rightarrow P_a(x))]
$$

Theorem (Bojańczyk '14)

Delay-free games with $WMSO+U$ winning conditions are decidable.

Max-Automata

Equivalent automaton model for WMSO+U on infinite words:

- Deterministic finite automata with counters.
- counter actions: incr, reset, max.
- **acceptance:** boolean combination of "counter γ is bounded".

Max-Automata

Equivalent automaton model for $WMSO+U$ on infinite words:

- Deterministic finite automata with counters.
- counter actions: incr, reset, max.
- **acceptance:** boolean combination of "counter γ is bounded".

a: inc(
$$
\gamma
$$
)

Acceptance condition: γ and γ' unbounded.

Max-Automata

Equivalent automaton model for $WMSO+U$ on infinite words:

- **Deterministic finite automata with counters.**
- counter actions: incr, reset, max.
- **acceptance:** boolean combination of "counter γ is bounded".

a: inc(
$$
\gamma
$$
)

Acceptance condition: γ and γ' unbounded.

Theorem (Bojańczyk '09)

The following are (effectively) equivalent:

- 1. L WMSO+U-definable.
- 2. L recognized by max-automaton.

Theorem (Z. '15)

The following problem is decidable: given a max-automaton A . does O win $\Gamma_f(L(A))$ for some constant delay function f.

Theorem (Z. '15)

The following problem is decidable: given a max-automaton A . does O win $\Gamma_f(L(A))$ for some constant delay function f.

Proof Idea:

Analogously to the parity case: capture behavior of A , i.e., state changes and evolution of counter values:

- Transfers from counter γ to γ' .
- Existence of increments, but not how many.
- \Rightarrow equivalence relation \equiv over Σ^* of exponential index.

Theorem (Z. '15)

The following problem is decidable: given a max-automaton A . does O win $\Gamma_f(L(A))$ for some constant delay function f.

Proof Idea:

Analogously to the parity case: capture behavior of A , i.e., state changes and evolution of counter values:

- Transfers from counter γ to γ' .
- Existence of increments, but not how many.
- \Rightarrow equivalence relation \equiv over Σ^* of exponential index.

Lemma

Let $(x_i)_{i\in\mathbb{N}}$ and $(x'_i)_{i\in\mathbb{N}}$ be two sequences of words over Σ^* with $\sup_i |x_i| < \infty$, $\sup_i |x'_i| < \infty$, and $x_i \equiv x'_i$ for all i. Then,

$$
x_0x_1x_2\cdots \in L(\mathcal{A}) \Leftrightarrow x_0'x_1'x_2'\cdots \in L(\mathcal{A}).
$$

In \mathcal{A} , project away Σ_O and construct equivalence \equiv over $\Sigma_I^*.$ **D**efine game \mathcal{G} :

- \blacksquare / picks equivalence classes,
- \Box O constructs run on representatives (always one step behind to account for delay).
- \Box O wins, if run is accepting.
Removing Delay

In \mathcal{A} , project away Σ_O and construct equivalence \equiv over $\Sigma_I^*.$ **D**efine game \mathcal{G} :

- \blacksquare / picks equivalence classes,
- \Box O constructs run on representatives (always one step behind to account for delay).
- \Box O wins, if run is accepting.

Lemma

O wins $\Gamma_f(L(\mathcal{A}))$ for some constant $f \Leftrightarrow$ she wins \mathcal{G} .

Removing Delay

In \mathcal{A} , project away Σ_O and construct equivalence \equiv over $\Sigma_I^*.$ **D**efine game \mathcal{G} :

- \blacksquare / picks equivalence classes.
- \Box O constructs run on representatives (always one step behind to account for delay).
- \Box O wins, if run is accepting.

Lemma

O wins $\Gamma_f(L(\mathcal{A}))$ for some constant $f \Leftrightarrow$ she wins \mathcal{G} .

- G is delay-free with WMSO+U winning condition.
	- Can be solved effectively by reduction to satisfiability problem for WMSO+U with path quantifiers over infinite trees.
	- Doubly-exponential upper bound on necessary constant lookahead.

Recall: O wins $\Gamma_f(L_0)$ for every unbounded f.

- Input block: $\#w$ with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L_0 : if infinitely many $\#$ and arbitrarily long input blocks, then arbitrarily long output blocks.

Recall: O wins $\Gamma_f(L_0)$ for every unbounded f.

- Input block: $\#w$ with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L_0 : if infinitely many $\#$ and arbitrarily long input blocks, then arbitrarily long output blocks.

$$
I: # 0 0 \cdots 0
$$

Recall: O wins $\Gamma_f(L_0)$ for every unbounded f.

- Input block: $\#w$ with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L_0 : if infinitely many $\#$ and arbitrarily long input blocks, then arbitrarily long output blocks.

I: # 0 0 · · · 0 O: 0

Recall: O wins $\Gamma_f(L_0)$ for every unbounded f.

- Input block: $\#w$ with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L_0 : if infinitely many $\#$ and arbitrarily long input blocks, then arbitrarily long output blocks.

I: # 0 0 · · · 0 1 O: 0

Recall: O wins $\Gamma_f(L_0)$ for every unbounded f.

- Input block: $\#w$ with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L_0 : if infinitely many $\#$ and arbitrarily long input blocks, then arbitrarily long output blocks.

Claim: I wins $\Gamma_f(L_0)$ for every constant f.

 $I:$ $\#$ 0 0 \cdots 0 1 O: 0 ∗

Recall: O wins $\Gamma_f(L_0)$ for every unbounded f.

- Input block: $\#w$ with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L_0 : if infinitely many $\#$ and arbitrarily long input blocks, then arbitrarily long output blocks.

I: # 0 0 · · · 0 1 1 O: 0 ∗

Recall: O wins $\Gamma_f(L_0)$ for every unbounded f.

- Input block: $\#w$ with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L_0 : if infinitely many $\#$ and arbitrarily long input blocks, then arbitrarily long output blocks.

Claim: I wins $\Gamma_f(L_0)$ for every constant f.

 $I:$ $\#$ 0 0 \cdots 0 1 1 O: 0 ∗ ∗

Recall: O wins $\Gamma_f(L_0)$ for every unbounded f.

- Input block: $\#w$ with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L_0 : if infinitely many $\#$ and arbitrarily long input blocks, then arbitrarily long output blocks.

Claim: I wins $\Gamma_f(L_0)$ for every constant f.

 $l:$ $\#$ 0 0 \cdots 0 1 1 1 O: 0 ∗ ∗

Recall: O wins $\Gamma_f(L_0)$ for every unbounded f.

- Input block: $\#w$ with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L_0 : if infinitely many $\#$ and arbitrarily long input blocks, then arbitrarily long output blocks.

Claim: I wins $\Gamma_f(L_0)$ for every constant f.

 $I:$ # 0 0 \cdots 0 1 1 1 \cdots O: 0 ∗ ∗ · · ·

Recall: O wins $\Gamma_f(L_0)$ for every unbounded f.

- Input block: $\#w$ with $w \in \{0,1\}^+$.
- Output block: $\binom{\#}{\alpha(n)}\binom{\alpha(1)}{*}\binom{\alpha(2)}{*}\cdots\binom{\alpha(n-1)}{*}\binom{\alpha(n)}{\alpha(n)}$
- Winning condition L_0 : if infinitely many $\#$ and arbitrarily long input blocks, then arbitrarily long output blocks.

Claim: I wins $\Gamma_f(L_0)$ for every constant f.

 $I:$ # 0 0 \cdots 0 1 1 1 \cdots O: 0 ∗ ∗ · · ·

- **E** Lookahead contains only input blocks of length $f(0)$.
- I can react to O's declaration at beginning of an output block to bound size of output blocks while producing arbitrarily large input blocks.

Theorem

TFAE for L recognized by a max automaton with k counters:

- 1. O wins $\Gamma_f(L)$ for some f.
- **2.** O wins $\Gamma_f(L)$ for every unbounded f with $f(0) \geq 2^{2(|\mathcal{A}|k)^2}$.

Theorem

TFAE for L recognized by a max automaton with k counters:

- 1. O wins $\Gamma_f(L)$ for some f.
- **2.** O wins $\Gamma_f(L)$ for every unbounded f with $f(0) \geq 2^{2(|\mathcal{A}|k)^2}$.
- 3. O wins G.

Theorem

TFAE for L recognized by a max automaton with k counters:

- 1. O wins $\Gamma_f(L)$ for some f.
- **2.** O wins $\Gamma_f(L)$ for every unbounded f with $f(0) \geq 2^{2(|\mathcal{A}|k)^2}$.
- 3. O wins G.

Analogously to the case: of bounded lookahead:

- **■** Define \equiv _m as \equiv , but capture behavior up to *m* increments.
- I l picks \equiv_m classes for m tending to infinity.

Theorem

TFAE for L recognized by a max automaton with k counters:

1. O wins $\Gamma_f(L)$ for some f.

- **2.** O wins $\Gamma_f(L)$ for every unbounded f with $f(0) \geq 2^{2(|\mathcal{A}|k)^2}$.
- 3. O wins G.

Analogously to the case: of bounded lookahead:

- **■** Define \equiv _m as \equiv , but capture behavior up to *m* increments.
- I l picks \equiv_m classes for m tending to infinity.

G is infinite state \Rightarrow cannot solve it to determine winner of delay game w.r.t. unbounded delay functions.

Outline

1. ω [-regular Winning conditions](#page-39-0)

2. [Max-regular Winning Conditions](#page-60-0)

3. [Determinacy](#page-88-0)

4. [Conclusion](#page-92-0)

Borel Determinacy for Delay Games

- \blacksquare A game is determined, if one of the players has a winning strategy.
- Borel hierarchy: family of languages constructed from open languages $K \cdot \Sigma^\omega$ with $K \subseteq \Sigma^*$ via countable union and complementation.
- Contains all regular and max-regular languages (and much more).

Borel Determinacy for Delay Games

- \blacksquare A game is determined, if one of the players has a winning strategy.
- Borel hierarchy: family of languages constructed from open languages $K \cdot \Sigma^\omega$ with $K \subseteq \Sigma^*$ via countable union and complementation.
- Contains all regular and max-regular languages (and much more).

Theorem (Martin '75)

Every delay-free game with Borel winning condition is determined.

Borel Determinacy for Delay Games

- \blacksquare A game is determined, if one of the players has a winning strategy.
- Borel hierarchy: family of languages constructed from open languages $K \cdot \Sigma^\omega$ with $K \subseteq \Sigma^*$ via countable union and complementation.
- Contains all regular and max-regular languages (and much more).

Theorem (Martin '75)

Every delay-free game with Borel winning condition is determined.

Theorem (Klein & Z. '15)

Every delay game with Borel winning condition is determined.

Outline

- 1. ω [-regular Winning conditions](#page-39-0)
- 2. [Max-regular Winning Conditions](#page-60-0)
- 3. [Determinacy](#page-88-0)
- 4. [Conclusion](#page-92-0)

Conclusion

Results:

- Tight results for ω -regular conditions
- First results for max-regular conditions, but decidability and exact complexity open.
- **Borel determinacy.**

Conclusion

Results:

- **Tight results for** ω **-regular conditions**
- First results for max-regular conditions, but decidability and exact complexity open.
- **Borel determinacy.**

Open problems:

- Results for other acceptance conditions (Rabin, Streett Muller), non-deterministic or alternating automata.
- Decidability of max-regular delay games w.r.t. unbounded delay functions.
- What are strategies in delay games, e.g., do they have to depend on the delay function under consideration?