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Abstract—We transform a Muller game with n vertices into a
safety game with (n!)® vertices whose solution allows to deter-
mine the winning regions of the Muller game and to compute a
finite-state winning strategy for one player. This yields a novel
memory structure and a natural notion of permissive strategies
for Muller games. Moreover, we generalize our construction by
presenting a new type of game reduction from infinite games to
safety games and show its applicability to several other winning
conditions.

I. INTRODUCTION

Muller games are a source of interesting and challenging
questions in the theory of infinite games. They are expressive
enough to describe all w-regular properties. Also, all winning
conditions that depend only on the set of vertices visited in-
finitely often can trivially be reduced to Muller games. Hence,
they subsume Biichi, co-Biichi, parity, Rabin, and Streett
conditions. Furthermore, Muller games are not positionally
determined, i.e., both players need memory to implement their
winning strategies. In this work, we present a framework to
deal with three aspects of Muller games: solution algorithms,
memory structures, and quality measures for strategies.

While investigating the interest of Muller games for “casual
living-room recreation” [1], McNaughton introduced scoring
functions which describe the progress a player is making
towards winning a play: consider a Muller game (A, Fo, F1),
where A is the arena and (Fp,F1) is a partition of the set
of loops in A used to determine the winner: Player ¢ wins a
play p if the set of vertices visited infinitely often by p is in
F;. The score of a set F' of vertices measures how often F’
has been visited completely since the last visit of a vertex not
in F'. McNaughton proved the existence of strategies for the
winning player that bound her opponent’s scores by |.A|! [1],
provided the play starts in her winning region. Such a strategy
is necessarily winning. The bound |A|! was subsequently
improved to 2 (and shown to be tight) [2]. Thus, the winner of
a Muller game can be determined by solving a (much simpler,
albeit large) safety game. In the following, we present a novel
algorithm and a novel type of memory structure for Muller
games derived from solving this safety game. We also obtain
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a natural quality measure for strategies in Muller games and
are able to extend the definition of permissiveness [3] from
parity games to Muller games.

In the following, we use the notions of winning strategies
and winning regions as defined in [4].

II. SCORING FUNCTIONS FOR MULLER GAMES

We begin by introducing scoring functions. For a more
detailed treatment we refer to [2], [1].

Definition 1. Letw e V¥, veV,and 0 A F C V.
e Define Scr(e) = 0.
o Ifv ¢ F, then Scp(wv) =0 and Accp(wv) = 0.
e If v € F and Accp(w) = F \ {v}, then Scp(wv) =
Scr(w) + 1 and Accp(wv) = 0.
e If v € F and Accp(w) # F \ {v}, then Scp(wv) =
Scp(w) and Accp(wv) = Accp(w) U {v}.
Now, let w,w' € V* and F C 2V.
1) w is F-smaller than w', denoted by w <r w', if
Last(w) = Last(w’) and for all F € F:
e Scp(w) < Scp(w'), or
e Scp(w) = Scp(w') and Accp(w) C Accp(w').
2) w and w' are F-equivalent, denoted by w = w', if
w<rw and w <r w.

Our results rely on the following lemma.

Lemma 1 ([2]). In every Muller game G = (A, Fo, 1),
Player i has a winning strategy that bounds every Scp with
F e Fi_; by two during every consistent play.

Hence, a player wins the Muller game if and only if she
can prevent her opponent from ever reaching a score of three.
This is a safety condition!

IIT. SOLVING MULLER BY SOLVING SAFETY

Fix a Muller game G = (A, Fy,F1) and consider the
following safety game Gg: the scores and accumulators of
Player 1 are tracked up to threshold three by the arena. More
formally, we take the =z, -quotient of the unraveling of A up
to the positions where Player 1 reaches a score of three for
the first time. Player 1 wins a play in this (finite) arena, if he
reaches a score of three. Hence, Player 0 wins if her opponent
never reaches a score of three.



Theorem 1. Let G be a Muller game with vertex set V. One
can effectively construct a safety game Gg with vertex set V5
and a mapping f:V — V' with the following properties:

1) For every v € V: Player i wins the Muller game from
v if and only if she wins the safety game from f(v).

2) Player 0 has a finite-state winning strategy for G whose
set of memory states is V°.

3) VS < (V)2

Note that the first statement speaks about both players while
the second one only speaks about Player 0. This is due to
the fact that the safety game keeps track of Player 1’s scores
only. To obtain a winning strategy for Player 1, we have to
track Player 0’s scores. The first claim follows directly from
Lemma 1 while the second one is proved by turning the
winning region of Player 0 in Gg (restricted to the vertices
reachable via a positional winning strategy for Gg) into a
memory structure whose strategy prevents Player 1 from
reaching a score of three in G. Such a strategy is winning.
The size of this memory structure is at most cubically larger
then the size of the LAR memory structure.

Furthermore, by only using the <z, -maximal elements of
Player 0’s winning region as memory states, one obtains an
even smaller memory structure that still implements a winning
strategy. On the other hand, by using all vertices in the winning
region, but using the most general non-deterministic winning
strategy for Player 0 in Gg (cf. [3]), we also obtain the
most general non-deterministic winning strategy that prevents
the losing player from reaching a score of three (which can
obviously be generalized to any threshold k). This extends the
notion of permissive strategies from parity to Muller games.

IV. SAFETY REDUCTIONS FOR INFINITE GAMES

Since Muller conditions are on a higher level of the Borel
hierarchy than safety conditions, there is no game reduction
from Muller to safety games (using the notion of reduction
as defined, e.g., in [4]). Nonetheless, we have just solved a
Muller game by solving a safety game. The price we have to
pay is that we only obtain a winning strategy for one player
while standard reductions yield winning strategies for both.
Next, we present a general construction comprising our result.

Definition 2. A game G = (A, Win) with vertex set V and
set Win C V¥ of winning plays for Player 0 is (finite-state)
safety reducible, if there is a regular language L C V* of
finite words such that:
o For every play p € V¥: if Pref(p) C L, then p € Win.
o If Player O wins from v, then she has a strategy o such
that Pref(p) C L for every p consistent with o and
starting in v.

Note that a strategy o satisfying the second property is win-
ning for Player 0 from v. Many solution algorithms for games
can be phrased in this terminology, e.g., the progress measure
algorithms for parity games [5] respectively Rabin and Streett
games [6], as well as work on bounded synthesis [7] and LTL
realizability [8].

Theorem 2. Let G be a game with vertex set V that is
safety reducible with language L(2l) for some DFA 2 =
(Q,V,qo,9, F). Define the safety game G' = (Ax 2,V x F).
1) For every v € V, Player O wins the G from v if and only
if she wins G' from (v,6(qo,v)).
2) Player O has a finite-state winning strategy for G with
memory states Q.

This results gives a unified approach to solving parity,
Rabin, Streett, and Muller games (and many more) by solving
safety games. Furthermore, the notion of safety-reduction al-
lows to generalize permissiveness to all these games, yielding
what one could call L-permissiveness, i.e., we obtain the most
general non-deterministic winning strategy that “stays” in L.

V. CONCLUSION

We have shown how to translate a Muller game into a safety
game to determine both winning regions and a finite-state
winning strategy for one player. Then, we generalized this
construction to a new type of reduction from infinite games
to safety games with the same properties. The reduction from
Muller to safety games is implemented in the tool GAVS+! [9].

The quality of a strategy can be measured by the maximal
score value the opponent can achieve. We conjecture that there
is no tradeoff between size and quality of a strategy.

Finally, there is a tight connection between permissive
strategies, progress measure algorithms, and safety reductions
for parity games. Whether the safety reducibility of Muller
games can be turned into a progress measure algorithm is
subject to ongoing research.
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