
ar
X

iv
:1

20
7.

06
63

v3
 [

cs
.L

O
]

 5
 J

un
 2

01
3

Parity and Streett Games with Costs⋆

Nathanaël Fijalkow1,2 and Martin Zimmermann2

1 LIAFA, Université Paris 7.
nath@liafa.univ-paris-diderot.fr

2 Institute of Informatics, University of Warsaw.
zimmermann@mimuw.edu.pl

Abstract. We study two-player games played on finite graphs equipped
with costs on edges and introduce two winning conditions, cost-parity
and cost-Streett, which require bounds on the cost between requests and
their responses. Both conditions generalize the corresponding classical
omega-regular conditions and the corresponding finitary conditions.
For parity games with costs we show that the first player has positional
winning strategies and that determining the winner lies in NP and coNP.
For Streett games with costs we show that the first player has finite-
state winning strategies and that determining the winner is EXPTIME-
complete. This unifies the complexity results for the classical and finitary
variants of these games. Both types of games with costs can be solved
by solving linearly many instances of their classical variants.

1 Introduction

In recent years, boundedness problems arose in topics pertaining to automata
and logics leading to the development of novel models and techniques to tackle
these problems. Although in general undecidable, many boundedness problems
for automata turn out to be decidable if the acceptance condition can refer to
boundedness properties of variables, but the transitions cannot access variable
values. A great achievement was made by Hashiguchi [19] who proved decidability
of the star-height problem by reducing it to a boundedness problem for a certain
type of finite automaton and by then solving this problem. This led the path to
recent developments towards a general theory of bounds in automata and logics,
comprising automata and logics with bounds [2, 4], satisfiability algorithms for
these logics [2, 5, 27], and regular cost-functions [12].

In this work, we consider boundedness problems in turn-based two-player
graph games of infinite duration. We introduce cost-parity and cost-Streett con-
ditions which generalize the (classical) ω-regular parity- respectively Streett con-
dition, as well as the finitary parity- respectively finitary Streett condition [9].
While both finitary variants strengthen the classical conditions by adding bounds,

⋆ A preliminary version of this work appeared in FSTTCS 2012 under the name
“Cost-parity and Cost-Streett Games” [18]. The research leading to these results
has received funding from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreements 259454 (GALE) and 239850 (SOSNA).

http://arxiv.org/abs/1207.0663v3

the complexity of solving these games diverges: (in the state of the art) finitary
parity games are simpler than parity games, while finitary Streett games are
harder than Streett games. Indeed, solving finitary parity games can be carried
out in polynomial time [9], while no polynomial-time algorithm for parity games
is yet known, and the decision problem for parity games is in NP∩ coNP. The
situation is reversed for Streett games, since solving them is coNP-complete [16]
while solving finitary Streett games is EXPTIME-complete. The latter result
is shown in unpublished work by Chatterjee, Henzinger, and Horn: by slightly
modifying the proof of EXPTIME-hardness of solving request-response games
presented in [10] they prove EXPTIME-hardness of solving finitary Streett
games.

A game with cost-parity condition is played on an arena whose vertices are
colored by natural numbers, and where traversing an edge incurs a non-negative
cost. Player 0 wins a play if there is a bound b such that all but finitely many
odd colors seen along the play (which we think of as requests) are followed by
a larger even color (which we think of as responses) that is reached with cost
at most b. The definition of the cost-Streett condition goes along the same lines,
but the requests and responses are independent and not hierarchically ordered
as in parity conditions. The cost of traversing an edge can be used to model the
consumption of a resource. Thus, if Player 0 wins a play she can achieve her
goal along an infinite run with bounded resources. On the other hand, Player 1’s
objective is to exhaust the resource, no matter how big the capacity is. Note that
this is not an ω-regular property, which is witnessed by the fact that Player 1
needs infinite memory to win such games.

Since the term “cost-parity games” has been used before [12, 13, 27], we re-
fer to games with cost-parity conditions as parity games with costs. There are
two main differences between cost-parity games and parity games with costs as
introduced here. First, the bound quantification in cost-parity games requires
the counter values to be uniformly bounded over all paths, whereas in parity
games with costs the bound can depend on the path. Second, in cost-parity
games the counters and the parity conditions are independent, whereas in parity
games with costs the counters are used to give a quantitative measure of the
satisfaction of the parity condition.

We show that parity games with costs enjoy two nice properties of parity
and finitary parity games: Player 0 has memoryless winning strategies and de-
termining the winner lies in NP ∩ coNP. Furthermore, we show that solving
parity games with costs can be algorithmically reduced to solving parity games,
which allows to solve these games almost as efficiently as parity games. We then
consider Streett games with costs and prove that Player 0 has finite-state win-
ning strategies, and that determining the winner is EXPTIME-complete. Our
complexity results unify the previous results about finitary parity and Streett
games and the results about their classical variants.

To obtain our results, we present an algorithm to solve parity games with
costs that iteratively computes the winning region of Player 0 employing an
algorithm to solve parity games. This “reduction” to parity games also yields

finite-state winning strategies for Player 0 in parity games with costs. However,
this can be improved: by exploiting the intrinsic structure of the memory intro-
duced in the reduction, we are able to prove the existence of positional winning
strategies for Player 0. We also give a second proof of this result: we show how
to transform an arbitrary finite-state winning strategy into a positional one.
This construction relies on so-called scoring functions (which are reminiscent
of the simulation of alternating tree-automata by non-deterministic automata
presented in [25] and of scoring functions for Muller games [23]) and presents
a general framework to turn finite-state strategies into positional ones, which
we believe to be applicable in other situations as well. Finally, we present an
algorithm that solves Streett games with costs by solving Streett games. Here,
we show the existence of finite-state winning strategies for Player 0 in Streett
games with costs.

In our proofs, we reduce games with boundedness winning conditions to
games with ω-regular winning conditions. The solution of the domination prob-
lem for regular cost-functions on finite trees [13] uses a similar approach. But in
contrast to this work, which is concerned with proving decidability of a stronger
formalism, we are interested in efficient algorithms. Hence, we need a more so-
phisticated reduction and a careful analysis of the memory requirements.

Adding quantitative requirements to qualitative winning conditions has been
an active field of research during the last decade: much attention is being paid
to not just synthesize some winning strategy, but to find an optimal one ac-
cording to a certain quality measure, e.g., the use of mean-payoff objectives and
weighted automata to model quantitative aspects in the winning condition [1,
7, 11]. For request-response games and their extensions waiting times between
requests and their responses are used to measure the quality of a strategy and it
was shown how to compute optimal (w.r.t. the limit superior of the mean waiting
time) winning strategies [20, 29]. However, the optimal finite-state strategies that
are obtained are exponentially larger than the ones computed by the classical
algorithm.

Finally, there has been a lot of interest in so-called energy games, whose win-
ning conditions are boundedness requirements on the consumption of resources.
Solving energy games with multiple resources is in general intractable [17] while
so-called consumption games, a subclass of energy games, are shown to be
tractable in [6]. Furthermore, energy parity games, whose winning conditions
are a conjunction of a (single resource) energy and a parity condition, can be
solved in NP ∩ coNP and one player (the spoiling one) has positional winning
strategies while the other one needs exponential memory [8]. Although the first
two results are similar to our results on parity games with costs, the energy
parity condition does not relate the energy consumption to the parity condition.
In contrast, the costs in parity games with costs give a qualitative measure of
the satisfaction of the parity condition.

The paper is organized as follows. In Section 2, we define the necessary ma-
terial related to games and introduce cost-parity and cost-Streett conditions, as
well as their bounded variants. In Section 3, we study bounded parity games with

costs, providing an algorithm to solve them and tight memory requirements for
winning strategies. In Section 4, we show how to reduce the problem of solving
parity games with costs to the problem of solving bounded parity games with
costs. In Section 5, we give a different proof of the existence of positional strate-
gies for (bounded) parity games with costs, via scoring-functions. In Section 6,
we study Streett games with costs.

2 Definitions

We denote the non-negative integers by N and define [n] = {0, 1, . . . , n− 1} for
every n ≥ 1.

An arena A = (V, V0, V1, E) consists of a finite, directed graph (V,E) and a
partition {V0, V1} of V into the positions of Player 0 (drawn as circles) and the
positions of Player 1 (drawn as rectangles). A play in A starting in v ∈ V is
an infinite path ρ = ρ0ρ1ρ2 · · · through (V,E) such that ρ0 = v. To avoid the
nuisance of dealing with finite plays, we assume every vertex to have an outgoing
edge.

A game G = (A,Win) consists of an arena A and a set Win ⊆ V ω of winning
plays for Player 0. The set of winning plays for Player 1 is V ω \ Win. We say
that Win is prefix-independent, if ρ ∈ Win if and only if wρ ∈ Win for every
finite play prefix w and every infinite play ρ.

A strategy for Player i is a mapping σ : V ∗Vi → V such that (v, σ(wv)) ∈
E for all wv ∈ V ∗Vi. We say that σ is positional if σ(wv) = σ(v) for every
wv ∈ V ∗Vi. We often view positional strategies as mapping σ : Vi → V . A play
ρ0ρ1ρ2 . . . is consistent with σ if ρn+1 = σ(ρ0 · · · ρn) for every n with ρn ∈ Vi.
A strategy σ for Player i is a winning strategy from a set of vertices W ⊆ V
if every play that starts in some v ∈ W and is consistent with σ is won by
Player i. The winning region Wi(G) of Player i in G is the set of vertices from
which Player i has a winning strategy. We say that a strategy is uniform, if it is
winning from all v ∈ Wi(G). We always have W0(G) ∩W1(G) = ∅. On the other
hand, if W0(G) ∪W1(G) = V , then we say that G is determined. All games we
consider in this work are determined. Solving a game amounts to determining
its winning regions and winning strategies.

A memory structure M = (M, Init,Upd) for an arena (V, V0, V1, E) consists
of a finite set M of memory states, an initialization function Init : V → M ,
and an update function Upd: M × V → M . The update function can be
extended to Upd+ : V + → M in the usual way: Upd+(ρ0) = Init(ρ0) and
Upd+(ρ0 . . . ρnρn+1) = Upd(Upd+(ρ0 . . . ρn), ρn+1). A next-move function (for
Player i) Nxt : Vi × M → V has to satisfy (v,Nxt(v,m)) ∈ E for all v ∈ Vi

and all m ∈ M . It induces a strategy σ for Player i with memory M via
σ(ρ0 . . . ρn) = Nxt(ρn,Upd

+(ρ0 . . . ρn)). A strategy is called finite-state if it can
be implemented by a memory structure.

An arena A = (V, V0, V1, E) and a memory structure M = (M, Init,Upd) for
A induce the expanded arena A × M = (V × M,V0 × M,V1 × M,E′) where
((v,m), (v′,m′)) ∈ E′ if and only if (v, v′) ∈ E and Upd(m, v′) = m′. Every

play ρ in A has a unique extended play ρ′ = (ρ0,m0)(ρ1,m1)(ρ2,m2) . . . in
A × M defined by m0 = Init(ρ0) and mn+1 = Upd(mn, ρn+1), i.e., mn =
Upd+(ρ0 · · · ρn).

A game G = (A,Win) is reducible to G′ = (A′,Win′) via M, written G ≤M

G′, if A′ = A × M and every play ρ in G is won by the player who wins the
extended play ρ′ in G′, i.e., ρ ∈ Win if and only if ρ′ ∈ Win′.

Lemma 1 Let G be a game with vertex set V and W ⊆ V . If G ≤M G′ and
Player i has a positional winning strategy for G′ from {(v, Init(v)) | v ∈ W},
then she has a finite-state winning strategy for G from W which is implemented
by M.

Especially, if Player i has a uniform positional winning strategy for G′, then
she has a uniform finite-state winning strategy for G that is implemented by M.

Let A = (V, V0, V1, E) and i ∈ {0, 1}. The i-attractor of F ⊆ V in A, denoted

by AttrAi (F), is defined by AttrAi (F) =
⋃|V |

j=0 Aj , where A0 = F and

Aj+1 = Aj ∪{v ∈ Vi | ∃v
′ ∈ Aj such that (v, v′) ∈ E}

∪ {v ∈ V1−i | ∀v
′, (v, v′) ∈ E implies v′ ∈ Aj} .

Player i has a (positional) strategy such that every play that starts in AttrAi (F)
and is consistent with the strategy visits F . Such strategies are called attractor
strategies.

A trap for Player i is a set X of vertices such that the successors of every
vertex in X ∩ Vi are again in X and every vertex in X ∩ V1−i has a successor in
X . Player 1− i has a (positional) strategy such that every play that starts in a
trap X and is consistent with the strategy stays in X forever. The complement of
an attractor AttrAi (F) is a trap for Player i. Furthermore, removing an attractor
from an arena never introduces terminal vertices.

The following observation will be useful later: if the sets of winning plays Win
in G is prefix-independent, then we have Wi(G) = AttrAi (Wi(G)) and Wi(G) is a
trap for Player 1 − i. Furthermore, no play consistent with a winning strategy
for Player i will ever leave Wi(G).

2.1 Winning Conditions

In this subsection, we present the winning conditions we consider in this pa-
per. Fix an arena A with set of edges E. A cost-function for A is an edge-
labelling Cst: E → {ε, i}. An edge with label i is called an increment-edge, and
edges labelled by ε are called accordingly ε-edges. We extend the edge-labelling
to a cost-function over finite and infinite paths obtained by counting the number
of increment-edges traversed along the path. Note that we only allow zero and
one as cost. Another option would be to allow arbitrary costs in N but since all
our results depend only on whether an edge has cost zero or not, we refrain from
doing this.

Cost-Parity Conditions Let A = (V, V0, V1, E) be an arena and let Ω : V → N

be a coloring of its vertices by natural numbers. In all games we are about to
define in this subsection, we interpret the occurrence of a color as request, which
has to be answered by visiting a vertex of larger even color at a later position. By
imposing conditions on the responses we obtain several different types of winning
conditions. To simplify our notations, let Ans(c) = {c′ ∈ N | c′ ≥ c and c′ even}
be the set of colors that answer a request of color c. Note that Ans(c) ⊆ Ans(c′)
for c ≥ c′ and c ∈ Ans(c) if c is even.

Fix a cost-function Cst and consider a play ρ = ρ0ρ1ρ2 · · · and a position k ∈
N. We define the cost-of-response at position k of ρ by

CorCst(ρ, k) = min{Cst(ρk · · · ρk′) | k′ ≥ k and Ω(ρk′) ∈ Ans(Ω(ρk))} ,

where we use min ∅ = ∞, i.e., CorCst(ρ, k) is the cost of the infix of ρ from
position k to its first answer, and ∞ if there is no answer.

We say that a request at position k is answered with cost c, if CorCst(ρ, k) = c.
Note that a request at a position k with an even color is answered with cost
zero. Finally, we say that a request at position k is unanswered with cost ∞,
if there is no position k′ ≥ k such that Ω(ρk′) ∈ Ans(Ω(ρk)) and we have
Cst(ρkρk+1 · · ·) = ∞, i.e., there are infinitely many increment-edges after posi-
tion k, but no answer.

We begin defining winning conditions by introducing the parity condition,
denoted by Parity(Ω), which requires that all but finitely many requests are
answered. Equivalently, ρ ∈ Parity(Ω) if and only if the maximal color that
occurs infinitely often in ρ is even. Both players have uniform positional winning
strategies in parity games [15, 24] and their winning regions can be decided in
NP ∩ coNP.

By bounding the costs between requests and their responses, we strengthen
the parity condition and obtain the cost-parity and the bounded cost-parity
condition. The former is defined as

CostParity(Ω,Cst) = {ρ ∈ V ω | lim sup
k→∞

CorCst(ρ, k) < ∞} ,

i.e., ρ satisfies the cost-parity condition, if there exists a bound b ∈ N such that
all but finitely many requests are answered with cost less than b.

The bounded cost-parity condition, denoted by BndCostParity(Ω,Cst), is
again obtained by a strengthening: ρ ∈ BndCostParity(Ω,Cst) if there exists a
bound b ∈ N such that all but finitely many requests are answered with cost
less than b, and there is no unanswered request of cost ∞. Note that this is not
equivalent to requiring that there exists a bound b′ ∈ N such that all requests
are answered with cost less than b′ (e.g., if there are unanswered requests in a
play with finitely many increment-edges).

Remark 1 We have BndCostParity(Ω,Cst) ⊆ CostParity(Ω,Cst) ⊆ Parity(Ω)
and V ∗ · BndCostParity(Ω,Cst) = CostParity(Ω,Cst). Furthermore, note that
CostParity(Ω,Cst) and Parity(Ω) are prefix-independent. This is not the case
for BndCostParity(Ω,Cst).

A game G = (A,CostParity(Ω,Cst)) is called a parity game with costs, and
a game with winning condition

BndCostParity(Ω,Cst)

is a bounded parity game with costs. Note that both cost-conditions defined
here generalize the classical parity conditions as well as the finitary respectively
bounded parity conditions [9]. Indeed, if A contains no increment-edges, then
the three conditions are equivalent, i.e.,

CostParity(Ω,Cst) = BndCostParity(Ω,Cst) = Parity(Ω) .

On the other hand, if A contains no ε-edges, then CostParity(Ω,Cst) is equal
to the finitary parity condition over Ω and BndCostParity(Ω,Cst) is equal to
the bounded parity condition over Ω. Hence, parity games with costs generalize
both parity and finitary parity games. Similarly, bounded parity games with
costs generalize both parity and bounded parity games.

Since (bounded) cost-parity conditions can be shown to be on the third level
of the Borel hierarchy, we obtain the following result as a consequence of the
Borel determinacy theorem [22].

Remark 2 (Bounded) parity games with costs are determined.

Example 1 Consider the parity game with costs depicted in Figure 1 where all
vertices belong to V1, and the label of a vertex denotes its name (in the upper
part) and its color (in the lower part). Player 1 wins from {a, b, c} by requesting
color 1 at vertex a infinitely often and staying at vertex b longer and longer, but
also visiting c infinitely often (and thereby answering the request). Note that this
strategy is not finite-state. Indeed, one can easily prove that Player 1 does not
have a finite-state winning strategy for this game. Player 0 wins from every other
vertex, since Player 1 can raise only finitely many requests from these vertices,
albeit these requests are unanswered with cost ∞.

If we consider the game as a bounded parity game with costs, then Player 1
wins from every vertex but g by moving to g and then staying there ad infinitum.
Every such play contains a request of color 1 that is unanswered with cost ∞.
From g, Player 0 wins, since there is only one play starting from g, in which no
request is ever raised.

Cost-Streett Conditions Fix an arenaA = (V, V0, V1, E). Let Γ = (Qc, Pc)c∈[d]

be a collection of d (Streett) pairs of subsets of V , i.e., Qc, Pc ⊆ V , and let
Cst = (Cstc)c∈[d] be a collection of d cost-functions for A. We think of visits
to vertices in Qc as requests, visits to Pc as responses, and measure the cost of
these responses using Cstc. Formally, for c ∈ [d], a play ρ = ρ0ρ1ρ2 · · · , and a
position k we define

StCorCstc(ρ, k) =

{

0 if ρk /∈ Qc,

min{Cstc(ρk · · · ρk′) | ρk′ ≥ ρk and ρk′ ∈ Pc} if ρk ∈ Qc,

a

1

b

0

c

2

d

1

e

0

f

1

g

0ε

i

ε

ε

ε ε

i

ε ε

i

Fig. 1. A (bounded) parity game with costs.

where we use min ∅ = ∞. We define StCorCst(ρ, k) = max{StCorCstc(ρ, k) |
c ∈ [d]} and say that the requests at position k are answered with cost c,
if StCorCst(ρ, k) = c, and that the requests are unanswered with cost ∞, if
StCorCst(ρ, k) = ∞ and there are infinitely many increment-edges after position
k (w.r.t. some Cstc such that ρk ∈ Qc).

We consider the following winning conditions. The (classical) Streett condi-
tion Streett(Γ) requires for every c that Pc is visited infinitely often if Qc is
visited infinitely often, i.e., all but finitely many requests are answered.

Again, by requiring a bound on the costs between requests and responses, we
strengthen the Streett condition: the cost-Streett condition

CostStreett(Γ,Cst) = {ρ ∈ V ω | lim supk→∞ StCorCst(ρ, k) < ∞}

requires the existence of a bound b such that all but finitely many requests are
answered with cost less than b.

Finally, the bounded cost-Streett condition BndCostStreett(Γ,Cst) requires
the existence of a bound b such that all but finitely many requests are answered
with cost less than b, and that there is no unanswered request of cost ∞.

Remark 3 We have

BndCostStreett(Ω,Cst) ⊆ CostStreett(Ω,Cst) ⊆ Streett(Ω)

and V ∗ ·BndCostStreett(Ω,Cst) = CostStreett(Ω,Cst). Furthermore, note that
CostStreett(Ω,Cst) and Streett(Ω) are prefix-independent. This is not the case
for BndCostStreett(Ω,Cst).

A game (A,CostStreett(Γ,Cst)) where Γ and Cst have the same size is
called a Streett game with costs. As for (bounded) cost-parity conditions, the
winning conditions defined here generalize the classical Streett condition as
well as the finitary respectively bounded Streett condition of [9]. Indeed, if
A contains no increment-edges, then the three conditions are equivalent, i.e.,
CostStreett(Γ,Cst) = BndCostStreett(Γ,Cst) = Streett(Γ). Similarly, if A con-
tains no ε-edges, then CostStreett(Γ,Cst) is equal to the finitary Streett condi-
tion over Γ and BndCostParity(Γ,Cst) is equal to the bounded Streett condi-
tion over Γ . Hence, Streett games with costs generalize both Streett and fini-
tary Streett games. Similarly, bounded Streett games with costs generalize both

Streett and bounded Streett games. Furthermore, just as classical Streett games
subsume parity games, Streett games with costs subsume parity games with
costs, and bounded Streett games with costs subsume bounded parity games
with costs.

Figure 2 shows the expressiveness of the winning conditions, e.g., the arrow
from “bounded parity” to “bounded Streett” denotes that every bounded parity
condition is also a bounded Streett condition.

parity

Streett

bounded cost-parity

bounded parity

cost-parity

finitary parity

bounded cost-Streett

bounded Streett

cost-Streett

finitary Streett

Fig. 2. Expressiveness of winning conditions; those below the dashed line are ω-regular.

Finally, we obtain determinacy via the Borel determinacy theorem [22].

Remark 4 (Bounded) Streett games with costs are determined.

3 Bounded Parity Games with Costs

In this section, we study bounded parity games with costs. We first show how
to solve such games, and then consider the memory requirements for winning
strategies for both players.

3.1 Solving Bounded Parity Games with Costs via ω-regular Games

To solve bounded parity games with costs, we present a relaxation of the bounded
cost-parity condition, called PCRR, which essentially replaces the bound b on
the cost between a request and its response by just requiring an answer to every
request. For plays with finite cost we just require the parity condition to be
satisfied, just as the bounded cost-parity condition does. The PCRR-condition
is ω-regular, thus both players have finite-state winning strategies. Using the fact
that a finite-state winning strategy for Player 0 answers every request within a
fixed number of steps (and thereby also with bounded cost), we are able to show
that these two games have the same winning regions. Finally, we show how to
reduce the PCRR-condition to a parity condition. This completes our algorithm

for solving bounded parity games with costs and also yields upper bounds on
the memory requirements of both players in bounded parity games with costs.

Let G = (A,BndCostParity(Ω,Cst)). In the following, we assume that no
vertex of A has both incoming increment- and ε-edges. This can be achieved by
subdividing every increment-edge e = (v, v′): we add a new vertex sub(e) and
replace e by (v, sub(e)) (which is an increment-edge) and by (sub(e), v′) (which
is an ε-edge). Now, only the newly added vertices have incoming increment-
edges, but they do not have incoming ε-edges. Furthermore, it is easy to see that
Player i wins from a vertex in the original game if and only if she wins from
this vertex in the modified game (where we color sub(e) by Ω(v′)). Finally, the
modification does not increase the memory requirements, e.g., if Player 0 has
a positional winning strategy for the modified game, then also for the original
game.

We say that a vertex is an increment-vertex, if it has an incoming increment-
edge (which implies that all incoming edges are increment-edges). Let I be the
set of increment-vertices. Then, coBüchi(I) = {ρ | Cst(ρ) < ∞} is the set of
infinite plays having finite cost. Furthermore, by RR(Ω) we denote the set of
infinite plays in which every request is answered. We define

PCRR(Ω, I) = (Parity(Ω) ∩ coBüchi(I)) ∪ RR(Ω) ,

which is ω-regular. Note that PCRR(Ω, I) relaxes BndCostParity(Ω,Cst) by
giving up the bound on the cost between requests and responses, in other words
PCRR(Ω, I) ⊇ BndCostParity(Ω,Cst).

Lemma 2 Let G = (A,BndCostParity(Ω,Cst)) and G′ = (A,PCRR(Ω, I)),
where I is defined as above. A finite-state winning strategy for Player i in G′

from a set W of vertices is also a winning strategy for Player i in G from W .

Proof. The statement for i = 1 follows from the inclusion V ω \ PCRR(Ω, I) ⊆
V ω \ BndCostParity(Ω,Cst).

Now, consider the case i = 0 and let σ be a finite-state winning strategy for
Player 0 in G′ from W . We argue that σ is also a winning strategy for Player 0
for G from W : let ρ be consistent with σ and starting in W , which implies
ρ ∈ PCRR(Ω, I).

If ρ satisfies Parity(Ω) and has only finitely many increments (say b many),
then all but finitely many requests are answered with cost less than b + 1 and
there is no unanswered request of cost ∞, i.e., ρ ∈ BndCostParity(Ω,Cst).

Otherwise, ρ satisfies RR(Ω), i.e. every request in ρ is answered. We show
that every request in ρ is answered with cost at most b = |V | · |σ| (where
|σ| is the size of the memory structure implementing σ), which implies that
ρ ∈ BndCostParity(Ω,Cst). Towards a contradiction, assume that there is a
request that is answered with cost greater than b. Then, there are two positions
between the request and its answer having the same vertex, an increment-edge
in between them, and such that the memory structure implementing σ assumes
the same state at both positions. Hence, using this loop forever is also a play
that is consistent with σ. However, this play contains an unanswered request

of cost ∞ and therefore does not satisfy PCRR(Ω, I). This yields the desired
contradiction to the fact that σ is a winning strategy.

We give an important corollary which shows that solving G′ also solves G.

Corollary 1 Let G and G′ as in Lemma 2. Then, Wi(G) = Wi(G′) for i ∈ {0, 1}.

We now show how to reduce G′ = (A,PCRR(Ω, I)) to a small parity game.
Let O be the set of odd colors in Ω(V). We define a memory structure M =
(M, Init,Upd) with M = O ∪ {⊥},

Init(v) =

{

Ω(v) if Ω(v) odd,

⊥ otherwise,

Upd(⊥, v) = Init(v), and

Upd(c, v) =

max(Ω(v), c) if Ω(v) odd,

⊥ if Ω(v) ∈ Ans(c),

c otherwise.

Intuitively, Upd+(w) is the largest unanswered request in w, and is ⊥ if every
request in w is answered. Furthermore, let ℓ be an odd color that is larger than
every color in Ω(V). Now, we define a coloring ΩM of the arena A×M via

ΩM(v,m) =

ℓ+ 1 if m = ⊥,

ℓ if m 6= ⊥ and v ∈ I,

Ω(v) otherwise.

So, having all requests answered (i.e., being in memory state ⊥) is most desirable
for Player 0 while visiting increment-vertices (i.e., vertices in I) while having an
open request is most desirable for Player 1. If neither of these occurs infinitely
often, then the old coloringΩ determines the winner (without taking the memory
states into account).

Lemma 3 Let G′ = (A,PCRR(Ω, I)) and G′′ = (A × M,Parity(ΩM)). Then,
G′ ≤M G′′.

Proof. Let ρ′ = v0v1v2 · · · be a play in A and ρ′′ = (v0,m0)(v1,m1)(v2,m2) · · ·
be its extended play in A ×M. By construction, mj is the largest unanswered
request in v0 · · · vj . We have to show that the same player wins both ρ′ in G′ and
ρ′′ in G′′.

Assume ρ′ ∈ PCRR(Ω, I). If ρ′ ∈ RR(Ω), then every request is answered,
i.e., mj is infinitely often equal to ⊥. These vertices have the largest color in G′′,
which is even. Hence, ρ′′ ∈ Parity(ΩM). On the other hand, if ρ′ ∈ Parity(Ω) ∩
coBüchi(I) but ρ′ /∈ RR(Ω), then ρ′ and ρ′′ each have a suffix (starting after the
last occurrence of an increment-vertex or the last unanswered request, whichever

comes last) such that these suffixes have the same sequence of colors. Hence, ρ′′

satisfies Parity(ΩM).
Conversely, assume ρ′′ ∈ Parity(ΩM). If ℓ + 1 is the maximal color seen

infinitely often, then mj is infinitely often equal to ⊥, which implies that every
request in ρ′ is answered, i.e., ρ′ ∈ RR(Ω) ⊆ PCRR(Ω, I). On the other hand,
if the maximal color seen infinitely often is smaller than ℓ + 1 (but still even,
since we assume Player 0 wins ρ′′), then there are only finitely many increment-
vertices in ρ′ and the plays ρ′ and ρ′′ each have a suffix such that these suffixes
have the same sequence of colors. Hence, ρ′ satisfies Parity(Ω). Altogether, we
have ρ′ ∈ Parity(Ω) ∩ coBüchi(I) ⊆ PCRR(Ω, I).

Corollary 2 In bounded parity games with costs, both players have uniform
finite-state winning strategies of size d+ 1, where d is the number of odd colors
in the game.

Proof. The reduction from games with winning condition PCRR(Ω, I) to parity
games yields uniform finite-state winning strategies of size d+1 for such games.
Now apply Lemma 2.

In the next subsection, we show this bound to be tight for Player 1 and show
that Player 0 even has positional winning strategies.

The reduction from PCRR games to parity games and Lemma 2 show that
solving a parity game suffices to solve a bounded parity games with costs and
proves the following theorem. Here, n is the number of vertices, m is the number
of edges, and d is the number of colors in the game.

Theorem 1 Given an algorithm that solves parity games in time T (n,m, d),
there is an algorithm that solves bounded parity games with costs with a time
complexity O(T (dn, dm, d+ 2)).

Furthermore, since solving parity games is in NP ∩ coNP and the blowup
in our reduction is polynomial, we obtain the following remark.

Remark 5 The following problem is in NP ∩ coNP: given a bounded parity
game with costs G, i ∈ {0, 1}, and a vertex v, is v ∈ Wi(G)?

Let us conclude by considering the special case of a bounded parity game with
costs G in which every edge is an increment-edge, i.e., where G is a bounded
parity game. These games can be solved in polynomial time [9]. In this case,
PCRR(Ω,Cst) is equal to RR(Ω), which is a request-response condition [28]
where the sets of requests and responses form a hierarchy, induced by the order
on the colors. It is easy to derive from the reduction to Büchi games [28] that
such games can be solved in polynomial time. Hence, we have recovered the result
of [9] on bounded parity games as a special case of our algorithm, although the
running time of this algorithm is worse than the running time of the algorithm
presented in [9].

3.2 Memory Requirements in Bounded Parity Games with Costs

In this subsection, we determine the exact memory requirements for both players
in bounded parity games with costs. We begin by considering Player 0 and
improve on Corollary 2.

Lemma 4 In bounded parity games with costs, Player 0 has uniform positional
winning strategies.

Proof. Due to Lemma 2, it suffices to prove the statement for games G′ =
(A,PCRR(Ω, I)). Recall that we reduced such a game to a parity game G′′ =
(A×M,Parity(ΩM)) using a memory structureM that keeps track of the largest
open request. Specifically, Lemma 3 reads as follows: v0 ∈ W0(G′) if and only if
(v0, Init(v0)) ∈ W0(G

′′).
We order M = O ∪ {⊥} with the natural order on integers for O, where ⊥ is

the minimal element. Player 0’s winning region in G′′ is downwards-closed, i.e.,
(v,m) ∈ W0(G′′) and m′ < m implies (v,m′) ∈ W0(G′′), which can be shown
by mimicking a winning strategy from (v,m) to also win from (v,m′). Thus, for
v ∈ W0(G′), we define

max(v) = max{m ∈ M | (v,m) ∈ W0(G
′′)} ,

which is well-defined as (v, Init(v)) ∈ W0(G′′).
Now, let σ′′ be a uniform positional winning strategy for Player 0 in the

parity game G′′. We define a positional strategy σ′ for G′ by using max(v), i.e.,
the worst memory state Player 0 could be in at vertex v while still being able to
win from there. Given a vertex v ∈ W0(G′), let σ′′(v,max(v)) = (v′,m′). Using
this, we define σ′(v) = v′. We show that σ′ is a uniform winning strategy for
Player 0 in G′. Consider a play ρ′ = v0v1v2 · · · starting in v0 ∈ W0(G′) consistent
with σ′, and ρ′′ = (v0,m0)(v1,m1)(v2,m2) · · · its extended play in A × M. A
straightforward induction shows that for every j, we have (vj ,mj) ∈ W0(G′′), so
max(vj) ≥ mj .

By Lemma 3, ρ′ ∈ PCRR(Ω, I) if and only if ρ′′ ∈ Parity(ΩM). Assume
towards contradiction that the maximal color seen infinitely often in ρ′′ is odd.
This implies that the memory state ⊥ appears finitely often, so after a position,
say n, all memory states are different from ⊥. Furthermore, from position n, we
additionally have max(vj) ≤ max(vj+1); this follows from the observation that
if Upd(c, v) 6= ⊥, then c ≤ Upd(c, v).

Consider ρ∗ = (vn,max(vn))(vn+1,max(vn+1))(vn+2,max(vn+2)) · · · . Since
the sequence (max(vj))j≥n is non-decreasing, it is ultimately constant. The suffix
starting from there is consistent with σ′′ and starts in W0(G′′), so it satisfies
Parity(ΩM) since σ′′ is a winning strategy. Consequently, ρ∗ contains finitely
many increment-vertices, so ρ′′ as well. After the last increment-vertex, ρ∗ and
ρ′′ have the same colors, but ρ′′ does not satisfy Parity(ΩM), a contradiction.

To conclude this subsection, we prove that the upper bound d + 1 on the
memory requirements of Player 1 proved in Corollary 2 is tight.

Lemma 5 For every d ≥ 1, there is a bounded parity game with costs Gd such
that

– the arena of Gd is of linear size in d and there are d odd colors in Gd,
– Player 1 has a uniform finite-state winning strategy for Gd from every vertex

which is implemented with d+ 1 memory states, but
– there is a vertex from which Player 1 has no winning strategy that is imple-

mented with less than d+ 1 memory states.

Proof. We begin by describing the game by an example: Figure 3 depicts the
game G4, where the numbers in the vertices denote their colors. Since each edge
is an increment-edge, we do not label them as such in the picture. The arena
consists of a hub vertex colored by 0 and four disjoint blades, which are identified
by the odd color of their outermost vertex, i.e., by the colors 1, 3, 5 and 7 (which
is 2 · 4 − 1). From the hub, Player 0 can enter the blade for c at a vertex of
color c − 1 (which is even) which has a self-loop and an edge to a vertex of
color 8 (which answers every request in the game). This vertex has only one
outgoing edge to a vertex of color c (this is the identifying color). Again, this
vertex has only one successor, the hub. In general, the arena of Gd has d blades,
one for each color in {1, 3, . . . , 2d−1}, the hub has color 0, and the second vertex
in each blade has color 2d and thereby answers every request. Furthermore, every
edge is an increment-edge.

0

0

8

1

2

8

3

4

8

5

6

8

7

Fig. 3. The bounded parity game with costs G4 (every edge is an increment-edge).

At the hub, Player 0 picks a blade (say of color c) and then Player 1 decides
whether to use the self-loop or to return to the hub. Note that Player 0 loses, if
she enters the blade of color c while there is an open request of some color c′ > c,
since Player 1 can use the self-loop of the blade and thereby prevent an answer

to the request c′. On the other hand, if Player 1 decides to leave the blade, all
requests are answered and then color c is requested. Note that this request is
never answered to by moving to the hub.

First, we show that Player 1 has a uniform finite-state winning strategy
from every vertex that is implementable with d+1 memory states. The memory
structure keeps track of the largest open request, i.e., we use states 1, 3, . . . , 2d−1
and an additional state ⊥ that is reached, if there is no open request. Now,
assume the current memory state is m and the play is in a vertex of Player 1,
which is uniquely identified by its even color c. If m = ⊥, then Player 1 moves
to the (unique) successor of color 2d. Now, assume m 6= ⊥, i.e., m is some odd
color. If m < c, then Player 1 again leaves c by moving to the unique successor
of color 2d. If m > c, then Player 1 uses the self-loop forever.

Now, consider a play that is consistent with this strategy. If the current
memory state is ⊥, then a request is raised within the next three moves and the
play returns to the hub, which implies that the memory is updated to some odd
colorm. From there, Player 0 has to move to some blade, say for color c (which is
odd). If m > c, then Player 1 uses the self-loop at the vertex of color c−1 forever.
The resulting play is winning for him, since the request of c is unanswered with
cost ∞. On the other hand, if m < c, then Player 1 moves to the vertex of
color c and then back to the hub. While doing this, the memory is updated to
a larger state, namely c. Hence, the memory states along a play consistent with
the strategy described above are increasing, which means that at some point
Player 0 has to enter a blade for color c < m, where m is the current memory
state, i.e., also an open request. Then, Player 1 will win by using the self-loop of
this blade. Hence, the strategy described above is a winning strategy from every
vertex and is implemented using d+ 1 memory states.

It remains to show that the upper bound d+1 is tight. To this end, consider
a finite-state strategy τ for Player 1 that is winning from the hub, say τ is
implemented by (M, Init,Upd). We show that M contains at least d+1 memory
states. To this end, we define a sequence m0,m1, . . . ,md of d+1 memory states,
as follows. Define m0 = Init(v), where v is the hub. Now, Consider the play
where Player 0 moves from the hub to the blade with color 1. Since τ is a winning
strategy, Player 1 will use the self-loop of this blade only finitely often, i.e., the
hub is reached again. We denote this play prefix by w1 (which is consistent with
τ) and define m1 = Upd+(w1). Consider now the play where after w1, Player 0
moves to the blade with color 3. Again, Player 1 will use the self-loop only finitely
often and the hub is reached again. We denote the prolongation of w1 through
this blade by w2 and define m2 = Upd+(w1w2). This process is continued for
each blade in ascending order. Since Player 1 has to leave each blade we obtain a
sequence m0,m1, . . . ,md of memory states assumed at the visits of the hub and
a play prefix w1w2 · · ·wd that is consistent with σ, starts in the hub, and satisfies
Upd+(w1w2 · · ·wj) = mj for every j ≥ 1. Furthermore, each w1w2 · · ·wj ends
in the hub.

We argue that the states m1,m1, . . . ,md are pairwise distinct. Assume to-
wards contradiction there are j < j′ ≤ d such that mj = mj′ . Then, the play

ρ = w1 · · ·wj · (wj+1 · · ·wj′)
ω is consistent with τ . However, the maximal color

seen infinitely often during ρ is 2d (which answers every request), and there is a
uniform bound on the distance between the occurrences of 2d. Hence, the play is
winning for Player 0 in Gd, contradicting the fact that τ is a winning strategy for
Player 1. Hence, the states mj are indeed pairwise distinct. Thus, every winning
strategy has at least d+ 1 memory states.

Note that every edge in Gd is an increment-edge, i.e., Gd is a bounded parity
game. In [9] an upper bound of two on the memory requirements of Player 1 is
claimed for bounded parity games. The games presented here refute this claim:
there is no constant bound on the memory needed for Player 1 in bounded parity
games.

4 Solving Parity Games with Costs via Bounded Parity

Games with Costs

In this section, we show that being able to solve bounded parity games with
costs suffices to solve parity games with costs. Our algorithm is based on the
following lemma which formalizes this claim by relating the winning regions of
Player 0 in the parity games with costs and the bounded parity game with costs
in the same arena.

Lemma 6 Let G = (A,CostParity(Ω,Cst)) a parity game with costs and G′ =
(A,BndCostParity(Ω,Cst)) a bounded parity games with costs on the same arena.

1. W0(G′) ⊆ W0(G).
2. If W0(G′) = ∅, then W0(G) = ∅.

Proof. (1) This follows from the inclusion

BndCostParity(Ω,Cst) ⊆ CostParity(Ω,Cst) .

(2) Due to determinacy, if W0(G′) = ∅, then we have W1(G′) = V . Due to
Corollary 2, Player 1 has a uniform finite-state strategy τ that is winning from
every vertex v. Consider a play consistent with τ : either, for every b, there is
a request that is open for the next b increment-edges (the request could be the
same for every b), or the maximal color seen infinitely often is odd (i.e., there
are infinitely many unanswered requests).

We define a strategy τ ′ for Player 1 as follows: it is guided by a counter bcur
which is initialized with 1. Assume a play starts in vertex v. The strategy τ ′

plays like τ until a request is open for bcur increment-edges. If this is the case,
bcur is incremented and τ ′ plays like τ does from the current vertex (forgetting
the history of the play constructed so far).

We show that τ ′ is winning in G from every vertex, which implies W0(G) = ∅.
Let ρ′ be a play that is consistent with τ ′ and distinguish two cases: if the
counter is incremented infinitely often, then ρ′ contains for every b a request

that is open for at least b increment-edges, so ρ′ /∈ CostParity(Ω,Cst). On the
other hand, if bcur is incremented only finitely often (say to value b), then there
is a suffix ρ of ρ′ that is consistent with the strategy τ . Since the counter is not
incremented during ρ, every request in ρ is either answered with cost at most b or
not answered, but only followed by at most b increment-edges. Hence τ ensures
that the maximal color seen infinitely often in ρ is odd, i.e. ρ /∈ Parity(Ω), so
ρ′ /∈ Parity(Ω), and a fortiori ρ′ /∈ CostParity(Ω,Cst).

Note that the strategy τ ′ is not finite-state. We have seen in Example 1
that Player 1 needs infinite memory in general. Indeed, the winning strategy
for Player 1 described in the example proceeds as described above. It requests
color 1 at vertex a, uses the loop at vertex b to keep the request unanswered for
several steps and then forgets about this request. At this point, a new request
has to be raised by moving from b back to a, thereby answering the old request
at vertex c. This request is then kept unanswered for more increment-edges than
the previous one, and this goes on ad infinitum.

To conclude this subsection, we show how Lemma 6 can be used to solve par-
ity games with costs. Let G = (A,CostParity(Ω,Cst)). The following algorithm
proceeds by iteratively removing parts of A that are included in the winning
region of Player 0 in G: we have just proven that the winning region of Player 0
in the bounded parity game with costs in A is a subset of her winning region
in the parity game with costs in the same arena. Thus we can remove it and its
attractor. This is repeated until Player 0’s winning region in the bounded parity
game with costs is empty. In this case, her winning region in the parity game
with costs is empty as well, again due to Lemma 6. This idea is implemented in
the following algorithm.

Algorithm 1 A fixed-point algorithm for solving (A,CostParity(Ω,Cst)).

j ← 0; Wj ← ∅; Aj ← A
repeat

j ← j + 1
Xj ←W0(Aj−1,BndCostParity(Ω,Cst))

Wj ←Wj−1 ∪Attr
Aj−1

0
(Xj)

Aj ← Aj−1 \Attr
Aj−1

0
(Xj)

until Xj = ∅
return Wj

Example 2 Running on the parity game with costs of Figure 1, Algorithm 1
computes X1 = {g} and W1 = {f, g}, X2 = {e} and W2 = {d, e, f, g}, and
X3 = ∅. Thus, it returns W2, which is the winning region of Player 0 in the
game.

Next, we show the algorithm to be correct and bound its number of iterations.

Lemma 7 Let G be a parity game with costs with n vertices. Algorithm 1 returns
the winning region W0(G) after at most n+ 1 iterations.

Proof. Let G = ((V, V0, V1, E),CostParity(Ω,Cst)) and let t be the last iter-
ation with Xt 6= ∅, i.e., the algorithm returns Wt. We have t ≤ |V |, since
∅ = W0 (W1 (· · · (Wt ⊆ V is a strictly increasing chain. Hence, the algo-
rithm terminates after at most |V |+ 1 iterations.

Next, we showWt ⊆ W0(G): to this end, we define a strategy σ for Player 0 on
Wt as follows: on sets Xj, which are winning regions of Player 0 in a bounded par-
ity game with costs, we play using some uniform positional winning strategy for

this game, which always exists due to Lemma 4. On the attractors Attr
Aj−1

0 (Xj)
we play using some positional attractor strategy. Thus, σ is a positional strategy
that is defined for every vertex in Wt. Next, we show that it is indeed a uniform
positional winning strategy from Wt.

Every winning region Xj is a trap for Player 1 in Aj−1. Hence, in the whole
arena A, Player 1 can leave Xj only to vertices in some Wj′ with j′ < j. Player 0
on the other hand only moves to vertices in Wj . Similarly, if the play is in the
attractor of some Xj , then it reaches Xj after at most |V | steps or Player 1
moves to some Wj′ for some j′ < j. Hence, every play ρ consistent with σ
has a suffix ρ′ that visits only vertices from some Xj and is consistent with
the winning strategy for the corresponding bounded parity game with costs. So,
ρ′ ∈ BndCostParity(Ω,Cst), which implies ρ ∈ CostParity(Ω,Cst). Thus, σ is a
winning strategy.

It remains to consider Player 1, i.e., to show that V \Wt ⊆ W1(G). Note that
V \Wt is the set of vertices of At and that we have

W0(At,BndCostParity(Ω,Cst)) = ∅ .

Hence, by Lemma 6(2) we concludeW0(At,CostParity(Ω,Cst)) = ∅, i.e., Player 1
wins the parity game with costs in the arenaAt from every vertex. Since V \Wt is
a trap for Player 0 (it is the complement of an attractor), it follows that Player 1
wins the parity game with costs in the arena A from every vertex in V \Wt.

Corollary 3 In parity games with costs, Player 0 has uniform positional win-
ning strategies.

Using Lemma 7, Theorem 1, and the fact that Algorithm 1 terminates after
at most n + 1 iterations, and therefore has to solve at most n bounded parity
games with costs, we obtain the following result where again n is the number of
vertices, m is the number of edges, and d is the number of colors in the game.

Theorem 2 Given an algorithm that solves parity games in time T (n,m, d),
there is an algorithm that solves parity games with costs with a time complex-
ity O(n · T (dn, dm, d+ 2)).

Also, we obtain the same computational complexity as for bounded parity
games with costs.

Remark 6 The following problem is in NP ∩ coNP: given a parity game with
costs G, i ∈ {0, 1}, and a vertex v, is v ∈ Wi(G)?

Proof. Use the characterization of W0 as computed by Algorithm 1: the sets
Xj can be determined in NP (respectively in coNP) due to Remark 5 and the
attractors can be computed in (deterministic) linear time.

In the previous section section we have shown that one can recover a polyno-
mial time algorithm for deciding the winning regions of bounded parity games.
Hence, using Algorithm 1, we obtain the same for finitary parity games as well.
Hence, we also recover polynomial time decidability of finitary parity games as
a special case of our algorithm. However, this is not surprising since Algorithm 1
is the same one used in [9] to solve finitary parity games via solving bounded
parity games.

5 Positional Winning Strategies for Bounded Parity

Games with Costs

via Scoring Functions

In the previous section, we have shown how to eliminate the memory introduced
in the reduction from PCRR games to parity games, which proved the existence
of uniform positional winning strategies for Player 0 in bounded parity games
with costs. Using these strategies as building blocks, we also proved the existence
of uniform positional winning strategies for Player 0 in parity games with costs.
Intuitively, the memory used in the reduction keeps track of the largest open
request, but Player 0 does not need this information to implement her winning
strategy as proved in Lemma 4. Instead, she can always play assuming the worst
situation that still allows her to win.

In this section we generalize this construction to arbitrary memory structures:
we define a quality measure for play prefixes and then show that always playing
like in the worst possible situation is a positional winning strategy. This gives
an alternative proof of half-positional determinacy of (bounded) parity games
with costs and presents a general framework that we believe to be applicable to
other winning conditions as well.

We begin by defining a so-called scoring function for bounded parity games
with costs that measures the quality of a play prefix (from Player 0’s van-
tage point) by keeping track of the largest unanswered request, the number
of increment-edges traversed since it was raised, and how often each odd color
was seen since the last increment-edge. For the remainder of this section, we
fix a bounded parity game with costs G = (A,BndCostParity(Ω,Cst)) with
arena A = (V, V0, V1, E), and a uniform finite-state winning strategy σ for
Player 0 in G. Let Ω(V) ⊆ {0, 1, . . . , ℓ}, where we assume ℓ to be odd. Fur-
thermore, let d = ℓ+1

2 be the number of odd colors in {1, 3, . . . , ℓ}. Finally, let
t = |V | · |σ|, where |σ| denotes the size of the memory structure implementing
σ.

A proper (score-) sheet is a vector (c, n, sℓ, sℓ−2, . . . , s3, s1) where c is an
odd color in {1, 3, . . . , ℓ}, n ≤ t, and sc′ ≤ t for every c′. Finally, we use two
special sheets denoted by ⊥ and ⊤. The reversed ordering of the score values
sℓ, sℓ−2, . . . , s3, s1 in the sheets is due to the max-parity condition, in which
larger colors are more important than smaller ones. This is reflected by the
fact that we compare sheets in the lexicographical order induced by < on its
components and add ⊥ as minimal and ⊤ as maximal element. For example,
(3, 3, 0, 1, 1) < (3, 3, 1, 0, 3) and ⊥ < s < ⊤ for every sheet s 6= ⊥,⊤. As usual,
we write s ≤ s′ if s = s′ or s < s′.

Next, we show how to update sheets along a play to use them as a quality
measure for play prefixes. Let s = (x1, . . . , xd+2) be a (proper) sheet. We say
that s is full in coordinate 1, if x1 = ℓ (recall that ℓ is the largest possible value
in the first coordinate), and that s is full in coordinate k > 1, if xk = t (recall
that t is the largest possible value in all but the first coordinate). Let k be a
coordinate and let s = (x1, . . . , xd+2) be a proper sheet.

– If 1 is the largest coordinate smaller than or equal to k that is not full in
s, then incrementing s at coordinate k yields the sheet (x1 + 2, 0, . . . , 0). If
k > 1, then we say that there is an overflow in coordinates 2, . . . , k.

– If k′ > 1 is the largest coordinate smaller than or equal to k that is not full in
s, then incrementing s at coordinate k yields the sheet (x1, . . . , xk′−1, xk′ +
1, 0, . . . , 0). If k′ < k, then we say that there is an overflow in coordinates
k′ + 1, . . . , k.

– If there is no coordinate k′ smaller than or equal to k that is not full in s,
then incrementing s at coordinate k yields the sheet ⊤ and we say that there
is an overflow in coordinates 1, . . . , k.

Example 3 Assume we have ℓ = 5 and t = 3 and consider s = (3, 3, 0, 1, 3).
Then, s is full in coordinate 2 and 5, but not in coordinates 1, 3, and 4. Incre-
menting s at coordinate 1 or 2 yields the sheet (5, 0, 0, 0, 0) (note that there is an
overflow of coordinate 2 in the second case), incrementing at 3 yields (3, 3, 1, 0, 0)
while incrementing at 4 or 5 yields (3, 3, 0, 2, 0) (and there is an overflow of co-
ordinate 5 in the second case).

Next, we show that the increment-operation and a reset-operation are com-
patible with the ordering.

Remark 7 Let x = (x1, . . . , xd+2) ≤ y = (y1, . . . , yd+2) be two sheets and let k
be a coordinate.

1. Let x′ (respectively y′) be obtained by incrementing x (respectively y) at
coordinate k. Then, x′ ≤ y′.

2. Let x′′ = (x1, . . . , xk, 0, . . . , 0) and y′′ = (y1, . . . , yk, 0, . . . , 0). Then, x
′′ ≤ y′′.

Now, we want to assign a sheet to every play prefix. To this end, we define
the initial sheet Sh(v) of a vertex v by

Sh(v) =

{

⊥ if Ω(v) is even,

(Ω(v), 0, 0, . . . , 0) if Ω(v) is odd.

Now, let Sh(wv) for w ∈ V ∗ and v ∈ V be already defined and let (v, v′) be an
edge. If Sh(wv) = ⊤, then Sh(wvv′) = ⊤, and if Sh(wv) = ⊥, then Sh(wvv′) =
Sh(v′). Now, assume we have Sh(wv) = (c, n, sℓ, . . . , s1). We have to distinguish
several cases:

– if Ω(v′) > c, then Sh(wvv′) = Sh(v′),
– if Ω(v′) ≤ c and Cst(v, v′) = i, then Sh(wvv′) is obtained from Sh(wv) by

incrementing the second coordinate (the one associated with costs),
– if Ω(v′) ≤ c, Cst(v, v′) = ε and Ω(v′) even, then the scores for the colors

that are answered by Ω(v′) are reset to zero, i.e.,

Sh(wvv′) = (c, n, sℓ, . . . , sΩ(v′)+1, 0, . . . , 0) ,

– if Ω(v′) ≤ c, Cst(v, v′) = ε and Ω(v′) odd, then Sh(wvv′) is obtained from
Sh(wv) by incrementing the coordinate storing the score for Ω(v′).

Let Sh(w) = (c, n, sℓ, . . . , s1). To simplify our notation in the following proofs,
we define Req(w) = c, ReqCst(w) = n, and Scc′(w) = sc′ . If Sh(w) = ⊥ or
Sh(w) = ⊤, then we leave these functions undefined. Furthermore, let Lst(w)
denote the last vertex of a non-empty finite play w.

In the following, we show that the scoring function has three properties that
we need to prove our result. We begin by showing that it is a congruence.

Lemma 8 If Lst(x) = Lst(y) and Sh(x) ≤ Sh(y), then Sh(xv) ≤ Sh(yv) for
every v ∈ V .

Before we begin the proof we state the following useful facts.

Remark 8 Let w ∈ V ∗ and v ∈ V .

1. If Req(w) 6= Req(wv), then Sh(wv) = Sh(v).
2. If Ω(v) is odd, then Sh(wv) ≥ Sh(v).

We now prove Lemma 8.

Proof. If Sh(x) = Sh(y), then Sh(xv) = Sh(yv), since the sheets of xv and yv
only depend on the sheets of x and y (which are equal) and the last edges of xv
and yv (which are also equal).

So, consider the case Sh(x) < Sh(y). First, assume we have Sh(x) = ⊥, which
implies Sh(xv) = Sh(v). If Ω(v) is even, then Sh(v) = ⊥ and we are done, since
⊥ is the minimal element. Otherwise, applying Remark 8(2) to yv yields the
desired result. As a last special case assume we have Sh(y) = ⊤, which implies
Sh(yv) = ⊤. As ⊤ is the maximal element, we have Sh(xv) ≤ Sh(yv).

We are left with the case ⊥ < Sh(x) < Sh(y) < ⊤ and have to consider two
subcases:

1. First, assume we have Req(x) = Req(y). We consider several subcases.
(a) If Ω(v) > Req(x) = Req(y), then Sh(xv) = Sh(yv) = Sh(v).

(b) If Ω(v) ≤ Req(x) = Req(y) and Cst(Lst(x), v) = i, then both Sh(xv)
and Sh(yv) are obtained by incrementing Sh(x) and Sh(y) respectively
at the second coordinate. Hence, Remark 7(1) yields the desired result.

(c) If Ω(v) ≤ Req(x) = Req(y), Cst(Lst(x), v) = ε, and Ω(v) is even, then
both Sh(xv) and Sh(yv) are obtained by reseting the scores for every c′

smaller than Ω(v). Hence, Remark 7(2) yields the desired result.
(d) If Ω(v) ≤ Req(x) = Req(y), Cst(Lst(x), v) = ε, and Ω(v) is odd, then

both Sh(xv) and Sh(yv) are obtained by incrementing Sh(x) and Sh(y)
respectively at the coordinate storing the score for Ω(v). Hence, Re-
mark 7(1) yields the desired result.

2. Now, assume we have Req(x) < Req(y). Note that Sh(xv) = ⊤ is impossible
in this case, since the first coordinate of x is not full, as it is strictly smaller
than Req(y). We again have to consider several subcases:

(a) If Ω(v) > Req(y) > Req(x), then Sh(xv) = Sh(yv) = Sh(v).
(b) If Ω(v) = Req(y) > Req(x), then we have Req(xv) > Req(x) and an

application of Remark 8(1) and 8(2) (to yv) yields the desired result.
(c) Finally, assume we have Ω(v) < Req(y). We again have to consider three

subcases.
i. If we have Sh(yv) = ⊤, then we are done.
ii. Assume we have Req(yv) > Req(y). The following inequalities hold:

Req(xv) ≤ Req(x)+2 ≤ Req(y) < Req(yv), where the first one is due
to the fact that in the first component of Sh(xv) can only increase
due to an increment, and the second one due to Req(x) < Req(y).
Hence, we have Sh(xv) < Sh(yv) in this case.

iii. Finally, consider the case where Req(yv) = Req(y). If Req(xv) <
Req(yv), then we are done. So, assume we have Req(xv) = Req(yv).
Then, the first component of Sh(x) is increased to obtain Sh(xv),
which implies that all other components of Sh(xv) are equal to zero.
Hence, we have Sh(xv) ≤ Sh(yv). ⊓⊔

We continue by showing that the sheets of a play ρ being bounded is a
sufficient condition for ρ satisfying the bounded cost-parity condition.

Lemma 9 If the sheets of all prefixes of a play ρ are strictly smaller than ⊤,
then ρ ∈ BndCostParity(Ω,Cst).

Proof. We prove the converse, i.e., if ρ /∈ BndCostParity(Ω,Cst), then there is
a prefix of ρ whose sheet is ⊤. First, assume that for every b there is a request
(say of color c) that is open for at least b increment-edges. Then, the second
component of the sheets is incremented every time an increment-edge is traversed
before the request is answered. Also, the first component is increased every time
the second component overflows or every time a larger odd color is visited. Note
that it is not reset in this interval, as the request of c is not answered. Hence,
if we pick b large enough, the first component overflows as well. This yields the
sheet ⊤.

Now assume the maximal color seen infinitely often, call it c, is odd. We
may assume that ρ has only finitely many increment-edges, as we are in the

first case otherwise. Pick a position of ρ such that the maximal color appearing
after this position is c and such that no increment-edge is traversed after this
position. After this position, the coordinate storing the score for c is incremented
again and again. Furthermore, this coordinate (and all to the left of this one)
are only reset in case of an overflow, which means that there is a coordinate to
the left that is incremented. Thus, every coordinate to the left of the one storing
the score for c is incremented again and again, too. Hence, the first component
overflows at some point, which yields the sheet ⊤.

Recall that the entries in all but the first component of a (proper) sheet are
bounded by t = |V | · |σ|, where σ is a uniform finite-state winning strategy for
Player 0 in G = (A,BndCostParity(Ω,Cst)). Next, we show that this strategy
keeps the sheets smaller than ⊤.

Lemma 10 Let ρ be starting in W0(G) and consistent with σ. Then, the sheets
of all prefixes of ρ are strictly smaller than ⊤.

Proof. First, we show that every request in ρ is answered with cost less than
or equal to t or followed by at most t increment-edges. Towards a contradiction,
assume there is a request that is followed by t + 1 increment-edges, but no
answer before the last of these increment-edges. Then, there are two positions in
this interval that have the same vertex, the memory structure implementing σ
assumes the same state after both positions, and there is at least one increment-
edge between these positions. Hence, there is also a play consistent with σ and
starting in W0(G) that contains an unanswered request with cost ∞. However,
this contradicts the fact that σ is a winning strategy.

Similarly, one can show that ρ has no infix that contains t + 1 vertices of
some odd color c, but no vertex of a larger color. Using the second property, a
simple induction over the number of odd colors (starting with 1) shows that no
coordinate storing a score sc overflows during ρ. Using this and the first property
shows that the second coordinate does not overflow either. Finally, if the second
component does not overflow, then the first component does not overflow either,
since it stores the largest unanswered request in this case. Hence, the sheets of
ρ are strictly smaller than ⊤.

Now we are able to prove our main technical result of this section: using the
score-sheets we can turn an arbitrary uniform finite-state winning strategy into a
positional one. For every v ∈ V , let Pv denote the set of play prefixes that begin
in W0(G), are consistent with σ, and end in v. Due to Lemma 10, the sheets
of the prefixes in Pv are strictly smaller than ⊤. Hence, for every nonempty Pv

there exists a play prefix maxv ∈ Pv such that Sh(w) ≤ Sh(maxv) < ⊤ for every
w ∈ Pv. We define a positional strategy σ′ by σ′(wv) = σ(maxv).

Lemma 11 The strategy σ′ is a uniform positional winning strategy for Player 0
in G.

Proof. An inductive application of Lemma 8 shows that we have Sh(ρ0 · · · ρn) ≤
Sh(maxρn

) for every n and every play ρ that is consistent with σ′. Hence, the

sheets of ρ are strictly smaller than ⊤, which implies ρ ∈ BndCostParity(Ω) due
to Lemma 9.

In the preliminary version of this work [18], we presented a similar construc-
tion, the main difference being that we did not use overflows there, but updated
a sheet to ⊤ if a full coordinate is incremented. This construction can also shown
to be correct, but the proof of the analogue of Lemma 11 in [18] (called Lemma 15
there) has a gap (the claim in its last line is incorrect). This gap can be closed
using pumping arguments which rely on properties of the bounded cost-parity
condition. Since one of our aims in this section is to give a general framework
that works for other winning conditions as well, we refrained from presenting the
fix and instead changed the definition of the sheets (adding overflows) to achieve
this goal: indeed, our construction only relies on the following properties:

1. The score-sheets constitute a finite total order.
2. The score-sheet function is a congruence w.r.t. this order.
3. If the score-sheets of a play are strictly smaller than the maximal element,

then it is winning for Player 0.
4. A finite-state winning strategy allows only plays whose score-sheets are

strictly smaller than the maximal element.

It follows that for every winning condition for which one can define a scoring
function meeting these conditions, one can turn a finite-state winning strategy
into a positional one. For example, one could extend the sheets presented above
by a new first coordinate that counts how often the second coordinate (the
largest open request) overflows, which corresponds to requests that are open for
many increment-edges. Since a finite-state winning strategy for a parity game
with costs bounds the number of such requests, our framework is applicable to
parity games with costs as well.

6 Streett Games with Costs

In this section, we present an algorithm to solve Streett and bounded Streett
games with costs following the same ideas as in the section about (bounded) par-
ity games with costs, and prove EXPTIME-completeness of the corresponding
decision problems. From our algorithm, we also obtain upper bounds on the
memory requirements of both players.

The main result of this section is the following theorem. Here, n is the number
of vertices, m is the number of edges, and d is the number of Streett pairs in the
game.

Theorem 3 Given an algorithm that solves Streett games in time T (n,m, d),
there is

1. an algorithm that solves bounded Streett games with costs with a time com-
plexity O(T (2dn, 2dm, 2d)), and

2. an algorithm that solves Streett games with costs with a time complexity
O(n · T (2dn, 2dm, 2d)).

We begin by considering bounded games and again assume for every c that
no vertex has both an incoming increment-edge (w.r.t. Cstc) and an incoming
epsilon-edge (again, w.r.t. Cstc). Having different types of incoming edges with
respect to different cost-functions is allowed. This property can again be es-
tablished by subdividing edges. Assuming this, let Ic denote the vertices with
incoming increment-edges w.r.t. Cstc. Then, coBüchi(Ic) = {ρ | Cstc(ρ) < ∞} is
the set of plays with finitely many increment-edges w.r.t. Cstc. Let I = (Ic)c∈[d].
Furthermore, we define RR(Qc, Pc) to be the set of plays in which every request
of c is eventually answered. Finally, we define

SCRR(Γ, I) =
⋂

c∈[d]

[(

Streett(Qc, Pc) ∩ coBüchi(Ic)
)

∪ RR(Qc, Pc)
]

,

which is ω-regular. This condition is a relaxation of the bounded cost-Streett
condition, as we have SCRR(Γ) ⊇ BndCostStreett(Γ).

Lemma 12 Let G = (A,BndCostStreett(Γ,Cst)) and G′ = (A, SCRR(Γ, I)),
where I is defined as above. A winning strategy for Player i in G′ from a set W
is also a winning strategy for Player i in G from W . Especially, Wi(G) = Wi(G′)
for i ∈ {0, 1}.

The proof of this lemma is similar to the one for Lemma 2 and relies on
finite-state determinacy of ω-regular games.

Next, we show how to reduce (A, SCRR(Γ, I)) to a classical Streett game:
first, we add a memory structure M of size 2d that keeps track of the open
requests during a play and let Fc denote the vertices in which request c is not
open. Then, we have (A, SCRR(Γ, I)) ≤M (A×M, L) with

L =
⋂

c∈[d]

[(

Streett(Qc, Pc) ∩ coBüchi(Ic)
)

∪ Büchi(Fc)
]

,

i.e., we have reduced the request-response conditions RR(Qc, Pc) to Büchi con-
ditions3. Finally, we have

L =
⋂

c∈[d]

Streett(Qc, Pc ∪ Fc) ∩ Streett(Ic, Fc) ,

which is a Streett condition. Thus, we have reduced (A, SCRR(Γ, I)) to a Streett
game in an arena that is exponential in d with 2d Streett pairs. This proves the
first claim of Theorem 3. Furthermore, we obtain the following upper bound on
the size of finite-state winning strategies. Here, we use the fact that Player 0 has
finite-state winning strategies of size d! in Streett games with d pairs (which is
tight), while Player 1 has positional winning strategies [14]. Note that the lower
bound of d! for Player 0 is also a lower bound for her in (bounded) Streett games
with costs, since classical Streett games are a special case of both.

3 Büchi(Fc) is the set of plays visiting Fc infinitely often.

Remark 9

1. In bounded Streett games with costs, Player 0 has uniform finite-state win-
ning strategies of size 2d(2d)!, where d is the number of Streett pairs.

2. In bounded Streett games with costs, Player 1 has uniform finite-state win-
ning strategies of size 2d, where d is the number of Streett pairs.

Now, consider Streett games with costs: we again show that solving the
bounded variant suffices to solve such games.

Lemma 13 Let G = (A,CostStreett(Γ,Cst)) be a Streett game with costs and
G′ = (A,BndCostStreett(Γ,Cst)) be a bounded Streett game with costs on the
same arena.

1. W0(G′) ⊆ W0(G).
2. If W0(G′) = ∅, then W0(G) = ∅.

The proof is exactly the same as the one for Lemma 6. Also, Algorithm 1
(where Xj is now Player 0’s winning region in the bounded Streett game with
costs) works for this pair of winning conditions as well. This proves the second
claim of Theorem 3.

Furthermore, using the same construction as in the proof of Lemma 7, one
can built a winning strategy for a Streett game with costs out of the winning
strategies for the bounded Streett games with costs solved by (the modified)
Algorithm 1. By reusing memory states, we obtain the following upper bound
for Player 0.

Remark 10 In Streett games with costs, Player 0 has uniform finite-state win-
ning strategies of size 2d(2d)!, where d is the number of Streett pairs.

Player 1 on the other hand needs infinite memory in Streett games with costs,
as witnessed by the game in Example 1, which can be easily transformed into a
Streett game with costs.

Using the algorithm presented in [26], which solves a Streett game with a
time complexity O(mnddd!), one can solve (bounded) Streett games with costs
in exponential time, although the Streett games that need to be solved are of
exponential size (but only in d). Together with the EXPTIME-hardness of solv-
ing bounded and finitary Streett games4, which are a special case of (bounded)
Streett games with costs, we obtain the following result.

Theorem 4 The following problem is EXPTIME-complete: Given a (bounded)
Streett game with costs G, i ∈ {0, 1}, and a vertex v, is v ∈ Wi(G).

Again, we recover the results on bounded Streett and finitary Streett games
(winning regions for both games can be decided in EXPTIME) proved in [9] as
special cases of our algorithm, since SCRR(Γ,Cst) is equal to a request-repsonse
condition in case every edge is an increment-edge. Winning regions in request-
response games can be determined in EXPTIME [28].

4 Shown in unpublished work by Chatterjee, Henzinger, and Horn, obtained by slightly
modifying the proof of EXPTIME-hardness of solving request-response games [10].

7 Conclusion

We introduced infinite games with cost conditions, generalizing both classical
conditions and finitary conditions. For parity games with costs, we proved half-
positional determinacy and that solving these games is not harder than solving
parity games. Furthermore, the corresponding decision problem is inNP∩coNP.
For Streett games with costs, we showed that Player 0 has finite-state winning
strategies and that solving these games is not harder than solving finitary Streett
games and can be done by solving linearly many (classical) Streett games of
exponential size (in the number of Streett pairs). Our results unify the previous
results on both classical and finitary variants. Table 1 sums up all our results
and compares them to related games. Here, d denotes the number of odd colors
in the game and “exponential” is always meant to be “exponential in the number
of Streett-pairs”. The memory bounds for the different types of parity games are
tight, while there are gaps between the exponential lower and the exponential
upper bounds for the different types of Streett games with costs.

winning condition computational complexity memory Player 0 memory Player 1

parity NP ∩ coNP positional positional
bounded parity PTIME positional d + 1
finitary parity PTIME positional infinite
bounded cost-parity NP ∩ coNP positional d + 1
cost-parity NP ∩ coNP positional infinite

Streett coNP-complete exponential positional
bounded Streett EXPTIME-complete exponential exponential
finitary Streett EXPTIME-complete exponential infinite
bounded cost-Streett EXPTIME-complete exponential exponential
cost-Streett EXPTIME-complete exponential infinite

Table 1. Overview of results

Let us discuss two variations of the games presented here. In a parity game
with costs, the requests and responses are hierarchical and there is a single cost-
function that is used for every request. On the other hand, in Streett games with
costs, the requests and responses are independent and there is a cost-function
for every pair of requests and responses. Thus, there are two other possible
combinations.

First, consider parity games with multiple cost-functions (one for each odd
color): a reduction from QBF shows that solving such games is PSPACE-hard.
On the other hand, the problem is in EXPTIME, since every such game is a
Streett game with costs. Furthermore, one can show that Player 0 needs exponen-
tial memory (in the number of odd colors) to implement her winning strategies.
All these results even hold for the bounded variant of these game, which is defined
as one would expect. In these games, both players need exponential memory. In

further research we aim at closing the gap in complexity of solving parity games
with multiple cost-functions.

The second variation are Streett games with a single cost-function. Solving
finitary Streett games is already EXPTIME-complete and our lower bounds on
memory requirements are derived from Streett games. Note that both finitary
Streett and classical Streett games can be seen as Streett games with a single
cost-function. Thus, the results mentioned above already hold for such games.
Hence, Streett games with a single cost-function are as hard as Streett games
with multiple cost-functions.

Finally, there are at least two other directions to extend our results presented
here: first, our winning conditions do not cover all acceptance conditions (for
automata) discussed in [4, 27]. In ongoing research, we investigate whether our
techniques are applicable to these more expressive conditions and to winning
conditions specified in weak-MSO with the unbounding quantifier [3, 5]. Finally,
one could add decrement-edges.

References

1. Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Job-
stmann. Better quality in synthesis through quantitative objectives. In Ahmed
Bouajjani and Oded Maler, editors, CAV, volume 5643 of LNCS, pages 140–156.
Springer, 2009.

2. Miko laj Bojańczyk. A bounding quantifier. In Jerzy Marcinkowski and Andrzej
Tarlecki, editors, CSL, volume 3210 of LNCS, pages 41–55. Springer, 2004.

3. Miko laj Bojańczyk. Weak MSO with the unbounding quantifier. Theory Comput.
Syst., 48(3):554–576, 2011.

4. Miko laj Bojańczyk and Thomas Colcombet. Bounds in ω-regularity. In LICS [21],
pages 285–296.

5. Mikolaj Bojanczyk and Szymon Torunczyk. Weak MSO+U over infinite trees. In
Christoph Dürr and Thomas Wilke, editors, 29th International Symposium on The-
oretical Aspects of Computer Science (STACS 2012), volume 14 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 648–660, Dagstuhl, Germany,
2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

6. Tomás Brázdil, Krishnendu Chatterjee, Antońın Kucera, and Petr Novotný. Effi-
cient controller synthesis for consumption games with multiple resource types. In
P. Madhusudan and Sanjit A. Seshia, editors, CAV, volume 7358 of LNCS, pages
23–38. Springer, 2012.

7. Pavol C̆erný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakrishna,
and Rohit Singh. Quantitative synthesis for concurrent programs. In Ganesh
Gopalakrishnan and Shaz Qadeer, editors, CAV, volume 6806 of LNCS, pages 243–
259. Springer, 2011.

8. Krishnendu Chatterjee and Laurent Doyen. Energy parity games. In Samson
Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and
Paul G. Spirakis, editors, ICALP (2), volume 6199 of LNCS, pages 599–610.
Springer, 2010.

9. Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. Finitary winning
in ω-regular games. ACM Trans. Comput. Log., 11(1), 2009.

10. Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. The complexity
of request-response games. In Adrian Horia Dediu, Shunsuke Inenaga, and Carlos
Mart́ın-Vide, editors, LATA, volume 6638 of LNCS, pages 227–237. Springer, 2011.

11. Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdziński. Mean-
payoff parity games. In LICS, pages 178–187. IEEE Computer Society, 2005.

12. Thomas Colcombet. The theory of stabilisation monoids and regular cost func-
tions. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E.
Nikoletseas, and Wolfgang Thomas, editors, ICALP (2), volume 5556 of LNCS,
pages 139–150. Springer, 2009.

13. Thomas Colcombet and Christof Löding. Regular cost functions over finite trees.
In LICS, pages 70–79. IEEE Computer Society, 2010.

14. Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. How much memory
is needed to win infinite games? In LICS, pages 99–110, 1997.

15. E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and deter-
minacy (extended abstract). In FOCS, pages 368–377. IEEE, 1991.

16. E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and
logics of programs. SIAM J. Comput., 29(1):132–158, 1999.

17. Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jiŕı Srba. Energy games in mul-
tiweighted automata. In Antonio Cerone and Pekka Pihlajasaari, editors, ICTAC,
volume 6916 of LNCS, pages 95–115. Springer, 2011.

18. Nathanaël Fijalkow and Martin Zimmermann. Cost-Parity and Cost-Streett
Games. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan,
editors, FSTTCS 2012, volume 18 of LIPIcs, pages 124–135, Dagstuhl, Germany,
2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

19. Kosaburo Hashiguchi. Limitedness theorem on finite automata with distance func-
tions. J. Comput. Syst. Sci., 24(2):233–244, 1982.

20. Florian Horn, Wolfgang Thomas, and Nico Wallmeier. Optimal strategy synthesis
in request-response games. In Sung Deok Cha, Jin-Young Choi, Moonzoo Kim,
Insup Lee, and Mahesh Viswanathan, editors, ATVA, volume 5311 of LNCS, pages
361–373. Springer, 2008.

21. 21th IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August
2006, Seattle, WA, USA, Proceedings. IEEE Computer Society, 2006.

22. Donald A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.

23. Robert McNaughton. Playing infinite games in finite time. In Arto Salomaa, Derick
Wood, and Sheng Yu, editors, A Half-Century of Automata Theory, pages 73–91.
World Scientific, 2000.

24. Andrzej Mostowski. Games with forbidden positions. Technical Report 78, Uni-
versity of Gdańsk, 1991.

25. David E. Muller and Paul E. Schupp. Simulating alternating tree automata by
nondeterministic automata: New results and new proofs of the theorems of Rabin,
McNaughton and Safra. Theor. Comput. Sci., 141(1&2):69–107, 1995.

26. Nir Piterman and Amir Pnueli. Faster solutions of Rabin and Streett games. In
LICS [21], pages 275–284.

27. Michael Vanden Boom. Weak cost monadic logic over infinite trees. In Filip
Murlak and Piotr Sankowski, editors, MFCS, volume 6907 of LNCS, pages 580–
591. Springer, 2011.

28. Nico Wallmeier, Patrick Hütten, and Wolfgang Thomas. Symbolic synthesis of
finite-state controllers for request-response specifications. In Oscar H. Ibarra and
Zhe Dang, editors, CIAA, volume 2759 of LNCS, pages 11–22. Springer, 2003.

29. Martin Zimmermann. Time-optimal winning strategies for poset games. In Se-
bastian Maneth, editor, CIAA, volume 5642 of LNCS, pages 217–226. Springer,
2009.

