
Tight Cutoffs for
Guarded Protocols with Fairness

Simon Außerlechner1, Swen Jacobs2, Ayrat Khalimov1

1 IAIK, Graz University of Technology, Austria
2 Reactive Systems Group, Saarland University, Germany

Abstract. Guarded protocols were introduced in a seminal paper by
Emerson and Kahlon (2000), and describe systems of processes whose
transitions are enabled or disabled depending on the existence of other
processes in certain local states. We study parameterized model check-
ing and synthesis of guarded protocols, both aiming at formal correctness
arguments for systems with any number of processes. Cutoff results re-
duce reasoning about systems with an arbitrary number of processes to
systems of a determined, fixed size. Our work stems from the observa-
tion that existing cutoff results for guarded protocols i) are restricted to
closed systems, and ii) are of limited use for liveness properties because
reductions do not preserve fairness. We close these gaps and obtain new
cutoff results for open systems with liveness properties under fairness
assumptions. Furthermore, we obtain cutoffs for the detection of global
and local deadlocks, which are of paramount importance in synthesis.
Finally, we prove tightness or asymptotic tightness for the new cutoffs.

1 Introduction

Concurrent hardware and software systems are notoriously hard to get correct.
Formal methods like model checking or synthesis can be used to guarantee cor-
rectness, but the state explosion problem prevents us from using such meth-
ods for systems with a large number of components. Furthermore, correctness
properties are often expected to hold for an arbitrary number of components.
Both problems can be solved by parameterized model checking and synthesis
approaches, which give correctness guarantees for systems with any number of
components without considering every possible system instance explicitly.

While parameterized model checking (PMC) is undecidable in general [25],
there exist a number of methods that decide the problem for specific classes of
systems [12, 14, 16], as well as semi-decision procedures that are successful in
many interesting cases [9, 18, 21]. In this paper, we consider the cutoff method
that can guarantee properties of systems of arbitrary size by considering only
systems of up to a certain fixed size, thus providing a decision procedure for
PMC if components are finite-state.

We consider systems that are composed of an arbitrary number of processes,
each an instance of a process template from a given, finite set. Process templates
can be viewed as synchronization skeletons [11], i.e., program abstractions that

2 S. Außerlechner, S. Jacobs and A. Khalimov

suppress information not necessary for synchronization. In our system model,
processes communicate by guarded updates, where guards are statements about
other processes that are interpreted either conjunctively (“every other process
satisfies the guard”) or disjunctively (“there exists a process that satisfies the
guard”). Conjunctive guards can model atomic sections or locks, disjunctive
guards can model token-passing or to some extent pairwise rendezvous (cf. [13]).

This class of systems has been studied by Emerson and Kahlon [12], and cut-
offs that depend on the size of process templates are known for specifications of
the form ∀p̄. Φ(p̄), where Φ(p̄) is an LTL\X property over the local states of one
or more processes p̄. Note that this does not allow us to specify fairness assump-
tions, for two reasons: i) to specify fairness, additional atomic propositions for
enabledness and scheduling of processes are needed, and ii) specifications with
global fairness assumptions are of the form (∀p̄. fair(p̄)) → (∀p̄. Φ(p̄)). Because
neither is supported by [12], the existing cutoffs are of limited use for reasoning
about liveness properties.

Emerson and Kahlon [12] mentioned this limitation and illustrated it using
the process template on the figure on the right. Transitions from the initial state

N T C
true ∀{T,N}

true

N to the “trying” state T , and from the critical
state C to N are always possible, while the tran-
sition from T to C is only possible if no other pro-
cess is in C. The existing cutoff results can be used
to prove safety properties like mutual exclusion for systems composed of ar-
bitrarily many copies of this template. However, they cannot be used to prove
starvation-freedom properties like ∀p.AG(Tp → FCp), stating that every process
p that enters its local state Tp will eventually enter state Cp, because without
fairness of scheduling the property does not hold.

Also, Emerson and Kahlon [12] consider only closed systems. Therefore, in
this example, processes always try to enter C. In contrast, in open systems the
transition to T might be a reaction to a corresponding input from the environ-
ment that makes entering C necessary. While it is possible to convert an open
system to a closed system that is equivalent under LTL properties, this comes at
the cost of a blow-up.

Motivation. Our work is inspired by applications in parameterized synthe-
sis [17], where the goal is to automatically construct process templates such that
a given specification is satisfied in systems with an arbitrary number of compo-
nents. In this setting, one generally considers open systems that interact with an
uncontrollable environment, and most specifications contain liveness properties
that cannot be guaranteed without fairness assumptions. Also, one is in general
interested in synthesizing deadlock-free systems. Cutoffs are essential for param-
eterized synthesis, and we will show in Sect. 4 how size-dependent cutoffs can
be integrated into the parameterized synthesis approach.

Contributions.

– We show that existing cutoffs for model checking of LTL\X properties are
in general not sufficient for systems with fairness assumptions, and provide
new cutoffs for this case.

Tight Cutoffs for Guarded Protocols with Fairness 3

– We improve some of the existing cutoff results, and give separate cutoffs for
the problem of deadlock detection, which is closely related to fairness.

– We prove tightness or asymptotical tightness for all of our cutoffs, showing
that smaller cutoffs cannot exist with respect to the parameters we consider.

Moreover, all of our cutoffs directly support open systems, where each process
may communicate with an adversarial environment. This makes the blow-up
incurred by translation to an equivalent closed system unnecessary. The results
presented here are based on a more detailed preliminary version of this paper [4].

2 Related Work

As mentioned, we extend the results of Emerson and Kahlon [12] who study
PMC of guarded protocols, but do not support fairness assumptions, nor provide
cutoffs for deadlock detection. In [13] they extended their work to systems with
limited forms of guards and broadcasts, and also proved undecidability of PMC
of conjunctive guarded protocols wrt. LTL (including X), and undecidability wrt.
LTL\X for systems with both conjunctive and disjunctive guards.

Bouajjani et al. [7] study parameterized model checking of resource allocation
systems (RASs). Such systems have a bounded number of resources, each owned
by at most one process at any time. Processes are pushdown automata, and can
request resources with high or normal priority. RASs are similar to conjunctive
guarded protocols in that certain transitions are disabled unless a processes has
a certain resource. RASs without priorities and with processes being finite state
automata can be converted to conjunctive guarded protocols (at the price of
blow up), but not vice versa. The authors study parameterized model checking
wrt. LTL\X properties on arbitrary or on strong-fair runs, and (local or global)
deadlock detection. The proof structure resembles that of [12], as does ours.

German and Sistla [16] considered global deadlocks and strong fairness prop-
erties for systems with pairwise rendezvous communication in a clique. Emerson
and Kahlon [13] have shown that disjunctive guard systems can be reduced to
such pairwise rendezvous systems. However, German and Sistla [16] do not pro-
vide cutoffs, nor do they consider local deadlocks, and their specifications can
talk about one process only. Aminof et al. [3] have recently extended these re-
sults to more general topologies, and have shown that for some decidable PMC
problems there are no cutoffs, even in cliques.

Emerson and Namjoshi provide cutoffs for systems that pass a valueless token
in a ring [14], which is essentially resource allocation of a single resource with
a specific allocation scheme. Their results have been extended to more general
topologies [2, 10]. All of these results consider fairness of token passing in the
sense that every process receives the token infinitely often.

Many of the decidability results above have recently been surveyed by Bloem
et al [6]. In addition, there are many methods based on semi-algorithms.

“Dynamic cutoff” approaches [1, 18] support larger classes of systems, and
try to find cutoffs for a concrete system and specification. These methods can
find smaller cutoffs than those that are statically determined for a whole class

4 S. Außerlechner, S. Jacobs and A. Khalimov

of systems and specifications, but are currently limited to safety properties. The
invisible invariants method [23] tries to find invariants in small systems, and
applies a specialized cutoff result to prove correctness of all instances, including
an extension to liveness properties [15].

Finally, there are methods that work completely without cutoffs, like regular
model checking [8], network invariants [19, 21, 26], and counter abstraction [24].
They are in general incomplete, but may provide decision procedures for certain
classes of systems and specifications, and support liveness to some extent.

3 Preliminaries

3.1 System Model

We consider systems A‖Bn, usually written (A,B)(1,n), consisting of one copy
of a process template A and n copies of a process template B, in an interleaving
parallel composition.We distinguish objects that belong to different templates
by indexing them with the template. E.g., for process template U ∈ {A,B}, QU

is the set of states of U . For this section, fix two disjoint finite sets QA, QB as
sets of states of process templates A and B, and a positive integer n.

Processes. A process template is a transition system U = (Q, init, Σ, δ) with

– Q is a finite set of states including the initial state init,
– Σ is a finite input alphabet,
– δ : Q×Σ × P(QA ∪̇QB)×Q is a guarded transition relation.

A process template is closed if Σ = ∅, and otherwise open.
We define the size |U | of a process template U ∈ {A,B} as |QU |. A copy of

template U will be called a U -process. Different B-processes are distinguished
by subscript, i.e., for i ∈ [1..n], Bi is the ith copy of B, and qBi

is a state of Bi.
A state of the A-process is denoted by qA.

For the rest of this subsection, fix templates A and B. We assume that
ΣA ∩ΣB = ∅. We will also write p for a process in {A,B1, . . . , Bn}, unless p is
specified explicitly.

Disjunctive and Conjunctive Systems. In a system (A,B)(1,n), consider
global state s = (qA, qB1

, . . . , qBn
) and global input e = (σA, σB1

, . . . , σBn
). We

also write s(p) for qp, and e(p) for σp. A local transition (qp, σp, g, q
′
p) ∈ δU of

p is enabled for s and e if its guard g is satisfied for p in s, written (s, p) |= g.
Disjunctive and conjunctive systems are distinguished by the interpretation of
guards:

In disjunctive systems: (s, p) |= g iff ∃p′ ∈ {A,B1, . . . , Bn} \ {p} : qp′ ∈ g.
In conjunctive systems: (s, p) |= g iff ∀p′ ∈ {A,B1, . . . , Bn} \ {p} : qp′ ∈ g.

Note that we check containment in the guard (disjunctively or conjunctively)
only for local states of processes different from p. A process is enabled for s and
e if at least one of its transitions is enabled for s and e, otherwise it is disabled.

Tight Cutoffs for Guarded Protocols with Fairness 5

Like Emerson and Kahlon [12], we assume that in conjunctive systems initA
and initB are contained in all guards, i.e., they act as neutral states. Furthermore,
we call a conjunctive system 1-conjunctive if every guard is of the form (QA ∪̇
QB) \ {q} for some q ∈ QA ∪̇QB .

Then, (A,B)(1,n) is defined as the transition system (S, initS , E,∆) with

– set of global states S = (QA)× (QB)n,
– global initial state initS = (initA, initB , . . . , initB),
– set of global inputs E = (ΣA)× (ΣB)n,
– and global transition relation ∆ ⊆ S × E × S with (s, e, s′) ∈ ∆ iff

i) s = (qA, qB1 , . . . , qBn),
ii) e = (σA, σB1

, . . . , σBn
), and

iii) s′ is obtained from s by replacing one local state qp with a new local
state q′p, where p is a U -process with local transition (qp, σp, g, q

′
p) ∈ δU

and (s, p) |= g.

We say that a system (A,B)(1,n) is of type (A,B). It is called a conjunctive system
if guards are interpreted conjunctively, and a disjunctive system if guards are
interpreted disjunctively. A system is closed if all of its templates are closed.
We often denote the set {B1, ..., Bn} as B.

Runs. A configuration of a system is a triple (s, e, p), where s ∈ S, e ∈ E, and
p is either a system process, or the special symbol ⊥. A path of a system is a
configuration sequence x = (s1, e1, p1), (s2, e2, p2), . . . such that for all m < |x|
there is a transition (sm, em, sm+1) ∈ ∆ based on a local transition of process
pm. We say that process pm moves at moment m. Configuration (s, e,⊥) appears
iff all processes are disabled for s and e. Also, for every p and m < |x|: either
em+1(p) = em(p) or process p moves at moment m. That is, the environment
keeps input to each process unchanged until the process can read it.1

A system run is a maximal path starting in the initial state. Runs are either
infinite, or they end in a configuration (s, e,⊥). We say that a run is initializing
if every process that moves infinitely often also visits its init infinitely often.

Given a system path x = (s1, e1, p1), (s2, e2, p2), . . . and a process p, the local
path of p in x is the projection x(p) = (s1(p), e1(p)), (s2(p), e2(p)), . . . of x onto
local states and inputs of p. Similarly define the projection on two processes
p1, p2 denoted by x(p1, p2).

Deadlocks and Fairness. A run is globally deadlocked if it is finite. An infinite
run is locally deadlocked for process p if there exists m such that p is disabled
for all sm′ , em′ with m′ ≥ m. A run is deadlocked if it is locally or globally
deadlocked. A system has a (local/global) deadlock if it has a (locally/globally)
deadlocked run. Note that absence of local deadlocks for all p implies absence of
global deadlocks, but not the other way around.

1 By only considering inputs that are actually processed, we approximate an action-
based semantics. Paths that do not fulfill this requirement are not very interesting,
since the environment can violate any interesting specification that involves input
signals by manipulating them when the corresponding process is not allowed to move.

6 S. Außerlechner, S. Jacobs and A. Khalimov

A run (s1, e1, p1), (s2, e2, p2), ... is unconditionally-fair if every process moves
infinitely often. A run is strong-fair if it is infinite and for every process p, if p
is enabled infinitely often, then p moves infinitely often. We will discuss the role
of deadlocks and fairness in synthesis in Sect. 4.

Remark 1. Why do we consider systemsA‖Bn? Emerson and Kahlon [12] showed
how to generalize cutoffs for such systems to systems of the form Am‖Bn, and
further to systems with an arbitrary number of process templates Un1

1 ‖ . . . ‖Unm
m .

This generalization also works for our new results, except for the cutoffs for dead-
lock detection that are restricted to 1-conjunctive systems (see Section 5).

3.2 Specifications

Fix templates (A,B). We consider formulas in LTL\X, i.e., LTL without the next-
time operator X. Let h(A,Bi1 , . . . , Bik) be an LTL\X formula over atomic propo-
sitions from QA∪ΣA and indexed propositions from (QB∪ΣB)×{i1, . . . , ik}. For
a system (A,B)(1,n) with n ≥ k and ij ∈ [1..n], satisfaction of Ah(A,Bi1 , . . . , Bik)
and Eh(A,Bi1 , . . . , Bik) is defined in the usual way (see e.g. [5]).

Parameterized Specifications. A parameterized specification is a temporal
logic formula with indexed atomic propositions and quantification over indices.
We consider formulas of the forms ∀i1, . . . , ik.Ah(A,Bi1 , . . . , Bik) and
∀i1, . . . , ik.Eh(A,Bi1 , . . . , Bik). For given n ≥ k,

(A,B)(1,n)|=∀i1, . . ., ik.Ah(A,Bi1 , . . ., Bik)

iff
(A,B)(1,n)|=

∧
j1 6=...6=jk∈[1..n]

Ah(A,Bj1 , . . ., Bjk).

By symmetry of guarded protocols, this is equivalent (cp. [12]) to (A,B)(1,n) |=
Ah(A,B1, . . . , Bk). The latter formula is denoted by Ah(A,B(k)), and we often
use it instead of the original ∀i1, . . . , ik.Ah(A,Bi1 , ..., Bik). For formulas with
path quantifier E, satisfaction is defined analogously, and equivalent to satisfac-
tion of Eh(A,B(k)).

Specification of Fairness and Local Deadlocks. It is often convenient to
express fairness assumptions and local deadlocks as parameterized specifications.
To this end, define auxiliary atomic propositions movep and enp for every process
p of system (A,B)(1,n). At moment m of a given run (s1, e1, p1), (s2, e2, p2), . . .,
let movep be true whenever pm = p, and let enp be true if p is enabled for sm, em.
Note that we only allow the use of these propositions to define fairness, but not
in general specifications. Then, an infinite run is

– local-deadlock-free if it satisfies ∀p.GF enp, abbreviated as Φ¬dead,
– strong-fair if it satisfies ∀p.GF enp → GFmovep, abbreviated as Φstrong, and
– unconditionally-fair if it satisfies ∀p.GFmovep, abbreviated as Φuncond.

If fair is a fairness notion and Ah(A,B(k)) a specification, then we write
Afair h(A,B(k)) for A(Φfair → h(A,B(k))). Similarly, we write Efair h(A,B(k))
for E(Φfair ∧ h(A,B(k))).

Tight Cutoffs for Guarded Protocols with Fairness 7

3.3 Model Checking and Synthesis Problems

For a given system (A,B)(1,n) and specification h(A,B(k)) with n ≥ k,

– the model checking problem is to decide whether (A,B)(1,n) |= Ah(A,B(k)),
– the deadlock detection problem is to decide whether (A,B)(1,n) does not have

global nor local deadlocks,
– the parameterized model checking problem (PMCP) is to decide whether
∀m ≥ n : (A,B)(1,m) |= Ah(A,B(k)), and

– the parameterized deadlock detection problem is to decide whether for all
m ≥ n, (A,B)(1,m) does not have global nor local deadlocks.

For a given number n ∈ N and specification h(A,B(k)) with n ≥ k,

– the template synthesis problem is to find process templates A,B such that
(A,B)(1,n) |= Ah(A,B(k)) and (A,B)(1,n) does not have global deadlocks.

– the bounded template synthesis problem for a pair of bounds (bA, bB) ∈ N×N
is to solve the template synthesis problem with |A| ≤ bA and |B| ≤ bB .

– the parameterized template synthesis problem is to find process templates
A,B such that ∀m ≥ n : (A,B)(1,m) |= Ah(A,B(k)) and (A,B)(1,m) does
not have global deadlocks.

These definitions can be flavored with different notions of fairness (and similarly
for the E path quantifier). In the next section we clarify the problems studied.

4 Reduction Method and Challenges

We show how to use existing cutoff results of Emerson and Kahlon [12] to reduce
the PMCP to a standard model checking problem, and parameterized synthesis
to template synthesis. We note the limitations of the existing results that are
crucial in the context of synthesis.

Reduction by Cutoffs. A cutoff for a system type (A,B) and a specification
Φ is a number c ∈ N such that:

∀n ≥ c :
(

(A,B)(1,n) |= Φ ⇔ (A,B)(1,c) |= Φ
)
.

Similarly, c ∈ N is a cutoff for (local/global) deadlock detection if ∀n ≥ c :
(A,B)(1,n) has a (local/global) deadlock iff (A,B)(1,c) has a (local/global) dead-
lock. For the systems and specifications presented in this paper, cutoffs can be
computed from the size of process template B and the number k of copies of B
mentioned in the specification, and are given as expressions like |B|+ k + 1.

Remark 2. Our definition of a cutoff is different from that of Emerson and
Kahlon [12], and instead similar to, e.g., Emerson and Namjoshi [14]. The reason
is that we want the following property to hold for any (A,B) and Φ:
if n0 is the smallest number such that ∀n ≥ n0 : (A,B)(1,n) |= Φ,
then any c < n0 is not a cutoff, any c ≥ n0 is a cutoff.

We call n0 the tight cutoff. The definition in [12, page 2] requires that ∀n ≤ c.(A,B)(1,n) |=
Φ if and only if ∀n ≥ 1 : (A,B)(1,n) |= Φ, and thus allows stating c < n0 as a
cutoff if Φ does not hold for all n.

8 S. Außerlechner, S. Jacobs and A. Khalimov

In model checking, a cutoff allows us to check whether any “big” system sat-
isfies the specification by checking it in the cutoff system. As noted by Jacobs
and Bloem [17], a similar reduction applies to the parameterized synthesis prob-
lem. For guarded protocols, we obtain the following semi-decision procedure for
parameterized synthesis:

0. set initial bound (bA, bB) on size of process templates;
1. determine cutoff for (bA, bB) and Φ;
2. solve bounded template synthesis problem for cutoff, size bound, and Φ;
3. if successful return (A,B) else increase (bA, bB) and goto (1).

Existing Cutoff Results. Emerson and Kahlon [12] have shown:

Theorem 1 (Disjunctive Cutoff Theorem). For closed disjunctive systems,
|B|+2 is a cutoff (†) for formulas of the form Ah(A,B(1)) and Eh(A,B(1)), and
for global deadlock detection.

Theorem 2 (Conjunctive Cutoff Theorem). For closed conjunctive sys-
tems, 2 |B| is a cutoff (†) for formulas of the form Ah(A) and Eh(A), and for
global deadlock detection. For formulas of the form Ah(B(1)) and Eh(B(1)),
2 |B|+ 1 is a cutoff.

Remark 3. (†) Note that Emerson and Kahlon [12] proved these results for a
different definition of a cutoff (see Remark 2). Their results also hold for our
definition, except possibly for global deadlocks. For the latter case to hold with
the new cutoff definition, one also needs to prove the direction “global deadlock
in the cutoff system implies global deadlock in a large system” (later called
Monotonicity Lemma). In Sect. 6.3 and 7.3 we prove these lemmas for the case
of general deadlock (global or local).

Challenge: Open Systems. For any open system S there exists a closed system
S′ such that S and S′ cannot be distinguished by LTL specifications (cp. Manna
and Pnueli [22]). Thus, one approach to PMC for open systems is to use a
translation between open and closed systems, and then use the existing cutoff
results for closed systems.

While such an approach works in theory, it might not be feasible in practice:
since cutoffs depend on the size of process templates, and the translation blows
up the process template, it also blows up the cutoffs. Thus, cutoffs that directly
support open systems are important.

Challenge: Liveness and Deadlocks under Fairness. We are interested
in cutoff results that support liveness properties. In general, we would like to
consider only runs where all processes move infinitely often, i.e., use the un-
conditional fairness assumption ∀p.GFmovep. However, this would mean that
we accept all systems that always go into a local deadlock, since then the as-
sumption is violated. This is especially undesirable in synthesis, because the
synthesizer usually tries to violate the assumptions in order to satisfy the speci-
fication. To avoid this, we require the absence of local deadlocks under the strong

Tight Cutoffs for Guarded Protocols with Fairness 9

fairness assumption ∀p.(GF enp → GFmovep). Since strong fairness and absence
of local deadlocks imply unconditional fairness, we can then use the latter as an
assumption for the original specification.

In summary, for a parameterized specification Φ, we consider satisfaction of

“all runs are infinite” ∧ Astrong Φ¬dead ∧ Auncond Φ.

This is equivalent to “all runs are infinite” ∧ Astrong(Φ¬dead ∧ Φ), but by con-
sidering the form above we can separate the tasks of deadlock detection and of
model checking LTL\X-properties, and obtain modular cutoffs.

In the following, we present cutoffs for problems of the forms (i) Auncond Φ, (ii)
Astrong Φ¬dead and no global deadlocks (and the variants with E path quantifier).

5 New Cutoff Results

We present new cutoff results that extend Theorems 1 and 2, summarized in the
table below. We distinguish between disjunctive and conjunctive systems, non-
fair and fair executions, as well as between the satisfaction of LTL\X properties
h(A,B(k)) and the existence of deadlocks. All results hold for open systems, and
for both path quantifiers A and E. Cutoffs depend on the size of process template
B and the number k ≥ 1 of B-processes a property talks about:

h(A,B(k))
no fairness

deadlock detection
no fairness

h(A,B(k))
uncond. fairness

deadlock detection
strong fairness

Disjunctive |B|+ k + 1 2|B| − 1 2|B|+ k − 1 2|B| − 1

Conjunctive k + 1 2|B| − 2 (∗) k + 1 (∗) 2|B| − 2 (∗)

Results marked with a (∗) are for a restricted class of systems: For conjunctive
systems with fairness, we require infinite runs to be initializing, i.e., all non-
deadlocked processes return to init infinitely often.2 Additionally, the cutoffs for
deadlock detection in conjunctive systems only support 1-conjunctive systems.
The reason for this restriction will be explained in Remark 4.

All cutoffs in the table are tight – no smaller cutoff can exist for this class of
systems and properties – except for the case of deadlock detection in disjunctive
systems without fairness. There, the cutoff is asymptotically tight, i.e., it must
increase linearly with the size of the process template.

Proof Structure

To justify the entries in the table, we first recapitulate the proof structure of the
original Theorems 1 and 2. The proofs are based on two lemmas, Monotonicity

2 This assumption is in the same flavor as the restriction that initA and initB appear
in all conjunctive guards. Intuitively, the additional restriction makes sense since
conjunctive systems model shared resources, and everybody who takes a resource
should eventually release it.

10 S. Außerlechner, S. Jacobs and A. Khalimov

and Bounding. We give some basic proof ideas of the lemmas from [12] and
mention extensions to the cases with fairness and deadlock detection. For cases
where this extension is not easy, we will introduce additional proof techniques
and explain how to use them in Sections 6 and 7. Note that we only consider
properties of the form h(A,B(1)) — the proof ideas extend to general properties
h(A,B(k)) without difficulty. Similarly, in most cases the proof ideas extend to
open systems without major difficulties — mainly because when we construct a
simulating run, we have the freedom to choose the input that is needed. Only
for the case of deadlock detection we have to handle open systems explicitly.

1) Monotonicity lemma: if a behavior is possible in a system with n ∈ N
copies of B, then it is also possible in a system with one additional process:

(A,B)(1,n) |= Eh(A,B(1)) =⇒ (A,B)(1,n+1) |= Eh(A,B(1)),

and if a deadlock is possible in (A,B)(1,n), then it is possible in (A,B)(1,n+1).

Proof ideas. The lemma is easy to prove for properties Eh(A,B(1)) in both dis-
junctive and conjunctive systems, by letting the additional process stay in its
initial state initB forever (cp. [12]). This cannot disable transitions with disjunc-
tive guards, as these check for existence of a local state in another process (and
we do not remove any processes), and it cannot disable conjunctive guards since
they contain initB by assumption. However, this construction violates fairness,
since the new process never moves. This can be resolved in the disjunctive case
by letting the additional process mimic all transitions of an existing process. But
in general this does not work in conjunctive systems (due to the non-reflexive
interpretation of guards). For this case and for deadlock detection, the proof is
not trivial and may only work for n ≥ c, for some lower bound c ∈ N (see Sect. 6,
7).

2) Bounding lemma: for a number c ∈ N, a behavior is possible in a system
with c copies of B if it is possible in a system with n ≥ c copies of process B:

(A,B)(1,c) |= Eh(A,B(1)) ⇐= (A,B)(1,n) |= Eh(A,B(1)),

and a deadlock is possible in (A,B)(1,c) if it is possible in (A,B)(1,n).

Proof ideas. For disjunctive systems, the main difficulty is that removing pro-
cesses might falsify guards of the local transitions of A or B1 in a given run
(see Sect. 6). For conjunctive systems, removing processes from a run is easy for
the case of infinite runs, since a transition that was enabled before cannot be-
come disabled. Here, the difficulty is in preserving deadlocks, because removing
processes may enable processes that were deadlocked before (Sect. 7).

6 Proof Techniques for Disjunctive Systems

6.1 LTL\X Properties without Fairness: Existing Constructions

We revisit the main technique of the original proof of Theorem 1 [12]. It con-
structs an infinite run y of (A,B)(1,c) with y |= h(A,B(1)), based on an infinite

Tight Cutoffs for Guarded Protocols with Fairness 11

run x of (A,B)(1,n) with n > c and x |= h(A,B(1)). The idea is to copy local
runs x(A) and x(B1) into y, and construct runs of other processes in a way that
enables all transitions along x(A) and x(B1). The latter is achieved with the
flooding construction.

Flooding Construction [12]. Given a run x = (s1, e1, p1), (s2, e2, p2) . . . of
(A,B)(1,n), let VisitedB(x) be the set of all local states visited by B-processes in
x, i.e., VisitedB(x) = {q ∈ QB | ∃m∃i. sm(Bi) = q}.

For every q ∈ VisitedB(x) there is a local run of (A,B)(1,n), say x(Bi), that
visits q first, say at moment mq. Then, saying that process Biq of (A,B)(1,c)

floods q means:
y(Biq) = x(Bi)[1 :mq](q)ω.

In words: the run y(Biq) is the same as x(Bi) until moment mq, and after that
the process never moves.

The construction achieves the following. If we copy local runs of A and B1

from x to y, and in y for every q ∈ VisitedB(x) introduce one process that floods
q, then: if in x at some moment m there is a process in state q′, then in y at
moment m there will also be a process (different from A and B1) in state q′.
Thus, every transition of A and B1, which is enabled at moment m in x, will
also be enabled in y.

Proof idea of the bounding lemma. The lemma for disjunctive systems with-
out fairness can be proved by copying local runs x(A) and x(B1), and flooding all
states in VisitedB(x). To ensure that at least one process moves infinitely often in
y, we copy one additional (infinite) local run from x. Finally, it may happen that
the resulting collection of local runs violates the interleaving semantics require-
ment. To resolve this, we add stuttering steps into local runs whenever two or
more processes move at the same time, and we remove global stuttering steps in
y. Since the only difference between x(A,B1) and y(A,B1) are stuttering steps,
y and x satisfy the same LTL\X-properties h(A,B(1)). Since |VisitedB(x)| ≤ |B|,
we need at most 1 + |B|+ 1 copies of B in (A,B)(1,c).

6.2 LTL\X Properties with Fairness: New Constructions

The flooding construction does not preserve fairness, and also cannot be used to
construct deadlocked runs since it does not preserve disabledness of transitions
of processes A or B1. For these cases, we provide new proof constructions.

Consider the proof task of the bounding lemma for disjunctive systems with
fairness: given an unconditionally fair run x of (A,B)(1,n) with x |= h(A,B(1)),
we want to construct an unconditionally fair run y of (A,B)(1,c) with y |=
h(A,B(1)). In contrast to unfair systems, we need to ensure that all processes
move infinitely often in y. The insight is that after a finite time all processes
will start looping around some set Visitedinf of states. We construct a run y that
mimics this. To this end, we introduce two constructions. Flooding with evac-
uation is similar to flooding, but instead of keeping processes in their flooding
states forever it evacuates the processes into Visitedinf. Fair extension lets all
processes move infinitely often without leaving Visitedinf.

12 S. Außerlechner, S. Jacobs and A. Khalimov

Flooding with Evacuation. Given a subset F ⊆ B and an infinite run x =
(s1, e1, p1) . . . of (A,B)(1,n), define

Visitedinf
F (x) = {q |∃ infinitely many m : sm(Bi) = q for some Bi ∈ F} (1)

Visitedfin
F (x) = {q |∃ only finitely many m : sm(Bi) = q for some Bi ∈ F} (2)

Let q ∈ Visitedfin
F (x). In run x there is a moment fq when q is reached for the first

time by some process from F , denoted Bfirstq . Also, in run x there is a moment
lq such that: slq (Blastq) = q for some process Blastq ∈ F , and st(Bi) 6= q for all
Bi ∈ F , t > lq — i.e., when some process from F is in state q for the last time in

x. Then, saying that process Biq of (A,B)(1,c) floods q ∈ Visitedfin
F (x) and then

evacuates into Visitedinf
F (x) means:

y(Biq) = x(Bfirstq)[1 :fq] · (q)(lq−fq+1) · x(Blastq)[lq :m] · (q′)ω,

where q′ is the state in Visitedinf
F (x) that x(Blastq) reaches first, at some moment

m ≥ lq. In words, process Biq mimics process Bfirstq until it reaches q, then does
nothing until process Blastq starts leaving q, then it mimics Blastq until it reaches

Visitedinf
F (x).

The construction ensures: if we copy local runs of all processes not in F from
x to y, then all transitions of y are enabled. This is because: for any process p of
(A,B)(1,c) that takes a transition in y at any moment, the set of states visible
to process p is a superset of the set of states visible to the original process in
(A,B)(1,n) whose transitions process p copies.

Fair Extension. Here, we consider a path x that is the postfix of an un-
conditionally fair run x′ of (A,B)(1,n), starting from the moment where no lo-

cal states from Visitedfin
B (x′) are visited anymore. We construct a corresponding

unconditionally-fair path y of (A,B)(1,c), where no local states from Visitedfin
B (x′)

are visited.
Formally, let n ≥ 2|B|, and x an unconditionally-fair path of (A,B)(1,n) such

that Visitedfin
B (x) = ∅. Let c ≥ 2|B|, and s′1 a state of (A,B)(1,c) with

– s′1(A1) = s1(A1), s′1(B1) = s1(B1)

– for every q ∈ Visitedinf
B2..Bn

(x)\Visitedinf
B1

(x), there are two processes Biq , Bi′q

of (A,B)(1,c) that start in q, i.e., s′1(Biq) = s′1(Bi′q
) = q

– for every q ∈ Visitedinf
B2..Bn

(x) ∩ Visitedinf
B1

(x), there is one process Biq of

(A,B)(1,c) that starts in q

– for some q? ∈ Visitedinf
B2..Bn

(x) ∩ Visitedinf
B1

(x), there is one additional process

of (A,B)(1,c), different from any in the above, called Bi′
q?

, that starts in q?.

– any other process Bi of (A,B)(1,c) starts in some state of Visitedinf
B2..Bn

(x).

Note that if Visitedinf
B2..Bn

(x) ∩ Visitedinf
B1

(x) = ∅, then the third and fourth pre-
requisites are trivially satisfied.

The fair extension extends state s′1 of (A,B)(1,c) to an unconditionally-fair
path y = (s′1, e

′
1, p
′
1) . . . with y(A1, B1) = x(A1, B1) as follows:

Tight Cutoffs for Guarded Protocols with Fairness 13

(a) y(A1) = x(A1), y(B1) = x(B1)

(b) for every q ∈ Visitedinf
B2..Bn

(x)\Visitedinf
B1

(x): in run x there is Bi ∈ {B2..Bn}
that starts in q and visits it infinitely often. Let Biq and Bi′q

of (A,B)(1,c)

mimic Bi in turns: first Biq mimics Bi until it reaches q, then Bi′q
mimics

Bi until it reaches q, and so on.

(c) arrange states of Visitedinf
B2..Bn

(x)∩Visitedinf
B1

(x) in some order (q?, q1, . . . , ql).
The processes Bi′

q?
, Biq? , Biq1

, . . . , Biql
behave as follows. Start with Bi′

q?
:

when B1 enters q? in y, it carries3 Bi′
q?

from q? to q1, then carries Biq1
from

q1 to q2, . . . , then carries Biql
from ql to q?, then carries Biq? from q? to q1,

then carries Bi′
q?

from q1 to q2, then carries Biq1
from q2 to q3, and so on.

(d) any other Bi of (A,B)(1,c), starting in q ∈ Visitedinf
B2..Bn

(x), mimics Biq .

Note that parts (b) and (c) of the constrution ensure that there is always at least

one process in every state from Visitedinf
B2..Bn

(x). This ensures that the guards of
all transitions of the construction are satisfied. Excluding processes in (d), the
fair extension uses up to 2|B| copies of B.4

Proof idea of the bounding lemma. Let c = 2 |B|. Given an unconditionally-
fair run x of (A,B)(1,n) we construct an unconditionally-fair run y of the cutoff
system (A,B)(1,c) such that y(A,B1) is stuttering equivalent to x(A,B1).

Note that in x there is a moment m such that all local states that are visited
after m are in Visitedinf

B (x).

The construction has two phases. In the first phase, we apply flooding for
states in Visitedinf

B (x), and flooding with evacuation for states in Visitedfin
B (x):

(a) y(A) = x(A), y(B1) = x(B1)

(b) for every q ∈ Visitedinf
B2..Bn

(x)\Visitedinf
B1

(x), devote two processes of (A,B)(1,c)

that flood q

(c) for some q? ∈ Visitedinf
B2..Bn

(x)∩Visitedinf
B1

(x), devote one process of (A,B)(1,c)

that floods q?

(d) for every q ∈ Visitedfin
B2..Bn

(x), devote one process of (A,B)(1,c) that floods q

and evacuates into Visitedinf
B2..Bn

(x)

(e) let other processes (if any) mimic process B1

The phase ensures that at moment m in y, there are no processes in Visitedfin
B (x),

and all the pre-requisites of the fair extension are satisfied.

The second phase applies the fair extension, and then establishes the inter-
leaving semantics as in the bounding lemma in the non-fair case. The overall
construction uses up to 2|B| copies of B.

3 “Process B1 starting at moment m carries process Bi from q to q′” means: process
Bi mimics the transitions of B1 starting at moment m at q until B1 first reaches q′.

4 A careful reader may notice that if |Visitedinf
B1

(x)| = 1 and |Visitedinf
B2..Bn

(x)| = |B|,
then the construction uses 2|B| + 1 copies of B. But one can slightly modify the
construction for this special case, and remove process Bi′

q?
from the pre-requisites.

14 S. Außerlechner, S. Jacobs and A. Khalimov

6.3 Detection of Local and Global Deadlocks: New Constructions

Monotonicity Lemmas. The lemma for deadlock detection, for fair and unfair
cases, is proven for n ≥ |B| + 1. In the case of local deadlocks, process Bn+1

mimics a process that moves infinitely often in x. In the case of global deadlocks,
by pigeon hole principle, in the global deadlock state there is a state q with at
least two processes in it—let process Bn+1 mimic a process that deadlocks in q.

Bounding Lemmas. For the case of global deadlocks, fairness does not affect
the proof of the bounding lemma. The insight is to divide deadlocked local states
into two disjoint sets, dead1 and dead2, as follows. Given a globally deadlocked
run x of (A,B)(1,n), for every q ∈ dead1, there is a process of (A,B)(1,n) dead-
locked in q with input i, that has an outgoing transition guarded “∃q” – hence,
adding one more process into q would unlock the process. In contrast, q ∈ dead2
if any process deadlocked in q stays deadlocked after adding more processes
into q. Let us denote the set of B-processes deadlocked in dead1 by D1. Finally,
abuse the definition in Eq. 2 and denote by Visitedfin

B\D1
(x) the set of states that

are visited by B-processes not in D1 before reaching a deadlocked state.

Given a globally deadlocked run x of (A,B)(1,n) with n ≥ 2|B| − 1, we
construct a globally deadlocked run y of (A,B)(1,c) with c = 2|B| − 1 as follows:

– copy from x into y the local runs of processes in D1 ∪ {A}
– flood every state of dead2
– for every q ∈ Visitedfin

B\D1
(x), flood q and evacuate into dead2.

The construction ensures: (1) for any moment and any process in y, the set of
local states that are visible to the process includes all the states that were visible
to the corresponding process in (A,B)(1,n) whose transitions we copy; (2) in y,
there is a moment when all processes deadlock in dead1 ∪ dead2.

For the case of local deadlocks, the construction is similar but slightly more
involved, and needs to distinguish between unfair and fair cases. In the unfair
case, we also copy the behaviour of an infinitely moving process. In the strong-fair
case, we continue the runs of non-deadlocked processes with the fair extension.

7 Proof Techniques for Conjunctive Systems

7.1 LTL\X Properties without Fairness: Existing Constructions

Recall that the Monotonicity lemma is proven by keeping the additional process
in the initial state. To prove the bounding lemma, Emerson and Kahlon [12]
suggest to simply copy the local runs x(A) and x(B1) into y. In addition, we
may need one more process that moves infinitely often to ensure that an infinite
run of (A,B)(1,n) will result in an infinite run of (A,B)(1,c). All transitions of
copied processes will be enabled because removing processes from a conjunctive
system cannot disable a transition that was enabled before.

Tight Cutoffs for Guarded Protocols with Fairness 15

7.2 LTL\X Properties with Fairness: New Constructions

The proof of the Bounding lemma is the same as in the non-fair case, noting
that if the original run is unconditional-fair, then so will be the resulting run.

Proving the Monotonicity lemma is more difficult, since the fair extension
construction from disjunctive systems does not work for conjunctive systems –
if an additional process mimics the transitions of an existing process then it

disables transitions of the form q
“ ∀¬q”→ q′ or q

“ ∀¬q′”→ q′. Hence, we add the
restriction of initializing runs, which allows us to construct a fair run as follows.
The additional process Bn+1 “shares” a local run x(Bi) with an existing process
Bi of (A,B)(1,n+1): one process stutters in initB while the other makes transitions
from x(Bi), and whenever x(Bi) enters initB (this happens infinitely often),
the roles are reversed. Since this changes the behavior of Bi, Bi should not be
mentioned in the formula, i.e., we need n ≥ 2 for a formula h(A,B(1)).

7.3 Detection of Local and Global Deadlocks: New Constructions

Monotonicity lemmas for both fair and unfair cases are proven by keeping
process Bn+1 in the initial state, and copying the runs of deadlocked processes. If
the run of (A,B)(1,n) is globally deadlocked, then process Bn+1 may keep moving
in the constructed run, i.e., it may only be locally deadlocked. In case of a local
deadlock in (A,B)(1,n), distinguish two cases: there is an infinitely moving B-
process, or all B-processes are deadlocked (and thus A moves infinitely often).
In the latter case, use the same construction as in the global deadlock case
(the correctness argument uses the fact that systems are 1-conjunctive, runs are
initializing, and there is only one process of type A). In the former case, copy the
original run, and let Bn+1 share a local run with an infinitely moving B-process.

Bounding lemma (no fairness). In the case of global deadlock detection,
Emerson and Kahlon [12] suggest to copy a subset of the original local runs.
For every local state q that is present in the final state of the run, we need
at most two local runs that end in this state. In the case of local deadlocks,
our construction uses the fact that systems are 1-conjunctive. In 1-conjunctive
systems, if a process is deadlocked, then there is a set of states DeadGuards that
all need to be populated by other processes in order to disable all transitions
of the deadlocked process. Thus, the construction copies: (i) the local run of a
deadlocked process, (ii) for each q ∈ DeadGuards, the local run of a process
that is in q at the moment of the deadlock, and (iii) the local run of an infinitely
moving process.

Bounding lemma (strong fairness). We use a construction that is similar to
that of properties under fairness for disjunctive systems (Sect. 6.2): in the setup
phase, we populate some “safe” set of states with processes, and then we extend
the runs of non-deadlocked processes to satisfy strong fairness, while ensuring
that deadlocked processes never get enabled.

Let c = 2|QB\{initB}|. Let x = (s1, e1, p1) . . . be a locally deadlocked strong-
fair intitializing run of (A,B)(1,n) with n > c. We construct a locally deadlocked
strong-fair initializing run y of (A,B)(1,c).

16 S. Außerlechner, S. Jacobs and A. Khalimov

Fig. 1: Bounding lemma (strong fairness): Venn diagram for dead1, dead2,

DeadGuards, Visitedinf
B\D(x). States q1, ..., q6 are to illustrate that the corre-

sponding sets may be non-empty. E.g., in x, a process may be deadlocked
in q1 ∈ (DeadGuards ∩ dead1 ∩ Visitedinf

B\D(x)), and another process in q3 ∈
dead1 ∩DeadGuards\Visitedinf

B\D(x).

Let D ⊆ B be the set of deadlocked B-processes in x. Let d be the moment in
x starting from which every process in D is deadlocked. Let dead(x) be the set of
states in which processes D of (A,B)(1,n) are deadlocked. Let dead2(x) ⊆ dead(x)
be the set of deadlocked states such that: for every q ∈ dead2(x), there is a
process Bi ∈ D with sd(Bi) = q and that for input e≥d(Bi) has a transition
guarded with “∀¬q”. Thus, a process in q is deadlocked with ed(Bi) only if there
is another process in q in every moment ≥ d. Let dead1(x) = dead(x)\dead2(x).
Define DeadGuards to be the set

{ q | ∃Bi ∈ D with a transition guarded “ ∀¬q” in (sd(Bi), ed(Bi)) }.

Figure 1 illustrates properties of sets DeadGuards, dead1, dead2, Visitedinf
B\D(x).

In the setup phase, we copy from x into y:

– the local run of A;
– for every q ∈ dead1, the local run of one process deadlocked in q;
– for every q ∈ dead2, the local runs of two5 processes deadlocked in q;
– for every q ∈ DeadGuards\dead, the local run of a process that reaches q

after moment d.
– Finally, we keep one B-process in initB until moment d.

The setup phase ensures: in every state q ∈ dead, there is at least one process
deadlocked in q at moment d in y. Now we need to ensure that the non-deadlocked
processes in DeadGuards\dead and initB move infinitely often, which is done
using the looping extension described bellow.

Order arbitrarily DeadGuards\dead = (q1, . . . , qk) ⊆ Visitedinf
B\D(x). Let P ⊆

{B1, ..., Bc} be the non-deadlocked processes of (A,B)(1,c) that we moved into
(q1, . . . , qk) ∪̇ {initB} in the setup phase. Note that |P| = |(q1, ..., qk)|+ 1.

5 Strictly speaking, in x we might not have two deadlocked processes in a state in
dead2 – one process may be deadlocked, others enter and exit the state infinitely
often. In such case, there is always a non-deadlocked process in the state. Then, copy
the local run of such infinitely moving process until it enters the deadlocked state,
and then deadlock it by providing the same input as the deadlocked process receives.

Tight Cutoffs for Guarded Protocols with Fairness 17

The looping phase is: set i = 1, and repeat infinitely the following.

– let Binit ∈ P be the process of (A,B)(1,c) that is currently in initB , and
Bqi ∈ P be the process of (A,B)(1,c) that is currently in qi

– let B̃qi ∈ Visitedinf
B\D(x) be a process of (A,B)(1,n) that visits qi and initB

infinitely often. Let Binit of (A,B)(1,c) copy transitions of B̃qi on some path

initB → . . . → qi, then let Bqi copy transitions of B̃qi on some path qi →
. . .→ initB . For copying we consider only the paths of B̃qi that happen after
moment d.

– i = i⊕ 1

Remark 4. In 1-conjunctive systems, the set DeadGuards is “static”, i.e., there
is always at least one process in each state of DeadGuards starting from the mo-
ment of the deadlock. In contrast, in general conjunctive systems where guards
can overlap, there is no such set. However, there is a similar set of sets of states,
such that one state from each set always needs to be populated to ensure the
deadlock.

8 Conclusion

We have extended the cutoff results for guarded protocols of Emerson and
Kahlon [12] to support local deadlock detection, fairness assumptions, and open
systems. In particular, our results imply decidability of the parameterized model
checking problem for this class of systems and specifications, which to the best
of our knowledge was unknown before. Furthermore, the cutoff results can easily
be integrated into the parameterized synthesis approach [17,20].

Since conjunctive guards can model atomic sections and read-write locks,
and disjunctive guards can model pairwise rendezvous (for some classes of spec-
ifications, cp. [13]), our results apply to a wide spectrum of systems models. But
the expressivity of the model comes at a high cost: cutoffs are linear in the size
of a process, and are shown to be tight (with respect to this parameter). For
conjunctive systems, our new results are restricted to systems with 1-conjunctive
guards, effectively only allowing to model a single shared resource. We conjecture
that our proof methods can be extended to systems with more general conjunc-
tive guards, at the price of even bigger cutoffs. We leave this extension and the
question of finding cutoffs that are independent of the size of processes for future
research.

Acknowledgment. We thank Roderick Bloem, Markus Rabe and Leander Tentrup
for comments on drafts of this paper. This work was supported by the Austrian Sci-
ence Fund (FWF) through the RiSE project (S11406-N23, S11407-N23) and grant
nr. P23499-N23, as well as by the German Research Foundation (DFG) through SFB/TR
14 AVACS and project ASDPS (JA 2357/2-1).

18 S. Außerlechner, S. Jacobs and A. Khalimov

References

1. Abdulla, P.A., Haziza, F., Hoĺık, L.: All for the price of few. In: VMCAI.
LNCS, vol. 7737, pp. 476–495. Springer (2013), http://dx.doi.org/10.1007/

978-3-642-35873-9_28

2. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model checking of
token-passing systems. In: VMCAI. LNCS, vol. 8318, pp. 262–281. Springer (2014),
http://dx.doi.org/10.1007/978-3-642-54013-4_15

3. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model
checking of rendezvous systems. In: CONCUR. LNCS, vol. 8704, pp. 109–124.
Springer (2014), http://dx.doi.org/10.1007/978-3-662-44584-6_9

4. Außerlechner, S., Jacobs, S., Khalimov, A.: Tight cutoffs for guarded protocols
with fairness. CoRR abs/1505.03273 (2015), http://arxiv.org/abs/1505.03273

5. Baier, C., Katoen, J.P.: Principles of model checking, vol. 26202649. MIT press
Cambridge (2008)

6. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder,
J.: Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory, Morgan & Claypool Publishers (September 2015), http://

www.morganclaypool.com/doi/10.2200/S00658ED1V01Y201508DCT013, 170 pages
7. Bouajjani, A., Habermehl, P., Vojnar, T.: Verification of parametric concurrent

systems with prioritised FIFO resource management. Formal Methods in System
Design 32(2), 129–172 (2008), http://dx.doi.org/10.1007/s10703-008-0048-7

8. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
CAV. LNCS, vol. 1855, pp. 403–418. Springer (2000), http://dx.doi.org/10.

1007/10722167_31

9. Clarke, E.M., Talapur, M., Veith, H.: Proving ptolemy right: The environment
abstraction framework for model checking concurrent systems. In: TACAS. LNCS,
vol. 4963, pp. 33–47. Springer (2008)

10. Clarke, E.M., Talupur, M., Touili, T., Veith, H.: Verification by network decom-
position. In: CONCUR. LNCS, vol. 3170, pp. 276–291. Springer (2004)

11. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982), http://
dx.doi.org/10.1016/0167-6423(83)90017-5

12. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In:
CADE. LNCS, vol. 1831, pp. 236–254. Springer (2000)

13. Emerson, E.A., Kahlon, V.: Model checking guarded protocols. In: LICS. pp. 361–
370. IEEE Computer Society (2003)

14. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Foundations of Com-
puter Science 14, 527–549 (2003)

15. Fang, Y., Piterman, N., Pnueli, A., Zuck, L.D.: Liveness with invisible ranking.
STTT 8(3), 261–279 (2006), http://dx.doi.org/10.1007/s10009-005-0193-x

16. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

17. Jacobs, S., Bloem, R.: Parameterized synthesis. Logical Methods in Computer
Science 10, 1–29 (2014)

18. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized
concurrent programs. In: CAV. LNCS, vol. 6174, pp. 645–659. Springer (2010),
http://dx.doi.org/10.1007/978-3-642-14295-6_55

19. Kesten, Y., Pnueli, A., Shahar, E., Zuck, L.D.: Network invariants in action. In:
CONCUR. LNCS, vol. 2421, pp. 101–115. Springer (2002), http://dx.doi.org/
10.1007/3-540-45694-5_8

http://dx.doi.org/10.1007/978-3-642-35873-9_28
http://dx.doi.org/10.1007/978-3-642-35873-9_28
http://dx.doi.org/10.1007/978-3-642-54013-4_15
http://dx.doi.org/10.1007/978-3-662-44584-6_9
http://arxiv.org/abs/1505.03273
http://www.morganclaypool.com/doi/10.2200/S00658ED1V01Y201508DCT013
http://www.morganclaypool.com/doi/10.2200/S00658ED1V01Y201508DCT013
http://dx.doi.org/10.1007/s10703-008-0048-7
http://dx.doi.org/10.1007/10722167_31
http://dx.doi.org/10.1007/10722167_31
http://dx.doi.org/10.1016/0167-6423(83)90017-5
http://dx.doi.org/10.1016/0167-6423(83)90017-5
http://dx.doi.org/10.1007/s10009-005-0193-x
http://dx.doi.org/10.1007/978-3-642-14295-6_55
http://dx.doi.org/10.1007/3-540-45694-5_8
http://dx.doi.org/10.1007/3-540-45694-5_8

Tight Cutoffs for Guarded Protocols with Fairness 19

20. Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token
rings. In: CAV. LNCS, vol. 8044, pp. 928–933. Springer (2013)

21. Kurshan, R.P., McMillan, K.L.: A structural induction theorem for processes. Inf.
and Comp. 117(1), 1–11 (1995)

22. Manna, Z., Pnueli, A.: Temporal specification and verification of reactive modules.
Weizmann Institute of Science Technical Report (1992)

23. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible
invariants. In: TACAS. LNCS, vol. 2031, pp. 82–97. Springer (2001), http://dx.
doi.org/10.1007/3-540-45319-9_7

24. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0, 1, ∞)-counter abstraction. In:
CAV. Lecture Notes in Computer Science, vol. 2404, pp. 107–122. Springer (2002),
http://dx.doi.org/10.1007/3-540-45657-0_9

25. Suzuki, I.: Proving properties of a ring of finite state machines. Inf. Process. Lett.
28(4), 213–214 (1988)

26. Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with
network invariants. In: Automatic Verification Methods for Finite State Sys-
tems. LNCS, vol. 407, pp. 68–80. Springer (1989), http://dx.doi.org/10.1007/
3-540-52148-8_6

http://dx.doi.org/10.1007/3-540-45319-9_7
http://dx.doi.org/10.1007/3-540-45319-9_7
http://dx.doi.org/10.1007/3-540-45657-0_9
http://dx.doi.org/10.1007/3-540-52148-8_6
http://dx.doi.org/10.1007/3-540-52148-8_6

	Tight Cutoffs for Guarded Protocols with Fairness

