
Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees

Jan Baumeister1, Johann C. Dauer2, Bernd Finkbeiner1 and Sebastian Schirmer2*

1Helmholtz Center for Information Security (CISPA), Saarbrücken, Germany.
2*German Aerospace Center (DLR), Braunschweig, Germany.

*Corresponding author(s). E-mail(s): sebastian.schirmer@dlr.de;
Contributing authors: jan.baumeister@cispa.de; johann.dauer@dlr.de; finkbeiner@cispa.de;

Abstract

Runtime monitoring is generally considered a light-weight alternative to formal verification. In
safety-critical systems, however, the monitor itself is a critical component. For example, if the mon-
itor is responsible for initiating emergency protocols, as proposed in a recent aviation standard,
then the safety of the entire system critically depends on the correctness of the monitor. In this
paper, we present a verification extension to the Lola monitoring language that extends the effi-
cient specification of the monitor with Hoare-style annotations that guarantee the correctness of
the monitor specification. We add two new operators, assume and assert, which specify assump-
tions of the monitor and expectations on its output, respectively. The validity of the annotations
is established by an integrated SMT solver. We report on experience in applying the approach
to specifications from the avionics domain, where the annotation with assumptions and assertions
has lead to the discovery of safety-critical errors in specifications. The errors range from incor-
rect default values in offset computations to complex algorithmic errors that result in unexpected
temporal patterns. We also report how verified specifications can be monitored efficiently at runtime.

Keywords: Formal methods, Cyber-physical systems, Runtime Verification, Hoare Logic

1 Introduction

Cyber-physical systems are inherently safety-
critical due to their direct interaction with the
physical environment – failures are unacceptable.
A means of protection against failures is the
integration of reliable monitoring capabilities. A
monitor is a system component that has access to
a wide range of system information, e.g., sensor
readings and control decisions. When the monitor
detects a failure, i.e., a violation of the behavior
stated in its specification, it notifies the system or
activates recoveries to prevent failure propagation.

The task of the monitor is critical to the
safety of the system, and its correctness is there-
fore of utmost importance. Runtime monitoring

approaches like Lola [8, 11] address this by
describing the monitor in a formal specification
language, and then generating a monitor imple-
mentation that is provably correct and has strong
runtime guarantees, for example on memory con-
sumption. Formal monitoring languages typically
feature temporal [24] and sometimes spatial [21]
operators that simplify the specification of com-
plex monitoring behaviors. However, the specifica-
tion itself, the central part of runtime monitoring,
is still prone to human errors during specification
development. Hence, how can we check that the
monitor specification itself is correct?

In this paper, we introduce a verification fea-
ture to the Lola framework. Specifically, we

1

Springer Nature 2021 LATEX template

2 Monitoring with Verified Guarantees

extend the specification language with assump-
tions and assertions. The framework statically
verifies that the assertions are guaranteed to hold
if the input to the monitor satisfies the assump-
tions. This verification feature was previously
introduced in [9]. Here, we extend this work by
providing a proof of soundness and presenting
an online monitoring approach with experimental
results that checks the satisfaction of assumptions
during runtime to activate assertion checks.

The prime application area of Lola is
unmanned aviation. Lola is increasingly used
for the development and operation monitoring of
unmanned aircraft; for example, the Lola mon-
itoring framework has been integrated into the
DLR unmanned aircraft superARTIS1 [2] using
an FPGA realization [3]. The verification exten-
sion presented in this paper is motivated by this
work. In practice, system engineers report that
support for specification development is necessary,
e.g., sanity checks and proofs of correctness. Addi-
tionally, recent developments in unmanned avia-
tion regulations and standards indicate a similar
necessity. One such development is the industry
standard F3269-21 (Standard Practice for Meth-
ods to Safely Bound Flight Behavior of Unmanned
Aircraft Systems Containing Complex Functions)
by ASTM International 2. ASTM F3269-21 intro-
duces a certification strategy based on a Run-
Time Assurance (RTA) architecture that bounds
the behavior of a complex function by a safety
monitor [20], similar to the well-known Simplex
architecture [27]. This complex function could be
a Deep Neural Network as proposed in [7]. A
simplified version of the architecture3 of ASTM
F3269-21 is shown in Figure 1.

At the core of the architecture is a safety
monitor that takes the inputs and outputs of the
complex function, and decides whether the com-
plex function behaves as expected. If not, the
monitor switches the control from the complex
function to a matching recovery function. For
instance, the flight of an unmanned aircraft could
be separated into different phases: e.g., take-off,
cruise flight, and landing. For each of these phases,

1https://www.dlr.de/content/en/research-facilities/
superartis-en.html

2https://www.astm.org/
3In its original version, data is separated into assured and

unassured data and data preparation components are added.

External Data

Safety Monitor

Complex Function

Recovery Control Function

Switch

Fig. 1: Run-Time Assurance architecture pro-
posed by ASTM F3269-21 to safely bound a
complex function using a safety monitor.

a dedicated recovery could be defined, e.g., brak-
ing during take-off, the activation of a parachute
during cruise flight, or a go-around maneuver dur-
ing landing. Further, it is crucial that recoveries
are only activated under certain conditions and
that only one recovery is activated at a time. For
instance, a parachute activation during a landing
approach is considered safety-critical. The verifi-
cation extension of Lola introduced in this paper
can be used to guarantee statically that such deci-
sions are avoided within the monitor specification.
Consider the simplified Lola specification

input event_a, event_b, value: Bool, Bool, Float32
assume <a1> !(event_a and event_b)
output braking : Bool := ...computation...
output parachute : Bool := ...computation...
output go_around : Bool := ...computation...
assert <a1> !(braking and parachute)

that declares an assumption on the system input
events and asserts that braking and parachute

never evaluate to true simultaneously.
In the following, we first give a brief introduc-

tion to the stream-based specification language
Lola, then present the verification approach, and
give details on the tool implementation and our
tool experience with specifications that were writ-
ten based on interviews with aviation experts.
Last, we consider the case where assumptions
might not be satisfied during runtime. Our results
show that standard Lola specifications are indeed
prone to error, and that these errors can be caught
with the formal verification introduced by our
extension.

https://www.dlr.de/content/en/research-facilities/superartis-en.html
https://www.dlr.de/content/en/research-facilities/superartis-en.html
https://www.astm.org/

Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees 3

Related Work

Most work on the verification of monitors focuses
on the correct transformation into a general pro-
gramming language. For example, Copilot [22]
specifications can be compiled into C code with
constant time and memory requirements. Simi-
larly, there is a translation validation toolkit for
Lola monitors implemented in Rust [11], which
is based on the Viper verification tool [19]. Trans-
lation validation of this type is orthogonal to
the verification approach of this paper. Instead
of verifying the correctness of a transformation,
our focus is to verify the specification itself. Both
activities complement each other and facilitate
safer future cyber-physical systems.

Our verification approach is based on classic
ideas of inductive program verification [12, 16],
and is closely related to the techniques used in
static program verifiers like KeY [4], Why3 [6],
and Dafny [18]. In a verification approach like
Dafny, we are interested in functional properties
of procedures, specified as post-conditions that
relate the values upon the termination of the pro-
cedure with those at the time of entry to the
procedure, e.g., ensure y = old(y). By contrast,
a stream-based language like Lola allows arbi-
trary access to past and future stream values. This
makes it necessary to unfold the Lola specifica-
tion in order to properly relate the assumptions
and assertions in time.

Most closely related to stream-based moni-
toring languages are synchronous programming
languages like LUSTRE [15], ESTEREL [5], and
SIGNAL [13]. For these languages, the compiler
is typically used for verification – a program rep-
resenting the negation of desired properties is
compiled with the target program and a check
for emptiness decides whether the properties are
satisfied. Furthermore, a translation from past
linear-time temporal logic to ESTEREL was pro-
posed to simplify the specification of more com-
plex temporal properties [17]. Other verification
techniques also exist like SMT-based k-Induction
for LUSTRE [14] or a term rewriting system
on synced effects [28]. A key difference in our
approach is that we do not rely on compilation.
Our verification works at the level of an intermedi-
ate representation. Furthermore, synchronous pro-
gramming languages are limited to past references,

while the stream unfolding for the inductive cor-
rectness proof of the Lola specification includes
both past and future temporal operators. Simi-
lar to k-Induction, our approach is sound but not
complete.

2 Runtime Monitoring with
Lola

Lola is a stream-based language that describes
the translation from input to output streams:

input t1 : T1

...

input tm : Tm

output s1 : Tm+1 := e1(t1, . . . , tm, s1, . . . , sn)

...

output sn : Tm+n := en(t1, . . . , tm, s1, . . . , sn)

trigger φ message

where input streams carry synchronous arriv-
ing data from the system under scrutiny, out-
put streams represent calculations, and triggers
generate notification messages at instants where
their condition φ becomes true. Input streams
t1, . . . , tm and output streams s1, . . . , sn are called
independent and dependent variables, respectively.
Each variable is typed: independent variables ti
are typed Ti and dependent variables si are typed
Tm+i. Dependent variables are computed based
on stream expressions e1, . . . , en over dependent
and independent stream variables. A (stream)
expression is one of the following:

• an atomic expression c of type T if c is a
constant of type T ;

• an atomic expression s of type T if s is a stream
variable of type T ;

• an expression ite(b, e1, e2) of type T if b is a
Boolean expression and e1, e2 are expressions of
type T . Note that ite abbreviates the control
construct if-then-else;

• an expression f(e1, . . . , ek) of type T if f : T1 ×
· · · × Tk 7→ T is a k-ary operator and e1, . . . , ek
are expressions of type T1, . . . , Tk;

• an expression o.offset(by : i).defaults(to : d) of
type T if o is a stream variable of type T , i is
an Integer, and d is of type T .

Springer Nature 2021 LATEX template

4 Monitoring with Verified Guarantees

For example, consider the Lola specification

input altitude: Float32 // in m
output altitude_bound := altitude > 200.0
trigger altitude_bound "Warning: Decrease altitude!"

that notifies the system if the current altitude

is above its operating limits, i.e., 200.0 meters.
Note that stream types are inferred, i.e.,
altitude_bound is of type Bool.

Lola uses temporal operators that allow out-
put streams to access its and others previous and
future stream values. The stream

output alt_count := if altitude ≤ 200.0 then 0
else alt_count.offset(by: -1).defaults(to: 0) + 1

represents a count of consecutive altitude vio-
lations by accessing its own previous value,
i.e., offset(by: x) where a negative and posi-
tive integer x represents past and future stream
accesses, respectively. Since temporal accesses are
not always guaranteed to exist, the default oper-
ator defines values which are used instead, i.e.,
defaults(to: d) where d has to be of the same
type as the used stream. Here, at the first posi-
tion of alt_count the default value zero is taken.
As abbreviations for the temporal operators,
alt_count[x, d] is used. Further, s[x..y, d,

◦] for x < y abbreviates s[x,d] ◦ s[x+1,d]

◦ . . . ◦ s[y,d] where ◦ is a binary operator.
Using alt_count > 10 as a trigger condition is
preferable if only persistent violations should be
reported.

In general, Lola is a specification language
that allows to specify complex temporal properties
in a precise, concise, and less error-prone way. The
focus is on what properties should be monitored
instead of how a monitor should be executed.
Therefore, the Lola monitor synthesis automati-
cally infers and optimizes implementation details
like evaluation order and memory management.
The evaluation order [11] of Lola streams is auto-
matically derived by analysis of the dependency
graph [8] of the specification. This allows to ignore
the order when taking advantage of the modular
structure of Lola output streams, e.g.,:

output alt_avg := alt_count / (position+1)
output alt_count := if altitude ≤ 200.0 then 0

else alt_count.offset(by: -1).defaults(to: 0) + 1
output pos := pos.offset(by: -1).defaults(to: 0)

where pos and alt_count are used before their
definition. Further, the graph allows to detect all
invalid cyclic stream dependencies, e.g.,
output a := a.offset(by:0).defaults(to:0).

3 Assumptions and Assertions

In this section, we present the verification exten-
sion for the Lola specification language. The
extension allows the developer to annotate the
Lola specification with assumptions and asser-
tions in order to verify the desired guarantees on
the computed streams. As an example, consider
the simplified specification in Listing 1, which is
structured into stream computations in Lines 1 to
28, and assumptions and assertions from Line 30
onwards.

The computation part specifies a safety moni-
tor within a RTA architecture that triggers recov-
ery functions for three different flight phases.
First, the take-off recovery function is triggered
(Line 24) when the targeted take-off speed was
not achieved on a runway up to a predefined point
(Lines 14-15). The distance between the current
position and the end of the runway with local
coordinates (0, 0) is computed in Line 9. Second,
in-flight a parachute is activated (Line 26) when
virtual barriers for the aircraft, i.e., a geofence, are
exceeded (Line 17) [26]. Last, during landing, up
to a point of no return (alt < 10.0), a new land-
ing attempt is initiated (Line 27) if the aircraft’s
speed is too fast or its landing gear is not yet
ready. To be more robust, the current and the pre-
vious value of the landing_gear_ready is taken
into account (Lines 19-21).

With the verification extension, the specifi-
cation assures that recoveries are not activated
simultaneously (Lines 34-36), i.e., for instance
there is no possibility that a parachute is activated
during a landing approach. The first two conjunc-
tions in Lines 34 and 35 evaluate to false because
relevant outputs use a disjoint altitude condi-
tion. The last conjunction requires an assumption.
Here, two assumptions are linked by the identi-
fier a1 to the assertion. The assumptions specify:
the known bound of received speed data (Line
31) as well as operational information (Line 30),
e.g., given by the concept of operation a nomi-
nal landing is only foreseen within the predefined
operational airspace. Note that assumptions are
provided by the user and are assumed to be
valid. Further, a second assertion is stated in
Line 38 that guarantees that the parachute should
only be activated when the aircraft is 100 meters
above ground. In this case, the property can be
shown assumption-free. Assertions help engineers

Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees 5

1input alt : Float32 // Height above ground
2input x, y : Float32, Float32 // Position
3input speed : Float32 // Velocity of aircraft
4input landing : Bool // Indicates landing mode
5// Status of landing gear
6input lg_status : (Float32,Float32,FLoat32)
7
8// Complex computations

9output dst_on_runway : Float32 :=
√
x2 + y2

10output geofence_violation : Bool := ...
11output landing_gear_ready : Bool := ...
12
13// Take-off contingency
14output decelerate := alt < 1.0 ∧ speed < 10.0
15∧ dst_on_runway > 20.0
16// In-flight contingency
17output parachute := geofence_violation ∧ alt > 100.0
18// Landing contingency
19output gain_alt := landing ∧ alt ≥ 10.0
20∧ (landing_gear_ready[-4..0, true, ∧]
21→ speed > 10.0)
22
23// Notifications to the system
24trigger decelerate "RECOVERY: Stop take-off by
25decelerating aircraft."
26trigger parachute "RECOVERY: Activate parachute."
27trigger gain_alt "RECOVERY: Gain altitude for next
28landing attempt."
29
30assume <a1> ¬(landing ∧ geofence_violation)
31assume <a1> abs(speed) ≤ 80.0
32
33// Only one contingency is activated at once.
34assert <a1> ¬((decelerate ∧ parachute)
35∨ (decelerate ∧ gain_alt)
36∨ (parachute ∧ gain_alt))
37// Parachute only activated 100 m above ground.
38assert <a2> parachute → alt > 100.0

Listing 1: A simplified Run-Time Assurance Lola
specification with three recovery functions for
three different flight phases. Assumptions and
assertions are used to show that only one recovery
function is activated at once.

to show that certain properties are true. The given
assertions indicate how specification debugging
and management can benefit from the extension –
it avoids digging into complex computations.

The extension and its verification approach are
presented in the following. In general, the verifi-
cation extension is used if a Lola specification is
annotated in the following way:

assume ⟨α1⟩ θ1

...

assume ⟨αm⟩ θm

assert ⟨αm+1⟩ ψ1

...

assert ⟨αm+n⟩ ψn

where α1, . . . , αm+n ∈ Γ are identifiers for
θ1, . . . , θm, ψ1, . . . , ψn, which are Boolean stream
expressions with possibly temporal operators. For
convenience, we define functions which return all
θ and ψ that are linked to a given α identifier:
assume(α) = {θj | ∀αj ∈ Γ, α = αj} and
assert(α) = {ψj | ∀αj ∈ Γ, α = αj}. The set of
assertion ψ1, . . . , ψn is correct for all input streams
if and only if whenever an assumption is satisfied,
its corresponding assertion is satisfied as well.

The verification of assertions relies on the
encoding of the Lola execution in Satisfiability
Modulo Theory (SMT). We define the smt func-
tion that encodes a stream expression in Def. 1. It
can be used to encode independent and dependent
variables as well as expressions of assumptions and
assertions.

Definition 1 (SMT-Encoding of Stream Expressions)
Let Φ be a Lola specification over independent stream
variables t1, . . . , tm and dependent stream variables
s1, . . . , sn. Further, let the natural number N + 1 be
the length of the input streams, c be an SMT con-
stant symbol, and τ01 , . . . , τ

N
1 , . . . , τ0m, . . . , τ

N
m , σ01 ,

. . . , σN1 , . . . , σ
0
n, . . . , σ

N
n be SMT variables. Then, the

function smt recursively encodes a stream expression
e at position j with 0 ≤ j ≤ N in the following way:

• Base cases:

– smt(c)(j) = c

– smt(ti)(j) = τ ji
– smt(si)(j) = σji

• Recursive cases:

– smt(f(e1, . . . , en))(j) =
f(smt(e1)(j), . . . , smt(en)(j))

– smt(ite(eb, e1, e2))(j) =
ite(smt(eb)(j), smt(e1)(j), smt(e2)(j))

– smt(e[k, c])(j) ={
smt(e)(j + k) if 0 ≤ j + k ≤ N,

c otherwise

where ite is an SMT encoding of if-then-else; f is an
interpreted function if f is from a theory supported
by the SMT solver and an uninterpreted function
otherwise.

Next, Proposition 1 proves the correctness of
asserted stream properties for finite input streams.
If the set of assertions is correct, asserted stream

Springer Nature 2021 LATEX template

6 Monitoring with Verified Guarantees

properties are guaranteed to be valid in each step
of the monitor execution. In practice, such specifi-
cations are preferable. In the following, let Φ be a
Lola specification with verification annotations.
Further, we refer to the set of input streams and
computed output streams as stream execution.

Proposition 1 (Assertion Verification of a Finite
Stream Execution)
Let Φ be a Lola specification and let s1, . . . , sn be
dependent stream variables used in Φ. The set of
assertions is correct for a finite stream execution with
length N +1 under given assumptions, if the following
formula is valid:∧

0≤i≤N

(∧
α∈Γ

(∧
θ ∈ assume(α)

smt(θ)(i) ∧∧
sk∈Φ

σik = smt(ek)(i) →
∧

ψ ∈ assert(α)

smt(ψ)(i)
))

The formula in Proposition 1 unfolds the com-
plete stream execution and informally expresses
that an assertion must hold in each stream posi-
tion whenever its corresponding assumption and
implementation are satisfied.

To avoid the complete unfolding and allow
arbitrary stream lengths, an inductive argument
is given in Proposition 2 that defines proof obliga-
tions for an annotated Lola specification. Next,
we present a template for the stream unfold-
ing that helps to define the proof obligation at
the Beginning (Definition 3), during Run (Defini-
tion 4), and at the End (Definition 5) of a stream
execution.

Definition 2 (Template Stream Unfolding)
We define the template formula ϕt that states proof
obligations as:

∧
α∈Γ

(∧
i∈p asm

(∧
θ∈assume(α)

smt(θ)(i)
)

∧
∧

i∈p asserted

(∧
ψ∈assert(α)

smt(ψ)(i)
)

∧
∧

i∈p streams

(∧
0<k≤n

σk = smt(ek)(i)
)

→
∧

i∈p assert

(∧
ψ∈assert(α)

smt(ψ)(i)
))

where p asm, p asserted , p streams, and p assert are
template parameters. They are sets of positions for
the unfolding of assumptions, previously proven asser-
tions, output streams, and assertions, respectively.

The template formula in Definition 2 uses tem-
plate parameters for the stream unfolding. For
instance, the parameter assignment p asm := {i |
0 ≤ i < 10} adds assumptions at the first ten
positions of the stream execution. Further, the
parameter p asserted allows to incorporate the
induction hypothesis.

In the following, we will use the Lola specifi-
cation in Listing 2 as a running example for the
template stream unfolding.

Here, the input reset represents a reset com-
mand for the output stream o1 that counts how
long no reset occurred. Output o1 is used by
output o2 which aggregates over the previous,
the current, and the next outcome of o1 . This
is achieved by using the offset operator, e.g.,
o1[-1, 0] accesses the previous value of o1 if it
exists, otherwise it takes the default value 0. As
assertion, we show that o2 is always positive and
never larger than three given the assumption that
in each execution step either the previous or the
next reset is true. The assumption ensures that at
most two consecutive resets are false. Given the
reset sequence of input values ⟨true; false; false⟩
that satisfies the assumption, the resulting o1
stream evaluates to ⟨0; 1; 2⟩. Here, at the second
position of the sequence, o2 evaluates to three. To
show that the assertion also holds at the first and
the last position of the sequence, out-of-bounds
values must be considered.

We show how the template ϕt can be used at
the beginning of a stream execution. Here, default
values due to past stream accesses beyond the
beginning of a stream need to be captured by the
obligation to guarantee that the assertions hold

1assume<a1> reset[-1, false] ∨ reset[1, false]
2input reset : Bool
3output o1 := if reset then 0 else o1[-1, 0] + 1
4output o2 := o1[-1, 0] + o1 + o1[1, 0]
5assert<a1> 0 ≤ o2 and o2 ≤ 3

Listing 2: Lola specification with assumptions on
a reset that guarantees that an output remains
within bounds.

Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees 7

in these cases. The combination of past out-of-
bounds and future out-of-bounds default values
must also be covered by the obligations in case
the stream is stopped early. These scenarios are
depicted for the running example in Figure 2.

The figure shows four finite stream executions
with different lengths. All stream positions are
colored gray, while only some positions contain a
single red dot. These features indicate the unfold-
ing of stream variables and annotations using the
template ϕt. A gray-colored position means that
the assumptions have been unfolded and a dotted
position means the assertion has been unfolded.
Further, arrows indicate temporal stream accesses
where solid lines correspond to accesses by out-
puts and dashed lines correspond to accesses by
annotations, i.e., assumptions and assertions. For
each stream execution, only the arrows for a sin-
gle position are depicted – the arrows for other
positions have been omitted for the sake of clar-
ity. For example, for N = 0, the accesses of output
o2 are both out-of-bounds, i.e., the default value
zero is used. While for N = 3, the accesses at
the second position are shown where only the past
access of the assumption leads to an out-of-bounds
access, i.e., only the dotted line towards the begin-
ning of the stream execution. The figure depicts
all necessary stream executions that cover all
combinations of past out-of-bounds accesses, i.e.,
with and without future bound violations. The
described unfoldings of Figure 2 are formalized as
proof obligations in Definition 3.

Definition 3 (Proof Obligations ϕBegin for Past Out-
-of-bounds Accesses)
Let wp = sup({0} ∪ {|k| | e[k, c] ∈ Φ where k < 0})
be the most negative offset and wf = sup({0} ∪ {k |
e[k, c] ∈ Φ where k > 0}) be the greatest positive
offset. The proof obligations ϕBegin for past out-of-
bounds accesses are defined as the conjunction of
template formulas:∧

0≤N<max(1, 2·(wp+wf))

ϕt(
p asm, p asserted,
p streams, p assert)

with template parameters:
• p asm := {i | 0 ≤ i ≤ N},
• p asserted := ∅,
• p streams := {i | 0 ≤ i ≤ N},
• p assert := {i | 0 ≤ i <

max(1, min(N + 1, 2 · wp))}.

N=0 •

N=1 • •

N=2 • •

N=3 • •

Fig. 2: Four stream executions of different length
N + 1 with the respective template unfolding
are depicted. The stream executions consider all
cases with past out-of-bound accesses. A gray-
colored box indicates that an assumption has been
unfolded at this position, while a red dotted box
indicates that an assertion has been unfolded at
this position. Solid and dashed arrows indicate
accesses by streams and annotations, respectively.

Next, the case where no out-of-bounds access
occurs is considered. Hence, the obligations cap-
ture the nominal case where no default value is
used. Since we have shown that past out-of-bounds
accesses are valid we can use these proven asser-
tions as assumptions. Figure 3 depicts a stream
execution with a single dotted position, i.e., the
position where the assertion must be proven. As
can be seen, all accesses from this position are
within bounds. Further, note that the accesses of
the first and the last unfolded assumption, i.e.,
the first and the last gray-colored position, are
also within bounds. The described unfolding is
formalized as proof obligations in Definition 4.

Definition 4 (Proof Obligations ϕRun for No Out-
-of-bounds Accesses)
The proof obligations ϕRun without out-of-bounds
accesses are defined as
ϕt(p asm, p asserted , p streams, p assert) with tem-
plate parameters:

• p asm := {i | wp ≤ i ≤ N − wf},
• p asserted := {i | 2 · wp ≤ i ≤ N − 2 · wf

∧ i ̸= 3 · wp},
• p streams := {i | 2 · wp ≤ i ≤ N − 2 · wf ,
• p assert := {i | i = 3 · wp},

where N = 3 · (wp + wf).

Springer Nature 2021 LATEX template

8 Monitoring with Verified Guarantees

N=6 •

Fig. 3: A stream execution of length N + 1 with
the corresponding template unfolding is depicted.
The stream execution considers the case where no
out-of-bound access occurs. Gray-colored and red
dotted positions represent unfolded assumptions
and assertions, respectively. Solid and dashed
arrows indicate accesses by streams and annota-
tions, respectively.

Last, we consider the case where only future
out-of-bounds accesses occur. Hence, the respec-
tive obligations need to incorporate default values
of future out-of-bounds accesses. As before, we can
use the previously proven assertions as assump-
tions. Figure 4 depicts a stream execution with
two dotted positions, i.e., positions where the
assertion must be proven. The position where
arrows are given represents the case where only
the assumption results in a future out-of-bounds
access. The last position of the stream execution
represents the case in which both the assump-
tion and the stream result in future out-of-bounds
accesses. The presented unfolding is formalized as
proof obligations in Definition 5.

Definition 5 (Proof Obligations ϕEnd for Future
Out-of-bounds Accesses)
The proof obligations ϕEnd for future out-of-bounds
accesses are defined as
ϕt(p asm, p asserted , p streams, p assert) with tem-
plate parameters:

• p asm := {i | wp ≤ i ≤ N},
• p asserted := {i | 2 · wp ≤ i < 3 · wp},
• p streams := {i | 2 · wp ≤ i ≤ N},
• p assert := {i | 3 · wp ≤ i ≤ N}

where N = 3 · wp + wf .

So far, we have defined proof obligations for
certain positions in the stream execution with
and without out-of-bounds accesses. Together, the
proof obligations constitute an inductive argu-
ment for the correctness of the assertions, see
Proposition 2. Here, the base case is given by
Definition 3 and induction steps are given by Def-
initions 4 and 5. The induction steps use the
induction hypothesis, i.e., valid assertions, due to
the template parameter p asserted.

N=4 • •

Fig. 4: A stream execution of length N + 1 with
the corresponding template unfolding is depicted.
The stream execution covers all cases where future
out-of-accesses occur. Gray-colored and red dot-
ted positions represent unfolded assumptions and
assertions, respectively. Solid and dashed arrows
indicate accesses by streams and annotations,
respectively.

Proposition 2 (Assertion Verification by Lola
Unfolding)
The set of assertions is correct if the formula
ϕBegin ∧ ϕRun ∧ ϕEnd is valid.

To prove that Proposition 2 holds, we dis-
tinguish exhaustively four specification cases: no
temporal accesses (Proposition 3), past tempo-
ral accesses only (Proposition 4), future temporal
accesses only (Proposition 5), and past and future
temporal accesses (Proposition 6). First, in the
case without temporal accesses, we show that all
the necessary obligations for a Hoare triple are
encoded in the formula and that this formula only
evaluates to false if the assertions are not satisfied
while all assumptions are.

Proposition 3 (Assertion Verification for Zero Off-
sets)
For a Lola specification with wp = 0 and wf =
0, the set of assertions is correct if the formula
ϕBegin ∧ ϕRun ∧ ϕEnd is valid.

Proof The set of assertions ψ1, . . . , ψn is correct for
all input streams if and only if whenever an assump-
tion is satisfied, its corresponding assertion is satisfied
as well. Without loss of generality, let Γ = {α},
assume(α) = {θ}, and assert(α) = {ψ}. We prove the
proposition by showing that the formula encodes an
argument for the correctness of the assertions. We con-
sider the case that wp = 0, wf = 0, and the formula
ϕBegin ∧ ϕRun ∧ ϕEnd is valid.

In this case, we do not have past or future out-
of-bounds accesses. Hence, the obligations consider a
single Run step with N = 0 and template parameters:

• p asm := {i | i = 0},
• p asserted := ∅,
• p streams := {i | i = 0},
• p assert := {i | i = 0}.

Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees 9

By instantiating the template for Run, we encode the
following obligations:

ϕRun
Def. 3
= ϕt(

p asm, p asserted,
p streams, p assert)

Def. 2
=

∧
i∈{0}

smt(θ)(i) ∧
∧
i∈∅

smt(ψ)(i)

∧
∧
i∈{0}

(∧
0<k≤n

σk = smt(ek)(i)
)

→
∧
i∈{0}

smt(ψ)(i)

= smt(θ)(0) ∧
∧

0<k≤n
σk = smt(ek)(0)

→ smt(ψ)(0)

As can be seen, the formula encodes “assume ∧
program→ assertion” for a single position. Note that
a single position suffices since no temporal dependen-
cies exist. Table 1 shows that the formula evaluates to
false only if an assertion evaluates to false, although
the assumptions are valid and the output computa-
tions behave as expected. Conversely, if the formula is
valid, then the set of assertions is correct or assump-
tions violated.
Note that no further obligations are added by ϕBegin

and ϕEnd since the same template instances are
created.

ϕBegin
Def. 3
=

∧
0≤N<1

ϕt(
{i|0≤i≤N}, ∅,
{i|0≤i≤N}, {i|0≤i<1})

= ϕt({0}, false, {0}, {0}) = ϕRun

ϕEnd
Def. 5
= ϕt(

{i|0≤i≤0}, ∅,
{i|0≤i≤0}, {i|0≤i≤0})

= ϕt({0}, false, {0}, {0}) = ϕRun

□

Next, we show that all necessary obligations
for temporal accesses to previous stream values are
encoded. Further, we show that an encoding of an
inductive argument is provided that considers all
possible combinations of out-of-bounds accesses
at the beginning of stream execution as the base
case and a monitoring step with no out-of-bounds
accesses as the inductive step.

θ σ ψ θ ∧ σ → ψ
0 0 0 1 assumption invalid
0 0 1 1 assumption invalid
0 1 0 1 assumption invalid
0 1 1 1 assumption invalid
1 0 0 1 outputs invalid
1 0 1 1 outputs invalid
1 1 0 0 incorrect
1 1 1 1 correct

Table 1: Truth table for the encoding of the Hoare
triple.

Proposition 4 (Assertion Verification for Past Off-
sets Only)
For a Lola specification with wp > 0 and wf =
0, the set of assertions is correct if the formula
ϕBegin ∧ ϕRun ∧ ϕEnd is valid.

Example Consider the Lola specification

1assume<a1> reset[-1, false] ∨ reset
2input reset : Bool
3output o1 := if reset then 0 else o1[-1, 0] + 1
4output o2 := o1[-1, 0] + o1
5assert<a1> 0 ≤ o2 and o2 ≤ 3

that simplifies Listing 2, e.g., only past offset accesses
are used. Here, wp is 1 and wf is 0. The unfolding
of ϕBegin checks all possible combinations of out-
of-bounds accesses of annotations, i.e., reset[-1,

false], and outputs, i.e., o1[-1, 0]. In comparison
to Figure 2, ϕBegin would only produce N = 0 and
N = 1 without future accesses. ϕRun represents the
induction step where no default values are taken.

Proof The set of assertions ψ1, . . . , ψn is correct for
all input streams if and only if whenever an assump-
tion is satisfied, its corresponding assertion is satisfied
as well. Without loss of generality, let Γ = {α},
assume(α) = {θ}, and assert(α) = {ψ}. We prove
the proposition by showing that the formula encodes
an inductive argument for the correctness of the asser-
tions. We consider the case that wp > 0, wf = 0, and
the formula ϕBegin ∧ ϕRun ∧ ϕEnd is valid.

In this case, we consider only accesses to the
past. The formula encodes a k-induction where ϕBegin

encodes the base cases and ϕRun the step case.
The template parameter for ϕBegin are:

• p asm := {i | 0 ≤ i ≤ N},
• p asserted := ∅,
• p streams := {i | 0 ≤ i ≤ N},
• p assert := {i | 0 ≤ i <

min(N + 1, 2 · wp)}.

Springer Nature 2021 LATEX template

10 Monitoring with Verified Guarantees

ϕBegin
Def. 3
=

∧
0≤N<2·wp

ϕt(
p asm,p asserted,
p streams,p assert)

Def. 2
=

∧
0≤N<2·wp

(∧
i∈p asm

smt(θ)(i)

∧
∧

i∈p streams

(∧
0<k≤n

σk = smt(ek)(i)
)

→
∧

i∈p assert
smt(ψ)(i)

)
ϕBegin encodes stream executions that handles all
possible out-of-bounds accesses. The range of stream
execution N from 0 to 2 ·wp covers all combinations of
stream and assumption out-of-bounds scenarios. Two
times the wp is required since it is required in case
that an output accesses available past values while at
the same position the access of an assumption is out-
of-bounds. Figure 5 depicts an example for wp = 1.
The sub-figure on the top shows a stream execution
where both the output computation and the assump-
tion have out-ouf-bounds accesses. The sub-figure on
the bottom shows a stream execution where the out-
put access to the past at the last position is in-bound
but at the accessed position the access of the used
assumption is not.

ϕRun unfolds a stream execution and uses the
inductive argument. The unfolding is depicted in
Fig. 6. It shows that a stream execution is unfolded
with an assertion at position 3·wp. The inductive argu-
ment is depicted as asserted. The asserted unfolding
is based on the base-cases of the k-induction where
k = wp. Further, our encoding ensures that no out-
of-bounds accesses occur by sufficiently unfolding the
assumptions and outputs.

Both out-of-bounds: •

Assumption out-of-bounds: • •

Fig. 5: All stream executions of ϕBegin for wp = 1
are depicted. It shows the case where possibly
both accesses are out-of-bounds (upper) and the
case where only an assumption is out-of-bounds
(lower). A gray-colored box indicates that an
assumption has been unfolded at this position,
while a red dotted box indicates that an asser-
tion has been unfolded at this position. Solid and
dashed arrows indicate accesses by streams and
annotations, respectively.

The template parameter for ϕRun are:
• p asm := {i | wp ≤ i ≤ 3 · wp},
• p asserted := {i | 2 · wp ≤ i < 3 · wp},
• p streams := {i | 2 · wp ≤ i ≤ 3 · wp},
• p assert := {i | i = 3 · wp}.

and N = 3 · wp.

ϕRun
Def. 4
= ϕt(

p asm, p asserted,
p streams,p assert)

Def. 2
=

∧
i∈p asm

smt(θ)(i) ∧
∧

i∈p asserted

smt(ψ)(i)

∧
∧

i∈p streams

(∧
0<k≤n

σk = smt(ek)(i)
)

→
∧

i∈p assert

smt(ψ)(i)

Since wf = 0, no future out-of-bounds access can
occur and, therefore, no obligations are added by
ϕEnd .

ϕEnd
Def. 5
= ϕt(

{i|wp≤i≤3·wp}, {i|2·wp≤i<3·wp},
{i|2·wp≤i≤3·wp}, {i|3·wp≤i≤3·wp})

= ϕt(p asm, p asserted , p streams, p assert)

= ϕRun

The formula ϕBegin ∧ ϕRun ∧ ϕEnd intuitively
encodes a k-induction where k = wp:

ϕBegin


assume(0) ∧ program(0) → assert(0)

. . .

assume(k) ∧ program(k) → assert(k)

∧ ϕRun

{
assume(n) ∧ program(n) → assert(n)

Similar to the first case, for each base case and step
case, if the formula is valid then the assertions must
be correct. □

1 . . . wp . . . 2wp . . . 3wp

assumptions

outputs

asserted

assertion

Fig. 6: The unfolding of a stream execution is
depicted. The assertion is proven at Position 3 ·
wp. Assumptions and outputs are unfolded such
that all accesses can be resolved. The inductive
argument that is shown in the induction base is
represented by asserted.

Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees 11

After specifications with past offsets only, we
now consider future-only specifications. Similar to
before, we show that an encoding of an induc-
tive argument is provided. In contrast to before,
the encoding must also prove that default values
do not violate assertions at the end of a stopped
stream execution.

Proposition 5 (Assertion Verification for Future Off-
sets Only)
For a Lola specification with wp = 0 and wf >
0, the set of assertions is correct if the formula
ϕBegin ∧ ϕRun ∧ ϕEnd is valid.

Example Consider the Lola specification

1assume<a1> reset ∨ reset[1, false]
2input reset : Bool
3output o1 := if reset then 0 else o1[1, 0] + 1
4output o2 := o1[1, 0] + o1
5assert<a1> 0 ≤ o2 and o2 ≤ 3

that simplifies Listing 2, e.g., only future offset
accesses are used. Here, wp is 0 and wf is 1. The
unfolding of ϕBegin checks all possible combinations of
out-of-bounds accesses of annotations, i.e., reset[1,
false], and outputs, i.e., o1[1, 0]. ϕRun represents
the induction step where no default values are taken.

Proof The set of assertions ψ1, . . . , ψn is correct for
all input streams if and only if whenever an assump-
tion is satisfied, its corresponding assertion is satisfied
as well. Without loss of generality, let Γ = {α},
assume(α) = {θ}, and assert(α) = {ψ}. We prove
the proposition by showing that the formula encodes
an inductive argument for the correctness of the asser-
tions. We consider the case that wp = 0, wf > 0, and
the formula ϕBegin ∧ ϕRun ∧ ϕEnd is valid.

In this case, only future stream accesses are consid-
ered. The formula encodes a k-induction where ϕEnd

represent the base cases and ϕRun the step case. By
unfolding a stream execution of length wf , ϕEnd cov-
ers all possible future out-of-bounds combinations for
stream as well as annotation accesses. Figure 7 depicts
ϕEnd where N = wf . The cases are similar to the base
cases in the second case but this time for the future
accesses. The template parameter for ϕEnd are:

• p asm := {i | 0 ≤ i ≤ wf},
• p asserted := ∅,
• p streams := {i | 0 ≤ i ≤ wf},
• p assert := {i | 0 ≤ i ≤ wf}.

and N = wf .

• . . . •

1 wf

Fig. 7: A stream executions of length wf is
depicted. It shows the case where only the
last assumption access is out-of-bounds. A gray-
colored box indicates that an assumption has been
unfolded at this position, while a red dotted box
indicates that an assertion has been unfolded at
this position. Solid and dashed arrows indicate
accesses by streams and annotations, respectively.

ϕEnd
Def. 5
= ϕt(p asm, p asserted , p streams, p assert)

Def. 2
=

∧
i∈p asm

smt(θ)(i) ∧
∧
i∈∅

smt(ψ)(i)

∧
∧

i∈p streams

(∧
0<k≤n

σk = smt(ek)(i)
)

→
∧

i∈p assert

smt(ψ)(i)

The induction step ϕRun unfolds a stream execution
and uses the inductive argument. The unfolding is
depicted in Fig. 8. In this case, the assertion is at the
first position and the k base cases hold for possible
future out-of-bounds accesses, i.e., at the next wf posi-
tions. Further, outputs and assumptions are unfolded
to consider all necessary output computations and
assertion accesses.
The template parameter for ϕRun are:

• p asm := {i | 0 ≤ i ≤ 2 · wf},
• p asserted := {i | 0 ≤ i ≤ wf ∧ i ̸= 0},
• p streams := {i | 0 ≤ i ≤ wf},
• p assert := {i | i = 0}.

and N = 3 · wf .

ϕRun
Def. 4
= ϕt(p asm, p asserted , p streams, p assert)

Def. 2
=

∧
i∈p asm

smt(θ)(i) ∧
∧

i∈p asserted

smt(ψ)(i)

∧
∧

i∈p streams

(∧
0<k≤n

σk = smt(ek)(i)
)

→
∧

i∈p assert

smt(ψ)(i)

Note that ϕBegin adds no further obligations to the
formula since a single execution suffices to include all
possible out-of-bounds values.

Springer Nature 2021 LATEX template

12 Monitoring with Verified Guarantees

1 . . . wf . . . 2wf . . . 3wf

assumptions

outputs

asserted

assertion

Fig. 8: The unfolding of a stream execution is
depicted. The assertion is proven at the first posi-
tion. Assumptions and outputs are unfolded such
that all accesses can be resolved. The inductive
argument that is shown in the induction base is
represented by asserted.

The formula ϕBegin ∧ ϕRun ∧ ϕEnd intuitively
encodes a k-induction where k = wf :

ϕEnd


assume(0) ∧ program(0) → assert(0)

. . .

assume(k) ∧ program(k) → assert(k)

∧ ϕRun

{
assume(n) ∧ program(n) → assert(n)

Similar to the past-only case, for each base case and
step case, if the formula is valid then the assertions
must be correct. □

Finally, the next case provides an inductive
argument for Lola specification with past and
future temporal accesses. The inductive argument
incorporates default values in the base case at the
beginning and at the end of stream executions.
Further, it handles all combinations of past and
future out-of-bounds accesses.

Proposition 6 (Assertion Verification for Non-Zero
Offsets)
For a Lola specification with wp > 0 and wf >
0, the set of assertions is correct if the formula
ϕBegin ∧ ϕRun ∧ ϕEnd is valid.

Example Consider the Lola specification in Listing 2,
i.e., wp = 1 and wf = 1. The unfolding of ϕBegin

checks all possible combinations of out-of-bounds
accesses of annotations, i.e., reset[-1, false] and
reset[1, false] , and outputs, i.e., o1[-1, 0] and
o1[1, 0]. ϕRun represents the induction step where
no default values are taken.

Proof The set of assertions ψ1, . . . , ψn is correct for
all input streams if and only if whenever an assump-
tion is satisfied, its corresponding assertion is satisfied
as well. Without loss of generality, let Γ = {α},
assume(α) = {θ}, and assert(α) = {ψ}. We prove
the proposition by showing that the formula encodes
an inductive argument for the correctness of the asser-
tions. We consider the case that wp > 0, wf > 0, and
the formula ϕBegin ∧ ϕRun ∧ ϕEnd is valid.

Further, we consider combinations of past and
future accesses. Hence, all combinations of out-of-
bounds accesses need to be covered. The formula
ϕBegin covers all possible combinations of past out-
of-bounds accesses with future accesses. The combi-
nations are depicted in Fig. 9: N = 0 represents the
case that all accesses are out-of-bounds, N = wp rep-
resents the case that except of the past output stream
access at the last position all other accesses are out-
of-bounds and vice versa for the future stream access
at the first position, N = 2 · wp represents the case
that only accesses of annotations are out-of-bounds,
N = 2 · wp + wf represents both cases that only one
annotation is out-of-bounds, and N = 2 ·(wp+wf)−1
represents the case that only the past access of an
annotation is out-of-bounds.
The template parameter for ϕBegin are:

• p asm := {i | 0 ≤ i ≤ N},
• p asserted := ∅,
• p streams := {i | 0 ≤ i ≤ N},
• p assert := {i | 0 ≤ i <

min(N + 1, 2 · wp)}.

ϕBegin
Def. 3
=

∧
0≤N<2·(wp+wf)

ϕt(
p asm,p asserted,
p streams,p assert)

Def. 2
=

∧
0≤N<2·(wp+wf)

(∧
i∈p asm

smt(θ)(i)

∧
∧
i∈∅

smt(ψ)(i)

∧
∧

i∈p streams

(∧
0<k≤n

σk = smt(ek)(i)
)

→
∧

i∈p assert

smt(ψ)(i)

)

Since ϕBegin covers only combinations of past out-
of-bounds accesses with future accesses, ϕEnd covers
future out-of-bounds accesses only. The unfolding is
depicted in Fig. 10. The assertions are unfolded such
that all combinations of future out-of-bounds accesses
are covered: annotation only and stream and annota-
tion combined. Since the first k base cases are already
covered, they can be used here as asserted. Further,
outputs and assumptions are unfolded such that all
required accesses are available.

Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees 13

N = 0 • N = wp • . . . •

N = 2 · wp • . . . • . . . •

N = 2 · wp + wf • . . . • . . . • . . . •

N = 2 · (wp + wf)− 1 • . . . • . . . • . . . • . . . •

Fig. 9: All combinations of past out-of-bounds accesses with future accesses are depicted.

The template parameter for ϕEnd are:
• p asm := {i | wp ≤ i ≤ 3 · wp + wf},
• p asserted := {i | 2 · wp ≤ i < 3 · wp},
• p streams := {i | 2 · wp ≤ i ≤ 3 · wp + wf},
• p assert := {i | 3 · wp ≤ i ≤ 3 · wp + wf}.

and N = 3 · wp + wf .

ϕEnd
Def. 4
= ϕt(p asm, p asserted , p streams, p assert)

Def. 2
=

∧
i∈p asm

smt(θ)(i) ∧
∧

i∈p asserted

smt(ψ)(i)

∧
∧

i∈p streams

(∧
0<k≤n

σk = smt(ek)(i)
)

→
∧

i∈p assert

smt(ψ)(i)

Last, we need to show that the assertions also hold for
the case that no out-of-bounds access exists. Hence,
the unfolding is encoded as depicted in Fig. 11. The
assertion is proven at position 3 · wp and already
shown assertions of past and future accesses are incor-
porated by asserted. Further, all required accesses of
outputs and assumptions are unfolded such that no
out-of-bounds access exists.
The template parameter for ϕRun are:

• p asm := {i | wp ≤ i ≤ 3 · wp + 2 · wf},
• p asserted := {i | 2 · wp ≤ i ≤ 3 · wp + wf

∧i ̸= 3 · wp},
• p streams := {i | 2 · wp ≤ i ≤ 3 · wp + wf},
• p assert := {i | i = 3 · wp}.

and N = 3 · (wp + wf).

ϕRun
Def. 4
= ϕt(p asm, p asserted , p streams, p assert)

Def. 2
=

∧
i∈p asm

smt(θ)(i) ∧
∧

i∈p asserted

smt(ψ)(i)

∧
∧

i∈p streams

(∧
0<k≤n

σk = smt(ek)(i)
)

→
∧

i∈p assert

smt(ψ)(i)

Similar to the other cases, for each base case and step
case, if the formula is valid then the assertions must
be correct.

□

By proving all cases of temporal accesses in the
Propositions 3 to 6, the Proposition 2 is proven
– the verification approach is sound. Soundness
refers to the ability of an analyzer to prove the
absence of errors — if a Lola specification is
accepted, it is guaranteed that the assertions are
not violated. The converse does not hold, i.e., the
presented verification approach is not complete.
Completeness refers to the ability of an analyzer
to prove the presence of errors — if a Lola spec-
ification is rejected, the counter-example given
should be a valid stream execution that results in
an assertion violation. The following Lola spec-
ification is rejected even though no assertion is
violated:

1input a: Int32
2assume <a1> a ≤ 10
3output sum :=
4if sum[-1, 0] ≤ 10 then 0 else sum[-1, 0] + a
5assert <a1> sum ≤ 100

Here, since the if-condition in Line 3 evaluates
to true at the beginning of the stream execution,
sum is a constant stream with value zero. Hence,
the assertion in Line 4 is never violated. The ver-
ification approach rejects this specification. The
reason for this is that sum ≤ 100 is added as an
asserted condition in ϕRun . Therefore, the SMT
solver can assign a value between 91 and 100 to
the earliest sum variable of the unfolding, resulting
in an assertion violation of the next sum variable.

Springer Nature 2021 LATEX template

14 Monitoring with Verified Guarantees

1 . . . wp . . . 2wp . . . 3wp . . . 3wp + wf

assumptions

outputs

asserted

assertion

Fig. 10: The unfolding at the end of a stream execution is depicted. Assumptions and outputs are
unfolded such that all accesses can be resolved. The inductive argument that is shown in the induction
base is represented by asserted.

1 . . . wp . . . 2wp . . . 3wp . . . 3wp + wf . . . 3wp + 2wf . . . 3(wp + wf)

assumptions

outputs

asserted

assertion

Fig. 11: The unfolding of a stream execution during run is depicted. The assertion is proven at position
3 · wp. Assumptions and outputs are unfolded such that all accesses can be resolved. The inductive
argument that is shown in the induction base is represented by asserted.

4 Application Experience in
Avionics

In this section, we present details about the tool
implementation and tool experiences on practical
avionic specifications.

Tool Implementation and Usage

The tool is based on the open source RTLola
framework4. Specifically, it uses the Lola fron-
tend to parse a given specification into an interme-
diate representation. Based on this representation,
the SMT formulas are created and evaluated
with the Rust z3 crate5. At its current phase
of the crate’s development, a combined solver is
implemented that internally uses either a non-
incremental or an incremental solver. There is
no information on the implemented tactics avail-
able, but all our requests could be solved within
seconds. For functions that are not natively sup-
ported by the Rust Z3 solver, the output is

4https://rtlola.org/. The extension is not open source yet,
but will be integrated into [23].

5https://docs.rs/z3/0.9.0/z3/

arbitrarily chosen by the solver with respect to
the range of the function. The tool expects a
Lola specification augmented by assumptions
and assertions. The verification is done auto-
matically and produces a counter-example stream
execution, if any exists. The counter-example can
then be used by the user to debug its specifica-
tions. Two different kinds of users are targeted.
First, users that write the entire augmented spec-
ification. Such a user could be a system engineer
who is developing a safety monitor and wants to
ensure that it contains critical properties. Second,
users that augment an existing specification. Here,
one reason could be that an existing monitor shall
be composed with other critical components and
certain behavioral properties are expected. Also,
similar to software testing, the task of writing a
specification and their respective assumptions and
assertions could be separated between two users
to ensure the independence of both.

https://rtlola.org/
https://docs.rs/z3/0.9.0/z3/

Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees 15

Practical Results

To gain practical tool experience, previously writ-
ten specifications based on interviews with engi-
neers of the German Aerospace Center [25] were
extended by assumptions and assertions. The pre-
vious specifications were tested using log-files and
simulations – the authors considered them correct.
We report several specification errors in Table 2
that were detected by the presented verification
extension. In fact, the detected errors would have
resulted in undetected failures. After the errors
in the previous specifications were fixed, all asser-
tions were proven correct. Note that the errors
could have been found by manual reviews. How-
ever, such reviews are tedious and error-prone,
especially when temporal behaviors are involved.
The detected errors in Table 2 can be grouped
into three classes: Classical Bugs, Operator Errors,
and Wrong Interpretations. Classical bugs are
errors that occur when implementing an algo-
rithm. Operator errors are Lola specific errors,
e.g., temporal accesses. Last, wrong interpreta-
tions refer to gaps between the specification and
the user’s design intend, e.g., violated assertions
due to incomplete specifications. Next, we give
one representative example for each group. We
reduced the specification to the representative
fragment.

Example 1 (Classical Bug)
The Lola specification in Listing 3 monitors the fuel
level. A monitor shall notify the operator when one of
the three different fuel levels are reached: half (Line
9), warning (Line 10), and danger (Line 11). The fuel
level is computed as a percentage in Lines 7 to 8. It
uses the fuel level at the beginning of the flight (Line
6) as a reference for its computation. Given the doc-
umentation of the fuel sensor, it is known that fuel

values are within R+ and decreasing. This is formal-
ized in Line 4 as an assumption. As an invariant, we
asserted that the starting fuel is greater or equal to
fuel (Line 16). Further, in Lines 17 to 19, we stated
that once a level is reached it should remain at this
level. During our experiment, the assertion led to a
counter-example that pointed to the previously used
and erroneous fuel level computation:

output fuel_level := (start_fuel - fuel) / start_fuel

In short, the output computed the consumed fuel and
not the remaining fuel. The computation could be eas-
ily fixed by converting consumed fuel into remaining

1// Inputs
2input fuel: Float64
3// Assumptions
4assume<a5> fuel > 0.0 and fuel < fuel[-1, fuel + 0.1]
5// Outputs
6output start_fuel := start_fuel[-1, fuel]
7output fuel_level :=
81.0 - (start_fuel - fuel) / start_fuel
9output fuel_half := fuel_level < 0.50
10output fuel_warning := fuel_level < 0.25
11output fuel_danger := fuel_level < 0.10
12trigger_once fuel_half "INFO: Fuel is below 50%"
13trigger_once fuel_warning "WARNING: Fuel is below 25%"
14trigger_once fuel_danger "DANGER: Fuel is below 10%"
15// Assertions
16assert<a5> start_fuel >= fuel
17and (fuel_half[-1, false] -> fuel_half)
18and (fuel_warning[-1, false] -> fuel_warning)
19and (fuel_danger[-1, false] -> fuel_danger)

Listing 3: The fixed version of the Lola
ctrl output specification that monitors the fuel
level. Three level of engagement are depicted: half,
warning, and danger.

fuel, see Line 8. Therefore, Listing 3 satisfies its asser-
tion. Note, that offset accesses were used to assert
the temporal behavior of the fuel level output stream.
Further, trigger once is an abbreviation which states
that only the first raising edge is reported to the user.

Example 2 (Operator Error)
An important monitoring property is to detect frozen
values as these indicate a deteriorated sensor. Such a
specification is depicted in Listing 4. Here, as an input,
the acceleration in x−direction is given. The frozen
value check is computed from Line 6 to Line 10. It
compares previous values using Lola’s offset operator.
To check this computation, we added the sanity check
that asserts that no frozen value shall be detected
(Line 13) when small changes in the input are present
(Line 4). In the previous version, the frozen values
were computed using the abbreviated offset operator:

output frozen_ax := ax[-5..0, 0.0, =]

This resulted in a counter-example that pointed to
wrong default values. Although the abbreviated ver-
sion is easier to read and reduces the size of the
specification, it is unfortunately not suitable for this
kind of property. The tool detected the unlikely situa-
tion that the first value of ax is 0.0 which would have
resulted in evaluating frozen ax to true. Although
unlikely, this should be avoided as contingencies acti-
vated in such situations depend on correct results
and otherwise could harm people on the ground. By
unfolding the operator and adding a different default
value to one of the past accesses, the error was resolved
(Line 6). Listing 4 shows the fixed version which
satisfies its assertion.

Springer Nature 2021 LATEX template

16 Monitoring with Verified Guarantees

Specification Appx. #o #a #g Detected errors
gps vel output A.1 14 6 6 –
gps pos output A.2 19 3 10 –
imu output A.3 18 6 6 Wrong default value

Division by zero
nav output A.4 25 3 5 Missing abs()
tagging A.5 6 2 2 –
ctrl output A.6 25 7 8 Wrong threshold comparisons
mm output 1 A.7 4 1 2 –
mm output 2 A.8 17 6 9 Missing if condition

Wrong default value
contingency output A.9 4 8 1 Observation: both contingencies could

be true in case of voting, i.e., both at 50%
health output A.10 1 5 1 –

Table 2: Detected errors by the verification extension, where #o, #a, and #g represent the number of
outputs, assumptions, and assertions given in the specification, respectively.

1// Inputs
2input ax: Float32
3// Assumptions
4assume <a1> ax != ax[-1, ax + ε]
5// Outputs
6output frozen_ax := ax[-5, 0.1] = ax[-4, 0.0]
7and ax[-4, 0.0] = ax[-3, 0.0]
8and ax[-3, 0.0] = ax[-2, 0.0]
9and ax[-2, 0.0] = ax[-1, 0.0]
10and ax[-1, 0.0] = ax
11trigger frozen_ax "WARNING: x-acceleration is frozen!"
12// Assertions
13assert <a1> !frozen_ax

Listing 4: The Lola imu output specification that
monitors frozen acceleration values.

Example 3 (Wrong Interpretation)
In Listing 5, two visual sensor readings are received
(Lines 2-5). Both, readings argue over the same
observations where avgDist represents the average
distance to the measured obstacle, actual is the num-
ber of measurements, and static is the number of
unchanged measurements. A simple rating function is
introduced (Lines 7-12) that estimates the correspond-
ing rating – the higher the better. Using these ratings,
the trust in each of the sensors is computed probabilis-
tically (Lines 11-13). When considering the integration
of such a monitor as an ASTM F3269-21 switch
condition that decides which sensor value should be
forwarded, the specification should be revised. This is
the case because the assertion in Line 17 produces a
counter-example which indicates that both trust trig-
gers (Lines 14-15) can be activated at the same time.
A common solution for this problem is to introduce a
priority between the sensors.

1// Inputs
2input avgDist_laser, actual_laser,
3static_laser: Float64
4input avgDist_optical, actual_optical,
5static_optical: Float64
6// Outputs
7output rating_laser := 0.2 * static_laser
8+ 0.4 * actual_laser + 0.4 * avgDist_laser
9output rating_optical := 0.2 * static_optical
10+ 0.4 * actual_optical + 0.4 * avgDist_optical
11output trust_laser :=
12rating_laser / (rating_laser + rating_optical)
13output trust_optical := 1.0 - trust_laser
14trigger trust_laser >= 0.5
15trigger trust_optical >= 0.5
16// Assertions
17assert <a1> trust_laser != trust_optical

Listing 5: The Lola contingency output
specification that uses an heuristic to decide which
sensor is more trustworthy.

The examples show how the presented Lola
verification extension can be used to find errors
in specifications. We also noticed that the annota-
tions can serve as documentation. System assump-
tions are often implicitly known during develop-
ment and are finally documented in natural lan-
guage in separate files. Having these assumptions
explicitly stated within the monitor specification
potentially reduces future mistakes when reusing
the specification, e.g., when composing with other
monitor specifications. Listing 6 depicts such an
example specification. Here, the monitor interfaces
are clearly defined by the domain of input a (Line
5) and output o (Line 13). Also, reset is assumed

Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees 17

to be valid at least once per second (Line 5).
Further, no deeper understanding of the internal
computations (Lines 7-10) is required in order to
safely compose this specification with others.

1// Inputs with frequency 5Hz
2input a: Float64
3input reset: Bool
4// Assumptions
5assume <a1> 0.0 ≤ a ≤ 1.0 and reset[-4..0, false, ∨]
6// Outputs
7output o_1 := ...
8...
9output o_n := ...
10output o := o_1 + ... + o_n
11trigger o ≥ 0.5 "Warning: Output o exceeds threshold!"
12// Assertions
13assert <a1> 0.0 ≤ o ≤ 1.0

Listing 6: Lola specification annotations describe
interface properties.

5 Monitoring Assumptions

The presented verification approach offers an anal-
ysis of the specification that can guarantee the
desired behavior of the monitor outputs. Yet,
these guarantees are often based on assumptions
that can be violated at runtime. Further, a vio-
lated assumption does not directly result in a vio-
lated assertions. As an example consider Listing 4
that states an assertion which is violated when
six consecutive ax values are the same. Hence, the
sequence ⟨0 .1 ; 0 .1 ; 0 .1 ; 0 .1 ; 0 .4 ; 0 .5 ⟩ satisfies
the assertion. Yet, it violates the assumption at
the first positions.

In this section, we will give a translation of an
annotated specification into a specification that
checks assumptions at runtime and efficiently acti-
vates and deactivates assertion checks. Further,
we will present experimental results showing that
the verification extension not only provides static
guarantees, but that translating it into a corre-
sponding specification can lead to better runtime
performance compared to a monitor that simply
checks all assertions during runtime.

5.1 Translation into Lola 2.0

We translate an annotated Lola specification into
a Lola 2.0 specification [10]. Lola 2.0 extends
Lola by streams that can be spawned, filtered,
and closed at runtime. For the translation, we only
need to handle assumptions and assertions since
trigger, input, and output streams are directly
supported by Lola 2.0.

We replace each assumption by an output
stream. A stream output o : Bool spawn if

es filter ef close ec := e(t1, . . ., tm, s1
, . . ., sn) is an output stream that is created
when its spawn condition es is true. It then starts
producing values by evaluating its computation e
if its filter condition ef is true until its close con-
dition ec is satisfied. Since a violated assumption
can influence previous and future assertions due
to temporal offset accesses, the computation e is
a counter that represents how many assertions
are impacted by the assumption. If the counter
is positive, then an assumption was violated that
influences an assertion computation. To compute
the impact of a violated assumption, we take the
maximum between the longest chain of offset
accesses from assertion to assumption plus one.
This is achieved by an analysis of the depen-
dency graph [8]. To start the counter, we use the
negated assumption as spawn condition. Further,
we close the stream when the impact of a violated
assumption is over, i.e., when the counter is zero.
As filter condition, we use true to decrease the
counter in each step.

We also represent assertion checks by output
streams. For each assertion, we use an output
stream that is only extended if one of its corre-
sponding assumptions is violated, i.e., its counter
value is positive. We also add a trigger to report
assertion violations.

As an example consider the annotated Lola
specification

1input vel : Float32 // Velocity
2assume <a> -20.0 ≤ vel ≤ 20.0
3output vel_max := max(abs(vel), vel_max[-1, 0.0])
4trigger vel_max > 20.0 "Velocity threshold exceeded!"
5assert <a> abs(vel[-2..0, 0.0, +]) / 3.0 ≤ 20.0

that checks the maximal velocity value (Line 3)
and the average velocity over a discrete window of
three (Line 5). The assumption (Line 2) and the
assertion (Line 5) are transformed to

1output assumption
2spawn if !(-20.0 ≤ vel ≤ 20.0)
3filter true close assumption = 0
4:= if -20.0 ≤ vel ≤ 20.0
5then assumption[-1,0] - 1 else 1
6trigger assumption > 0 "Assumption violated!"
7output assertion
8spawn if true filter assumption > 0 close false
9:= abs(vel[-2..0, 0.0, +]) / 3.0 ≤ 20.0
10trigger !assertion "Assertion violated!"

The output vel max and trigger remain
unchanged. Note that the trigger could have been
replaced by an assertion. Yet, this would not

Springer Nature 2021 LATEX template

18 Monitoring with Verified Guarantees

reduce as much overhead as for the window check
which the following experiments will show.

5.2 Experiments

For our experiments, we compare the performance
of the presented translation to a naive transla-
tion that checks assumptions and assertions inde-
pendently in each execution step. As annotated
specification, we use

1input ai: Float64
2assume <a> ai ≤ 2.0
3assert <a> ai[-w..0, 0.0, +] ≤ w · 2.0

that we scale in the number of annotation pairs
using the variable i and the computational load
of the assertion by the window variable w. For
instance, i = 10 and w = 5 produces ten
inputs with the corresponding annotations where
each assertion takes the sum over the last five
input values including the current one. The naive
translation vn with omitted triggers is

1input ai: Float64
2output assumptioni := ai ≤ 2.0
3output assertioni := ai[-w..0, 0.0, +] ≤ w · 2.0

The presented translation vt also with omitted
triggers is

1input ai: Float64
2output assumptioni
3spawn if ai > 2.0 filter true close assumptioni = 0
4:= if ai ≤ 2.0 then assumptioni[-1,0] - 1 else w
5output assertioni
6spawn if true filter assumptioni > 0 close false
7:= ai[-w..0, 0.0, +] ≤ w · 2.0

For the experiments, the considered values of i
were 5, 10, and 15 and the values of w were 0,
5, and 10. The experiments were conducted on
three different kinds of log-files: no assumption is
violated, all assumptions are violated, half of the
assumptions are violated. Each log-file contains
10.000.000 events that were sufficient to report the
average time in nanoseconds required by the mon-
itor to evaluate one input event. Each experiment
was carried out three times and the average was
taken. For the experiments, an eight-core machine
with an 2.5GHz Intel i7 processor with 32GB
RAM was used.

The results of the experiments are depicted in
Figure 12. As can be seen in Table 12a, which
considers log-files with no violation of assump-
tions, version vt significantly improves runtime by
up to 64.06%. It can also be seen that version vt
improves the required time per event by 8.17%
already in the case of simple assertions. Further,

the required time for vt remained constant while
increasing the window size which shows that no
unnecessary assertion checks were computed; in
contrast to vn, where the required time corre-
lates with the size of the window. Next, Table 12b
considers log-files where all assumptions are vio-
lated. The results show that this time vt correlates
with the size of the window similar to vn since
all the assertions need to be checked due to vio-
lated assumptions. The experiments show that vt
incurs an overhead of up to −33.86%. However
Table 12c shows that already in the case where
half of the inputs violate the assumptions and a
more complex assertion is used (w = 5), the Lola
2.0 specification version vt pays off and outper-
forms vn by up to 15.91%. The results are also
graphically depicted in Figure 12d.

Overall, the experiments show that translating
an annotated specification into a Lola 2.0 speci-
fication can be used to report assertion violations
due to violated assumptions efficiently at runtime.
Since assumptions are generally expected to be
satisfied in the nominal case, the translation also
improves the monitor’s runtime without losing its
guarantees. Especially complex assertions based
on simple assumptions benefit from the transla-
tion. If the assertions are simple, the benefits from
the translation are negligible.

Remark: We also considered the alternative
Lola assumption encoding

1output assumptioni
2:= if ai ≤ 2.0 then if assumptioni[-1,0] = 0 then 0

else assumptioni[-1,0] - 1 else w

that no longer uses Lola 2.0 features. Our result
showed a runtime improvement of up to 59.17%
in the case of no violations and a runtime dete-
rioration of only up to −8.54%. Still, we decided
on the Lola 2.0 assumption encoding to gain
the best performance, since assumptions should
not be violated in the nominal case. Yet, these
results indicate that the parameterization of the
assumptions has the largest share in the reported
deterioration.

Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees 19

Window w
Number of inputs i

5 10 15
vn [µs] vt [µs] ∆ [%] vn [µs] vt [µs] ∆ [%] vn [µs] vt [µs] ∆ [%]

0 1203.67 1105.34 8.17 2404.67 2096.67 12.81 3674.67 3236.34 11.93
5 1951.67 1118.00 42.72 4146.34 2127.67 48.69 6318.00 3273.34 48.19
10 2859.67 1124.34 60.68 5985.00 2151.00 64.06 8977.00 3228.00 64.04

(a) None of the 10.000.000 events in the log-file violates the assumption.

Window w
Number of inputs i

5 10 15
vn [µs] vt [µs] ∆ [%] vn [µs] vt [µs] ∆ [%] vn [µs] vt [µs] ∆ [%]

0 2371.34 3092.67 −30.42 4637.67 6165.34 −32.94 6922.34 9266.34 −33.86
5 3124.00 3881.34 −24.24 6376.00 7956.34 −24.79 9440.34 11842.34 −25.44
10 3972.34 4844.00 −21.94 8203.67 9852.00 −20.09 12157.00 14513.67 −19.39

(b) All of the 10.000.000 events in the log-file violate the assumption.

Window w
Number of inputs i

5 10 15
vn [µs] vt [µs] ∆ [%] vn [µs] vt [µs] ∆ [%] vn [µs] vt [µs] ∆ [%]

0 1783.67 2099.00 −17.68 3505.00 4163.00 −18.77 5311.00 6270.34 −18.06
5 2535.00 2515.00 0.79 5222.34 5043.00 3.43 7839.00 7518.34 4.09
10 3409.34 2967.00 12.97 7071.00 6032.34 14.69 10560.67 8880.67 15.91

(c) Half of the 10.000.000 events in the log-file violate the assumption.

0 2 4 6 8 10

2,000

4,000

6,000

8,000

Window size

T
im

e
in
µ
s

0 2 4 6 8 10

5,000

10,000

15,000

Window size

0 2 4 6 8 10

2,000

4,000

6,000

8,000

10,000

Window size

vn for 5 inputs
vt for 5 inputs
vn for 10 inputs
vt for 10 inputs
vn for 15 inputs
vt for 15 inputs

(d) Graphical representation of Figure 12a on the left, 12b in the middle, and 12c on the right.

Fig. 12: The results of the log-file analyses using the translations of an annotated specification is given.
Entries in the table represent the time required by the monitor for one input event. The specification
version vn represents a specification that checks assumptions and assertion for each event in the log-file
whereas the specification version vt checks an assertions only if its corresponding assumption is violated
by the use of output streams that use spawn, filter, and close conditions. The symbol ∆ represents the
runtime effect of dynamic assertion checks, i.e., positive values indicate improvement and negative values
indicate deterioration.

Springer Nature 2021 LATEX template

20 Monitoring with Verified Guarantees

6 Conclusion

As both the relevance and the complexity of
cyber-physical systems continue to grow, runtime
monitoring is an essential ingredient of safety-
critical systems. When monitors are derived from
specifications it is crucial that the specifications
are correct. In this paper, we have presented a
sound verification approach for the stream-based
monitoring language Lola. With this approach,
the developer can formally prove guarantees on
the streams computed by the monitor, and hence
ensure that the monitor does not cause dangerous
situations. The verification extension is motivated
by upcoming aviation regulations and standards
as well as by practical feedback of engineers.

The extension has been applied to previously
written Lola specifications that were obtained
based on interviews with aviation experts. In this
process, we discovered and fixed several serious
specification errors.

Further, since assumption can fail during run-
time, they must be monitored and only when they
are violated, their respective assertions need to
be monitored as well. In this paper, we have effi-
ciently monitored verified guarantees at runtime.
Our experiments have shown that our Lola 2.0
encoding can significantly improve the monitors
performance while maintaining a low overhead
in case of few assumption violations. Yet, this
improvement is highly dependent on the given
specification. In general, simple assumptions and
complex assertions benefit from this approach.

In the future, we plan to develop auto-
matic invariant generation for Lola specifica-
tions. Another interesting direction for future
work is to support the effort of [1] by exploit-
ing the results of the analysis for the optimization
of the specification and the resulting monitoring
code. Finally, we plan to extend the verification
approach to RTLola, the real-time extension of
Lola.

Acknowledgement

This work was partially supported by the German
Research Foundation (DFG) as part of the Col-
laborative Research Center Foundations of Per-
spicuous Software Systems (TRR 248, 389792660),
by the European Research Council (ERC) Grant
OSARES (No. 683300), and by the Aviation

Research Program LuFo of the German Fed-
eral Ministry for Economic Affairs and Energy
as part of “Volocopter Sicherheitstechnologie zur
robusten eVTOL Flugzustandsabsicherung durch
formales Monitoring”(No. 20Q1963C).

References

[1] Baumeister, J., Finkbeiner, B., Kruse, M.,
Schwenger, M.: Automatic optimizations
for stream-based monitoring languages. In:
Deshmukh, J., Ničković, D. (eds.) Runtime
Verification. pp. 451–461. Springer Interna-
tional Publishing, Cham (2020)

[2] Baumeister, J., Finkbeiner, B., Schirmer, S.,
Schwenger, M., Torens, C.: RTLola cleared
for take-off: Monitoring autonomous aircraft.
In: Lahiri, S.K., Wang, C. (eds.) Computer
Aided Verification. pp. 28–39. Springer Inter-
national Publishing, Cham (2020)

[3] Baumeister, J., Finkbeiner, B., Schwenger,
M., Torfah, H.: Fpga stream-monitoring
of real-time properties. ACM Trans.
Embed. Comput. Syst. 18(5s) (oct
2019). https://doi.org/10.1145/3358220,
https://doi.org/10.1145/3358220

[4] Beckert, B., Hähnle, R., Schmitt, P.H.
(eds.): Verification of Object-Oriented
Software. The KeY Approach, LNCS
4334, vol. 4334. Springer-Verlag (2007).
https://doi.org/10.1007/978-3-540-69061-0

[5] Berry, G.: The Foundations of Esterel, p.
425–454. MIT Press, Cambridge, MA, USA
(2000)

[6] Bobot, F., Filliâtre, J.C., Marché, C., Paske-
vich, A.: Let’s verify this with why3. Interna-
tional Journal on Software Tools for Technol-
ogy Transfer 17, 709–727 (2015)

[7] Cluzeau, J.M., Henriquel, X., van Dijk, L.,
Gronskiy, A.: Concepts of design assur-
ance for neural networks (CoDANN). Tech.
rep., EASA European Union Aviation Safety
Agency (Mar 2020)

[8] D’Angelo, B., Sankaranarayanan, S.,
Sanchez, C., Robinson, W., Finkbeiner,

https://doi.org/10.1145/3358220

Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees 21

B., Sipma, H.B., Mehrotra, S., Manna, Z.:
Lola: Runtime monitoring of synchronous
systems. In: 12th International Sympo-
sium on Temporal Representation and
Reasoning (TIME’05). pp. 166–174 (2005).
https://doi.org/10.1109/TIME.2005.26

[9] Dauer, J.C., Finkbeiner, B., Schirmer, S.:
Monitoring with verified guarantees. In: Feng,
L., Fisman, D. (eds.) Runtime Verification.
pp. 62–80. Springer International Publishing,
Cham (2021)

[10] Faymonville, P., Finkbeiner, B., Schirmer, S.,
Torfah, H.: A stream-based specification lan-
guage for network monitoring. In: Falcone,
Y., Sánchez, C. (eds.) Runtime Verification.
pp. 152–168. Springer International Publish-
ing, Cham (2016)

[11] Finkbeiner, B., Oswald, S., Passing, N.,
Schwenger, M.: Verified rust monitors for lola
specifications. In: Deshmukh, J., Ničković,
D. (eds.) Runtime Verification. pp. 431–
450. Springer International Publishing, Cham
(2020)

[12] Floyd, R.W.: Assigning Meanings to Pro-
grams, pp. 65–81. Springer Netherlands,
Dordrecht (1993), https://doi.org/10.1007/
978-94-011-1793-7 4

[13] Gautier, T., Le Guernic, P., Besnard, L.: Sig-
nal: A declarative language for synchronous
programming of real-time systems. In: Kahn,
G. (ed.) Functional Programming Languages
and Computer Architecture. pp. 257–277.
Springer Berlin Heidelberg, Berlin, Heidel-
berg (1987)

[14] Hagen, G., Tinelli, C.: Scaling up the formal
verification of lustre programs with smt-
based techniques. In: 2008 Formal Methods
in Computer-Aided Design. pp. 1–9 (2008).
https://doi.org/10.1109/FMCAD.2008.ECP.19

[15] Halbwachs, N., Caspi, P., Raymond, P.,
Pilaud, D.: The synchronous data flow
programming language lustre. Proceedings
of the IEEE 79(9), 1305–1320 (1991).
https://doi.org/10.1109/5.97300

[16] Hoare, C.A.R.: An axiomatic basis
for computer programming. Commun.
ACM 12(10), 576–580 (Oct 1969).
https://doi.org/10.1145/363235.363259,
https://doi.org/10.1145/363235.363259

[17] Jagadeesan, L.J., Puchol, C., Von Olnhausen,
J.E.: Safety property verification of Esterel
programs and applications to telecommunica-
tions software. In: Wolper, P. (ed.) Computer
Aided Verification. pp. 127–140. Springer
Berlin Heidelberg, Berlin, Heidelberg (1995)

[18] Leino, K.R.M.: Dafny: An automatic pro-
gram verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) Logic
for Programming, Artificial Intelligence, and
Reasoning. pp. 348–370. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2010)

[19] Müller, P., Schwerhoff, M., Summers, A.J.:
Viper: A verification infrastructure for
permission-based reasoning. In: Jobstmann,
B., Leino, K.R.M. (eds.) Verification, Model
Checking, and Abstract Interpretation. pp.
41–62. Springer Berlin Heidelberg, Berlin,
Heidelberg (2016)

[20] Nagarajan, P., Kannan, S.K., Torens,
C., Vukas, M.E., Wilber, G.F.: ASTM
F3269 - An Industry Standard on Run
Time Assurance for Aircraft Systems.
https://doi.org/10.2514/6.2021-0525, https:
//arc.aiaa.org/doi/abs/10.2514/6.2021-0525

[21] Nenzi, L., Bortolussi, L., Ciancia, V., Loreti,
M., Massink, M.: Qualitative and quantita-
tive monitoring of spatio-temporal proper-
ties. In: Bartocci, E., Majumdar, R. (eds.)
Runtime Verification. pp. 21–37. Springer
International Publishing, Cham (2015)

[22] Pike, L., Goodloe, A., Morisset, R., Niller, S.:
Copilot: A hard real-time runtime monitor.
In: Barringer, H., Falcone, Y., Finkbeiner, B.,
Havelund, K., Lee, I., Pace, G., Roşu, G.,
Sokolsky, O., Tillmann, N. (eds.) Runtime
Verification. pp. 345–359. Springer Berlin
Heidelberg, Berlin, Heidelberg (2010)

[23] Reactive Systems Group, C.: RTLola.
https://github.com/reactive-systems/

https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1145/363235.363259
https://arc.aiaa.org/doi/abs/10.2514/6.2021-0525
https://arc.aiaa.org/doi/abs/10.2514/6.2021-0525
https://github.com/reactive-systems/RTLola-Frontend

Springer Nature 2021 LATEX template

22 Monitoring with Verified Guarantees

RTLola-Frontend, https://github.com/
reactive-systems/RTLola-Interpreter (2023)

[24] Reinbacher, T., Rozier, K.Y., Schumann, J.:
Temporal-logic based runtime observer pairs
for system health management of real-time
systems. In: Ábrahám, E., Havelund, K.
(eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems. pp. 357–372.
Springer Berlin Heidelberg, Berlin, Heidel-
berg (2014)

[25] Schirmer, S.: Runtime Monitoring with Lola.
Master’s thesis, Saarland University (Dec
2016)

[26] Schirmer, S., Torens, C., Adolf, F.: For-
mal monitoring of risk-based geofences.
In: 2018 AIAA Information Systems-
AIAA Infotech @ Aerospace (2018).
https://doi.org/10.2514/6.2018-1986, https:
//arc.aiaa.org/doi/abs/10.2514/6.2018-1986

[27] Seto, D., Krogh, B., Sha, L., Chutinan, A.:
The simplex architecture for safe online
control system upgrades. In: Proceedings
of the 1998 American Control Confer-
ence. ACC (IEEE Cat. No.98CH36207).
vol. 6, pp. 3504–3508 vol.6 (1998).
https://doi.org/10.1109/ACC.1998.703255

[28] Song, Y., Chin, W.N.: A synchronous effects
logic for temporal verification of pure esterel.
In: Henglein, F., Shoham, S., Vizel, Y. (eds.)
Verification, Model Checking, and Abstract
Interpretation. pp. 417–440. Springer Inter-
national Publishing, Cham (2021)

https://github.com/reactive-systems/RTLola-Frontend
https://github.com/reactive-systems/RTLola-Frontend
https://github.com/reactive-systems/RTLola-Interpreter
https://github.com/reactive-systems/RTLola-Interpreter
https://arc.aiaa.org/doi/abs/10.2514/6.2018-1986
https://arc.aiaa.org/doi/abs/10.2514/6.2018-1986

Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees 23

Appendix A Lola Specifications – Experience Report

A.1 Specification : gps vel output

1input sol age: Float32
2input hor spd: Float32
3input trk gnd: Float32
4input vert spd: Float32
5input time s: UInt64
6input time us: UInt64
7// Assumptions
8assume <a1> time − time.offset(by: −1).defaults(to: time − 0.1) > 0.0
9and time − time.offset(by: −1).defaults(to: time − 0.1) <= 0.1
10and trace pos >= 0
11
12assume <a2> time − time.offset(by: −1).defaults(to: time − 0.1) > 0.0
13and time − time.offset(by: −1).defaults(to: time − 0.1) <= 0.1
14and trace pos >= 0
15// Frequency computations
16output time := cast(time s) + cast(time us) / 1000000.0
17output start time := if time.offset(by: −1).defaults(to: −1.0) = −1.0 then time else start time.offset(by:

−1).defaults(to: −1.0)
18output flight time := time − start time
19output trace pos @ sol age or hor spd or trk gnd or vert spd or time s or time us := trace pos.offset(by:

−1).defaults(to: −1) + 1
20output frequency :=
211.0 / (time − time.offset(by: −1).defaults(to: time − 0.0001))
22output freq sum :=
23freq sum.offset(by: −1).defaults(to: 0.0) + frequency
24output freq avg := freq sum / cast(trace pos+1)
25output freq max := if frequency > freq max.offset(by: −1).defaults(to: frequency) then frequency else

freq max.offset(by: −1).defaults(to: frequency)
26output freq min := if frequency < freq min.offset(by: −1).defaults(to: frequency) then frequency else

freq min.offset(by: −1).defaults(to: frequency)
27// Speed computations
28output hor spd max := if hor spd > hor spd max.offset(by: −1).defaults(to: 0.0) then hor spd else

hor spd max.offset(by: −1).defaults(to: 0.0)
29output vert spd max := if vert spd > vert spd max.offset(by: −1).defaults(to: 0.0) then vert spd else

vert spd max.offset(by: −1).defaults(to: 0.0)
30// Solution age and track over ground (motion direction wrt. north)
31trigger sol age <= 0.5 ”Sol age should remain zero!”
32output trk gnd in bound := if trk gnd >= 0.0 and trk gnd <= 360.0 then trk gnd in bound.offset(by:

−1).defaults(to: true) else false
33output trk gnd max := if trk gnd > trk gnd min.offset(by: −1).defaults(to: 0.0) then trk gnd else

trk gnd min.offset(by: −1).defaults(to: 0.0)
34output trk gnd min := if trk gnd < trk gnd max.offset(by: −1).defaults(to: 0.0) then trk gnd else

trk gnd max.offset(by: −1).defaults(to: 0.0)
35// Assertions
36assert <a1> time.offset(by: −1).defaults(to: −1.0) < time
37and start time == start time.offset(by: −1).defaults(to: start time)
38and flight time >= flight time.offset(by: −1).defaults(to: 0.0)
39assert <a2> frequency >= 10.0
40and freq sum >= freq sum.offset(by: −1).defaults(to: 0.0) + 10.0
41assert <a3> trk gnd in bound.offset(by: −1).defaults(to: true)
42or !trk gnd in bound

Springer Nature 2021 LATEX template

24 Monitoring with Verified Guarantees

A.2 Specification : gps pos output

1import math
2input lat: Float32
3input lon: Float32
4input hgt: Float32
5input nObjs: UInt64
6input nGPSL1: UInt64
7input time s: UInt64
8input time us: UInt64
9// Assumptions
10assume <a1> time − time.offset(by: −1).defaults(to: time − 0.1) > 0.0
11and time − time.offset(by: −1).defaults(to: time − 0.1) <= 0.1
12and trace pos >= 0
13// Frequency computations
14output time: Float32 := cast(time s) + cast(time us) / 1000000.0
15output start time := if time.offset(by: −1).defaults(to: −1.0) == −1.0 then time else start time.offset(by:

−1).defaults(to: −1.0)
16output flight time := time − start time
17output trace pos @ lat or lon or hgt or nObjs or nGPSL1 or time s or time us := trace pos.offset(by:

−1).defaults(to: −1) + 1
18output frequency := 1.0 / (time − time.offset(by: −1).defaults(to: time − 0.0001))
19output freq sum := freq sum.offset(by: −1).defaults(to: 0.0) + frequency
20output freq avg := freq sum / cast(trace pos+1)
21output freq max := if frequency > freq max.offset(by: −1).defaults(to: 0.0) then frequency else

freq max.offset(by: −1).defaults(to: 0.0)
22output freq min := if frequency < freq min.offset(by: −1).defaults(to: 0.0) then frequency else

freq min.offset(by: −1).defaults(to: 0.0)
23// Statistics
24output lat max := if lat > lat max.offset(by: −1).defaults(to: lat) then lat else lat max.offset(by:

−1).defaults(to: lat)
25output lat min := if lat < lat min.offset(by: −1).defaults(to: lat) then lat else lat min.offset(by:

−1).defaults(to: lat)
26output lon max := if lon > lon max.offset(by: −1).defaults(to: lon) then lon else lon max.offset(by:

−1).defaults(to: lon)
27output lon min := if lon < lon min.offset(by: −1).defaults(to: lon) then lon else lon min.offset(by:

−1).defaults(to: lon)
28output lat in bound := max(abs(lat max), abs(lat min)) <= 90.0
29output lon in bound := max(abs(lon max), abs(lon min)) <= 180.0
30trigger !lat in bound ”Irregular latitude value!”
31trigger !lon in bound ”Irregular longitude value!”
32output begin := false
33output start height := if begin.offset(by: −1).defaults(to: true) then hgt else start height.offset(by:

−1).defaults(to: 0.0)
34output hgt inc max := max(hgt inc max.offset(by: −1).defaults(to: 0.0), hgt − start height)
35output hgt dec max := min(hgt dec max.offset(by: −1).defaults(to: 0.0) , hgt − start height)
36trigger hgt inc max > 100.0 ”Never increase height by more than 100m!”
37trigger hgt dec max < −100.0 ”Never decrease height by more than 100m”
38// Assertions
39assert <a1> time.offset(by: −1).defaults(to: −1.0) < time
40and start time == start time.offset(by: −1).defaults(to: start time)
41and flight time >= flight time.offset(by: −1).defaults(to: 0.0)
42assert <a2> hgt inc max >= 0.0 and hgt dec max <= 0.0
43and hgt inc max >= hgt inc max.offset(by: −1).defaults(to: 0.0)
44and hgt dec max <= hgt inc max.offset(by: −1).defaults(to: 0.0)

Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees 25

45and start height = start height.offset(by: −1).defaults(to: start height)
46and (lat in bound.offset(by: −1).defaults(to: true) or !lat in bound)
47and (lon in bound.offset(by: −1).defaults(to: true) or !lon in bound)

A.3 Specification : imu output

1import math
2input ax: Float32
3input ay: Float32
4input az: Float32
5input time s: UInt64
6input time us: UInt64
7input counter: Int64
8// Assumptions
9assume <a1> time − time.offset(by: −1).defaults(to: time − 0.1) > 0.0
10and time − time.offset(by: −1).defaults(to: time − 0.1) <= 0.1
11and trace pos >= 0
12assume <a2> ax != ax.offset(by: −1).defaults(to: ax + 0.1)
13and ay != ay.offset(by: −1).defaults(to: ay + 0.1)
14and az != az.offset(by: −1).defaults(to: az + 0.1)
15// Frequency computations
16output time := cast(time s) + cast(time us) / 1000000.0
17output start time := if time.offset(by: −1).defaults(to: −1.0) == −1.0 then time else start time.offset(by:

−1).defaults(to: −1.0)
18output flight time := time − start time
19output trace pos @ ax or ay or az or time s or time us or counter := trace pos.offset(by: −1).defaults(to:

−1) + 1
20output frequency := 1.0 / (time − time.offset(by: −1).defaults(to: time − 0.0001))
21output freq sum := freq sum.offset(by: −1).defaults(to: 0.0) + frequency
22output freq avg := freq sum / cast(trace pos+1)
23// Statistics
24output deviation := abs(frequency − 100.0)
25output exceeds worst := deviation > worst dev.offset(by: −1).defaults(to: 0.0)
26output worst dev pos := if exceeds worst then trace pos else worst dev pos.offset(by: −1).defaults(to: 0)
27output worst dev := if exceeds worst then deviation else worst dev.offset(by: −1).defaults(to: 0.0)
28output ax max := max(abs(ax),ax max.offset(by:−1).defaults(to:0.0))
29output ay max := max(abs(ay),ay max.offset(by:−1).defaults(to:0.0))
30output az max := max(abs(az),az max.offset(by:−1).defaults(to:0.0))
31trigger ax > 15.0 or ay > 15.0 or az > 15.0
32output frozen ax := ax.offset(by:−1).defaults(to:0.0) = ax
33and ax.offset(by:−2).defaults(to:0.0)=ax.offset(by:−1).defaults(to:0.0)
34and ax.offset(by:−3).defaults(to:0.0)=ax.offset(by:−2).defaults(to:0.0)
35and ax.offset(by:−4).defaults(to:0.0)=ax.offset(by:−3).defaults(to:0.0)
36and ax.offset(by:−5).defaults(to:0.1)=ax.offset(by:−4).defaults(to:0.0)
37output frozen ay := ay.offset(by:−1).defaults(to:0.0) = ay
38and ay.offset(by:−2).defaults(to:0.0)=ay.offset(by:−1).defaults(to:0.0)
39and ay.offset(by:−3).defaults(to:0.0)=ay.offset(by:−2).defaults(to:0.0)
40and ay.offset(by:−4).defaults(to:0.0)=ay.offset(by:−3).defaults(to:0.0)
41and ay.offset(by:−5).defaults(to:0.1)=ay.offset(by:−4).defaults(to:0.0)
42output frozen az := az.offset(by:−1).defaults(to:0.0) = az
43and az.offset(by:−2).defaults(to:0.0)=az.offset(by:−1).defaults(to:0.0)
44and az.offset(by:−3).defaults(to:0.0)=az.offset(by:−2).defaults(to:0.0)
45and az.offset(by:−4).defaults(to:0.0)=az.offset(by:−3).defaults(to:0.0)
46and az.offset(by:−5).defaults(to:0.1)=az.offset(by:−4).defaults(to:0.0)
47trigger frozen ax or frozen ay or frozen az

Springer Nature 2021 LATEX template

26 Monitoring with Verified Guarantees

48output check counter := if trace pos = 0 then false else (counter != (counter.offset(by: −1).defaults(to:
−1) + 1) % 100)

49trigger check counter ”A counter value was ignored.”
50// Assertions
51assert <a1> time.offset(by: −1).defaults(to: −1.0) < time
52and start time == start time.offset(by: −1).defaults(to: start time)
53and flight time >= flight time.offset(by: −1).defaults(to: 0.0)
54assert <a2> !frozen ax and !frozen ay and !frozen az

A.4 Specification : nav output

1import math
2input lat: Float32
3input lon: Float32
4input ug: Float32
5input vg: Float32
6input wg: Float32
7input time s: UInt64
8input time us: UInt64
9// Assertion
10assume <a1> trace pos >= 0
11and time − time.offset(by: −1).defaults(to: time − 0.1) <= 0.1
12and time − time.offset(by: −1).defaults(to: time − 0.1) > 0.0
13// Frequency Computation
14output time := cast(time s) + cast(time us) / 1000000.0
15output start time := if time.offset(by: −1).defaults(to: −1.0) == −1.0 then time else start time.offset(by:

−1).defaults(to: −1.0)
16output flight time := time − start time
17output trace pos @lat or lon or ug or vg or wg or time s or time us := trace pos.offset(by: −1).defaults(to:

−1) + 1
18output frequency := 1.0 / (time − time.offset(by: −1).defaults(to: time − 0.0001))
19output freq sum := freq sum.offset(by: −1).defaults(to: 0.0) + frequency
20output freq avg := freq sum / cast(trace pos+1)
21output freq max := if frequency > freq max.offset(by: −1).defaults(to: frequency) then frequency else

freq max.offset(by: −1).defaults(to: frequency)
22output freq min := if frequency < freq min.offset(by: −1).defaults(to: frequency) then frequency else

freq min.offset(by: −1).defaults(to: frequency)
23// Statistics
24output velocity := sqrt(ug∗ug + vg∗vg + wg∗wg)
25output lon1 rad := lon.offset(by: −1).defaults(to: 0.0) ∗ 3.1415926535 / 180.0
26output lon2 rad := lon ∗ 3.1415926535 / 180.0
27output lat1 rad := lat.offset(by: −1).defaults(to: 0.0) ∗ 3.1415926535 / 180.0
28output lat2 rad := lat ∗ 3.1415926535 / 180.0
29output dlon := lon2 rad − lon1 rad
30output dlat := lat2 rad − lat1 rad
31output a := (sin(dlat/2.0))∗(sin(dlat/2.0)) + cos(lat1 rad) ∗ cos(lat2 rad) ∗ (sin(dlon/2.0))∗(sin(dlon/2.0))
32output x atan2 := sqrt(a)
33output y atan2 := sqrt(1.0−a)
34output c := 2.0 ∗ if x atan2 > 0.0 then arctan(y atan2/x atan2)
35else if x atan2 < 0.0 and y atan2 >= 0.0
36then arctan(y atan2/x atan2) + 3.1415926535
37else if x atan2 < 0.0 and y atan2 < 0.0
38then arctan(y atan2/x atan2) − 3.1415926535
39else if x atan2 = 0.0 and y atan2 > 0.0 then 3.1415926535 / 2.0
40else if x atan2 = 0.0 and y atan2 < 0.0 then −3.1415926535 / 2.0

Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees 27

41else 0.0
42output gps distance := 6373000.0 ∗ c
43output passed time := time − time.offset(by: −1).defaults(to: 0.0)
44output distance max := velocity ∗ passed time
45output dif distance := abs(gps distance − distance max)
46output detected jump :=if trace pos=0 then false else dif distance>1
47trigger detected jump ”Jump!”
48// Assertions
49assert <a1> time.offset(by: −1).defaults(to: −1.0) < time
50and start time == start time.offset(by: −1).defaults(to: start time)
51and flight time >= flight time.offset(by: −1).defaults(to: 0.0)
52assert <a2> (!detected jump or gps distance > distance max)
53or (!detected jump or distance max > gps distance)

A.5 Specification : tagging

1import math
2input time s: UInt64
3input time us: UInt64
4input vel: Float64
5// Assumptions
6assume<a1> (time s = time s.offset(by: −1).defaults(to: 0)
7and time us > time us.offset(by: −1).defaults(to: 0))
8and (time s > time s.offset(by: −1).defaults(to: 0)
9or time us > time us.offset(by: −1).defaults(to: 0))
10// Exemplary State Statistics
11output time := cast(time s) + cast(time us) / 1000000.0
12output correct vel := abs(vel) < 0.3
13output cur state := if correct vel then
14if cur state.offset(by: −1).defaults(to: 0) = 0 then 1 else 2 else 0
15output start interval := cur state = 2
16output interval start := if start interval then interval start.offset(by: −1).defaults(to: 0.0) else time
17trigger start interval ”Interval started!”
18output end interval := cur state.offset(by: −1).defaults(to: 0) > 0 and !correct vel and time since start >

5.0
19trigger end interval ”Interval ended!”
20output time since start := time − interval start.offset(by: −1).defaults(to: 0.0)
21// Assertions
22assert <a1> !(start interval and end interval)
23and time since start > 0.0

A.6 Specification : ctrl output

1import math
2input time s: UInt64
3input time us: UInt64
4input vel x: Float64
5input vel y: Float64
6input vel z: Float64
7input fuel: Float64
8input power: Float64
9input vel r x: Float64
10input vel r y: Float64
11input vel r z: Float64

Springer Nature 2021 LATEX template

28 Monitoring with Verified Guarantees

12// Assumptions
13assume <a1> trace pos >= 0
14and time − time.offset(by: −1).defaults(to: time − 0.1) <= 0.1
15and time − time.offset(by: −1).defaults(to: time − 0.1) > 0.0
16assume<a2> power > 0.0
17and power <= power.offset(by: −1).defaults(to: power)
18and fuel > 0.0 and fuel < fuel.offset(by: −1).defaults(to: fuel + 0.1)
19and (time s = time s.offset(by: −1).defaults(to: 0)
20and time us > time us.offset(by: −1).defaults(to: 0))
21and (time s > time s.offset(by: −1).defaults(to: 0)
22or time us > time us.offset(by: −1).defaults(to: 0))
23// Frequency computations
24output time := cast(time s) + cast(time us) / 1000000.0
25output start time := if time.offset(by: −1).defaults(to: −1.0) == −1.0 then time else start time.offset(by:

−1).defaults(to: −1.0)
26output flight time := time − start time
27output trace pos @ time s or time us or vel x or vel y or vel z or fuel or power or vel r x or vel r y or

vel r z := trace pos.offset(by:−1).defaults(to:−1) + 1
28output frequency := 1.0 / (time − time.offset(by: −1).defaults(to: time − 0.0001)) // major improvement
29output freq sum := freq sum.offset(by: −1).defaults(to: 0.0) + frequency
30output freq avg := freq sum / cast(trace pos+1)
31output freq max := if frequency > freq max.offset(by: −1).defaults(to: frequency) then frequency else

freq max.offset(by: −1).defaults(to: frequency)
32output freq min := if frequency < freq min.offset(by: −1).defaults(to: frequency) then frequency else

freq min.offset(by: −1).defaults(to: frequency)
33// Exemplary phase detection
34output velocity := sqrt(vel x∗vel x + vel y∗vel y + vel z∗vel z)
35output velocity max := if reset max.offset(by: −1).defaults(to: false) then velocity else max(velocity,

velocity max.offset(by: −1).defaults(to: 0.0))
36output velocity min := if reset max.offset(by: −1).defaults(to: false) then velocity else min(velocity,

velocity min.offset(by: −1).defaults(to: 0.0))
37output dif max := abs(velocity max − velocity min)
38output reset max := dif max > 1.0
39output reset time := if reset max or trace pos = 0 then time else reset time.offset(by: −1).defaults(to: 0.0)
40output unchanged := if reset max.offset(by: −1).defaults(to: false) then 0 else unchanged.offset(by:

−1).defaults(to: 0) + 1
41trigger unchanged = 150 ”Phase detected!”
42// Statistics
43output vel dev := abs(vel r x−vel x) + abs(vel r y−vel y) + abs(vel r z−vel z)
44output dev sum := vel dev + dev sum.offset(by: −1).defaults(to: 0.0)
45output vel av := dev sum / cast((trace pos+1)∗3)
46output worst dev pos := if worst dev.offset(by: −1).defaults(to: vel dev − 1.0) < vel dev then trace pos

else worst dev pos.offset(by: −1).defaults(to: 0)
47output worst dev := if worst dev.offset(by: −1).defaults(to: vel dev − 1.0) < vel dev then vel dev else

worst dev.offset(by: −1).defaults(to: 0.0)
48output start fuel := start fuel.offset(by: −1).defaults(to: fuel)
49output fuel level := 1 − (start fuel − fuel) / start fuel
50output fuel half := fuel level < 0.50
51output fuel warning := fuel level < 0.25
52output fuel danger := fuel level < 0.10
53output start power := start power.offset(by: −1).defaults(to: power)
54output power p consumed := ((start power − power) / (start power))
55trigger once fuel half ”INFO: Fuel level is half reduced”
56trigger once fuel warning ”WARNING: Fuel level is below 25%”
57trigger once fuel danger ”DANGER: Fuel level is below 10%”

Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees 29

58trigger once power p consumed > 0.50 ”Power below half capacity”
59trigger once power p consumed > 0.75 ”Power below quarter capacity”
60trigger once power p consumed > 0.90 ”Urgent: Recharge Power!”
61// Assertions
62assert <a1> time.offset(by: −1).defaults(to: −1.0) < time
63and start time == start time.offset(by: −1).defaults(to: start time)
64and flight time >= flight time.offset(by: −1).defaults(to: 0.0)
65assert<a2> reset time >= 0.0
66and start fuel >= fuel and start power >= power
67and (!fuel half.offset(by: −1).defaults(to: false) or fuel half)
68and (!fuel warning.offset(by: −1).defaults(to: false)or fuel warning)
69and (!fuel danger.offset(by: −1).defaults(to: false) or fuel danger)
70and power p consumed >= power p consumed.offset(by: −1).defaults(to: power p consumed)

A.7 Specification : mm output 1

1import math
2input stateID SC: UInt64
3// Assumptions
4assume<a1> trace pos >= 0
5// Exemplary state transition analysis
6output trace pos @ stateID SC := trace pos.offset(by: −1).defaults(to: −1) + 1
7output change state := if trace pos = 0 then false
8else stateID SC != stateID SC.offset(by: −1).defaults(to: 0)
9output transitions := if stateID SC.offset(by:−1).defaults(to: 0) = 0 then stateID SC == 1
10else if stateID SC.offset(by: −1).defaults(to: 0) == 1 then stateID SC == 1 or stateID SC == 2
11else if stateID SC.offset(by: −1).defaults(to: 0) == 2 then stateID SC == 1 or stateID SC == 3
12else if stateID SC.offset(by: −1).defaults(to: 0) == 3 then stateID SC == 3
13else false
14output invalid transitions := change state and !transitions
15trigger invalid transitions ”Invalid state transition”
16// Assertions
17assert <a1> invalid transitions or
18!(stateID SC.offset(by: −1).defaults(to: 0) != 0 and stateID SC = 0)
19assert <a2> (stateID SC == 1 or stateID SC == 2 or stateID SC == 3)
20or !(stateID SC.offset(by: −2).defaults(to: 0) = 1
21and transitions.offset(by: −1).defaults(to: false) and transitions)

A.8 Specification : mm output 2

1import math
2input time s: UInt64
3input time us: UInt64
4input stateID SC: Int64
5input OnGround: UInt64
6// Assumptions
7assume <a1> trace pos >= 0
8and time − time.offset(by: −1).defaults(to: time − 0.1) <= 0.1
9and time − time.offset(by: −1).defaults(to: time − 0.1) > 0.0
10assume <a2> (time s = time s.offset(by: −1).defaults(to: 0)
11and time us > time us.offset(by: −1).defaults(to: 0))
12and (time s > time s.offset(by: −1).defaults(to: 0)
13or time us > time us.offset(by: −1).defaults(to: 0))
14// Frequency computations

Springer Nature 2021 LATEX template

30 Monitoring with Verified Guarantees

15output time := cast(time s) + cast(time us) / 1000000.0
16output start time := if time.offset(by: −1).defaults(to: −1.0) == −1.0 then time else start time.offset(by:

−1).defaults(to: −1.0)
17output flight time := time − start time
18output trace pos @ time s or time us or stateID SC or OnGround := trace pos.offset(by: −1).defaults(to:

−1) + 1
19output frequency := 1.0 / (time − time.offset(by: −1).defaults(to: time − 0.0001))
20output freq sum := freq sum.offset(by: −1).defaults(to: 0.0) + frequency
21output freq avg := freq sum / cast(trace pos+1)
22// Phase Statistics
23output change state := if trace pos = 0 then false
24else stateID SC != stateID SC.offset(by: −1).defaults(to: 0)
25trigger change state
26output entrance time := if change state then time
27else entrance time.offset(by: −1).defaults(to: time)
28output hover end := change state and stateID SC.offset(by: −1).defaults(to: −1) = 4
29output hover cur time := if hover end then
30time − entrance time.offset(by: −1).defaults(to: 0.0)else 0.0
31output hover sum time := hover sum time.offset(by: −1).defaults(to: 0.0) + hover cur time
32output hover num times := hover num times.offset(by: −1).defaults(to: 0) + if hover end then 1 else 0
33output hover max time := max (hover max time.offset(by: −1).defaults(to: 0.0), hover cur time)
34output hover avg time := if hover num times != 0 then hover sum time / cast(hover num times) else 0.0
35output landing info := if change state and stateID SC = 5 then 0.0 else time − entrance time.offset(by:

−1).defaults(to: time)
36output landing error := stateID SC = 5 and OnGround != 1 and landing info > 20.0
37// Assertions
38assert <a1> time.offset(by: −1).defaults(to: −1.0) < time
39and start time == start time.offset(by: −1).defaults(to: start time)
40and flight time >= flight time.offset(by: −1).defaults(to: 0.0)
41assert <a2> time >= entrance time and start time <= entrance time
42and hover cur time >= 0.0 and hover max time <= flight time
43assert <a3> !(landing error and hover end)
44and (!landing error or landing info > 0.0)

A.9 Specification : contingency output

1input avgDist laser: Float64
2input actual laser: Float64
3input static laser: Float64
4input avgDist optical:Float64
5input actual optical: Float64
6input static optical: Float64
7// Assumptions
8assume <a1> avgDist laser >= 0.0 and actual laser >= 0.0
9and static laser >= 0.0 and avgDist optical >= 0.0
10and actual optical >= 0.0 and static optical >= 0.0
11and (avgDist laser + actual laser + static laser > 0.0)
12and (avgDist optical + actual optical + static optical > 0.0)
13// Trust computations
14output rating laser := 0.2 ∗ static laser + 0.4 ∗ actual laser
15+ 0.4 ∗ avgDist laser
16output rating optical := 0.2 ∗ static optical + 0.4 ∗ actual optical + 0.4 ∗ avgDist optical
17output trust laser := rating laser / (rating laser + rating optical)
18output trust optical := 1.0 − trust laser
19trigger trust laser >= 0.5 ”Trust in laser”

Springer Nature 2021 LATEX template

Monitoring with Verified Guarantees 31

20trigger trust optical > 0.5 ”Trust in optical sensor”
21// Assertions
22assert <a1> trust laser ̸= trust optical

A.10 Specification : health output

1import math
2// average distance to the measured ostacle (range of sight) using laser
3input avgDist laser: Float64
4// average distance to the measured ostacle (range of sight) using camera
5input avgDist optical: Float64
6input vel: Float64
7// Assumption
8assume <a1> avgDist laser <= 100.0 and avgDist laser >= 0.0 // both in m
9and avgDist optical <= 50.0 and avgDist optical >= 0.0 // both in m
10and abs(vel) < 5.5 // in m/s
11// Line of sight
12output avgDst dif := min(avgDist laser, avgDist optical) − abs(vel)
13trigger avgDst dif < 5.0 ”WARNING: Dynamic Velocity Limit reached”
14trigger avgDst dif < 2.0 ”ERROR: Abort mission.”
15// Assertions
16assert <a1> avgDst dif < 54.5 and avgDst dif > −5.5

	Introduction
	Related Work

	Runtime Monitoring with Lola
	Assumptions and Assertions
	Application Experience in Avionics
	Tool Implementation and Usage
	Practical Results

	Monitoring Assumptions
	Translation into Lola 2.0
	Experiments

	Conclusion
	Lola Specifications – Experience Report
	Specification: gps_vel_output
	Specification: gps_pos_output
	Specification: imu_output
	Specification: nav_output
	Specification: tagging
	Specification: ctrl_output
	Specification: mm_output_1
	Specification: mm_output_2
	Specification: contingency_output
	Specification: health_output

