
Software Verification of Hyperproperties
Beyond k-Safety

Raven Beutner(B) and Bernd Finkbeiner

CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

{raven.beutner,finkbeiner}@cispa.de

Abstract. Temporal hyperproperties are system properties that relate
multiple execution traces. For (finite-state) hardware, temporal hyper-
properties are supported by model checking algorithms, and tools for
general temporal logics like HyperLTL exist. For (infinite-state) soft-
ware, the analysis of temporal hyperproperties has, so far, been limited
to k-safety properties, i.e., properties that stipulate the absence of a bad
interaction between any k traces. In this paper, we present an automated
method for the verification of ∀k∃l-safety properties in infinite-state sys-
tems. A ∀k∃l-safety property stipulates that for any k traces, there exist
l traces such that the resulting k + l traces do not interact badly. This
combination of universal and existential quantification enables us to
express many properties beyond k-safety, including, for example, gen-
eralized non-interference or program refinement. Our method is based
on a strategy-based instantiation of existential trace quantification com-
bined with a program reduction, both in the context of a fixed predicate
abstraction. Notably, our framework allows for mutual dependence of
strategy and reduction.

Keywords: Hyperproperties · HyperLTL · Infinite-state systems ·
Predicate abstraction · Hyperliveness · Verification · Program reduction

1 Introduction

Hyperproperties are system properties that relate multiple execution traces of a
system [22] and commonly arise, e.g., in information-flow policies [35], the veri-
fication of code optimizations [6], and robustness of software [19]. Consequently,
many methods for the automated verification of hyperproperties have been devel-
oped [27,39–41]. Almost all previous approaches verify a class of hyperproperties
called k-safety, i.e., properties that stipulate the absence of a bad interaction
between any k traces in the system. For example, we can express a simple form
of non-interference as a 2-safety property by stating that any two traces that
agree on the low-security inputs should produce the same observable output.

The vast landscape of hyperproperties does, however, stretch far beyond k-
safety. The overarching limitation of k-safety (or, more generally, of hypersafety
[22]) is an implicit universal quantification over all executions. By contrast, many
c© The Author(s) 2022
S. Shoham and Y. Vizel (Eds.): CAV 2022, LNCS 13371, pp. 341–362, 2022.
https://doi.org/10.1007/978-3-031-13185-1_17

https://doi.org/10.6084/m9.figshare.19697656
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-13185-1_17&domain=pdf
http://orcid.org/0000-0001-6234-5651
http://orcid.org/0000-0002-4280-8441
https://doi.org/10.1007/978-3-031-13185-1_17

342 R. Beutner and B. Finkbeiner

properties of interest, ranging from applications in information-flow control to
robust cleanness, require a combination of universal and existential quantifica-
tion. For example, consider the reactive program in Fig. 1, where �N denotes a
nondeterministic choice of a natural number. We assume that h, l, and o are
a high-security input, a low-security input, and a low-security output, respec-
tively. This program violates the simple 2-safety non-interference property given
above as the non-determinism influences the output. Nevertheless, the program
is “secure” in the sense that an attacker that observes low-security inputs and
outputs cannot deduce information about the high-security input. To capture
this formally, we use a relaxed notion of non-interference, in the literature often
referred to as generalized non-interference (GNI) [35]. We can, informally, express
GNI in a temporal logic as follows:

∀π.∀π′.∃π′′.
(
oπ = oπ′′ ∧ lπ = lπ′′ ∧ hπ′ = hπ′′

)

This property requires that for any two traces π, π′, there exists some trace π′′

that, globally, agrees with the low-security inputs and outputs on π but the high-
security inputs on π′. Phrased differently, any observation on the low-security
input-output behavior is compatible with every possible high-security input.
The program in Fig. 1 satisfies GNI. Crucially, GNI is no longer a hypersafety
property (and, in particular, no k-safety property for any k) as it requires a
combination of universal and existential quantification.

1.1 Verification Beyond k-Safety

Fig. 1. An example program is
depicted.

Instead, GNI falls in the general class of ∀∗∃∗-
safety properties. Concretely, a ∀k∃l-safety
property (using k universal and l existential
quantifiers) stipulates that for any k traces,
there exist l traces such that the resulting k + l
traces do not interact badly. k-safety properties
are the special case where l = 0. We study the
verification of such properties in infinite-state
systems arising, e.g., in software. In contrast
to k-safety, where a broad range of methods
has been developed [10,27,39–41], no method
for the automated verification of temporal ∀∗∃∗

properties in infinite-state systems exists (we
discuss related approaches in Sect. 8).

Our novel verification method is based on a
game-based reading of existential quantification
combined with the search for a program reduc-
tion. The game-based reading of existential quantification instantiates existential
trace quantification with an explicit strategy and constitutes the first practica-
ble method for the verification of ∀∗∃∗-properties in finite-state systems [23].
Program reductions are a well-established technique to align executions of inde-
pendent program fragments (such as the individual program copies in a self-
composition) to obtain proofs with easier invariants [27,34,39].

Software Verification of Hyperproperties Beyond k-Safety 343

So far, both techniques are limited to their respective domain, i.e., the game-
based approach has only been applied to finite-state systems and synchronous
specifications, and reductions have (mostly) been used for the verification of k-
safety. We combine both techniques yielding an effective (and first) verification
technique for hyperproperties beyond k-safety in infinite-state systems arising in
software. Notably, our search for reduction and strategy-based instantiation of
existential quantification is mutually dependent, i.e., a particular strategy might
depend on a particular reduction and vice versa.

1.2 Contributions and Structure

The starting point of our work is a new temporal logic called Observation-based
HyperLTL (OHyperLTL for short). Our logic extends the existing hyperlogic
HyperLTL [21] with capabilities to reason about asynchronous properties (i.e.,
properties where the individual traces are traversed at different speeds), and to
specify properties using assertions from arbitrary background theories (to reason
about the infinite domains encountered in software) (Sect. 4).

To automatically verify ∀k∃l OHyperLTL properties, we combine program
reductions with a strategy-based instantiation of existential quantification, both
in the context of a fixed predicate abstraction. To facilitate this combination, we
first present a game-based approach that automates the search for a reduction.
Concretely, we construct an abstract game where a winning strategy for the
verifier directly corresponds to a reduction with accompanying proof. As a side
product, our game-based interpretation simplifies the search for a reduction in
a given predicate abstraction as, e.g., studied by Shemer et al. [39] (Sect. 5).

Our strategic (game-based) view on reductions allows us to combine them
with a game-based instantiation of existential quantification. Here, we view the
existentially quantified traces as being constructed by a strategy that, iteratively,
reacts to the universally quantified traces. As we phrase both the search for a
reduction and the search for existentially quantified traces as a game, we can
frame the search for both as a combined abstract game. We prove the sound-
ness of our approach, i.e., a winning strategy for the verifier constitutes both
a strategy for the existentially quantified traces and accompanying (mutually
dependent) reduction. Despite its finite nature, constructing the abstract game
is expensive as it involves many SMT queries. We propose an inner refinement
loop that determines the winner of the game (without constructing it explicitly)
by computing iterative approximations (Sect. 6).

We have implemented our verification approach in a prototype tool called
HyPA (short for Hyperproperty Verification with Predicate Abstraction) and
evaluate HyPA on k-safety properties (that can already be handled by existing
methods) and on ∀∗∃∗-safety benchmarks that cannot be handled by any existing
tool (Sect. 7).

Contributions. In short, our contributions include the following:

– We propose a temporal hyperlogic that can specify asynchronous hyperprop-
erties in infinite-state systems;

344 R. Beutner and B. Finkbeiner

– We propose a game-based interpretation of a reduction (improving and sim-
plifying previous methods for k-safety [39]);

– We combine a strategy-based instantiation of existentially quantified traces
with the search for a reduction. This yields a flexible (and first) method for
the verification of temporal ∀∗∃∗ properties. We propose an iterative method
to solve the abstract game that avoids an expensive explicit construction;

– We provide and evaluate a prototype implementation of our method.

2 Overview: Reductions and Quantification as a Game

Our verification approach hinges on the observation that we can express both
a reduction and existential trace quantification as a game. In this section, we
provide an overview of our game-based interpretations. We begin by outlining
our game-based reading of a reduction (illustrating this in the simpler case of
k-safety) in Sect. 2.1 and then extend this to include a game-based interpretation
of existential quantification in Sect. 2.2.

2.1 Reductions as a Game

Consider the two programs in Fig. 2 and the specification that both programs
produce the same output (on initially identical values for x). We can formalize
this in our logic OHyperLTL (formally defined in Sect. 4) as follows:

∀P1π1 : (pc = 2). ∀P2π2 : (pc = 2). (xπ1 = xπ2) → (xπ1 = xπ2)

The property states that for all traces π1 in P1 and π2 in P2 the LTL specification
(xπ1 = xπ2) → (xπ1 = xπ2) holds (where xπ refers to the value of x on trace
π). Additionally, the observation formula pc = 2 marks the positions at which
the LTL property is evaluated: We only observe a trace at steps where pc = 2
(i.e., where the program counter is at the output position).

The verification of our property involves reasoning about two copies of our
system (in this case, one of P1 and one of P2) on disjoint state spaces. Conse-
quently, we can interleave the statements of both programs (between two obser-
vation points) without affecting the behavior of the individual copies. We refer
to each interleaving of both copies as a reduction. The choice of a reduction
drastically influences the complexity of the needed invariants [27,34,39]. Given
an initial abstraction of the system [30,39], we aim to discover a suitable reduc-
tion automatically. Our first observation is that we can phrase the search for a
reduction as a game as follows: In each step, the verifier decides on a scheduling
(i.e., a non-empty subset M ⊆ {1, 2}) that indicates which of the copies should
take a step (i.e., i ∈ M iff copy i should make a program step). Afterward, the
refuter can choose an abstract successor state compatible with that scheduling,
after which the process repeats. This naturally defines a finite-state two-player
safety game that we can solve efficiently.1 If the verifier wins, a winning strategy
1 The LTL specification is translated to a symbolic safety automaton that moves

alongside the game. For sake of readability, we omitted the automaton from the
following discussion.

Software Verification of Hyperproperties Beyond k-Safety 345

Fig. 2. Two output-equivalent programs P1 and P2 are depicted in Fig. 2a and 2b. In
Fig. 2c a possible winning strategy for the verifier is given. Each abstract state contains
the value of the program counter of both copies (given as the pair at the top) and the
predicates that hold in that state. For sake of readability we omit the trace variables
and write, e.g., x1 for xπ1 . We mark the initial state with an incoming arrow. The
outer label at each state gives the scheduling M ⊆ {1, 2} chosen by the strategy in
that state.

directly corresponds to a reduction and accompanying inductive invariant for
the safety property within the given abstraction.

For our example, we give (parts of) a possible winning strategy in Fig. 2c. In
each abstract state, the strategy chooses a scheduling (written next to the state),
and all abstract states compatible with that scheduling are listed as successors.
Note that whenever the program counter is (2, 2) (i.e., both programs are at
their output position), it holds that x1 = x2 (as required). The example strategy
schedules in lock-step for the most part (by choosing M = {1, 2}) but lets P1
take the inner loop twice, thereby maintaining the linear invariants x1 = x2

and y1 = 2y2. In particular, the resulting reduction is property-based [39] as
the scheduling is based on the current (abstract) state. Note that the program
cannot be verified with only linear invariants in a sequential or parallel (lock-
step) reduction.

2.2 Beyond k-Safety: Quantification as a Game

We build upon this game-based interpretation of a reduction to move beyond
k-safety. As a second example, consider the two programs Q1 and Q2 in Fig. 3,
where �τ denotes a nondeterministic choice of type τ ∈ {N,B}. We wish to check
that Q1 refines Q2, i.e., all output behavior of Q1 is also possible in Q2. We can
express this in our logic as follows:

∀Q1π1 : (pc = 2). ∃Q2π2 : (pc = 2). (aπ1 = aπ2)

The property states that for every trace π1 in Q1 there exists a trace π2 in
Q2 that outputs the same value. The quantifiers range over infinite traces of
variable assignments (with infinite domains), making a direct verification of the

346 R. Beutner and B. Finkbeiner

Fig. 3. Two programs Q1 and Q2 are given in Fig. 3a and 3b. In Fig. 3c a possible
winning strategy for the verifier is depicted. The outer label gives the scheduling M ⊆
{1, 2} and, if applicable, the restriction chosen by the witness strategy.

quantifier alternation challenging. In contrast to alternation-free formulas, we
cannot reduce the verification to verification on a self composition [8,28]. Instead,
we adopt (yet another) game-based interpretation by viewing the existentially
quantified traces as being resolved by a strategy (called the witness strategy)
[23]. That is, instead of trying to find a witness traces π2 in Q2 when given the
entire trace π1, we interpret the ∀∃ property as a game between verifier and
refuter. The refuter moves through the state space of Q1 (thereby producing a
trace π1), and the verifier reacts to each move by choosing a successor in the state
space of Q2 (thereby producing a trace π2). If the verifier can assure that the
resulting traces π1, π2 satisfy (aπ1 = aπ2), the ∀∃ property holds. However, this
game-based interpretation fails in many instances. There might exist a witness
trace π2, but the trace cannot be produced by a witness strategy as it requires
knowledge of future moves of the refuter. Let us discuss this on the example
programs in Fig. 3. A simple (informal) solution to construct a witness trace π2

(when given the entire π1) would be to guarantee that in Q2:4 (meaning location
4 of Q2) and line Q1:6 the value of x in both programs agrees (i.e., x1 = x2 holds)
and then simply resolve the nondeterminism at Q2:6 with 0. However, to follow
this idea, the witness strategy for the verifier, when at Q2:3, would need to know
the future value of x1 when Q1 is at location Q1:6.

Our insight in this paper is that we can turn the strategy-based interpretation
of the witness trace π2 into a useful verification method by combining it with
a program reduction. As we express both searches strategically, we can phrase
the combined search as a combined game. In particular, both the reduction and
the witness strategy are controlled by the verifier and can thus collaborate. In
the resulting game, the verifier chooses a scheduling (as in Sect. 2.1) and, addi-
tionally, whenever the existentially quantified copy is scheduled, the verifier also
decides on the successor state of that copy. We depict a possible winning strat-

Software Verification of Hyperproperties Beyond k-Safety 347

egy in Fig. 3c. This strategy formalizes the interplay of reduction and witness
strategy. Initially, the verifier only schedules {1} until Q1 has reached program
location Q1:6 (at which point the value of x is fixed). Only then does the verifier
schedule {2}, at which point the witness strategy can decide on a successor state
for Q2. In our case, the strategy chooses a value for x such that x1 = x2 holds.
As we work in an abstraction of the actual system, we formalize this by restrict-
ing the abstract successor states. In particular, in state α7 the verifier schedules
{2} and simultaneously restricts the successors to {α8} (i.e., the abstract state
where x1 = x2 holds), even though abstract state [(6, 4), a1 = a2, x1 �= x2] is
also a valid successors under scheduling {2}. We formalize when a restriction is
valid in Sect. 6. The resulting strategy is winning and therefore denotes both a
reduction and witness strategy for the existentially quantified copy. Importantly,
both reduction and witness strategy are mutually dependent. Our tool HyPA is
able to verify both properties (in Fig. 2 and Fig. 3) in a matter of a few seconds
(cf. Sect. 7).

3 Preliminaries

We begin by introducing basic preliminaries, including our basic model of com-
putation and background on (finite-state) safety games.

Symbolic Transition Systems. We assume some fixed underlying first-order the-
ory. A symbolic transition system (STS) is a tuple T = (X, init , step) where X
is a finite set of variables (possibly sorted), init is a formula over X describing
all initial states, and step is a formula over X 	 X ′ (where X ′ := {x′ | x ∈ X} is
the set of primed variables) describing the transitions of the system. A concrete
state μ in T is an assignment to the variables in X. We write μ′ for the assign-
ment over X ′ given by μ′(x′) := μ(x). A trace in T is an infinite sequence of
assignment μ0μ1 · · · such that μ0 |= init and for every i ∈ N, μi 	 μ′

i+1 |= step.
We write Traces(T) for the set of all traces in T . We can naturally interpret
programs as STS by making the program counter explicit.

Formula Transformations. For the remainder of this paper, we fix the set of
system variables X. We also fix a finite set of trace variables V = {π1, . . . , πk}.
For a trace variable π ∈ V we define Xπ := {xπ | x ∈ X} and write �X for
Xπ1 ∪ · · · ∪ Xπk

. For a formula θ over X, we define θ〈π〉 as the formula over
Xπ obtained by replacing every variable x with xπ. Similarly, we define k fresh
disjoint copies �X ′ = X ′

π1
∪ · · · ∪ X ′

πk
(where X ′

π := {x′
π | x ∈ X}). For a formula

θ over �X, we define θ〈′〉 as the formula over �X ′ obtained by replacing every
variable xπ with x′

π.

Safety Games. A safety game is a tuple G = (SSAFE, SREACH, S0, T,B) where S =
SSAFE 	 sREACH is a set of game states, S0 ⊆ S a set of initial states, T ⊆ S × S
a transition relation, and B ⊆ S a set of bad states. We assume that for every
s ∈ S there exists at least one s′ with (s, s′) ∈ T . States in SSAFE are controlled by

348 R. Beutner and B. Finkbeiner

player SAFE and those in SREACH by player REACH. A play is an infinite sequence of
states s0s1 · · · such that s0 ∈ S0, and (si, si+1) ∈ T for every i ∈ N. A positional
strategy σ for player p ∈ {SAFE, REACH} is a function σ : Sp → S such that
(s, σ(s)) ∈ T for every s ∈ Sp. A play s0s1 · · · is compatible with strategy σ for
player p if si+1 = σ(si) whenever si ∈ Sp. The safety player wins G if there is a
strategy σ for SAFE such that all σ-compatible plays never visit a state in B. In
particular, SAFE needs to win from all initial states.

4 Observation-Based HyperLTL

In this section, we present OHyperLTL (short for observation-based HyperLTL).
Our logic builds upon HyperLTL [21], which itself extends linear-time temporal
logic (LTL) with explicit trace quantification. In OHyperLTL, we include predi-
cates from the background theory (to reason about infinite variable domains) and
explicit observations (to express asynchronous properties). Formulas in OHyper-
LTL are given by the following grammar:2

ϕ := ∀π : ξ. ϕ | ∃π : ξ. ϕ | φ

φ := θ | ¬φ | φ1 ∧ φ2 | φ | φ1 U φ2

Here π ∈ V is a trace variable, θ is a formula over �X, and ξ is a formula over
X (called the observation formula). For ease of notation, we assume that all
variables in V occur in the quantifier prefix exactly once. We use the standard
Boolean connectives ∧, →, ↔, and constants �,⊥, as well as the derived LTL
operators eventually φ := � U φ, and globally φ := ¬ ¬φ.

Semantics. A trace t is an infinite sequence μ0μ1 · · · of assignments to X. For
i ∈ N, we write t(i) to denote the ith value in t. A trace assignment Π is a partial
mapping of trace variables in V to traces. Given a trace assignment Π and i ∈ N,
we define Π(i) to be the assignment to �X given by Π(i)(xπ) := Π(π)(i)(x), i..e,
the value of xπ is the value of x on the trace assigned to π. For the LTL body
of an OHyperLTL formula, we define:

Π, i |= θ iff Π(i) |= θ

Π, i |= ¬φ iff Π, i �|= φ

Π, i |= φ1 ∧ φ2 iff Π, i |= φ1 and Π, i |= φ2

Π, i |= φ iff Π, i + 1 |= φ

Π, i |= φ1 U φ2 iff ∃j ≥ i.Π, j |= φ2 and ∀i ≤ k < j.Π, k |= φ1

The distinctive feature of OHyperLTL over HyperLTL are the explicit obser-
vations. Given an observation formula ξ and trace t, we say that ξ is a valid

2 For the examples in Sect. 2, we additionally annotated quantifiers with an STS if we
want to reason about different STSs within the same formula. In the following, we
assume that all quantifiers range over traces in the same STS to simplify notation.

Software Verification of Hyperproperties Beyond k-Safety 349

observation on t (written valid(t, ξ)) if there are infinitely many i ∈ N such that
t(i) |= ξ. If valid(t, ξ) holds, we write �t�ξ for the trace obtained by projecting
on those positions i where t(i) |= ξ, i.e., �t�ξ(i) := t(j) where j is the ith index
that satisfies ξ. Given a set of traces T we resolve trace quantification as follows:

Π |=T φ iff Π, 0 |= φ

Π |=T ∀π : ξ. ϕ iff ∀t ∈ {t ∈ T | valid(t, ξ)}.Π[π �→ �t�ξ] |=T ϕ

Π |=T ∃π : ξ. ϕ iff ∃t ∈ {t ∈ T | valid(t, ξ)}.Π[π �→ �t�ξ] |=T ϕ

The semantics mostly agrees with that of HyperLTL [21] but projects each trace
to the positions where the observation holds. Given an STS T and OHyperLTL
formula ϕ, we write T |= ϕ if ∅ |=Traces(T) ϕ where ∅ is the empty assignment.

The Power of Observations. The explicit observations in OHyperLTL facilitate
the specification of asynchronous hyperproperties, i.e., properties where traces
are traversed at different speeds. For the example in Sect. 2.1, the explicit obser-
vations allow us to compare the output of both programs even though the actual
step at which the output occurs (in a synchronous semantics) differs between
both programs (as P1 takes the inner loop twice as often as P2). As the observa-
tions are part of the specification, we can model a broad spectrum of properties
ranging, e.g., from timing-insensitive properties (by placing observations only at
output locations) to timing-sensitive specifications [29] (by placing observations
at closer intervals). Functional (opposed to temporal) k-safety properties speci-
fied by pre-and postcondition [10,39,41] can easily be encoded as ∀k-OHyperLTL
properties by placing observations at the start and end of each program. By set-
ting ξ = �, i.e., observing every step, we can express synchronous properties.
OHyperLTL thus subsumes HyperLTL.

Finite-State Model Checking. Many mechanisms used to express asynchronous
hyperproperties render finite-state model checking undecidable [9,17,31]. In con-
trast, the simple mechanism used in OHyperLTL maintains decidable finite-state
model checking. Detailed proofs can be found in the full version [15].

Theorem 1. Assume an STS T with finite variable domains and decidable back-
ground theory and an OHyperLTL formula ϕ. It is decidable if T |= ϕ.

Proof Sketch. Under the assumptions, we can view T as an explicit (instead of
symbolic) finite-state transition system. Given an observation formula ξ we can
effectively compute an explicit finite-state system T ′ such that Traces(T ′) =
{�t�ξ | t ∈ Traces(T) ∧ valid(t, ξ)}. This reduces OHyperLTL model checking on
T to HyperLTL model checking on T ′, which is decidable [28]. ��

Note that for infinite-state (symbolic) systems, we cannot effectively compute
T ′ as in the proof of Theorem 1. In fact, there may not even exist a system T ′

with the desired property that is expressible in the same background theory.
The finite-state result in Theorem 1 is of little relevance for the present

paper. Nevertheless, it indicates that our logic is well suited for verification of
infinite-state (software) systems as the (inevitable) undecidability stems from
the infinite domains in software programs and not already from the logic itself.

350 R. Beutner and B. Finkbeiner

Safety. In this paper, we assume that the hyperproperty is temporally safe [12],
i.e., the temporal body of any OHyperLTL formula denotes a safety property.
Note that, as we support quantifier alternation, we can still express hyperliveness
properties [22,23]. For example, GNI is both temporally safe and hyperliveness.
We model the body of a formula by a symbolic safety automaton [24], which is a
tuple A = (Q, q0, δ, B) where Q is a finite set of states, q0 ∈ Q the initial state,
B ⊆ Q a set of bad-states, and δ a finite set of automaton edges of the form
(q, θ, q′) where q, q′ ∈ Q are states and θ is a formula over �X. Given a trace t

over assignments to �X, a run of A on t is an infinite sequence of states q0q1 · · ·
(starting in q0) such that for every i, there exists an edge (qi, θi, qi+1) ∈ δ such
that t(i) |= θi. A word is accepted by A if it has no run that visits a state in B.
The automaton is deterministic if for every q ∈ Q and every assignments μ to
�X, there exists exactly one edge (q, θ, q′) ∈ δ with μ |= θ.

5 Reductions as a Game

After having defined our temporal logic, we turn our attention to the automatic
verification of OHyperLTL formulas on STSs. In this section, we begin by for-
malizing our game-based interpretation of a reduction. To illustrate this, we
consider ∀k OHyperLTL formulas, which, as the body of the formula is a safety
property, always denote k-safety properties.

Predicate Abstraction. Our search for a reduction is based in the scope of a
fixed predicate abstraction [30,33], i.e., we abstract our system by keeping track
of the truth value of a few selected predicates that (ideally) identify properties
that are relevant to prove the property in question. Let T = (X, init , step) be
an STS and let ϕ = ∀π1 : ξ1 . . . ∀πk : ξk. φ be the (k-safety) OHyperLTL we
wish to verify. Let Aφ = (Qφ, qφ,0, δφ, Bφ) be a deterministic safety automaton
for φ. A relational predicate p is a formula over �X that identifies a property of
the combined state space of k system copies. Let P = {p1, . . . , pn} be a finite
set of relational predicates. We say a formula over �X is expressible in P if it is
equivalent to a boolean combination of the predicates in P. We assume that all
edge formulas in the automaton Aφ, and formulas init〈πi〉 and (ξi)〈πi〉 for πi ∈ V
are expressible in P. Note that we can always add missing predicates to P.

Given the set of predicates P, the state-space of the abstraction w.r.t. P is
given by B

n, where for each abstract state ŝ ∈ B
n, the ith position ŝ[i] ∈ B tracks

whether or not predicate pi holds. To simplify notation, we write ite(b, θ, θ′) to
be formula θ if b = �, and θ′ otherwise. For each abstract state ŝ ∈ B

n, we
define �ŝ� :=

∧n
i=1 ite

(
ŝ[i], pi,¬pi

)
, i.e., �ŝ� is a formula over �X that captures

all concrete states that are abstracted to ŝ. To incorporate reductions in our
abstraction, we parametrize the abstract transition relation by a scheduling M ⊆
{π1, . . . , πk}. We lift the step formula from T by defining

stepM :=
k∧

i=1

ite
(
πi ∈ M, step〈πi〉,

∧

x∈X

x′
πi

= xπi

)
.

Software Verification of Hyperproperties Beyond k-Safety 351

That is all copies in M take a step while all other copies remain unchanged.
Given two abstract states ŝ1, ŝ2 we say that ŝ2 is an M -successor of ŝ1, written
ŝ1

M−→ ŝ2, if �ŝ1� ∧ �ŝ2�
〈′〉 ∧ stepM is satisfiable, i.e., we can transition from ŝ1 to

ŝ2 by only progressing the copies in M .
For an abstract state ŝ, we define obs(ŝ) ∈ B

k as the boolean vector that
indicates which copy (of π1, . . . , πk) is currently at an observation point, i.e.,
obs(ŝ)[i] = � iff �ŝ�∧(ξi)〈πi〉 is satisfiable. Note that as (ξi)〈πi〉 is, by assumption,
expressible in P, either all or none of the concrete states in �ŝ� satisfy (ξi)〈πi〉.

Game Construction. Building on the parametrized abstract transition relation,
we can construct a (finite-state) safety game where winning strategies for the
verifier correspond to valid reductions with accompanying proofs. The nodes in
our game have two forms: Either they are of the form (ŝ, q, b) where ŝ ∈ B

n is
an abstract state, q ∈ Qφ a state of the safety automaton, and b ∈ B

k a boolean
vector indicating which copy has moved since the last automaton step; Or of the
form (ŝ, q, b,M) where ŝ, q, and b are as before and ∅ �= M ⊆ {π1, . . . , πk} is a
scheduling. The initial states are all states (ŝ, qφ,0,�k) where �ŝ� ∧

∧k
i=1 init〈πi〉

is satisfiable (recall that init〈πi〉 is expressible in P). We mark a state (ŝ, q, b) or
(ŝ, q, b,M) as losing iff q ∈ Bφ. For automaton state q ∈ Qφ and abstract state ŝ,
we define δφ(q, ŝ) as the unique state q′ such that there is an edge (q, θ, q′) ∈ δφ

such that �ŝ�∧θ is satisfiable. Uniqueness follows from the assumption that Aφ is
deterministic and all edge formulas are expressible in P. The transition relation
of our game is given by the following rules:

∀πi ∈ M.¬b[i] ∨ ¬obs(ŝ)[i]
(1)

(ŝ, q, b) � (ŝ, q, b,M)
obs(ŝ) = �k q′ = δφ(q, ŝ)

(2)
(ŝ, q,�k) � (ŝ, q′,⊥k)

ŝ
M−→ ŝ′ b′ = b[i �→ �]πi∈M

(3)
(ŝ, q, b,M) � (ŝ′, q, b′)

In rule (1), we select any scheduling that schedules only copies that have not
reached an observation point or have not moved since the last automaton step.
In particular, we cannot schedule any copy that has moved and already reached
an observation point. In rule (2), all copies reached an observation point and
have moved since the last update (i.e., b = �k) so we progress the automaton
and reset b. Lastly, in rule (3), we select an M -successor of ŝ and update b for
all copies that take part in the step. In our game, player SAFE takes the role
of the verifier, and player REACH that of the refuter. It is the safety player’s
responsibility to select a scheduling in each step, so we assign nodes of the form
(ŝ, q, b) to SAFE. Nodes of the form (ŝ, q, b,M) are controlled by REACH who can
choose an abstract M -successor. Let G∀

(T ,ϕ,P) be the resulting (finite-state) safety
game. A winning strategy for SAFE in G∀

(T ,ϕ,P) picks, in each abstract state, a
valid scheduling that prevents a visit to a losing state. We can thus show:

Theorem 2. If player SAFE wins G∀
(T ,ϕ,P), then T |= ϕ.

352 R. Beutner and B. Finkbeiner

Proof Sketch. Assume σ is a winning strategy for SAFE in G∀
(T ,ϕ,P). Let

t1, . . . , tk ∈ Traces(T) be arbitrary. We, iteratively, construct stuttered ver-
sions t′1, . . . , t

′
k of t1, . . . , tk by querying σ on abstracted prefixes of t1, . . . , tk:

Whenever σ schedules copy i we take a proper step on ti; otherwise we stut-
ter. By construction of G∀

(T ,ϕ,P) the stuttered traces t′1, . . . , t
′
k align at obser-

vation points. In particular, we have [π1 �→ �t1�ξ1 , . . . , πk �→ �tk�ξk] |= φ iff
[π1 �→ �t′1�ξ1 , . . . , πk �→ �t′k�ξk] |= φ. Moreover, the sequence of abstract states in
G∀
(T ,ϕ,P) forms an abstraction of t′1, . . . , t

′
k and shows that Aφ cannot reach a bad

state when reading �t′1�ξ1 , . . . , �t
′
k�ξk (as σ is winning). This already shows that

[π1 �→ �t′1�ξ1 , . . . , πk �→ �t′k�ξk] |= φ and thus [π1 �→ �t1�ξ1 , . . . , πk �→ �tk�ξk] |= φ.
As this holds for all traces t1, . . . , tk ∈ Traces(T), we get T |= ϕ as required. ��

Game Construction and Complexity. If the background theory is decidable,
G∀
(T ,ϕ,P) can be constructed effectively using at most 2|P|+1 · 2k queries to an

SMT solver. Checking if SAFE wins G∀
(T ,ϕ,P) can be done with a simple fixpoint

computation of the attractor in linear time.
Our game-based method of finding a reduction in a given abstraction is

closely related to the notation of a property-directed self-composition [39]. The
previously only known algorithm for finding such a reduction is based on an opti-
mized enumeration [39], which, in the worst case, requires O(2|P|+1 · 2k) many
enumerations. Our worst-case complexity thus matches the bounds inferred by
[39], but avoids the explicit enumeration of reductions (and the concomitant
repeated construction of the abstract state-space) and is, as we believe, concep-
tually simpler to comprehend. Moreover, our game-based technique is the key
stepping stone for extending our method beyond k-safety in Sect. 6.

6 Verification Beyond k-Safety

Building on the game-based interpretation of a reduction, we extend our ver-
ification beyond ∀∗ properties to support ∀∗∃∗ properties. We accomplish this
by combining the game-based reading of a reduction (as discussed in the pre-
vious section) with a game-based reading of existential quantification. For the
remainder of this section, fix an STS T = (X, init , step) and let

ϕ = ∀π1 : ξ1 . . . ∀πl : ξl.∃πl+1 : ξl+1 . . . ∃πk : ξk. φ

be the OHyperLTL formula we wish to check, i.e., we universally quantify over
l traces followed by an existential quantification over k − l traces. We assume
that for every existential quantification ∃πi : ξi occurring in ϕ, valid(t, ξi) holds
for every t ∈ Traces(T) (we discuss this later in Remark 1).

6.1 Existential Trace Quantification as a Game

The idea of a game-based verification of ∀∗∃∗ properties is to consider a ∀∗∃∗-
property as a game between verifier and refuter [23]. The refuter controls the l
universally quantified traces by moving through l copies of the system (thereby

Software Verification of Hyperproperties Beyond k-Safety 353

producing traces π1, . . . , πl) and the verifier reacts by, incrementally, moving
through k− l copies of the system (thereby producing traces πl+1, . . . , πk). If the
verifier has a strategy that ensures that the resulting traces satisfy φ, T |= ϕ
holds. We call such a strategy for the verifier a witness strategy.

We combine this game-based reading of existential quantification with our
game-based interpretation of a reduction by, additionally, letting the verifier con-
trol the scheduling of the system. When played on the concrete state-space of
T the game proceeds in three stages as follows: 1) The verifier selects a valid
scheduling M ⊆ {π1, . . . , πk}; 2) The refuter selects successor states for all uni-
versally quantified copies by fixing an assignment to X ′

π1
, . . . , X ′

πl
(only moving

copies scheduled by M); 3) The verifier reacts by choosing successor states for the
existentially quantified copies by fixing an assignment to X ′

πl+1
, . . . , X ′

πk
(again,

only moving copies scheduled by M). Afterward, the process repeats.
As we work within a fixed abstraction of T , the verifier can, however, not

choose concrete successor states directly but only work in the precision captured
by the abstraction. Following the general scheme of abstract games, we, therefore,
underapproximate the moves available to the verifier [2]. Formally, we abstract
the three-stage game outlined before (which was played at the level of concrete
states) to a simpler abstract game (consisting of only two stages). In the first
stage, the verifier selects both a scheduling M and a restriction on the set of
abstract successor states, i.e., a set of abstract states A. In the second stage,
the refuter cannot choose any abstract successor state (any M -successor in the
terminology from Sect. 5), but only successors contained in the restriction A.
To guarantee the soundness of this approach, we ensure that the verifier can
only pick restrictions that are valid, i.e., restrictions that underapproximate the
possibilities of the verifier on the level of concrete states.

Game Construction. We modify our game from Sect. 5 as follows. States are
either of the form (ŝ, q, b) (as in Sect. 5) or of the form (ŝ, q, b,M,A) where ŝ,
q, b, and M are as in Sect. 5, and A ⊆ B

n is a subset of abstract states (the
restriction). To reflect the restriction, we modify transition rules (1) and (3).
Rule (2) remains unchanged.

∀πi ∈ M.¬b[i] ∨ ¬obs(ŝ)[i] validRes ŝ,M
A (1)

(ŝ, q, b) � (ŝ, q, b,M,A)

ŝ′ ∈ A b′ = b[i �→ �]i∈M
(3)

(ŝ, q, b,M,A) � (ŝ′, q, b′)

In rule (1), the safety player (who, again, takes the role of the verifier) selects
both a scheduling M and a restriction A such that validRes ŝ,M

A holds (which we
define later). The reachability player (who takes the role of the refuter) can, in
rule (3), select any successor contained in A.

Valid Restriction. The above game construction depends on the definition of
validRes ŝ,M

A . Intuitively, A is a valid restriction if it underapproximates the pos-
sibilities of a witness strategy that can pick concrete successor states for all
existentially quantified traces. That is, for every concrete state in ŝ, a witness
strategy (on the level of concrete states) can guarantee a move to a concrete state
that is abstracted to an abstract state within A. Formally we define validRes ŝ,M

A

as follows:

354 R. Beutner and B. Finkbeiner

∀{Xπi
}k

i=1.∀{X ′
πi

}l
i=1. �ŝ� ∧

l∧

i=1

ite
(
πi ∈ M, step〈πi〉,

∧

x∈X

x′
πi

= xπi

)

⇒ ∃{X ′
πi

}k
i=l+1.

k∧

i=l+1

ite
(
πi ∈ M, step〈πi〉,

∧

x∈X

x′
πi

= xπi

)
∧

∨

ŝ′∈A

�ŝ′�〈′〉

It expresses that for all concrete states in �ŝ� (assignments to {Xπi
}k

i=1) and for
all concrete successor states for the universally quantified copies (assignments
to {X ′

πi
}l

i=1), there exist successor states for the existentially quantified copies
({X ′

πi
}k

i=l+1) such that one of the abstract states in A is reached.

Example 1. With this definition at hand, we can validate the restrictions cho-
sen by the strategy in Fig. 3c. For example, in state α7 the strategy sched-
ules M = {2} and restricts the successor states to {α8} even though abstract
state

[
(6, 4), a1 = a2, x1 �= x2

]
is also a {2}-successor of α7. If we spell out

validResα7,{2}
{α8} we get

∀X1∪X2∪X′
1. a1 = a2

︸ ︷︷ ︸

�α7�

∧
(∧

z∈X

z′
1 = z1

)

⇒ ∃X′
2. a′

2 = a2 ∧ y′
2 = y2

︸ ︷︷ ︸

step〈2〉

∧ (

a′
1 = a′

2 ∧ x′
1 = x′

2

)

︸ ︷︷ ︸

�α8�〈′〉

where X = {a, x, y}. Here we assume that step :=
(
a′ = a∧y′ = y

)
is the update

performed on instruction x ← �N from Q2:3 to Q2:4. The above formula is valid.

Correctness. Call the resulting game G∀∃
(T ,ϕ,P). The game combines the search for

a reduction with that of a witness strategy (both within the precision captured
by P).3 We can show:

Theorem 3. If player SAFE wins G∀∃
(T ,ϕ,P), then T |= ϕ.

Proof Sketch. Let σ be a winning strategy for SAFE in G∀∃
(T ,ϕ,P). Let t1, . . . , tl ∈

Traces(T) be arbitrary. We use σ to incrementally construct witness traces
tl+1, . . . , tk by querying σ. In every abstract state ŝ, σ selects a scheduling M and
a restriction A such that validRes ŝ,M

A holds. We plug the current concrete state
(reached in our construction of tl+1, . . . , tk) into the universal quantification of
validRes ŝ,M

A and get (concrete) witnesses for the existential quantification that,
by definition of validRes ŝ,M

A , are valid successors for the existentially quantified
copies in T . ��
Remark 1. Recall that we assume that for every existential quantification ∃πi : ξi

occurring in ϕ and all t ∈ Traces(T), valid(t, ξi) holds. This is important to
ensure that the safety player (the verifier) cannot avoid observation points
forever. We could drop this assumption by strengthening the winning condi-
tion in G∀∃

(T ,ϕ,P) and explicitly state that, in order to win, SAFE needs to visit
observations points on existentially quantified traces infinitely many times.
3 In particular, G∀∃

(T ,ϕ,P) (strictly) generalizes the construction of G∀
(T ,ϕ,P) from Sect. 5:

If k = l (i.e., the property is a ∀∗-property) the unique minimal valid restriction from

ŝ, M is {ŝ′ | ŝ
M−→ ŝ′}, i.e., the set of all M -successors of ŝ. The safety player can

thus not be more restrictive than allowing all M -successors (as in G∀
(T ,ϕ,P)).

Software Verification of Hyperproperties Beyond k-Safety 355

Clairvoyance vs. Abstraction. The cooperation between reduction (the ability
of the verifier to select schedulings) and witness strategy (the ability to select
restrictions on the successor) can be seen as a limited form of prophecy [1,14].
By first scheduling the universal copies, the witness strategy can peek at future
moves before committing to a successor state, as we e.g., saw in Fig. 3. The
“theoretically optimal” reduction is thus a sequential one that first schedules
only the universally quantified traces (until an observation point is reached)
and thereby provides maximal information for the witness strategy. However,
in the context of a fixed abstraction, this reduction is not always optimal. For
example, in Fig. 3 the strategy schedules the loop in lock-step which is crucial
for generating a proof with simple (linear) invariants. In particular, Fig. 3 does
not admit a witness strategy in the lock-step reduction and does not admit a
proof with linear invariants in a sequential reduction. Our verification framework,
therefore, strikes a delicate balance between clairvoyance needed by the witness
strategy and precision captured in the abstraction, further emphasizing why the
searches for reduction and witness strategy need to be mutually dependent.

6.2 Constructing and Solving G∀∃
(T ,ϕ,P)

Algorithm 1. Iterative solver for G∀∃
(T ,ϕ,P).

1: Input: T , ϕ, P
2: G̃ := initialApproximation(T , ϕ, P)
3: repeat
4: match Solve(G̃) with
5: case REACH(σ): return REACH

6: case SAFE(σ):
7: for all (ŝ, M, A) ∈ Restrictions(σ) do
8: if ¬validRes ŝ,M

A then
9: for all A′ ⊆ A do

10: G̃ := Remove(G̃, (ŝ, M, A′))
11: goto 4
12: return SAFE

Constructing the game graph
of G∀∃

(T ,ϕ,P) requires the identi-
fication of all valid restrictions
(of which there are exponen-
tially many in the number of
abstract states and thus double
exponentially many in the num-
ber of predicates) each of which
requires to solve a quantified
SMT query. We propose a more
effective algorithm that solves
G∀∃
(T ,ϕ,P) without constructing

it explicitly. Instead, we itera-
tively refine an abstraction G̃ of
G∀∃
(T ,ϕ,P). Our method hinges on the following easy observation:

Lemma 1. For any ŝ and M , {A | validRes ŝ,M
A } is upwards closed (w.r.t. ⊆).

Our initial abstraction consists of all possible restrictions (even those that
might be invalid), i.e., we allow all restrictions of the form (ŝ,M,A) where A ⊆
{ŝ′ | ŝ

M−→ ŝ′}.4 This overapproximates the power of the safety player, i.e., a
winning strategy for SAFE in G̃ may not be valid in G∀∃

(T ,ϕ,P). To remedy this, we
propose the following inner refinement loop: If we find a winning strategy σ for

4 Note that {ŝ′ | ŝ
M−→ ŝ′} is always a valid restriction. Importantly, we can compute

{ŝ′ | ŝ
M−→ ŝ′} locally, i.e., by iterating over abstract states opposed to sets of abstract

states.

356 R. Beutner and B. Finkbeiner

SAFE in G̃ we check if all restrictions chosen by σ are valid. If this is the case, σ
is also winning for G∀∃

(T ,ϕ,P) and we can apply Theorem 3. If we find an invalid
restriction (ŝ,M,A) used by σ, we refine G̃ by removing not only the restriction
(ŝ,M,A) but all (ŝ,M,A′) with A′ ⊆ A (which is justified by Lemma 1). The
algorithm is sketched in Algorithm 1. The subroutine Restrictions(σ) returns all
restrictions used by σ, i.e., all tuples (ŝ,M,A) such that σ uses an edge (ŝ, q, b) �
(ŝ, q, b,M,A) for some q, b. Remove(G̃, (ŝ,M,A′)) removes from G̃ all edges of the
form (ŝ, q, b) � (ŝ, q, b,M,A′) for some q, b, and Solve solves a finite-state safety
game. To improve the algorithm further, in line 4 we always compute a maximal
safety strategy, i.e., a strategy that selects maximal restrictions (w.r.t. ⊆) and
therefore allows us to eliminate many invalid restrictions from G̃ simultaneously.
For safety games, there always exists such a maximal winning strategy (see
e.g. [11]). Note that while G̃ is large, solving this finite-state game can be done
very efficiently. The running time of solving G∀∃

(T ,ϕ,P) is dominated by the SMT
queries of which our refinement loop, in practice, requires very few.

7 Implementation and Evaluation

Table 1. Evaluation of HyPA on k-
safety instances. We give the size of
the abstract game-space (Size), the time
taken to compute the abstraction (tabs),
and the overall time taken by HyPA (t).
Times are given in seconds.

Instance Size tabs t

DoubleSquareNI 819 92.3 92.8

HalfSquareNI 1166 85.9 86.5

SquaresSum 286 29.8 29.9

ArrayInsert 213 28.2 28.2

Exp1x3 112 4.5 4.5

Fig3 268 11.9 12.0

DoubleSquareNIff 121 9.8 9.9

Fig. 2 333 23.7 23.8

ColIitem-Symm 494 24.0 24.1

Counter-Det 216 10.2 10.3

MultEquiv 757 18.9 19.0

When combining Theorem 3 and
our iterative solver from Sect. 6.2
we obtain an algorithm to verify
∀∗∃∗-safety properties within a given
abstraction. We have implemented a
prototype of our method in a tool we
call HyPA. We use Z3 [36] to discharge
SMT queries. The input of our tool is
provided as an arbitrary STS in the
SMTLIB format [5], making it lan-
guage independent. In our programs,
we make the program counter explicit,
allowing us to track predicates locally
[32].

Evaluation for k-Safety. As a special
case of ∀∗∃∗ properties, HyPA is also
applicable to k-safety verification. We
collected an exemplifying suite of pro-
grams and k-safety properties from
the literature [27,39–41] and manu-
ally translated them into STS (this
can be automated easily). The results
are given in Table 1. As done by She-
mer et al. [39], we already provide a
set of predicates that is sufficient for some reduction (but not necessarily the
lockstep or sequential one), the search for which is then automated by HyPA.
Our results show the game-based search for a reduction can verify interesting

Software Verification of Hyperproperties Beyond k-Safety 357

Table 2. Evaluation of HyPA on ∀∗∃∗-safety verification instances. We give the size and
construction time of the initial abstraction (Size and tabs). For both the direct (explicit)
and lazy (Algorithm 1) solver we give the time to construct (and solve) the game (tsolve)
and the overall time (t = tabs + tsolve). For the lazy solver we, additionally, give the
number of refinement iterations (#Ref). Times are given in seconds. TO indicates a
timeout after 5 min.

Direct Lazy

Instance Size tabs tsolve t #Ref tsolve t

NonDetAdd 4568 3.5 TO TO 4 1.0 4.5

CounterSum 479 5.3 9.1 14.4 17 0.9 6.2

AsynchGNI 437 6.1 6.9 13.0 1 0.1 6.2

CompilerOpt1 354 2.4 2.3 4.7 2 0.2 2.6

CompilerOpt2 338 2.8 2.4 5.2 2 0.2 3.0

Refine 1357 6.1 TO TO 4 0.7 6.8

Refine2 1476 5.6 TO TO 5 0.6 6.2

Smaller 327 2.3 4.0 6.3 11 0.4 2.7

CounterDiff 959 8.5 18.3 26.8 19 1.1 9.6

Fig. 3 3180 11.1 TO TO 22 2.9 14.0

P1 (simple) 83 2.0 1.4 3.4 1 0.1 2.1

P1 (GNI) 34793 17.0 TO TO 72 95.7 112.7

P2 (GNI) 15753 10.2 TO TO 7 5.1 15.3

P3 (GNI) 1429 6.6 20.9 27.5 7 0.6 7.2

P4 (GNI) 7505 16.5 TO TO 72 13.2 29.7

k-safety properties from the literature. We also note that, currently, the vast
majority of time is spent on the construction of the abstract system. If we would
move to a fixed language, the computation time of the initial abstraction could
be reduced by using existing (heavily optimized) abstraction tools [18,32].

Evaluation Beyond k-Safety. The main novelty of HyPA lies in its ability to, for
the first time, verify temporal properties beyond k-safety. As none of the existing
tools can verify such properties, we compiled a collection of very small exam-
ple programs and ∀∗∃∗-safety properties. Additionally, we modified the boolean
programs from [13] (where they checked GNI on boolean programs) by includ-
ing data from infinite domains. The properties we checked range from refine-
ment properties for compiler optimizations, over general refinement of nonde-
terministic programs, to generalized non-interference. Verification often requires
a non-trivial combination of reduction and witness strategy (as the reduction
must, e.g., compensate for branches of different lengths). As before, we provide

358 R. Beutner and B. Finkbeiner

a set of predicates and let HyPA automatically search for a witness strategy with
accompanying reduction. We list the results in Table 2. To highlight the effec-
tiveness of our inner refinement loop, we apply both a direct (explicit) construc-
tion of G∀∃

(T ,ϕ,P) and the lazy (iterative) solver in Algorithm 1. Our lazy solver
(Algorithm 1) clearly outperforms an explicit construction and is often the only
method to solve the game in reasonable time. In particular, we require very few
refinement iterations and therefore also few expensive SMT queries. Unsurpris-
ingly, the problem of verifying properties beyond k-safety becomes much more
challenging (compared to k-safety verification) as it involves the synthesis of a
witness function which is already 2EXPTIME-hard for finite-state systems [23,37].
We emphasize that no other existing tool can verify any of the benchmarks.

8 Related Work

Asynchronous Hyperproperties. Recently, many logics for the formal specification
of asynchronous hyperproperties have been developed [9,13,17,31]. Our logic
OHyperLTL is closely related to stuttering HyperLTL (HyperLTLS) [17]. In
HyperLTLS each temporal operator is endowed with a set of temporal formulas
Γ and steps where the truth values of all formulas in Γ remain unchanged are
ignored during the operator’s evaluation. As for most mechanisms used to design
asynchronous hyperlogics [9,17,31], finite-state model checking of HyperLTLS is
undecidable. By contrast, in OHyperLTL, we always observe the trace at a fixed
location, which is key for ensuring decidable finite-state model checking.

k-Safety Verification. The literature on k-safety verification is rich. Many
approaches verify k-safety by using a form of self-composition [8,20,25,28] and
often employ reductions to obtain compositions that are easier to verify. Our
game-based interpretation of a reduction (Sect. 5) is related to Shemer et al. [39],
who study k-safety verification within a given predicate abstraction using an
enumeration-based solver (see Sect. 5 for a discussion). Farzan and Vandikas [27]
present a counterexample-guided refinement loop that simultaneously searches
for a reduction and a proof. Sousa and Dillig [40] facilitate reductions at the
source-code level in program logic.

∀∗∃∗-Verification. Barthe et al. [7] describe an asymmetric product of the sys-
tem such that only a subset of the behavior of the second system is preserved,
thereby allowing the verification of ∀∗∃∗ properties. Constructing an asymmetric
product and verifying its correctness (i.e., showing that the product preserves
all behavior of the first, universally quantified, system) is challenging. Unno
et al. [41] present a constraint-based approach to verify functional (opposed to
temporal) ∀∃ properties in infinite-state systems using an extension of constraint
Horn clauses called pfwCHC. The underlying verification approach is orthogo-
nal to ours: pfwCHC allows for a clean separation of the actual verification and
verification conditions, whereas our approach combines both. For example, our
method can prove the existence of a witness strategy without ever formulat-
ing precise constraints on the strategy (which seems challenging). Coenen et

Software Verification of Hyperproperties Beyond k-Safety 359

al. [23] introduce the game-based reading of existential quantification to ver-
ify temporal ∀∗∃∗ properties in a synchronous and finite-state setting. By con-
trast, our work constitutes the first verification method for temporal ∀∗∃∗-safety
properties in infinite-state systems. The key to our method is a careful inte-
gration of reductions which is not possible in a synchronous setting. For finite-
state systems (where the abstraction is precise) and synchronous specifications
(where we observe every step), our method subsumes the one in [23]. Beut-
ner and Finkbeiner [14] use prophecy variables to ensure that the game-based
reading of existential quantification is complete in a finite-state setting. Auto-
matically constructing prophecies for infinite-state systems is interesting future
work. Pommellet and Touili [38] study the verification of HyperLTL in infinite-
state systems arising from pushdown systems. By contrast, we study verification
in infinite-state systems that arise from the infinite variables domains used in
software.

Game Solving. Our game-based interpretations are naturally related to infinite-
state game solving [4,16,26,42]. State-of-the-art solvers for infinite-state games
unroll the game [26], use necessary subgoals to inductively split a game into
subgames [4], encode the game as a constraint system [16], and iteratively refine
the controllable predecessor operator [42]. We tried to encode our verification
approach directly as an infinite-state linear-arithmetic game. However, existing
solvers (which, notably, work without a user-provided set of predicates) could not
solve the resulting game [4,26]. Our method for encoding the witness strategy
using restrictions corresponds to hyper-must edges in general abstract games [2,
3]. Our inner refinement loop for solving a game with hyper-must edges without
explicitly identifying all edges (Algorithm 1) is thus also applicable in general
abstract games.

9 Conclusion

In this work, we have presented the first verification method for temporal hyper-
properties beyond k-safety in infinite-state systems arising in software. Our
method is based on a game-based interpretation of reductions and existential
quantification and allows for mutual dependence of both. Interesting future
directions include the integration of our method in a counter-example guided
refinement loop that automatically refines the abstraction and ways to lift the
current restriction to temporally safe specifications. Moreover, it is interesting to
study if, and to what extent, the numerous other methods developed for k-safety
verification of infinite-state systems (apart from reductions) are applicable to the
vast landscape of hyperproperties that lies beyond k-safety.

Acknowledgments. This work was partially supported by the DFG in project
389792660 (Center for Perspicuous Systems, TRR 248). R. Beutner carried out this
work as a member of the Saarbrücken Graduate School of Computer Science.

360 R. Beutner and B. Finkbeiner

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (1991). https://doi.org/10.1016/0304-3975(91)90224-P

2. de Alfaro, L., Godefroid, P., Jagadeesan, R.: Three-valued abstractions of games:
uncertainty, but with precision. In: IEEE Symposium on Logic in Computer Sci-
ence, LICS 2004. IEEE (2004). https://doi.org/10.1109/LICS.2004.1319611

3. de Alfaro, L., Roy, P.: Solving games via three-valued abstraction refinement. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 74–89.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 6

4. Baier, C., Coenen, N., Finkbeiner, B., Funke, F., Jantsch, S., Siber, J.: Causality-
based game solving. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol.
12759, pp. 894–917. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81685-8 42

5. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-LIB standard: Version 2.0. In:
International Workshop on Satisfiability Modulo Theories, vol. 13 (2010)

6. Barrett, C., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A., Zuck, L.: TVOC: a trans-
lation validator for optimizing compilers. In: Etessami, K., Rajamani, S.K. (eds.)
CAV 2005. LNCS, vol. 3576, pp. 291–295. Springer, Heidelberg (2005). https://
doi.org/10.1007/11513988 29

7. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: asymmetric product pro-
grams for relational program verification. In: Artemov, S., Nerode, A. (eds.) LFCS
2013. LNCS, vol. 7734, pp. 29–43. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35722-0 3

8. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011). https://doi.org/10.1017/
S0960129511000193

9. Baumeister, J., Coenen, N., Bonakdarpour, B., Finkbeiner, B., Sánchez, C.: A
temporal logic for asynchronous hyperproperties. In: Silva, A., Leino, K.R.M. (eds.)
CAV 2021. LNCS, vol. 12759, pp. 694–717. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81685-8 33

10. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: ACM Symposium on Principles of Programming Languages,
POPL 2004. ACM (2004). https://doi.org/10.1145/964001.964003

11. Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: from parity games to
safety games. RAIRO Theor. Inf. Appl. 36(3), 261–275 (2002). https://doi.org/10.
1051/ita:2002013

12. Beutner, R., Carral, D., Finkbeiner, B., Hofmann, J., Krötzsch, M.: Deciding
hyperproperties combined with functional specifications. In: Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2022. ACM (2022). https://doi.
org/10.1145/3531130.3533369

13. Beutner, R., Finkbeiner, B.: A temporal logic for strategic hyperproperties. In:
International Conference on Concurrency Theory, CONCUR 2021. LIPIcs, vol.
203. Schloss Dagstuhl (2021). https://doi.org/10.4230/LIPIcs.CONCUR.2021.24

14. Beutner, R., Finkbeiner, B.: Prophecy variables for hyperproperty verification. In:
IEEE Computer Security Foundations Symposium, CSF 2022. IEEE (2022)

15. Beutner, R., Finkbeiner, B.: Software verification of hyperproperties beyond k-
safety. CoRR (2022). https://doi.org/10.48550/arXiv.2206.03381

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1109/LICS.2004.1319611
https://doi.org/10.1007/978-3-540-74407-8_6
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/978-3-030-81685-8_42
https://doi.org/10.1007/11513988_29
https://doi.org/10.1007/11513988_29
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1145/964001.964003
https://doi.org/10.1051/ita:2002013
https://doi.org/10.1051/ita:2002013
https://doi.org/10.1145/3531130.3533369
https://doi.org/10.1145/3531130.3533369
https://doi.org/10.4230/LIPIcs.CONCUR.2021.24
https://doi.org/10.48550/arXiv.2206.03381

Software Verification of Hyperproperties Beyond k-Safety 361

16. Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based
approach to solving games on infinite graphs. In: Annual ACM Symposium on
Principles of Programming Languages, POPL 2014. ACM (2014). https://doi.org/
10.1145/2535838.2535860

17. Bozzelli, L., Peron, A., Sánchez, C.: Asynchronous extensions of HyperLTL. In:
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021. IEEE
(2021). https://doi.org/10.1109/LICS52264.2021.9470583

18. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of soft-
ware components in C. IEEE Trans. Softw. Eng. 30(6), 388–402 (2004). https://
doi.org/10.1109/TSE.2004.22

19. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of pro-
grams. Commun. ACM 55(8), 107–115 (2012). https://doi.org/10.1145/2240236.
2240262

20. Churchill, B.R., Padon, O., Sharma, R., Aiken, A.: Semantic program alignment for
equivalence checking. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019. ACM (2019). https://doi.org/10.1145/
3314221.3314596

21. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

22. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: IEEE Computer Security
Foundations Symposium, CSF 2008. IEEE (2008). https://doi.org/10.1109/CSF.
2008.7

23. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 121–139. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 7

24. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 47–67.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 3

25. Eilers, M., Müller, P., Hitz, S.: Modular product programs. ACM Trans. Program.
Lang. Syst. 42(1), 1–37 (2020). https://doi.org/10.1145/3324783

26. Farzan, A., Kincaid, Z.: Strategy synthesis for linear arithmetic games. Proc. ACM
Program. Lang. 2(POPL), 1–30 (2018). https://doi.org/10.1145/3158149

27. Farzan, A., Vandikas, A.: Automated hypersafety verification. In: Dillig, I., Tasiran,
S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 200–218. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4 11

28. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

29. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptogr. Eng. 8(1),
1–27 (2016). https://doi.org/10.1007/s13389-016-0141-6

30. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6 10

31. Gutsfeld, J.O., Müller-Olm, M., Ohrem, C.: Automata and fixpoints for asyn-
chronous hyperproperties. Proc. ACM Program. Lang. 5(POPL), 1–29 (2021).
https://doi.org/10.1145/3434319

https://doi.org/10.1145/2535838.2535860
https://doi.org/10.1145/2535838.2535860
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.1109/TSE.2004.22
https://doi.org/10.1109/TSE.2004.22
https://doi.org/10.1145/2240236.2240262
https://doi.org/10.1145/2240236.2240262
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1145/3324783
https://doi.org/10.1145/3158149
https://doi.org/10.1007/978-3-030-25540-4_11
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1145/3434319

362 R. Beutner and B. Finkbeiner

32. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: ACM
Symposium on Principles of Programming Languages, POPL 2002. ACM (2002).
https://doi.org/10.1145/503272.503279

33. Jhala, R., Podelski, A., Rybalchenko, A.: Predicate abstraction for program ver-
ification. In: Handbook of Model Checking, pp. 447–491. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 15

34. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717–721 (1975). https://doi.org/10.1145/361227.361234

35. McCullough, D.: Noninterference and the composability of security properties. In:
IEEE Symposium on Security and Privacy, SP 1988. IEEE (1988). https://doi.
org/10.1109/SECPRI.1988.8110

36. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

37. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Annual ACM
Symposium on Principles of Programming Languages, POPL 1989. ACM (1989).
https://doi.org/10.1145/75277.75293

38. Pommellet, A., Touili, T.: Model-checking HyperLTL for pushdown systems. In:
Gallardo, M.M., Merino, P. (eds.) SPIN 2018. LNCS, vol. 10869, pp. 133–152.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94111-0 8

39. Shemer, R., Gurfinkel, A., Shoham, S., Vizel, Y.: Property directed self composi-
tion. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 161–179.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 9

40. Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016. ACM (2016). https://doi.org/10.1145/2908080.2908092

41. Unno, H., Terauchi, T., Koskinen, E.: Constraint-based relational verification. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 742–766. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 35

42. Walker, A., Ryzhyk, L.: Predicate abstraction for reactive synthesis. In: Formal
Methods in Computer-Aided Design, FMCAD 2014. IEEE (2014). https://doi.
org/10.1109/FMCAD.2014.6987617

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/503272.503279
https://doi.org/10.1007/978-3-319-10575-8_15
https://doi.org/10.1145/361227.361234
https://doi.org/10.1109/SECPRI.1988.8110
https://doi.org/10.1109/SECPRI.1988.8110
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/978-3-319-94111-0_8
https://doi.org/10.1007/978-3-030-25540-4_9
https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1007/978-3-030-81685-8_35
https://doi.org/10.1109/FMCAD.2014.6987617
https://doi.org/10.1109/FMCAD.2014.6987617
http://creativecommons.org/licenses/by/4.0/

	Software Verification of Hyperproperties Beyond k-Safety
	1 Introduction
	1.1 Verification Beyond k-Safety
	1.2 Contributions and Structure

	2 Overview: Reductions and Quantification as a Game
	2.1 Reductions as a Game
	2.2 Beyond k-Safety: Quantification as a Game

	3 Preliminaries
	4 Observation-Based HyperLTL
	5 Reductions as a Game
	6 Verification Beyond k-Safety
	6.1 Existential Trace Quantification as a Game
	6.2 Constructing and Solving G(T, , P)

	7 Implementation and Evaluation
	8 Related Work
	9 Conclusion
	References

