
On Alternating-Time Temporal Logic, Hyperproperties, and Strategy Sharing

Raven Beutner, Bernd Finkbeiner
CISPA Helmholtz Center for Information Security, Germany

Abstract

Alternating-time temporal logic (ATL∗) is a well-established
framework for formal reasoning about multi-agent systems.
However, while ATL∗ can reason about the strategic abil-
ity of agents (e.g., some coalition A can ensure that a goal
is reached eventually), we cannot compare multiple strategic
interactions, nor can we require multiple agents to follow the
same strategy. For example, we cannot state that coalition A
can reach a goal sooner (or more often) than some other coali-
tion A′. In this paper, we propose HyperATL∗

S , an extension
of ATL∗ in which we can (1) compare the outcome of mul-
tiple strategic interactions w.r.t. a hyperproperty, i.e., a prop-
erty that refers to multiple paths at the same time, and (2)
enforce that some agents share the same strategy. We show
that HyperATL∗

S is a rich specification language that captures
important AI-related properties that were out of reach of ex-
isting logics. We prove that model checking of HyperATL∗

S

on concurrent game structures is decidable. We implement
our model-checking algorithm in a tool we call HyMASMC
and evaluate it on a range of benchmarks.

1 Introduction
Logics play a key role in the specification and verification
of strategic properties in multi-agent systems (MAS) (Cale-
gari et al. 2021). One of the most influential temporal logics
for MASs is alternating-time temporal logic (ATL∗), which
extends CTL∗ with (implicit) quantification over strategies
(Alur, Henzinger, and Kupferman 2002). As an example, as-
sume we want to formally verify that a set of agents A can
ensure that some temporal objective ψ is ultimately fulfilled.
We can express this as the ATL∗ formula ⟪A⟫Fψ, stating
that the agents in A have a joint strategy that ensures that
all compatible executions eventually (F) satisfy ψ. Likewise,
we can express that coalitionA has no strategy to ensure that
ψ is reached as JAK G¬ψ, i.e., for every strategy ofA, some
execution globally (G) satisfies ¬ψ.

However, in many situations, we are interested not only
in the strategic (in)ability of a coalition but also in com-
paring the ability of multiple coalitions. For example, we
might ask if some coalition A is able to reach some goal ψ
strictly sooner (or more often) than some other coalition A′.
Indeed, important game-theoretic concepts such as Shapley

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

values (Shapley 1953) are inherently based on the relative
contribution of individual agents: To compute the Shapley
value for some agent i, we need to compare the ability of
some arbitrary coalitions A with that of A ∪ {i}. Stating
such comparison-based properties in ATL∗ is impossible as
ATL∗ only considers a single path in isolation.

Hyperproperties. In contrast, the formal methods com-
munity has extensively studied properties that relate mul-
tiple system executions and coined them hyperproperties
(Clarkson and Schneider 2008). In this paper, we bring the
powerful concept of hyperproperties to the realm of AI and
MASs. We introduce HyperATL∗

S – a temporal logic that
combines strategic reasoning (as found in ATL∗), the ability
to compare executions w.r.t. a hyperproperty (as, e.g., found
in HyperATL∗), and the possibility of enforcing agents to
share strategies. As in HyperATL∗ (Beutner and Finkbeiner
2021, 2023b), we bind the outcome of a strategic interaction
(resulting from an ATL∗-like quantification) to a path vari-
able and can then refer to atomic propositions on multiple
paths. This combination of strategic reasoning and hyper-
properties is needed for many AI-related properties; not only
the information-flow properties envisioned in (Beutner and
Finkbeiner 2021, 2023b). For example, HyperATL∗

S allows
us to express that coalition A can reach ψ strictly sooner
than coalition A′ as follows.

⟪A⟫π. JA′Kπ′. (¬ψπ′)U(¬ψπ′ ∧ ψπ).

This formula states that there exist strategies for the agents in
A, such that for every path π under those strategies, it holds
that: under every strategy for the agents in A′, there exists
some compatible path π′, such that π reaches ψ (denoted
ψπ) before π′ does (expressed using LTL’s until operator U).
Phrased differently, some strategy A can ensure that ψ is
reached strictly faster than any strategy for A′ could.

Note that this approach is very flexible, as we can com-
pare π and π′ w.r.t. to an arbitrary temporal property (e.g.,
π reaches ψ more often than π′). This goes well beyond the
capabilities of ATL∗, even when extended with quantitative
operators (cf. Section 2).

Strategy Sharing and HyperATL∗
S . HyperATL∗

S then
extends HyperATL∗ with the ability to force agents to fol-
low the same strategy. A sharing constraint ξ is a set of pairs
of agents, and the HyperATL∗

S formula ⟪A⟫ξ π. φ requires

that coalition A can satisfy φ, under the assumption that all
agents (i, j) ∈ ξ play the same strategy; similar to what is
possible in strategy logic (Mogavero et al. 2014; Chatterjee,
Henzinger, and Piterman 2010) in a non-hyper setting.

Example 1. Assume we deal with a MAS modeling a plan-
ning task with multiple robots and want to ensure that robots
in coalition A can reach some target state. To keep the em-
ployment overhead as small as possible, we might ask if the
robots can follow some optimal trajectory (i.e., reach the tar-
get as fast as possible), despite all using the same strategy.
We can express this in HyperATL∗

S as follows

⟪A⟫{(i,j)|i,j∈A} π. JAKπ′. (¬targetπ′)U targetπ

stating that all robots inA can use a shared strategy (on path
π) that reaches the target at least as fast as they can without
the constraint that they must play the same strategy (path
π′). Such shareable strategies are, e.g., key for scalable syn-
thesis (Attie and Emerson 1998).

We provide further HyperATL∗
S examples (such as deter-

minism and good-enough synthesis) in Section 6.2.

Model Checking. We show that model checking (MC)
of HyperATL∗

S on finite-state concurrent game structures (a
standard model of MASs) is decidable. As HyperATL∗

S can
relate multiple computation paths, we cannot employ the
tree-automaton-based MC approach for ATL∗ (Alur, Hen-
zinger, and Kupferman 2002). Instead, we develop a MC al-
gorithm based on alternating word automata. Our algorithm
iteratively simulates path quantification within an automa-
ton, while ensuring that the strategy-sharing constraints be-
tween agents are fulfilled.

Implementation. We implement our model-checking al-
gorithm (for full HyperATL∗

S) in a tool we call HyMASMC.
Using HyMASMC, we can, for the first time, automatically
check properties beyond the self-composition fragment of
HyperATL∗ – the largest fragment supported by previous
tools (Beutner and Finkbeiner 2021, 2023b) (cf. Section 2).
We evaluate HyMASMC by verifying a range of properties in
MASs from the literature. Our experiments show that our al-
gorithm performs well on non-hyper instances that could al-
ready be handled using existing solvers (Cermák, Lomuscio,
and Murano 2015) and can successfully verify hyperproper-
ties that cannot be expressed in any existing logic, let alone
checked with any existing tool.

Supplementary Material. Detailed proofs and additional
material can be found in (Beutner and Finkbeiner 2023c).

2 Related Work
Various works have extended ATL∗ with abilities to reason
about probabilistic systems (Chen and Lu 2007), incomplete
information (Belardinelli et al. 2017; Berthon, Maubert, and
Murano 2017; Belardinelli, Lomuscio, and Malvone 2019),
and finite traces (Belardinelli et al. 2018). All of these ex-
tension refer to individual paths and cannot express proper-
ties that relate multiple paths. While resource-aware exten-
sions offer quantitative reasoning (Alechina, Demri, and Lo-
gan 2020; Bouyer et al. 2019; Henzinger and Prabhu 2006;

Jamroga, Konikowska, and Penczek 2016; Chen and Lu
2007), they still cannot state properties that go beyond com-
puting quantities on individual paths. Strategy logic (SL)
treats strategies as first-class objects and can naturally ex-
press properties where some agents share the same strat-
egy (Mogavero et al. 2014; Chatterjee, Henzinger, and Piter-
man 2010). While SL can compare the same strategy in dif-
ferent scenarios, it is limited to a boolean combination of
LTL properties on individual paths, i.e., we cannot compare
different paths w.r.t. a temporal hyperproperty. All proper-
ties we consider in Sections 1 and 6.2 cannot be expressed
in SL. Most existing hyperlogics, including HyperLTL and
HyperCTL∗ (Clarkson et al. 2014), reason about paths in a
(non-strategic) transition system. HyperATL∗ was the first
temporal logic that combined strategic reasoning with the
ability to express hyperproperties (Beutner and Finkbeiner
2021, 2023b). This captures strategic information-flow poli-
cies such as simulation-based non-interference (Mantel and
Sabelfeld 2001) and non-deducibility of strategies (Wittbold
and Johnson 1990). HyperATL∗

S extends HyperATL∗ with
the ability to force agents to share the same strategy, which
is useful for many AI-related properties (cf. Example 1).
Moreover, automated verification of HyperATL∗ was, so far,
only possible for the self-composition fragment (Beutner
and Finkbeiner 2023b). In this fragment, all quantifiers are
grouped together by constructing the self-composition of a
MAS (Barthe, D’Argenio, and Rezk 2011), which reduces
verification to a parity game. While this fragment suffices
for many security-related properties (which are naturally de-
fined in terms of a self-composition), it does not capture any
of the properties discussed in Sections 1 and 6. In contrast,
our model-checking algorithm (implemented in HyMASMC)
uses iterative quantifier elimination and is applicable to all
HyperATL∗

S formulas. In terms of tool support, the MCMAS
tool family (Lomuscio, Qu, and Raimondi 2009) imple-
ments a range of model checkers for strategic properties
(e.g., specified in ATL∗ or SL), often with a strong focus on
knowledge (Fagin et al. 1995; van der Hoek and Wooldridge
2003). Generally, knowledge properties are hyperproperties;
to “know something” means that it should hold on all in-
distinguishable paths, effectively relating multiple paths in
a system (Bozzelli, Maubert, and Pinchinat 2015; Beutner
et al. 2023). However, before HyMASMC, none of the exist-
ing verifiers could check general hyperproperties (beyond
knowledge) in MASs.

3 Preliminaries
For two functions f : X → Z and f ′ : Y → Z with X ∩
Y = ∅, we define f ⊕ f ′ : X ∪ Y → Z as the union of
both functions. We let AP be a fixed finite set of atomic
propositions and let Agts be a fixed finite set of agents. For
a set of agent A ⊆ Agts , we define A := Agts \ A. Given
some set X , we write X+ (resp. Xω) for the set of non-
empty finite (resp. infinite) sequences over X . For u ∈ Xω

and k ∈ N, we write x(k) for the kth element, u[k,∞] for
the infinite suffix starting at position k, and u[0, k] for the
finite prefix up to k. As the underlying model of MASs, we
use concurrent game structures (CGS).

Definition 1 (Alur, Henzinger, and Kupferman (2002)). A
concurrent game structure is a tuple G = (S, s0,A, κ, L)
where S is a finite set of states, s0 ∈ S is an initial state,
A is a finite set of actions, κ : S × (Agts → A) → S is a
transition function, and L : S → 2AP is a state labeling.

An action vector is a function a : Agts → A assigning
an action to each agent. Given a state s and action vector a,
the transition function κ determines the next state κ(s,a).
A strategy in G is a function f : S+ → A, mapping fi-
nite paths to actions. We denote the set of all strategies in
G with Str(G). Given a state s ∈ S and strategy vector
f : Agts → Str(G) mapping each agent to a strategy, we
can construct the path PlayG(s,f) ∈ Sω that results from
each agent acting according to the strategy defined by f .
Formally, we define PlayG(s,f) as the unique infinite path
p ∈ Sω such that p(0) = s, and for every k ∈ N we have
p(k + 1) = κ

(
p(k),ak

)
where ak is the action vector de-

fined by ak(i) := f(i)(p[0, k]) for i ∈ Agts . That is, we
map each agent i to the action selected by strategy f(i) on
the prefix p[0, k], and update the state according to κ.

Note that our CGS definition does not include a protocol
function ϱ : S × Agts → (2A \ {∅}) that, in each state, as-
signs each agent a set of allowed actions. We can simulate
the protocol ϱ in the transition function κ by “rerouting” ev-
ery action that is invalid (according to ϱ) to some allowed
action, effectively limiting the available actions of an agent.

ATL∗. We briefly recall the syntax and semantics of ATL∗.
Path and state formulas in ATL∗ are defined as follows:

ψ := a | ψ ∧ ψ | ¬ψ | Xψ | ψUψ | φ
φ := ⟪A⟫ψ | JAKψ

where a ∈ AP and A ⊆ Agts . The temporal X refers to
the next timepoint, and ψ1 Uψ2 states that ψ2 holds at some
future timestep and ψ1 holds at all timesteps until then. We
use the standard Boolean connectives ∨,→,↔, and Boolean
constants ⊤,⊥, as well as the derived temporal operators
eventually Fψ := ⊤Uψ and globally Gψ := ¬F¬ψ. For
a path p ∈ Sω , we evaluate a path formula as expected:

p |=G a iff a ∈ L
(
p(0)

)
p |=G ψ1 ∧ ψ2 iff p |=G ψ1 and p |=G ψ2

p |=G ¬ψ iff p ̸|=G ψ

p |=G Xψ iff p[1,∞] |=G ψ

p |=G ψ1 Uψ2 iff ∃k ∈ N. p[k,∞] |=G ψ2 and
∀0 ≤ m < k. p[m,∞] |=G ψ1

p |=G φ iff p(0) |=G φ

For a state s ∈ S, we define:

s |=G ⟪A⟫ψ iff ∃f : A→ Str(G).
∀f ′ : A→ Str(G).PlayG

(
s,f ⊕ f ′)] |=G ψ

s |=G JAKψ iff ∀f : A→ Str(G).
∃f ′ : A→ Str(G).PlayG

(
s,f ⊕ f ′)] |=G ψ.

That is, ⟪A⟫ψ holds in state s if the agents in A can enforce
ψ. Formally, this means that there exists a strategy for each

agent in A (formalized as function f) such that – no matter
what strategy the agents in A = Agts \ A follow (function
f ′) – the resulting path satisfies path formula ψ. Conversely,
JAKψ states that coalitionA cannot avoid ψ, i.e., every strat-
egy for A admits some path that satisfies ψ.

A CGS G = (S, s0,A, κ, L) satisfies φ, written G |=ATL∗

φ, if s0 |=G φ, i.e., φ holds in the initial state.

4 HyperATL∗
S

In ATL∗, we can quantify over paths in the system (con-
structed by some strategy), but with each nested quantifi-
cation, we create a new path, effectively losing the han-
dle of the path(s) constructed previously. Consequently, for-
mula ⟪A⟫⟪A′⟫ψ is equivalent to ⟪A′⟫ψ. In HyperATL∗

S ,
we want to explicitly state hyperproperties on multiple paths.
To accomplish this, we extend ATL∗ with the notation of
path variables and – whenever we encounter a strategic path
quantifier – bind the outcomes of this quantification to such
a variable, similar to HyperCTL∗ (Clarkson et al. 2014) and
HyperATL∗ (Beutner and Finkbeiner 2021, 2023b).

Syntax. Let V = {π, π′, . . .} be a set of path variables.
Path and state formulas in HyperATL∗

S are generated by the
following grammar.

ψ := aπ | ψ ∧ ψ | ¬ψ | Xψ | ψUψ | φπ
φ := ⟪A⟫ξ π. φ | JAKξ π. φ | ψ

where a ∈ AP , π ∈ V , A ⊆ Agts , and ξ ⊆ Agts × Agts is
a sharing constraint. We assume that nested state formulas
are closed, i.e., for each atomic formula aπ , path variable π
is bound by some quantifier.

Similar to ATL∗, formula ⟪A⟫ξ π. φ states that there ex-
ists a strategy for coalition A such that all paths under that
strategy satisfy φ. However, differently from ATL∗, we bind
this path to the path variable π. We can then use path vari-
ables to refer to multiple paths via indexed atomic propo-
sitions. The constraint ξ poses restrictions on the agents’
strategies: if (i, j) ∈ ξ, then agents i and j should play the
same strategy. We assume that for each quantifier ⟪A⟫ξ and
JAKξ, the sharing constraint satisfies ξ ⊆ (A×A)∪(A×A),
i.e., ξ can enforce strategy sharing between agents in A and
between agents in A. We omit ξ if ξ = ∅.

Semantics. We evaluate HyperATL∗
S formulas in the con-

text of a path assignment, which is a partial mapping Π :
V ⇀ Sω . We write ∅ for the path assignment with an empty
domain. Given k ∈ N, we define Π[k,∞] as the assignment
defined by Π[k,∞](π) := Π(π)[k,∞], i.e., the assignment
where all paths are (synchronously) shifted by k positions.
For a path p ∈ Sω , we define Π[π 7→ p] as the updated
assignment that maps π to p. For path formulas, we define
Π |=G aπ iff a ∈ L

(
Π(π)(0)

)
Π |=G ψ1 ∧ ψ2 iff Π |=G ψ1 and Π |=G ψ2

Π |=G ¬ψ iff Π ̸|=G ψ

Π |=G Xψ iff Π[1,∞] |=G ψ

Π |=G ψ1 Uψ2 iff ∃k ∈ N.Π[k,∞] |=G ψ2 and
∀0 ≤ m < k.Π[m,∞] |=G ψ1

Π |=G φπ iff Π(π)(0), ∅ |= φ.

s0

∅

s1

∅

s2

{w}

(g, r, nr), (g, nr, r)

(, ,)

(, ,)

(g, r, r)(ng, ,)

(g, nr, nr)

Figure 1: A simple CGS with Agts = {sched ,W1 ,W2}.
Each edge has the form (a1, a2, a3) where a1, a2, and a3 are
the actions of sched , W1 , and W2 , respectively. We write
“ ” for an arbitrary action.

Whenever we check if aπ currently holds, we check if a
holds on the path that is bound to π. A nested state formula
φπ holds iff φ holds in the first state of the path bound to π.

Given a set of agents A ⊆ Agts and sharing constraints
ξ, we define shrG(A, ξ) := {f : A → Str(G) | ∀i, j ∈
A. (i, j) ∈ ξ ⇒ f(i) = f(j)}, i.e., all strategy vectors for
A that satisfy the constraints in ξ. HyperATL∗

S state formulas
are evaluated in a state s and path assignments Π. For each
strategy quantifier, we construct a new path and bind this
path to a path variable in Π:
s,Π |=G ψ iff Π |=G ψ

s,Π |=G ⟪A⟫ξ π. φ iff ∃f ∈ shrG(A, ξ).

∀f ′∈shrG(A, ξ). s,Π[π 7→PlayG
(
s,f ⊕ f ′)] |=G φ

s,Π |=G JAKξ π. φ iff ∀f ∈ shrG(A, ξ).

∃f ′∈shrG(A, ξ). s,Π[π 7→PlayG
(
s,f ⊕ f ′)] |=G φ

Take ⟪A⟫ξ π. φ as an example. As in ATL∗, we existen-
tially quantify over strategies for the agents in A (subject
to the condition that they respect the sharing constraints in
ξ), followed by universal quantification over strategies for
agents in A (again, subject to ξ). The resulting strategy vec-
tor f ⊕ f ′ then yields a unique path PlayG

(
s,f ⊕ f ′),

which we bind to path variable π and continue evaluation
of φ. Note that in case ξ = ∅, the quantification behavior is
very close to that of ATL∗ as shrG(A, ∅) contains all func-
tions A→ Str(G). The important difference to ATL∗ is that
once we have constructed the path PlayG

(
s,f ⊕ f ′), we

do not immediately evaluate a path formula but rather add
the path to our current assignment. Without sharing con-
straints, HyperATL∗

S corresponds to HyperATL∗ (Beutner
and Finkbeiner 2021, 2023b) and is strictly more expressive
than ATL∗.

We say that G satisfies φ, written G |= φ, if s0, ∅ |=G φ.
Example 2 (Running Example). Let us consider a very sim-
ple CGS between agents Agts = {sched ,W1 ,W2}, de-
scribing a scheduler and two worker agents. The sched-
uler sched can choose actions {g,ng} modeling a grant
or no grant, and each of the workers can choose actions
{r,nr} modeling a request to work or no request to work.
We model the dynamics of the CGS in Figure 1. If the sched-
uler chooses ng or both of the workers do not request to
work, we remain in idle state s0. If the scheduler grants work
and both workers request to work, we directly transition to
the working state s2 where proposition w ∈ AP holds. If
only one of the workers requests work, we also transition to
s2 but pass through s1, i.e., the work is delayed by one step.

Let us assume we want to verify that coalition
{sched ,W1 ,W2} can reach the work state s2 (strictly)
faster than {sched ,W1}. As argued in the introduction, we
can express this using the following HyperATL∗

S formula

⟪sched ,W1 ,W2⟫π. Jsched ,W1 Kπ′. (¬wπ′)U(¬wπ′ ∧ wπ).

This formula holds in the above CGS: {sched ,W1 ,W2}
can construct a path π where w holds in the second step,
whereas {sched ,W1} can, on their own, only ensure that w
holds in the third step on π′ (at the earliest).

HyperATL∗
S and ATL∗. HyperATL∗

S subsumes ATL∗:
Proposition 1. For every ATL∗ formula φ, there exists an
effectively computable HyperATL∗

S formula φ′ such that for
every CGS G, G |=ATL∗ φ iff G |= φ′.

5 Model Checking of HyperATL∗
S

While the extension of ATL∗ to reason about hyperprop-
erties required only minor modifications to its syntax, the
subtle changes bring major complications in terms of model
checking. In particular, the model-checking algorithm for
ATL∗ proposed by Alur, Henzinger, and Kupferman (2002)
is no longer applicable: In ATL∗, checking if ⟪A⟫ψ holds
in some state s can be reduced to the non-emptiness of the
intersection of two tree automata. One accepts all trees that
represent possible strategies by the agents in A, and one ac-
cepts all trees whose paths satisfy the path formula ψ. In
HyperATL∗

S , this is not possible: In a formula ⟪A⟫ξ π.φ,
the satisfaction of φ does not only depend on π but also on
path variables that are quantified before (outside).

5.1 Alternating Automata
Instead, our model-checking algorithm uses automata
to “summarize” path assignments that satisfy subfor-
mulas, similar to previous hyperlogics such as Hy-
perLTL (Finkbeiner, Rabe, and Sánchez 2015; Beutner
and Finkbeiner 2023a), and HyperATL∗ (Beutner and
Finkbeiner 2021, 2023b). To handle the strategic interaction
found in MASs, we rely on alternating automata, i.e., au-
tomata that alternate between existential (non-deterministic)
and universal transitions.
Definition 2. An alternating parity automaton (APA) over
alphabet Σ is a tuple A = (Q, q0, δ, c) where Q is a finite
set of states, q0 ∈ Q is an initial state, c : Q → N is a state
coloring, and δ : Q × Σ → B+(Q) is a transition func-
tion that maps pairs of state and letter to a positive boolean
formula over Q (denoted with B+(Q)).

Formally, we model the alternation in APAs by viewing
the transitions as positive boolean formulas over states (i.e.,
formulas formed using only conjunctions and disjunctions).
For example, if δ(q, l) = q1 ∨ (q2 ∧ q3), we can – from state
q ∈ Q and upon reading letter l ∈ Σ – either move to state
q1 or move to both q2 and q3 (i.e., spawn two copies of our
automaton, one starting in state q2 and one in q3). We write
L(A) ⊆ Σω for the set of all infinite words that are accepted
by A, i.e., all infinite words where we can construct a run
tree such that for all paths, the minimal color that occurs
infinity many times (as given by c) is even. See (Vardi 1995;
Beutner and Finkbeiner 2023c) for details.

q0
0

∧ ∨

q1

1

q2
1

q3
0a, b, c

a

b

b, c

a, c

a, b, c

Figure 2: Example APA over alphabet Σ = {a, b, c}.

Example 3. Consider the APA in Figure 2. We display the
color of each state and visualize transition formulas using ∧
and ∨ nodes. For example, δ(q0, a) = δ(q0, b) = δ(q0, c) =
q0 ∧ (q1 ∨ q2), i.e., whenever reading letter a, b, or c in q0
we start a fresh run from q0 and at the same time start a
run from either q1 or q2. To derive the language of the APA,
we first observe that state q1 (resp. q2) accepts all words
that contain at least one a (resp. b) (note that the color of
q1, q2 is odd). In the initial state q0, we restart a run from q0
and transition to either q1 or q2. The language thus contains
exactly those words that contain a or b infinitely often.

Deterministic Automata. Our model-checking algorithm
relies on the fact that we can determinize APAs. We say A is
a deterministic parity automaton (DPA) if we can view δ as
a function Q×Σ → Q that assigns a unique successor state
to each state, letter pair.

Proposition 2 (Miyano and Hayashi (1984)). For any APA
A with n states, we can effectively compute a DPA A′ with
at most 22

O(n)

states such L(A) = L(A′).

5.2 Model Checking Algorithm
We are now in a position to outline our model-checking al-
gorithm. A high-level description is given in Algorithm 1.
Here, we write ⟨[A]⟩ as a shorthand for either ⟪A⟫ or JAK.

Nested State Formulas. Initially, our algorithm recur-
sively checks nested state formulas and replaces them
with fresh atomic propositions (Emerson and Halpern
1986). Concretely, given a closed state formula φ =
⟨[A1]⟩ξ1π1 . . . ⟨[An]⟩ξnπn. ψ, we first extract all state formu-
las that are nested in the path formula ψ (line 2). For each
nested state formula φ′, we (1) compute all states in which
φ′ holds (using a recursive call to modelCheck); (2) mark all
those states with a fresh atomic proposition pφ′ by modify-
ing the labeling function L of G (line 4); and (3) replace all
occurrences of φ′

π within ψ with (pφ′)π (line 5).

Eliminating Path Quantification. Afterward, ψ contains
no nested state formulas, and we can tackle the strategic
quantifiers. For each state ṡ ∈ S, we check if ṡ, ∅ |=G φ,
and – if it does – add it to the solution set Sol (line 12).
Our main idea to check ṡ, ∅ |=G φ is to iteratively elim-
inate paths π1, . . . , πn by simulating G using the alterna-
tion available in APAs while summarizing path assignments
that satisfy the formula from the fixed state ṡ ∈ S. To en-
able automata-based reasoning about path assignments, i.e.,
mappings Π : V → Sω for some V ⊆ V , we zip such an
assignment into an infinite word: Given Π : V → Sω we de-
fine zip(Π) ∈ (V → S)ω as the infinite word over functions
V → S, defined by zip(Π)(k)(π) := Π(π)(k) for k ∈ N.

Algorithm 1: Model-checking algorithm for HyperATL∗
S .

1 def modelCheck(G, φ = ⟨[A1]⟩ξ1π1 . . . ⟨[An]⟩ξnπn. ψ):
2 for φ′ in nestedStateFormulas(ψ) do
3 Sφ′ = modelCheck(G, φ′)

4 L = λs.
{
L(s) if s ̸∈ Sφ′

L(s) ∪ {pφ′} if s ∈ Sφ′

5 ψ = ψ
[
φ′

π1
/(pφ′)π1

]
· · ·

[
φ′

πn
/(pφ′)πn

]
6 Sol = ∅
7 for ṡ ∈ S do
8 A = LTLtoAPA(ψ)
9 for j from n to 1 do
10 A = product(G, ṡ, A, ⟨[Aj]⟩ξjπj)
11 if zip(∅) ∈ L(A) then
12 Sol = Sol ∪ {ṡ}
13 return Sol

Definition 3. Assume φ is a HyperATL∗
S formula with free

path variables V ⊆ V . We say an automaton A over V → S
is (G, ṡ)-equivalent to φ if for every path assignment Π :
V → Sω we have zip(Π) ∈ L(A) if and only if ṡ,Π |=G φ.

Now assume that φ = ⟨[A1]⟩ξ1π1 . . . ⟨[An]⟩ξnπn. ψ is the
state formula we want to check in state ṡ. If we could com-
pute a (G, ṡ)-equivalent automaton Aφ for φ, we can im-
mediately check whether ṡ, ∅ |=G φ by testing if zip(∅) ∈
L(Aφ). Our main theoretical result is that we can construct
such an automaton incrementally: We begin with a (G, ṡ)-
equivalent automaton Aψ for the body ψ; we then use Aψ

to construct a (G, ṡ)-equivalent automaton A⟨[An]⟩ξnπn.ψ for
⟨[An]⟩ξnπn. ψ; and so forth, finally yielding the desired au-
tomaton Aφ that is (G, ṡ)-equivalent to φ. In each step, we
apply the construction from the following theorem:

Theorem 1. Assume that φ = ⟨[A]⟩ξ π. φ′ and let Aφ′ be an
APA over alphabet (V ∪ {π} → S) that is (G, ṡ)-equivalent
to φ′. We can effectively construct an APA Aφ over alphabet
V → S that is (G, ṡ)-equivalent to φ. The size of Aφ is at
most double exponential in the size of Aφ′ .

Proof. Let Adet
φ′ = (Q, q0, δ, c) be a DPA equivalent to Aφ′

(cf. Proposition 2). We define Aφ = (Q × S, (q0, ṡ), δ
′, c′)

where c′(q, s) := c(q) and δ′ is defined as follows: If φ =
⟪A⟫ξ π. φ′ we define δ′

(
(q, s), l

)
for l : V → S as∨

a:A→A
∀i,j∈A.(i,j)∈ξ
⇒a(i)=a(j)

∧
a′:A→A

∀i,j∈A.(i,j)∈ξ
⇒a′(i)=a′(j)

(
δ
(
q, l[π 7→ s]

)
, κ

(
s,a⊕ a′))

Conversely, if φ = JAKξ π. φ′ we define δ′
(
(q, s), l

)
as∧

a:A→A
∀i,j∈A.(i,j)∈ξ
⇒a(i)=a(j)

∨
a′:A→A

∀i,j∈A.(i,j)∈ξ
⇒a′(i)=a′(j)

(
δ
(
q, l[π 7→ s]

)
, κ

(
s,a⊕ a′))

The intuition behind our construction is that we can simu-
late the strategic quantification at the level of states, similar
to what is possible in HyperATL∗ (Beutner and Finkbeiner
2021, 2023b). Let us take φ = ⟪A⟫ξ π. φ′ as an example.

q0

1
q1

0
q2

1[π 7→s2, π
′ 7→s0],

[π 7→s2, π
′ 7→s1]

[π 7→ , π′ 7→s2]

[π 7→ s0, π
′ 7→ s0], [π 7→ s0, π

′ 7→ s1],
[π 7→ s1, π

′ 7→ s0], [π 7→ s1, π
′ 7→ s1]⊤ ⊤

(a)

q0, s0

1

q0, s1

1
q0, s2

1
q1, s2

0
q2, s0

1

∧∨

∨

∨

[sched 7→ng,W1 7→]

[sched 7→g,W1 7→r]

[sched 7→g,W1 7→nr]

[π 7→ s0],
[π 7→ s1]

[π 7→ s2] [π 7→ s0],
[π 7→ s1]

[π 7→ s0],
[π 7→ s1],
[π 7→ s2]

∧
[π 7→ s2]

(b)

q′0

0
q′1

0
q′2

1

q′3

0

[π 7→ s0],
[π 7→ s1]

[π 7→ s0],
[π 7→ s1]

[π 7→s2] [π 7→s2]

⊤

⊤

(c)

q′0, s0

0

q′1, s00 q′1, s1 0 q′1, s2 0

q′2, s2 1 q′3, s0 0

∨

∧ ∧ ∧

[sched 7→g,W1 7→r,W2 7→r]

[sched 7→g,W1 7→r,W2 7→nr],
[sched 7→g,W1 7→nr,W2 7→r]

[sched 7→ng,W1 7→ ,W2 7→],
[sched 7→g,W1 7→nr,W2 7→nr]

∅

∨

∅ ∅∅

(d)

Figure 3: Illustration of our model-checking algorithm on Example 2. In Figure 3a, we depict a DPA over alphabet {π, π′} →
{s0, s1, s2} for the body (¬wπ′)U(¬wπ′ ∧wπ). In Figure 3b, we sketch the APA over alphabet {π} → {s0, s1, s2} constructed
using Theorem 1 that is (G, s0)-equivalent to subformula Jsched ,W1 Kπ′. (¬wπ′)U(¬wπ′∧wπ). In Figure 3c, we depict a DPA
that is equivalent to the APA in Figure 3b. Lastly, in Figure 3d, we sketch the APA (over singleton alphabet ∅ → {s0, s1, s2})
constructed using Theorem 1 that is (G, s0)-equivalent to ⟪sched ,W1 ,W2⟫π. Jsched ,W1 Kπ′. (¬wπ′)U(¬wπ′ ∧ wπ).

The desired automaton Aφ should accept a word u ∈ (V →
S)ω iff there exists a strategy vector f : A → Str(G) that
respects ξ and for all paths π compatible with f , the ex-
tended zipped path assignment (a word in (V ∪{π} → S)ω)
is accepted by Adet

φ′ . In our constructions, we track the cur-
rent state q of Adet

φ′ and simulate G by keeping track of the
current state s. When in state (q, s), we update the automa-
ton state according to the transition function of Adet

φ′ using
the current state s for path variable π. To update the state
of G, we simulate the strategic behavior: (1) we disjunctive
fix actions for each agent in A via a function a and ensure
that all sharing constraints hold; (2) we conjunctively choose
actions for A as a function a′ (subject to the sharing con-
straints); and (3) we update the system state to κ(s,a⊕a′).

Arguing that Aφ is (G, ṡ)-equivalent to φ is based on the
determinacy of the underlying game. As we work in a setting
of complete information (where all agents observe the state
of the CGS), we can replace the existential quantification
over strategies forA (as in the semantics of ⟪A⟫ξ π. φ′) with
existential quantification over actions for A in each step (as
used in the disjunctive choice in the definition of Aφ). We
give a formal proof in (Beutner and Finkbeiner 2023c).

The size of Aφ is linear in the size of G and Adet
φ′ (which

itself is doubly exponential in Aφ′ , cf. Proposition 2).

For a formula φ = ⟨[A]⟩ξ π. φ′ and APA A that is (G, ṡ)-
equivalent to φ′, let product(G, ṡ, A, ⟨[A]⟩ξ π) be the APA that
is (G, ṡ)-equivalent toφ constructed using Theorem 1. In Al-

gorithm 1, we start with an APA that is equivalent to ψ (line
8), and apply product to iteratively compute (G, ṡ)-equivalent
automata for subformulas ⟨[Aj]⟩ξjπj . . . ⟨[An]⟩ξnπn. ψ for j
from n to 1 (line 10). After the loop, we are left with an
APA A over singleton alphabet (∅ → S) that is (G, ṡ)-
equivalent to φ; we can thus decide if ṡ, ∅ |=G φ by checking
if zip(∅) ∈ L(A) (line 11).

Proposition 3. For every CGS G = (S, s0,A, κ, L) and
closed HyperATL∗

S formula φ, we have

modelCheck(G,φ) =
{
s ∈ S | s, ∅ |=G φ

}
.

Complexity. Each application of product increases the size
of A by (in the worst case) two exponents. Checking
a HyperATL∗

S formula with n nested quantifiers is thus
in 2n-EXPTIME, and MC for general formulas is non-
elementary. As HyperATL∗

S subsumes HyperATL∗, we get a
matching non-elementary hardness (Beutner and Finkbeiner
2023b). HyperATL∗

S is thus more expressive (and also much
harder to model-check) than ATL∗. We stress that the non-
elementary complexity of HyperATL∗

S stems from its ability
to quantify over arbitrarily many paths. In most properties
of interest, we quantify over few paths (cf. Section 6), which
results in a much lower (elementary) complexity. In particu-
lar, if we apply Algorithm 1 to an ATL∗-equivalent formula
(cf. Proposition 1), we deal with a single nested quantifier
(n = 1) and thus match the 2-EXPTIME MC complexity
known for ATL∗ (Alur, Henzinger, and Kupferman 2002).

5.3 Model Checking the Running Example
We illustrate our MC construction on the formula from
Example 2. In a first step, we translate the body
(¬wπ′)U(¬wπ′ ∧ wπ) to a DPA over alphabet ({π, π′} →
{s0, s1, s2}), depicted in Figure 3a. Afterward, we can fol-
low the construction from Theorem 1 to obtain an APA over
({π} → {s0, s1, s2}) that is (G, s0)-equivalent to subfor-
mula Jsched ,W1 Kπ′. (¬wπ′)U(¬wπ′ ∧ wπ). We depict a
sketch in Figure 3b. We start in state (q0, s0). When read-
ing letter [π 7→ s2], we update the automaton state to q1, so
– as q1 is an accepting sink – every run from such states is
accepting. To aid readability, we stop exploration as soon as
the automaton state equals q1 or q2 and mark them with a
green (dashed border) and red (dotted border) box to rep-
resent acceptance and rejection, respectively. When reading
letters [π 7→s0] or [π 7→s1], we remain in automaton state q0.
However, to update the state of the CGS, we need to simulate
the strategic behavior within the CGS. As we quantify uni-
versally over strategies for {sched ,W1}, we conjunctively
consider all possible action vectors {sched ,W1} → A. For
each such action vector, we can then disjunctively choose an
action for W2 . In our visualization in Figure 3b, we use de-
cision nodes (as in Example 3); for the reader’s convenience,
we label each conjunctive choice with the corresponding
partial action vector. For example, if we conjunctively pick
the (partial) action vector [sched 7→g,W1 7→r], agent W2
can (disjunctively) move to either (q0, s1) or (q0, s2).

To better understand of the APA we have just constructed,
we can translate it to some equivalent DPA, depicted in
Figure 3c. For this DPA, we can see that a path assign-
ment is accepted iff s2 (i.e., the unique state where AP
w holds) occurs within the first two steps on π. This ex-
actly matches the intuition of (G, s0)-equivalence: A path
assignment Π : {π} → {s0, s1, s2}ω satisfies s0,Π |=G
Jsched ,W1 Kπ′. (¬wπ′)U(¬wπ′ ∧ wπ) iff s2 occurs within
the first two steps on π. If s2 does not hold on in the first
two steps, {sched ,W1} can ensure that s2 holds in the third
step on π′ and thus violate the property.

We can use the DPA in Figure 3c and, again, apply The-
orem 1 to the outermost quantifier ⟪sched ,W1 ,W2⟫π, re-
sulting in the APA over singleton alphabet (∅→{s0, s1, s2})
sketched in Figure 3d. Here, we disjunctively pick an action
vector {sched ,W1 ,W2} → A (annotated at each decision
node). As there are no agents in {sched ,W1 ,W2}, each ac-
tion vector yields a unique successor state. It is easy to see
that this APA accepts zip(∅) = ∅ω , proving G |= φ.

6 Implementation and Experiments
We have implemented our algorithm in a tool we call
HyMASMC. As input, our tool reads MASs in the form of
ISPL models (Lomuscio, Qu, and Raimondi 2009). For au-
tomata operations (in particular, the translation from alter-
nating to deterministic automata), we use spot; an actively-
maintained automata library (Duret-Lutz et al. 2022). To
check APAs over the singleton alphabet (∅ → S) for empti-
ness, we use the parity-game solver oink (van Dijk 2018).
All results were obtained on a 3.60GHz Xeon® CPU (E3-
1271) with 32GB of memory running Ubuntu 20.04.

n |S| |Sreach | tMCMAS-SL[1G] tHyMASMC

2 72 9 0.11 0.41
3 432 21 6.64 2.06
4 2592 49 322.7 24.3
5 15552 113 TO 347.1

Table 1: We compare HyMASMC and MCMAS-SL[1G]. We
give the size of the system (|S|), the size of the reachable
fragment (|Sreach |), and the verification times in seconds.
The timeout (TO) is set to 1h.

6.1 Model Checking ATL∗

In our first experiment, we want to compare the perfor-
mance of HyMASMC against existing tools for strategic
properties. This requires us to consider non-hyper proper-
ties in the form of ATL∗ specification (as no existing tool
can handle hyperproperties). Concretely, we compare with
MCMAS-SL[1G], a solver for a fragment of strategy logic
(Cermák, Lomuscio, and Murano 2015). We use the same
benchmark family used by Cermák, Lomuscio, and Murano
(2015), describing a parametric scheduling problem consist-
ing of agents Agts = {sched , y1, . . . , yn} for n ∈ N. We
check the following HyperATL∗

S formula

⟪sched⟫π.
n∧
i=1

G
(
⟨wt , i⟩π → F¬⟨wt , i⟩π

)
The formula states that whenever agent yi waits (modeled
by AP ⟨wt , i⟩), it will eventually not wait anymore, i.e., the
scheduler has a strategy that avoids starvation of all agents.
This formula is equivalent to the strategy logic specification
used by Cermák, Lomuscio, and Murano (2015).

We check the HyperATL∗
S formulas (and the equiv-

alent strategy logic specifications) with HyMASMC and
MCMAS-SL[1G] for varying values of n. We use the
“optimized” algorithm in MCMAS-SL[1G] that decom-
poses the formula as much as possible (Cermák, Lomus-
cio, and Murano 2015, §4). The results are given in Ta-
ble 1. We observe that HyMASMC performs much faster than
MCMAS-SL[1G], which we largely accredit to the very ef-
ficient backend solvers in spot and oink.

6.2 Model Checking Hyperproperties
In this section, we challenge HyMASMC with interesting hy-
perproperties. As underlying MAS models, we use the ISPL
models used by MCMAS (Cermák, Lomuscio, and Murano
2015; Lomuscio, Qu, and Raimondi 2009) and design a
range of specification templates that model interesting use
cases of HyperATL∗

S . We emphasize that not every template
models realistic properties in each of the ISPL instances.
However, our evaluation (1) demonstrates that HyperATL∗

S
can express interesting properties, and (2) empirically shows
that HyMASMC can check such properties in existing ISPL
models (confirming this via further real-world scenarios is
interesting future work). Note that none of the properties
falls in the self-composition fragment of HyperATL∗ (Beut-
ner and Finkbeiner 2021, 2023b), which formed the largest
fragment supported by previous tools.

Optimality I Optimality II Optimality III OD GE

ISPL Model tavg tmax tavg tmax tavg tmax tavg tmax tavg tmax

BIT-TRANSMISSION 0.38 0.41 0.39 0.42 0.39 0.44 0.39 0.44 0.38 0.42
BOOK-STORE 0.39 0.42 0.40 0.47 0.40 0.44 0.39 0.42 0.39 0.43
CARD-GAME 0.38 0.39 0.38 0.39 0.41 0.48 0.39 0.46 0.36 0.37
DINING CRYPTOGRAPHERS 0.70 0.77 0.68 0.85 0.70 0.77 0.69 0.74 0.69 1.10
MUDDY-CHILDREN 0.36 0.44 0.36 0.40 0.36 0.42 0.36 0.42 0.36 0.42
SIMPLE-CARD-GAME 0.35 0.38 0.35 0.37 0.35 0.38 0.35 0.38 0.34 0.35
SOFTWARE-DEVELOPMENT - - - - - - - - - -
STRONGLY-CONNECTED 0.35 0.41 0.34 0.37 0.35 0.37 0.37 0.40 0.34 0.38
TIANJI-HORSE-RACING-GAME 0.38 0.45 0.37 0.39 0.37 0.40 0.37 0.40 0.37 0.42

SCHEDULER-2 0.47 0.51 0.46 0.48 0.95 1.35 0.47 0.53 0.48 0.51
SCHEDULER-3 2.33 2.85 2.29 2.70 9.72 20.1 2.12 2.64 2.01 2.15
SCHEDULER-4 29.5 32.7 24.5 24.7 31.2 35.2 28.36 58.7 24.6 25.1

Table 2: For each ISPL model (Lomuscio, Qu, and Raimondi 2009), we display the average time (tavg) and the maximal time
(tmax) time (in seconds) needed by HyMASMC across the 20 random instances sampled from each template.

Optimality I. As argued in Section 1 and Example 2, a
particular strength of HyperATL∗

S is the ability to compare
the power of different coalitions. For A,A′ ⊆ Agts and
tgt ∈ AP (modeling the target), we check

⟪A⟫π. JA′Kπ′. (¬tgtπ′)U(¬tgtπ′ ∧ tgtπ).

Optimality II. Using the strategy sharing in HyperATL∗
S ,

we can also check if a coalition can achieve the goal equally
fast despite using the same strategy for all agents (cf. Ex-
ample 1). For a group of agents A and tgt ∈ AP , we use
HyMASMC to check

⟪A⟫{(i,j)|i,j∈A} π. JAKπ′. (¬tgtπ′)U tgtπ.

Optimality III. Likewise, we can express that coalition
A can reach a target state at strictly more time points than
coalition A′ as

⟪A⟫π. JA′Kπ′.G(tgtπ′ → tgtπ) ∧ F(¬tgtπ′ ∧ tgtπ).

Observational Determinism (OD). An important prop-
erty in the context of security in MASs is observational de-
terminism (Zdancewic and Myers 2003). For example, as-
sume we have a system that contains a controller agent cnt
and an AP h that models a high-security value of the system.
We want to ensure that the value of h is in control of cnt ,
which we can express in HyperATL∗

S as

⟪cnt⟫π. ⟪cnt⟫π′.G(hπ ↔ hπ′).

That is, cnt has a strategy to construct π such that in a sec-
ond execution, cnt can ensure the same sequence of values
for h (despite the other agents potentially acting differently).

Good-Enough Synthesis (GE). In many scenarios, there
does not exist a strategy that wins in all situations. Instead,
we often look for strategies that are good-enough (GE),
i.e., strategies that win on every possible input sequence
for which a winning output sequence exists (Almagor and
Kupferman 2020; Aminof, Giacomo, and Rubin 2021; Li
et al. 2021). We can express the existence of a GE strategy
for A ⊆ Agts in HyperATL∗

S as

⟪A⟫π. ⟪∅⟫π′. (G(inπ ↔ inπ′) ∧ F tgtπ′) → F tgtπ.

That is, A has a strategy for π such that if any other (univer-
sally quantified) path π′ agrees on the input in ∈ AP with π
and wins (e.g., reaches a state where tgt ∈ AP holds), then
π must win as well. Phrased differently, π only needs to win,
provided some path with the same inputs can win.

Results. For each ISPL model, we sample 20 random
HyperATL∗

S formulas from each of the templates and dis-
play the verification times in Table 2. We observe that
HyMASMC can verify almost all instances within a few sec-
onds. Even on the challenging scheduler instances, verifica-
tion of complex hyperproperties is only slightly more expen-
sive than checking non-hyper ATL∗ formulas (cf. Table 1).
The only exception is the SOFTWARE-DEVELOPMENT
model; this model consists of roughly 15k states, which is
too large for any automata-based representation. We stress
that already in the non-hyper realm, MCMAS-SL[1G] can-
not verify (even simple) ATL∗ and strategy logic specifica-
tions in the SOFTWARE-DEVELOPMENT model and is only
applicable to ATL and CTL properties.

7 Conclusion
Starting with the seminal work on ATL∗, the past decade
has seen immense progress in (temporal) logic-based frame-
works that provide rigorous and formal guarantees in
MASs. Thus far, most logics focus on a purely path-based
view where we reason about the strategic (in)ability of
agents. However, many important properties require reason-
ing about multiple paths at the same time and investigat-
ing scenarios where agents share strategies. We have pre-
sented HyperATL∗

S , a powerful logic that bridges this gap.
Our logic: (1) can express many important properties such as
optimality requirements, OD, and GE; (2) admits decidable
model checking; and (3) can be checked fully automatically
using HyMASMC.

For the future, it is interesting to cast even more prop-
erties in a unified framework using (hyper)logics such as
HyperATL∗

S (similar to what has been done for ATL/ATL∗)
and explore even more scalable verification approaches for
HyperATL∗

S using, e.g., symbolic techniques.

Acknowledgments
This work was supported by the European Research Council
(ERC) Grant HYPER (101055412), and by the German Re-
search Foundation (DFG) as part of TRR 248 (389792660).

References
Alechina, N.; Demri, S.; and Logan, B. 2020. Parameterised
Resource-Bounded ATL. In Conference on Artificial Intelli-
gence, AAAI 2020.
Almagor, S.; and Kupferman, O. 2020. Good-Enough Syn-
thesis. In International Conference on Computer Aided Ver-
ification, CAV 2020.
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. J. ACM.
Aminof, B.; Giacomo, G. D.; and Rubin, S. 2021. Best-
Effort Synthesis: Doing Your Best Is Not Harder Than Giv-
ing Up. In International Joint Conference on Artificial In-
telligence, IJCAI 2021.
Attie, P. C.; and Emerson, E. A. 1998. Synthesis of Con-
current Systems with Many Similar Processes. ACM Trans.
Program. Lang. Syst.
Barthe, G.; D’Argenio, P. R.; and Rezk, T. 2011. Secure in-
formation flow by self-composition. Math. Struct. Comput.
Sci.
Belardinelli, F.; Lomuscio, A.; and Malvone, V. 2019. An
Abstraction-Based Method for Verifying Strategic Proper-
ties in Multi-Agent Systems with Imperfect Information. In
Conference on Artificial Intelligence, AAAI 2019.
Belardinelli, F.; Lomuscio, A.; Murano, A.; and Rubin, S.
2017. Verification of Multi-agent Systems with Imperfect
Information and Public Actions. In International Confer-
ence on Autonomous Agents and MultiAgent Systems, AA-
MAS 2017.
Belardinelli, F.; Lomuscio, A.; Murano, A.; and Rubin, S.
2018. Alternating-time Temporal Logic on Finite Traces.
In International Joint Conference on Artificial Intelligence,
IJCAI 2018.
Berthon, R.; Maubert, B.; and Murano, A. 2017. Decidabil-
ity Results for ATL* with Imperfect Information and Perfect
Recall. In International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS 2017.
Beutner, R.; and Finkbeiner, B. 2021. A Temporal Logic for
Strategic Hyperproperties. In International Conference on
Concurrency Theory, CONCUR 2021.
Beutner, R.; and Finkbeiner, B. 2023a. AutoHyper: Explicit-
State Model Checking for HyperLTL. In International Con-
ference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2023.
Beutner, R.; and Finkbeiner, B. 2023b. HyperATL*: A
Logic for Hyperproperties in Multi-Agent Systems. Log.
Methods Comput. Sci.
Beutner, R.; and Finkbeiner, B. 2023c. On Alternating-
Time Temporal Logic, Hyperproperties, and Strategy Shar-
ing. CoRR, 2312.12403.

Beutner, R.; Finkbeiner, B.; Frenkel, H.; and Metzger, N.
2023. Second-Order Hyperproperties. In International Con-
ference on Computer Aided Verification, CAV 2023.
Bouyer, P.; Kupferman, O.; Markey, N.; Maubert, B.; Mu-
rano, A.; and Perelli, G. 2019. Reasoning about Quality and
Fuzziness of Strategic Behaviours. In International Joint
Conference on Artificial Intelligence, IJCAI 2019.
Bozzelli, L.; Maubert, B.; and Pinchinat, S. 2015. Unify-
ing Hyper and Epistemic Temporal Logics. In International
Conference on Foundations of Software Science and Com-
putation Structures, FoSSaCS 2015.
Calegari, R.; Ciatto, G.; Mascardi, V.; and Omicini, A. 2021.
Logic-based technologies for multi-agent systems: a system-
atic literature review. Auton. Agents Multi Agent Syst.
Cermák, P.; Lomuscio, A.; and Murano, A. 2015. Veri-
fying and Synthesising Multi-Agent Systems against One-
Goal Strategy Logic Specifications. In Conference on Arti-
ficial Intelligence, AAAI 2015.
Chatterjee, K.; Henzinger, T. A.; and Piterman, N. 2010.
Strategy logic. Inf. Comput.
Chen, T.; and Lu, J. 2007. Probabilistic Alternating-time
Temporal Logic and Model Checking Algorithm. In Inter-
national Conference on Fuzzy Systems and Knowledge Dis-
covery, FSKD 2007.
Clarkson, M. R.; Finkbeiner, B.; Koleini, M.; Micinski,
K. K.; Rabe, M. N.; and Sánchez, C. 2014. Temporal Logics
for Hyperproperties. In International Conference on Princi-
ples of Security and Trust, POST 2014.
Clarkson, M. R.; and Schneider, F. B. 2008. Hyperproper-
ties. In Computer Security Foundations Symposium, CSF
2008.
Duret-Lutz, A.; Renault, E.; Colange, M.; Renkin, F.; Aisse,
A. G.; Schlehuber-Caissier, P.; Medioni, T.; Martin, A.;
Dubois, J.; Gillard, C.; and Lauko, H. 2022. From Spot 2.0
to Spot 2.10: What’s New? In International Conference on
Computer Aided Verification, CAV 2022.
Emerson, E. A.; and Halpern, J. Y. 1986. ”Sometimes” and
”Not Never” revisited: on branching versus linear time tem-
poral logic. J. ACM.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning About Knowledge.
Finkbeiner, B.; Rabe, M. N.; and Sánchez, C. 2015. Algo-
rithms for Model Checking HyperLTL and HyperCTL*. In
International Conference on Computer Aided Verification,
CAV 2015.
Henzinger, T. A.; and Prabhu, V. S. 2006. Timed
Alternating-Time Temporal Logic. In International Confer-
ence on Formal Modeling and Analysis of Timed Systems,
FORMATS 2006.
Jamroga, W.; Konikowska, B.; and Penczek, W. 2016. Multi-
Valued Verification of Strategic Ability. In International
Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2016.
Li, Y.; Turrini, A.; Vardi, M. Y.; and Zhang, L. 2021. Syn-
thesizing Good-Enough Strategies for LTLf Specifications.

In International Joint Conference on Artificial Intelligence,
IJCAI 2021.
Lomuscio, A.; Qu, H.; and Raimondi, F. 2009. MCMAS:
A Model Checker for the Verification of Multi-Agent Sys-
tems. In International Conference on Computer Aided Veri-
fication, CAV 2009.
Mantel, H.; and Sabelfeld, A. 2001. A Generic Approach
to the Security of Multi-Threaded Programs. In Computer
Security Foundations Workshop, CSFW 2001.
Miyano, S.; and Hayashi, T. 1984. Alternating Finite Au-
tomata on omega-Words. Theor. Comput. Sci.
Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. Y.
2014. Reasoning About Strategies: On the Model-Checking
Problem. ACM Trans. Comput. Log.
Shapley, L. S. 1953. A Value for n-Person Games.
van der Hoek, W.; and Wooldridge, M. J. 2003. Coop-
eration, Knowledge, and Time: Alternating-time Temporal
Epistemic Logic and its Applications. Stud Logica.
van Dijk, T. 2018. Oink: An Implementation and Evalua-
tion of Modern Parity Game Solvers. In International Con-
ference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2018.
Vardi, M. Y. 1995. Alternating Automata and Program Ver-
ification. In Computer Science Today: Recent Trends and
Developments.
Wittbold, J. T.; and Johnson, D. M. 1990. Information Flow
in Nondeterministic Systems. In Symposium on Security and
Privacy, SP 1990.
Zdancewic, S.; and Myers, A. C. 2003. Observational De-
terminism for Concurrent Program Security. In Computer
Security Foundations Workshop, CSFW 2003.

