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Abstract
Hyperproperties are system properties that relate multiple execution traces, and naturally occur, e.g., in information-flow
control, knowledge, robustness, mutation testing, path planning, and causality checking. HyperLTL is a temporal logic
that can express complex temporal hyperproperties by extending LTL with quantification over execution traces. Thus far,
complete model-checking tools for HyperLTL have been limited to alternation-free formulas, i.e., formulas that use only
universal or only existential trace quantification. In this paper, we present AutoHyper, an explicit-state automata-based model
checker for HyperLTL that is complete for formulas with an arbitrary quantifier prefix. On the theoretical side, we show
how language inclusion checks between 𝜔-automata can be integrated into HyperLTL verification. On the practical side, this
allows AutoHyper to leverage a range of existing inclusion-checking tools for hyperproperty verification. We further extend
our model-checking algorithm to support HyperLTL modulo theories, i.e., formulas where the atomic formulas consist of
first-order formulas instead of Boolean atomic propositions. We show how we can model-check such formulas effectively by
tracking partially evaluated first-order formulas within an automaton. We evaluate AutoHyper on a broad set of benchmarks
drawn from different areas in the literature and compare it with existing (incomplete) methods for HyperLTL verification.

Keywords HyperLTL · Language inclusion · Automata · Completeness · HyperLTL modulo theories

1 Introduction

In 2008, Clarkson and Schneider [23] coined the term hy-
perproperties for the rich class of requirements that relate
multiple computation traces in a system. Hyperproperties
are of increasing importance as they naturally occur, e.g.,
in information-flow control [48], robustness [19], (common)
knowledge [15, 20], linearizability [40, 42], path planning
[49], mutation testing [34], and counterfactual causality
checking [27]. As a concrete example, assume that we are
given a model of a system over a set of Boolean variables
(aka. atomic propositions) 𝑂 � 𝐿 � 𝐻 consisting of (public)
outputs𝑂, low-security inputs 𝐿, and high-security inputs 𝐻.
We want to verify that the low-security observations on the
system (i.e., the public outputs 𝑂 and low-security inputs 𝐿)

do not allow any conclusions about the high-security input.
Such an information-flow policy cannot be expressed as a
trace property in, e.g., linear-time temporal logic (LTL); we
need to relate multiple executions to observe how different
inputs impact the output.

HyperLTL A prominent logic to express temporal hyper-
properties is HyperLTL, which extends LTL with explicit
quantification over execution traces [24]. Using HyperLTL,
we can, for example, express a simple information-flow pol-
icy – resembling observational determinism (OD) [50] – as
follows:

∀𝜋1.∀𝜋2.
( ∧

𝑎∈𝐿

𝑎𝜋1 ↔ 𝑎𝜋2

)
→

( ∧
𝑎∈𝑂

𝑎𝜋1 ↔ 𝑎𝜋2

)
(OD)

This formula states that any pair of execution traces 𝜋1,
𝜋2, with identical low-security input, produces the same se-
quence of outputs. Phrased differently, the output of the sys-
tem is deterministic with respect to the low-security input.

In many cases, (OD) is too strict; in particular, in sys-
tems where the output can be influenced by nondetermin-
ism within the system. Instead, we can consider a weaker
information-flow policy, called generalized noninterference
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(GNI) [46]. Informally, GNI requires that the low-security
observations are independent of the high-security inputs, i.e.,
every possible sequence of low-security observations should
be compatible with every possible sequence of high-security
inputs. We can, again, express this in HyperLTL as follows

∀𝜋1.∀𝜋2.∃𝜋3.
( ∧
𝑎∈𝐿∪𝑂

𝑎𝜋1 ↔ 𝑎𝜋3

)
∧

( ∧
𝑎∈𝐻

𝑎𝜋2 ↔ 𝑎𝜋3

)
.

(GNI)

That is, for any pair of traces 𝜋1, 𝜋2, some trace 𝜋3 combines
the low-security observations on 𝜋1 with the high-security
input on 𝜋2.

Model checking HyperLTL We are interested in the
model-checking (MC) problem of HyperLTL, i.e., decid-
ing whether a given (finite-state) transition system satisfies
a given HyperLTL formula. For HyperLTL, the structure of
the quantifier prefix directly impacts the complexity of this
problem, both in theory and practice. For alternation-free for-
mulas, i.e., formulas that only use quantifiers of a single type,
such as (OD), verification is reducible to the verification of
an LTL trace property on a self-composition of the system
[5]. This reduction has, for example, been implemented in
MCHyper [37], a tool that can model check (alternation-free)
HyperLTL formulas in systems of considerable size (circuits
with thousands of latches).

Verification is much more challenging for properties in-
volving quantifier alternations (such as (GNI)). While model-
checking algorithms supporting full HyperLTL exist (see
[24, 37]), they have not been implemented yet. Instead, over
the years, a number of approximate approaches to the ver-
ification of such properties in practice have been made:
Finkbeiner et al. [37] and D’Argenio et al. [29] manually
strengthen properties with quantifier alternation into proper-
ties that are alternation-free and can be checked by MCHyper.
Coenen et al. [26] instantiate existential quantification in a
∀
∗
∃
∗ property (i.e., a property involving an arbitrary number

of universal quantifiers followed by an arbitrary number of
existential quantifiers, such as (GNI)) with an explicit (user-
provided) strategy, thus reducing to the verification of an
alternation-free formula. Alternatively, the strategy that re-
solves existential quantification can be automatically synthe-
sized [6, 11]. Hsu et al. [42] study a bounded model-checking
(BMC) approach to HyperLTL by employing QBF solving.
Section 3 provides a more extensive overview of existing
approaches.

While all these verification tools can verify (or refute) in-
teresting properties, they all suffer from the same limitation:
they are incomplete. That is, for all the tools above, we can
come up with model-checking instances where they fail, not

necessarily due to resource constraints but because of in-
herent limitations in the underlying algorithm. For example,
many of the benchmarks used to evaluate the BMC approach
[42] do not admit a strategy to resolve existential quantifica-
tion. Conversely, many of the properties verified by Coenen
et al. [26] (including, e.g., (GNI)) cannot be verified using
Hsu et al.’s [42] BMC encoding.

AutoHyper In this paper, we present AutoHyper, a Hyper-
LTL model-checking tool. Our tool checks a hyperproperty
against a finite-state transition system by iteratively eliminat-
ing trace quantification using automata complementations,
thereby reducing verification to the emptiness check of an
automaton [37]. Importantly – and unlike previous tools for
HyperLTL verification – AutoHyper can cope with (and
is complete for) arbitrary HyperLTL formulas. Model check-
ing using AutoHyper does not require manual effort (such as
writing an explicit strategy in MCHyper [26]), nor does a user
need to worry if the given property is supported. AutoHyper
thus provides a push-button model-checking experience for
HyperLTL.1

Language inclusion checks HyperLTL model-checking
is provably hard: each quantifier alteration in the quantifier
prefix of a formula leads (in the worst case) to an exponen-
tial blowup in MC complexity (both in the size of the system
and the size of the formula) [24, 48]. In the basic algorithm
implemented in AutoHyper (based on [37]), this complexity
is reflected in an automaton complementation for each quan-
tifier alternation. We show that for the outermost quantifier
alternation, we can avoid a full automaton complementation
and instead reduce to a language inclusion check on Büchi
automata (i.e., the question of whether the language of some
Büchi automaton A is contained in the language of an au-
tomatonB). While language inclusion checks between Büchi
automata follow the same theoretical complexity, they admit
many approaches that scale well in practice. In practice, this
enables AutoHyper to resort to a range of mature language
inclusion checkers, including spot [33], RABIT [25], BAIT
[31], and FORKLIFT [32]. In particular, for formulas with
at most one quantifier alternation (which covers many prop-
erties of interest; see Sect. 9), AutoHyper can delegate the
model-checking complexity almost entirely to an external
inclusion checker.

HyperLTL modulo theories In many cases, the vari-
ables of a (finite-state) system are not Boolean but come
from richer domains (e.g., the set of integers). We ex-
tend HyperLTL by including first-order formulas (modulo
some fixed background theory 𝔗) as atomic expressions,

1 The name of AutoHyper is derived from the fact that it is both
Automata-based and fully Automatic.
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called HyperLTL𝔗 . That is, instead of accessing traces at
the level of atomic propositions [24], we can reason about
relational formulas over complex data types. For example,
∀𝜋1.∃𝜋2. (𝑥𝜋2 ≥ 𝑧𝜋1 ) ∧ 𝑦𝜋2 states that for any trace 𝜋1,
there exists some trace 𝜋2 such that on 𝜋2 the value of the
(integer-valued) variable 𝑥 is (globally) greater than or equal
to the value of 𝑧 on 𝜋1, and the (Boolean-valued) variable 𝑦 is
eventually set to true on 𝜋2. We show how we can extend the
automata-based model-checking framework to support re-
lational first-order formulas as atomic formulas by tracking
partially evaluated formulas within an automaton.

Evaluation We evaluate AutoHyper on a broad range of
benchmarks taken from the literature and compare it with
existing (incomplete) tools. We observe that – at least on
the currently available benchmarks – explicit-state model-
checking as implemented in AutoHyper performs on-par
(and frequently outperforms) symbolic methods such as
BMC [42]. Our benchmarks stem from various areas within
computer science, so AutoHyper should, thanks to its push-
button functionality, completeness, and ease of use, be a
valuable addition to many areas.

Apart from using AutoHyper as a practical MC tool, we
can also use it as a complete baseline to systematically eval-
uate existing (incomplete) methods. For example, while it is
known that replacing existential quantification with a strat-
egy (see [6, 26]) is incomplete, it was, thus far, unknown if
this incompleteness occurs frequently. We use AutoHyper to
obtain a ground truth and evaluate the strategy-based verifi-
cation approach in terms of its effectiveness (i.e., how many
instances it can verify despite being incomplete) and effi-
ciency.

Structure The remainder of this paper is structured as
follows. In Sect. 2, we introduce HyperLTL, and Sect. 3
recaps existing approaches for the verification of HyperLTL
formulas. We present our automata-based model-checking
algorithm and our language-inclusion-based optimization in
Sect. 4. In Sect. 5, we extend HyperLTL with a background
theory (called HyperLTL𝔗) and modify our model-checking
algorithm in Sect. 6. We present technical background on
AutoHyper in Sect. 7. In Sect. 8, we evaluate AutoHyper
on a set of benchmarks from the literature and compare it with
the bounded model checker HyperQB [42]. Finally, in Sect. 9,
we use AutoHyper for a detailed analysis of (and comparison
with) strategy-based HyperLTL verification [6, 26].

This paper is an extended version of a preliminary con-
ference version [8]. Compared to the conference version, we
simplify the technical sections by using nondeterministic and
universal automata, extend our model-checking algorithm to
support HyperLTL modulo theories (see Sect. 6), and discuss
additional optimizations such as bisimulation-based prepro-
cessing. Additionally, we evaluate AutoHyper on a more

extensive set of benchmarks, showcasing the practical im-
pact of our extensions and optimizations.

2 HyperLTL and transition systems

We first present the standard variant of HyperLTL that ac-
cesses traces at the level of (Boolean-valued) atomic propo-
sitions [24] and its semantics over Boolean-valued transition
systems. In Sect. 5, we then extend HyperLTL to support
relational expressions.

HyperLTL We fix a finite set AP of atomic propositions
(APs). HyperLTL [24] extends LTL with explicit quantifi-
cation over traces, thereby lifting it from a logic express-
ing trace properties to one expressing hyperproperties. Let
V = {𝜋, 𝜋1, 𝜋2, . . .} be a set of trace variables. We define
HyperLTL formulas by the following grammar:

𝜓 := 𝑎𝜋 | ¬𝜓 | 𝜓 ∧ 𝜓 | 𝜓 | 𝜓U 𝜓

𝜑 := ∃𝜋. 𝜑 | ∀𝜋. 𝜑 | 𝜓

where 𝜋 ∈ V is a trace variable, and 𝑎 ∈ AP is an atomic
proposition. We assume that the formula is closed, i.e.,
all trace variables used in the LTL body are bound by
some quantifier. We use the usual derived Boolean constants
and connectives true, false,∨,→,↔ and temporal operators

𝜓 := trueU 𝜓 and 𝜓 := ¬ ¬𝜓.

Semantics A trace is an infinite sequence 𝑡 ∈ (2AP
)
𝜔 . The

semantics of HyperLTL is given with respect to a trace as-
signment Π :V⇀ (2AP

)
𝜔 , which is a partial mapping from

trace variables to traces. For 𝜋 ∈ V and 𝑡 ∈ (2AP
)
𝜔 , we write

Π [𝜋 ↦→ 𝑡] for the trace assignment obtained by updating the
value of 𝜋 to 𝑡. Given a set of traces T ⊆ (2AP

)
𝜔 , a trace

assignment Π, and 𝑖 ∈ N, we define:

Π, 𝑖 |= 𝑎𝜋 iff 𝑎 ∈ Π(𝜋)(𝑖)

Π, 𝑖 |= ¬𝜓 iff Π, 𝑖 � |= 𝜓

Π, 𝑖 |= 𝜓1 ∧ 𝜓2 iff Π, 𝑖 |= 𝜓1 and Π, 𝑖 |= 𝜓2

Π, 𝑖 |= 𝜓 iff Π, 𝑖 + 1 |= 𝜓

Π, 𝑖 |= 𝜓1U 𝜓2 iff ∃ 𝑗 ≥ 𝑖.Π, 𝑗 |= 𝜓2 and

∀𝑖 ≤ 𝑘 < 𝑗 .Π, 𝑘 |= 𝜓1

Π |=T 𝜓 iff Π,0 |= 𝜓

Π |=T ∃𝜋. 𝜑 iff ∃𝑡 ∈ T.Π [𝜋 ↦→ 𝑡] |=T 𝜑

Π |=T ∀𝜋. 𝜑 iff ∀𝑡 ∈ T.Π [𝜋 ↦→ 𝑡] |=T 𝜑

The atomic formula 𝑎𝜋 holds in the 𝑖th step whenever AP 𝑎

holds in 𝑖th step on the trace bound to 𝜋 (i.e., 𝑎 ∈ Π(𝜋)(𝑖));
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Table 1 We group existing verification approaches for HyperLTL based on their strengths. We write when the verification method (the row)
has the given property (column) and if it does not

Guaranteed
Soundness

Arbitrary
Alternations

Symbolic
Systems

Fully
Automated

NL
Complexity

Completeness

Self-Composition [29, 37]
Manual Strengthening [29, 37]
SBV [User-Provided Strategy] [26]
SBV [Strategy Synthesis] [6]
BMC [42]
Explicit-State MC [This work]

Boolean and temporal operators are evaluated as expected;
Quantification ranges over traces in T and binds them to the
respective trace variable.

Transition systems We evaluate HyperLTL over finite-
state transition systems.

Definition 1
A transition system is a tuple T = (𝑆, 𝑆0, 𝜅, ℓ), where 𝑆 is a
finite set of states, 𝑆0 ⊆ 𝑆 is a set of initial states, 𝜅 ⊆ 𝑆×𝑆 is a
transition relation, and ℓ : 𝑆→ 2AP is a labeling function. �

A path in T is an infinite sequence 𝑠0𝑠1𝑠2 · · · ∈ 𝑆
𝜔 such

that 𝑠0 ∈ 𝑆0 and (𝑠𝑖 , 𝑠𝑖+1) ∈ 𝜅 for all 𝑖 ∈ N. The associated
trace is given by ℓ(𝑠0)ℓ(𝑠1)ℓ(𝑠2) · · · ∈ (2AP

)
𝜔 . We write

Traces(T ) ⊆ (2AP
)
𝜔 for the set of all traces generated by

T . A transition system T satisfies a HyperLTL formula 𝜑,
written T |= 𝜑, if ∅ |=Traces(T) 𝜑, where ∅ denotes the empty
trace assignment (i.e., the partial functionV⇀ (2AP

)
𝜔 with

empty domain).

3 Related work

HyperLTL is among the most studied logics for express-
ing temporal hyperproperties. A range of problems from
different areas in computer science can be expressed as Hy-
perLTL MC problems, including (optimal) path planning
[49], mutation testing [34], linearizability [42], robustness
[19, 29], information-flow control [48], causality checking
[16, 27, 36], and (common) knowledge [15, 20]. Conse-
quently, any model-checking tool for HyperLTL is applicable
to computational problems in various application areas and
provides a unified solution to many challenging algorithmic
problems.

In recent years, different (mostly incomplete) verification
tools for HyperLTL have been developed. Table 1 contains
an informal overview of their respective strengths and weak-
nesses. We discuss the approaches below.

Alternation-free HyperLTL Verification of HyperLTL
formulas without quantifier alternations can be reduced to
checking an LTL property on the self-composition of the
system [5, 37]. This approach is very efficient: it applies to
systems where the state-space is symbolically presented (e.g.,
AIGER circuits or NuSMV models [22]) and follows the same
model-checking complexity as LTL, i.e., it is NL-complete in
the size of the (explicitly-represented) system. McHyper [37]
implements this self-composition for HyperLTL by utilizing
ABC [21] for the LTL verification on AIGER circuits.

Manual strengthening Although McHyper only applies
to alternation-free formulas, it can aid in the verification
of quantifier alternations. Finkbeiner et al. [37] and D’Ar-
genio et al. [29] use McHyper by manually strengthening
alternating formulas into alternation-free formulas. For ex-
ample, a ∀𝜋1.∃𝜋2 formula can be strengthened by replacing
the existential quantification with a universal one and, pos-
sibly, adding temporal premises on 𝜋2. The soundness of
this strengthening must be argued manually and cannot be
checked automatically.

Strategy-based verification Instead of using (manual)
ad hoc strengthening, Coenen et al. [26] study the idea of us-
ing strategies to formalize sound-by-design strengthenings.
In this approach – which we refer to as strategy-based verifi-
cation (SBV) – existential quantification in a ∀∗∃∗ formula is
resolved (i.e., strengthened) by using an explicit strategy that
governs how the trace is constructed. This strategy is either
provided by the user or synthesized automatically. In the for-
mer case, model checking reduces to checking an alternation-
free formula and can thus handle large systems but requires
significant user effort. In the latter case, the method works
fully automatically but requires an expensive strategy syn-
thesis [6, 10, 12]. Analogously, the search for a strategy can
also be seen as the search for a simulation relation [43]. SBV
is incomplete as the strategy resolving existentially quanti-
fied traces only observes finite prefixes of the universally
quantified traces. Although SBV can be made complete by
adding prophecy variables [6], the automatic synthesis of
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such prophecies is currently limited to very small systems
and properties that are temporally safe [6, 14]. We inves-
tigate both the performance and incompleteness of SBV in
Sect. 9.

Bounded model checking for HyperLTL Hsu et al. [42]
propose a bounded model-checking (BMC) procedure for
HyperLTL. Similar to BMC for trace properties [18], the
system is unfolded up to a fixed depth, and pending obliga-
tions beyond that depth are either treated pessimistically (to
show the satisfaction of a formula) or optimistically (to show
the violation of a formula). While BMC for trace properties
reduces to SAT-solving, BMC for hyperproperties naturally
reduces to QBF-solving. We compare AutoHyper and BMC
(in the form of the HyperQB tool [42]) in Sect. 8. As usual
for bounded methods, BMC for HyperLTL is incomplete.
For example, it can never show that a system satisfies a hy-
perproperty where the LTL body contains an invariant (as,
e.g., is the case for (GNI)). In follow-up work, Hsu et al. [43]
suggest a simulation-based unrolling, which corresponds di-
rectly to strategy-based verification.

4 Automata-based model-checking

Given a fixed transition system T = (𝑆, 𝑆0, 𝜅, ℓ) and Hyper-
LTL property �𝜑, we want to determine whether T |= �𝜑 (we
use the dot to refer to the original formula and will later use 𝜑,
𝜑′ to refer to subformulas of �𝜑). In this section, we recap the
automata-based approach to the model checking of Hyper-
LTL [37]. We further show how language inclusion checks
can be incorporated into the model-checking procedure.

4.1 Automata

The idea of automata-based model-checking [37] is to itera-
tively eliminate quantifiers and thus reduce model-checking
to the emptiness check on an automaton.

Definition 2
A nondeterministic Büchi automaton (NBA) (resp., universal
co-Büchi automaton, UCA) over some finite alphabet Σ is
a tuple A = (𝑄,𝑄0, 𝛿, 𝐹), where 𝑄 is a finite set of states,
𝑄0 ⊆ 𝑄 is a set of initial states, 𝛿 ⊆ 𝑄 ×Σ ×𝑄 is a transition
relation, and 𝐹 ⊆ 𝑄 is a set of accepting (resp., rejecting)
states. �

A run of A on a word 𝑢 ∈ Σ𝜔 is an infinite se-
quence of states 𝑞0𝑞1𝑞2 · · · ∈ 𝑄𝜔 such that 𝑞0 ∈ 𝑄0 and
(𝑞𝑖 , 𝑢(𝑖), 𝑞𝑖+1) ∈ 𝛿 for every 𝑖 ∈ N. A word 𝑢 ∈ Σ𝜔 is ac-
cepted by an NBAA if there exists some run on 𝑢 that visits
states in 𝐹 infinitely many times. A word 𝑢 ∈ Σ𝜔 is accepted
by a UCAA if all runs on 𝑢 visit states in 𝐹 only finitely many

times. Given an NBA or UCA A, we write L(A) ⊆ Σ𝜔 for
the set of infinite words accepted by A. Note that we can
translate NBAs into equivalent UCAs and vice versa with an
exponential blowup using, e.g., automata complementation.

4.2 T-Equivalence

The semantics of HyperLTL is based on trace assignments
Π :𝑉→ (2AP

)
𝜔 for some𝑉 ⊆ V (see Sect. 2). To manipulate

trace assignments using automata, we zip them into infinite
traces.

Definition 3
For a trace assignment Π : 𝑉 → (2AP

)
𝜔 (where 𝑉 ⊆ V is

the domain of the assignment), we define the trace zip(Π) ∈
(2AP×𝑉

)
𝜔 by

zip(Π)(𝑖) :=
{
(𝑎, 𝜋) | 𝑎 ∈ AP∧ 𝜋 ∈ 𝑉 ∧ 𝑎 ∈ Π(𝜋)(𝑖)

}

for each 𝑖 ∈ N. �

In other words, (𝑎, 𝜋) ∈ AP × 𝑉 holds on zip(Π) in the
𝑖th step iff 𝑎 holds in the 𝑖th step on trace Π(𝜋). Note that
zip defines a bijection between trace assignments Π : 𝑉 →
(2AP
)
𝜔 and traces in (2AP×𝑉

)
𝜔 .

Our iterative algorithm is now based on the idea that
using the bijection created by zip, we can use automata to
summarize trace assignments that satisfy subformulas of �𝜑.
We formalize this using the concept of T -equivalence [37]:

Definition 4
Let 𝜑 be a HyperLTL formula with free trace variables 𝑉 ⊆

V . An automaton A over alphabet 2AP×𝑉 is T -equivalent
to 𝜑 if for every trace assignments Π :𝑉→ (2AP

)
𝜔 , we have

Π |=Traces(T) 𝜑 if and only if zip(Π) ∈ L(A). �

In other words, A accepts exactly the zippings of traces
that constitute a satisfying trace assignment for 𝜑.

4.3 Product construction

To check if T |= �𝜑, we inductively construct an automaton
A𝜑 that is T -equivalent to 𝜑 for each subformula 𝜑 of �𝜑.
For the (quantifier-free) LTL body of �𝜑, we can construct this
automaton via a standard LTL-to-NBA construction [3, 37].
We then iteratively eliminate quantifiers by computing the
product with the given system T (to eliminate trace quanti-
fiers).

– Case 𝜑′ = ∃𝜋. 𝜑: We are given an inductively constructed
automatonA𝜑 = (𝑄,𝑄0, 𝛿, 𝐹) over alphabet 2AP×(𝑉�{𝜋})

for some 𝑉 ⊆ V that is T -equivalent to 𝜑. We ensure that
A𝜑 is an NBA (by possibly translating a UCA into an
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NBA via complementation) and define the NBAA𝜑′ over
alphabet 2AP×𝑉 as

A𝜑′ := (𝑆 ×𝑄, 𝑆0 ×𝑄0, 𝛿
′, 𝑆 × 𝐹),

where 𝛿′ ⊆ (𝑆 ×𝑄) × 2AP×𝑉
× (𝑆 ×𝑄) is defined as

𝛿′ :=
{(
(𝑠, 𝑞), 𝜎, (𝑠′, 𝑞′)

)
| (𝑠, 𝑠′) ∈ 𝜅∧

(
𝑞, 𝜎 �

{
(𝑎, 𝜋) | 𝑎 ∈ ℓ(𝑠)

}
, 𝑞′

)
∈ 𝛿

}
.

Intuitively, A𝜑′ reads the zipping of a trace assignment
𝑉 → (2AP

)
𝜔 , guesses a trace in T for trace variable

𝜋, and simulates the zipping of the extended trace as-
signment (𝑉 � {𝜋}) → (2AP

)
𝜔 in A𝜑 by adding the 𝜋-

indexed guessed trace (
{
(𝑎, 𝜋) | 𝑎 ∈ ℓ(𝑠)

}
) to each letter

𝜎 ∈ 2AP×𝑉 .
– Case 𝜑′ = ∀𝜋. 𝜑: We are given an automaton A𝜑 over

alphabet 2AP×(𝑉�{𝜋}) that isT -equivalent to 𝜑. We ensure
that this automaton is a UCA (by possibly translating an
NBA into a UCA via complementation) and define A𝜑′

as the UCA over 2AP×𝑉 that is syntactically identical to
the NBA constructed in the previous case.

Proposition 1
For every subformula 𝜑 of �𝜑, the automaton A𝜑 is T -
equivalent to 𝜑.

As the final formula �𝜑 is closed (i.e., contains no free
variables), we eventually obtain a T -equivalent automaton
A �𝜑 over the singleton alphabet 2AP×∅ = 2∅ . By the definition
of T -equivalence, we then have T |= �𝜑 iff ∅ |=Traces(T) �𝜑 iff
zip(∅) ∈ L(A �𝜑). Checking if T |= �𝜑 thus reduces to a word
containment check for zip(∅) in A �𝜑 (or, equivalently, as the
alphabet ofA �𝜑 is a singleton set, we can check if L(A �𝜑) is
nonempty).

4.4 Leveraging language inclusion

The algorithm outlined above requires one complementa-
tion for each quantifier alternation in the HyperLTL formula.
While we cannot avoid the theoretical cost of this comple-
mentation (see [24, 48]), we can reduce it to a problem that
is more tamable in practice: language inclusion.

For a transition system T and a finite set of trace variables
𝑉 ⊆ V , we define an NBA AT ,𝑉 over alphabet 2AP×𝑉 that
accepts the AP evaluations of all possible trace combinations
in T . That is, for any trace assignment Π :𝑉→ (2AP

)
𝜔 , we

have that zip(Π) ∈ L(AT ,𝑉 ) iff Π(𝜋) ∈ Traces(T ) for all
𝜋 ∈ 𝑉 . We can easily construct AT ,𝑉 by construction of a
|𝑉 |-fold self-composition of T [5]:

Definition 5
Define the NBA AT ,𝑉 over alphabet 2AP×𝑉 as AT ,𝑉 :=
(𝑄,𝑄0, 𝛿, 𝐹), where

– 𝑄 := (𝑉→ 𝑆), i.e., the state-space consists of all functions
𝑉 → 𝑆 (which is a finite set as 𝑉 and 𝑆 are both finite).
Each state 𝑞 ∈ 𝑄 thus tracks a state 𝑞(𝜋) ∈ 𝑆 for all trace
variables 𝜋 ∈ 𝑉 ;

– 𝑄0 :=
{
𝑞 ∈ 𝑄 | ∀𝜋 ∈ 𝑉. 𝑞(𝜋) ∈ 𝑆0

}
, i.e., the initial states

are all state combinations where each trace 𝜋 ∈ 𝑉 starts in
an initial state of T ;

– 𝛿 ⊆ 𝑄 × 2AP×𝑉
×𝑄 is defined as

𝛿 :=
{
(𝑞, 𝜎, 𝑞′) | ∀𝜋 ∈ 𝑉.

(
𝑞(𝜋), 𝑞′ (𝜋)

)
∈ 𝜅 ∧

𝜎 =
{
(𝑎, 𝜋) | 𝑎 ∈ AP, 𝜋 ∈ 𝑉, 𝑎 ∈ ℓ

(
𝑞(𝜋)

)}}
,

i.e., there is a transition from 𝑞 to 𝑞′ if for each 𝜋 ∈ 𝑉 , the
state tracked for 𝜋 is updated according to some transition
in T (i.e.,

(
𝑞(𝜋), 𝑞′ (𝜋)

)
∈ 𝜅). The unique label of this

transition contains exactly those indexed APs (𝑎, 𝜋) where
𝑎 holds in the state assigned to 𝜋 (i.e., 𝑎 ∈ ℓ

(
𝑞(𝜋)

)
);

– 𝐹 :=𝑄, i.e., we mark all states as accepting. �

We can now state a formal connection between language
inclusion and HyperLTL model-checking.

Proposition 2
Let �𝜑 = ∀𝜋1. . . .∀𝜋𝑛.𝜑 be a HyperLTL formula (where 𝜑
may contain additional trace quantifiers), and let A𝜑 be
an automaton over 2AP×{𝜋1 ,..., 𝜋𝑛 } that is T -equivalent to 𝜑.
Then T |= �𝜑 if and only if L(AT ,{𝜋1 ,..., 𝜋𝑛 }) ⊆ L(A𝜑).

Proof
For the first direction, assume that L(AT ,{𝜋1 ,..., 𝜋𝑛 }) ⊆

L(A𝜑). We need to show that T |= ∀𝜋1. . . .∀𝜋𝑛.𝜑. To
this end, let 𝑡1, . . . , 𝑡𝑛 ∈ Traces(T ) be arbitrary traces, and
define the trace assignment Π : {𝜋1, . . . , 𝜋𝑛} → (2AP

)
𝜔

by Π = [𝜋1 ↦→ 𝑡1, . . . , 𝜋𝑛 ↦→ 𝑡𝑛]. We need to show that
Π |=Traces(T) 𝜑. By the definition of AT ,{𝜋1 ,..., 𝜋𝑛 } we know
that zip(Π) ∈ L(AT ,{𝜋1 ,..., 𝜋𝑛 }). As the inclusion holds, we
get that zip(Π) ∈ L(A𝜑). By the T -equivalence of A𝜑 this
implies Π |=Traces(T) 𝜑, as required.

For the reverse, we assume that T |= �𝜑. To show
L(AT ,{𝜋1 ,..., 𝜋𝑛 }) ⊆ L(A𝜑), let 𝑡 ∈ L(AT ,{𝜋1 ,..., 𝜋𝑛 }) be ar-
bitrary. By the definition of AT ,{𝜋1 ,..., 𝜋𝑛 } we get that there
exist traces 𝑡1, . . . , 𝑡𝑛 ∈ Traces(T ) such that 𝑡 = zip([𝜋1 ↦→

𝑡1, . . . , 𝜋𝑛 ↦→ 𝑡𝑛]). As T |= ∀𝜋1. . . .∀𝜋𝑛. 𝜑, we get [𝜋1 ↦→

𝑡1, . . . , 𝜋𝑛 ↦→ 𝑡𝑛] |=Traces(T) 𝜑. By the T -equivalence this
implies 𝑡 = zip([𝜋1 ↦→ 𝑡1, . . . , 𝜋𝑛 ↦→ 𝑡𝑛]) ∈ L(A𝜑), as re-
quired. �

We can use Proposition 2 to avoid a complementation for
the outermost quantifier alternation. For example, assume
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that �𝜑 = ∀𝜋1.∀𝜋2.∃𝜋3.𝜓, where 𝜓 is the quantifier-free LTL
body. Using the product construction (Sect. 4.3), we obtain
an NBA A∃𝜋3.𝜓 that is T -equivalent to ∃𝜋3.𝜓. Notably,
we can construct A∃𝜋3.𝜓 in linear time in the size of T .
By Proposition 2 we then have T |= �𝜑 iff L(AT ,{𝜋1 , 𝜋2 }) ⊆

L(A∃𝜋3.𝜓).
Note that complementation and subsequent emptiness

check is a theoretically optimal method to check for language
inclusion. Proposition 2 thus offers no asymptotic advantages
over complementation-based model-checking (see Sect. 4.3).
In practice, constructing an explicit complemented automa-
ton is often unnecessary as language inclusion or noninclu-
sion might be witnessed without a complete complementa-
tion [25, 31–33, 45]. This makes Proposition 2 relevant to
the present work and the performance of AutoHyper.

5 HyperLTL modulo theories

The HyperLTL variant we have studied so far accesses the
traces at the level of atomic propositions, which we can think
of as Boolean variables within a system. However, in practice,
many systems use complex non-Boolean data, which requires
costly preprocessing (we discuss this later in Sect. 6.1). In
this section, we extend HyperLTL with atomic formulas from
a first-order background theory, called HyperLTL𝔗 , which
allows us to express complex relations between datatypes
beyond Booleans. Similar to extensions of LTL and LTL 𝑓

with theories [1, 30, 38, 39, 44], we allow (quantifier-free)
first-order formulas as atomic expressions; in our case, over
variables indexed by trace variables.

5.1 First-order theories and formulas

First-order theories A first-order signature is a pair
𝔖 = (𝔉,𝔓), where 𝔉 is a set of function symbols, and 𝔓
is a set of predicate symbols. Each 𝑓 ∈ 𝔉 and 𝑃 ∈ 𝔓 has
an associated arity. We consider all functions and predicate
symbols to be interpreted, and, for simplicity, consider a
theory as consisting of a single such interpretation [4]. For-
mally, a theory for signature (𝔉,𝔓) is a pair 𝔗 = (V,I),
where V is a set of values (called the universe), and I maps
each function symbol 𝑓 ∈ 𝔉 of arity 𝑛 to a total function
𝑓 I :V𝑛→V and each predicate symbol 𝑃 ∈𝔓 of arity 𝑛 to
a relation 𝑃I ⊆ V𝑛. In the following, we assume some fixed
signature 𝔖 and theory 𝔗.

Terms and formulas We assume that X is a set of vari-
ables and define terms inductively as 𝑡 := 𝑥 | 𝑓 (𝑡1, . . . , 𝑡𝑛),
where 𝑥 ∈ X is a variable, 𝑓 ∈ 𝔉 is a function symbol of arity
𝑛, and 𝑡1, . . . , 𝑡𝑛 are terms. Likewise, quantifier-free formu-
las are inductively defined as 𝜃 := ¬𝜃 | 𝜃 ∧ 𝜃 | 𝑃(𝑡1, . . . , 𝑡𝑛),
where 𝑃 ∈𝔓 is a predicate symbol with arity 𝑛, and 𝑡1, . . . , 𝑡𝑛

are terms. We write 𝔖X for the set of all formulas over vari-
ablesX (within the fixed signature𝔖). A variable evaluation
Δ : X → V satisfies a formula 𝜃 ∈ 𝔖X in theory 𝔗, written
Δ |=𝔗 𝜃, if 𝜃 evaluates to true (defined as expected). We as-
sume that for every variable-free formula 𝜃 ∈ 𝔖∅ , we can
decide if ∅ |=𝔗 𝜃 (where ∅ denotes the variable evaluation
∅→V with empty domain).

Substitution A key technique we will exploit in our
model-checking algorithm is the ability to substitute (a subset
of) variables with concrete values. Given a formula 𝜃 ∈𝔖X
over a set of variables X, a subset of variables Y ⊆ X, and a
variable assignmentΔ :Y→V, we say that a formula 𝜃′ over
variables X \Y is a Δ-substitution of 𝜃 if for any assignment
Δ′ : (X \ Y) → V, we have Δ′ |=𝔗 𝜃′ iff Δ � Δ′ |=𝔗 𝜃. Note
thatΔ-substitutions are defined purely semantically and there
may exist many (or no) Δ-substitutions of a given formula.
If the first-order signature contains constants (i.e., nullary
functions) for all values in V, then we can construct at least
one Δ-substitution of 𝜃 by simply replacing each variable
𝑦 ∈ Y with the constant that corresponds to value Δ(𝑦).

Example 1
Consider 𝜃 := (𝑥 > 𝑦 + 5𝑧) ∈ 𝔖{𝑥,𝑦,𝑧} over linear-integer
arithmetic (LIA) andΔ := [𝑦 ↦→ 6]. A possibleΔ-substitution
of 𝜃 is 𝑥 > 6 + 5𝑧. �

We assume that for allΔ and 𝜃, we can effectively compute
at least one Δ-substitution of 𝜃 and denote it by 𝜃 ◦ Δ.

5.2 HyperLTL𝕿

We now define HyperLTL𝔗 as an extension of HyperLTL
that allows relational formulas from signature 𝔖 as atomic
structures which are evaluated according to theory 𝔗. We,
again, assume thatV = {𝜋, 𝜋1, . . .} is a set of trace variables
and fix a set of system variablesX. For any 𝜋 ∈ V , we define
X𝜋 := {𝑥𝜋 | 𝑥 ∈ X} as a set of indexed system variables. For a
set of trace variables𝑉 ⊆ V , we abbreviateX𝑉 :=

⋃
𝜋∈𝑉 X𝜋 .

HyperLTL𝔗 formulas are then defined as follows:

𝜓 := 𝜃 | ¬𝜓 | 𝜓 ∧ 𝜓 | 𝜓 | 𝜓U 𝜓

𝜑 := ∃𝜋. 𝜑 | ∀𝜋. 𝜑 | 𝜓

where 𝜋 ∈ V is a trace variable, and 𝜃 ∈ 𝔖XV is a formula
over XV , i.e., over all possible indexed variables. Notably,
compared to plain HyperLTL (Sect. 2), we do not use trace-
variable-indexed atomic propositions as atomic formulas,
but rather arbitrary first-order formulas over (trace-variable-
indexed) system variables. We assume that the formula is
closed, i.e., for all formulas 𝜃 used in 𝜓 and any variable
𝑥𝜋 used in 𝜃, the trace variable 𝜋 is bound by some trace
quantifier.
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Semantics We evaluate a HyperLTL𝔗 formula over traces
in (X →V)

𝜔 , i.e., each position in the trace defines a value
for each system variable. A trace assignmentΠ :V⇀ (X →

V)
𝜔 now maps trace variables to traces. Given a trace as-

signment Π : 𝑉 → (X → V)
𝜔 with domain 𝑉 ⊆ V and

position 𝑖 ∈ N, we define the extended variable evaluation
Π(𝑖) :X𝑉 →V by Π(𝑖) (𝑥𝜋) := Π(𝜋)(𝑖)(𝑥), i.e., the value of
indexed variable 𝑥𝜋 is defined as the value of variable 𝑥 on
the trace bound to 𝜋 in the 𝑖th step (see [7, 13]). Given a set
of traces T ⊆ (X → V)

𝜔 , a trace assignment Π, and 𝑖 ∈ N,
we define:

Π, 𝑖 |= 𝜃 iff Π(𝑖) |=𝔗 𝜃

Π, 𝑖 |= ¬𝜓 iff Π, 𝑖 � |= 𝜓

Π, 𝑖 |= 𝜓1 ∧ 𝜓2 iff Π, 𝑖 |= 𝜓1 and Π, 𝑖 |= 𝜓2

Π, 𝑖 |= 𝜓 iff Π, 𝑖 + 1 |= 𝜓

Π, 𝑖 |= 𝜓1U 𝜓2 iff ∃ 𝑗 ≥ 𝑖.Π, 𝑗 |= 𝜓2 and

∀𝑖 ≤ 𝑘 < 𝑗 .Π, 𝑘 |= 𝜓1

Π |=T 𝜓 iff Π,0 |= 𝜓

Π |=T ∃𝜋. 𝜑 iff ∃𝑡 ∈ T.Π [𝜋 ↦→ 𝑡] |=T 𝜑

Π |=T ∀𝜋. 𝜑 iff ∀𝑡 ∈ T.Π [𝜋 ↦→ 𝑡] |=T 𝜑

Temporal operators, Boolean operators, and quantifiers are
evaluated as before. Whenever we evaluate a first-order for-
mula 𝜃 in the 𝑖th step, we evaluate 𝜃 under variable evaluation
Π(𝑖) in the fixed theory 𝔗.

5.3 Extended transition systems

The full potential of HyperLTL𝔗 comes from its ability
to directly reason about non-Boolean variables. For ex-
ample, when checking hyperproperties on NuSMV models
(see Sect. 8), we naturally obtain a finite-state system where
variables take values within the respective NuSMV domain.

Definition 6
An extended transition system is a tuple T = (𝑆, 𝑆0, 𝜅, ℓ),
where 𝑆 is a finite set of states, 𝑆0 ⊆ 𝑆 is a set of initial states,
𝜅 ⊆ 𝑆 × 𝑆 is a transition relation, and ℓ : 𝑆→ (X→V) maps
each state to a variable assignment over X. �

As expected, an extended transition system generates a set
of traces Traces(T ) ⊆ (X → V)

𝜔 . An extended transition
system T satisfies 𝜑, written T |= 𝜑, if ∅ |=Traces(T) 𝜑, where
∅ denotes the empty trace assignment.

Remark 1
We can view “standard” transition systems (see Definition 1)
as a special case of extended transition systems by viewing

each 𝑎 ∈ AP as a system variable that takes Boolean values.
In particular, if we assume that V = B (i.e., all variables
are Boolean-valued), then each trace in (2AP

)
𝜔 corresponds

exactly to a trace in (AP→V)
𝜔 . �

6 Automata-based model-checking for
HyperLTL𝕿

In this section, we modify the automata-based model-
checking algorithm from Sect. 4 to natively support the
first-order theory atoms. In the following, we assume that
T = (𝑆, 𝑆0, 𝜅, ℓ) is a fixed extended transition system and
that �𝜑 is a fixed HyperLTL𝔗 formula.

6.1 A naïve approach: unfolding

A naïve approach to model-check HyperLTL𝔗 (which we
used in the initial version of AutoHyper presented in [8]) is
to eliminate all theory atoms by unfolding it for all possible
values. For example, assume that𝔗 is the theory of linear in-
teger arithmetic (LIA), 𝑥 is an integer-valued system variable
in the system, and we want to model-check the HyperLTL𝔗
formula

∀𝜋1.∃𝜋2. (𝑥𝜋1 = 𝑥𝜋2).

To check the above formula, we could simply replace the rela-
tional first-order formula with a disjunction over all possible
values of 𝑥, i.e.,

∀𝜋1.∃𝜋2.

( ∨
𝑣∈𝑈

(
(𝑥𝜋1 = 𝑣) ∧ (𝑥𝜋2 = 𝑣)

))
,

where

𝑈 :=
{
ℓ(𝑠)(𝑥) | 𝑠 ∈ 𝑆

}
⊆ Z

is the finite set of possible values assigned to 𝑥 in the finite-
state extended transition system T . This unfolding ensures
that each first-order atom (in the above example, 𝑥𝜋 𝑗 = 𝑣 for
𝑣 ∈𝑈 and 𝑗 ∈ {1,2}) refers to a unique trace variable. We can
therefore replace each expression 𝑥𝜋 𝑗 = 𝑣 with a fresh atomic
proposition and add this atomic proposition to all states in
the system where 𝑥 = 𝑣, thus reducing to the verification of
a “standard” HyperLTL formula (over APs) on a “standard”
(AP-based) transition system (Sect. 2).

Such a naïve unfolding is clearly inefficient. Firstly, it cre-
ates a HyperLTL formula with many atomic propositions,
which complicates the LTL-to-NBA conversion (the first step
in the model-checking process). Secondly, it unfolds the for-
mula for every possible value, even for combinations that
might not occur during the product construction. Instead, we
will adopt the algorithm from Sect. 4 to unfold relational
atoms lazily (on demand).
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6.2 T-Equivalence

As before, the basic idea of our model-checking approach is
to summarize trace assignments within an automaton. How-
ever, in the semantics of HyperLTL𝔗 , we use trace assign-
ments Π : 𝑉→ (X →V)

𝜔 , which we cannot effectively zip
using a finite alphabet. Instead, of tracking the precise value
for all variables (as we have done in Definition 3), we will
only track a suitable (finite) set of first-order formulas. In the
following, we write 𝐴 ⊆fin 𝐵 if 𝐴 ⊆ 𝐵 and |𝐴| <∞ (i.e., 𝐴 is
finite).

Definition 7
Let Π : 𝑉→ (X →V)

𝜔 be a trace assignment with domain
𝑉 ⊆ V , and let Θ ⊆fin 𝔖X𝑉 be a finite set of formulas over
X𝑉 . We define the trace zipΘ(Π) ∈ (2Θ)𝜔 by

zipΘ(Π)(𝑖) :=
{
𝜃 ∈ Θ | Π(𝑖) |=𝔗 𝜃

}

for every 𝑖 ∈ N. �

Example 2
Consider the following trace assignment and set of formulas

Π :=

⎡⎢⎢⎢⎢⎢⎣

𝜋1 :
( [
𝑥 ↦→ 2, 𝑦 ↦→ false

] [
𝑥 ↦→ 1, 𝑦 ↦→ true

] )𝜔

𝜋2 :
( [
𝑥 ↦→ 1, 𝑦 ↦→ true

] )𝜔
⎤⎥⎥⎥⎥⎥⎦
,

Θ :=
{
𝑥𝜋1 > 𝑥𝜋2 , 𝑦𝜋1

}
.

Then zipΘ(Π) =
({

𝑥𝜋1 > 𝑥𝜋2

}{
𝑦𝜋1

})𝜔
∈ (2Θ)𝜔 . �

Remark 2
Similar to Remark 1, we can view Definition 7 as a general-
ization of the zipping for AP-based trace assignments (Def-
inition 3). We define Θ ⊆fin 𝔖AP𝑉 by Θ := {𝑎𝜋 | 𝑎 ∈ AP, 𝜋 ∈
𝑉}, i.e., we track all Boolean-valued variables (aka. APs) on
all traces in 𝑉 (see Remark 1). Then each trace from (2Θ)𝜔
corresponds directly to a trace from (2AP×𝑉

)
𝜔 . In this setting,

the zipping of the trace assignment Π : 𝑉 → (AP→ B)
𝜔

(via the zipping construction from Definition 7) results in a
trace from (2Θ)𝜔 that corresponds to the zipped trace from
(2AP×𝑉

)
𝜔 obtained via Definition 3 on the “equivalent” as-

signment 𝑉→ (2AP
)
𝜔 . �

By tracking expressions within the automaton we can
reestablish the notation of T -equivalence.

Definition 8
Let 𝜑 be a HyperLTL𝔗 formula with free trace variables
𝑉 ⊆ V , and let Θ ⊆fin 𝔖X𝑉 be a finite set of formulas.
An automaton A over alphabet 2Θ is T -equivalent to 𝜑
if for every trace assignments Π : 𝑉 → (X →V)

𝜔 , we have
Π |=Traces(T) 𝜑 if and only zipΘ(Π) ∈ L(A). �

6.3 Automaton alphabet

With our generalized version of T -equivalence fixed, we
can now modify our model-checking algorithm to support
HyperLTL𝔗 . From a technical standpoint, the main challenge
is to formalize how the alphabet of the automata changes
during the product construction. In the purely Boolean (AP-
based) setting in Sect. 4.3, we could immediately fix a subset
of the atomic propositions: During the product construction
for trace variable 𝜋, the alphabet of the automaton changes
from 2AP×(𝑉�{𝜋}) to 2AP×𝑉 ; we fix all letters in AP× {𝜋}. In
the current setting, atomic formulas are relational (i.e., refer
to variables from multiple trace variables), so we cannot re-
duce the alphabet by fixing Boolean values for (some of) the
variables. Say the current alphabet of the automaton (prior
to the product construction) is 2Θ with Θ ⊆ 𝔖X𝑉�{𝜋} . Given
the current state 𝑠 ∈ 𝑆 of the system, we can fix values for all
variables in X{ 𝜋} , but in general this does not suffice to fully
evaluate a formula 𝜃 ∈ Θ. Instead, our approach is based on
the idea of substituting all variables in X{𝜋} , resulting in a
simpler formula from 𝔖X𝑉 . For example, if the automaton
prior to the product construction tracks a formula 𝑥𝜋1 = 𝑥𝜋2

(from 𝔖X{𝜋1 , 𝜋2}
) and during the product for 𝜋2, the variable

𝑥 has value 4 in the current state, then we need to continue to
track formula 𝑥𝜋1 = 4 (from 𝔖X{𝜋1}

). Consequently, the size
of the automaton’s alphabet might increase. For example, in
the above example, we need to consider all possible values
for 𝑥. Note that this substitution happens during the product
construction and only on value combinations that are rele-
vant (which is in sharp contrast to the naïve unfolding in
Sect. 6.1).

To formalize the alphabet of the automaton, we need
to reason about all possible substantiations that can occur
within the system:

Definition 9
For any system state 𝑠 ∈ 𝑆 and trace variable 𝜋, we define
the variable assignment Δ𝜋,𝑠 : X𝜋 → V by Δ𝜋,𝑠 :=

[
𝑥𝜋 ↦→

ℓ(𝑠)(𝑥)
]
𝑥∈X

. Given a set of formulas Θ ⊆fin 𝔖X𝑉�{𝜋} for
some 𝑉 ⊆ V , we define Θ𝜋 ⊆fin 𝔖X𝑉 by Θ𝜋 :=

{
𝜃 ◦ Δ𝜋,𝑠 |

𝜃 ∈ Θ∧ 𝑠 ∈ 𝑆
}
. �

In other words, Δ𝜋,𝑠 assigns each variable 𝑥𝜋 ∈ X𝜋 the
value of 𝑥 in state 𝑠. Using the family of all possible instal-
lations (i.e., {Δ𝜋,𝑠}𝑠∈𝑆), we can then formally define how
the alphabet of the product automaton changes: We take all
formulas in Θ and consider all possible substitutions with
evaluations from {Δ𝜋,𝑠}𝑠∈𝑆 .

6.4 Product construction

To check if T |= �𝜑, we, similar to Sect. 4.3, inductively con-
struct an automaton A𝜑 that is T -equivalent to 𝜑 for each
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subformula 𝜑 of �𝜑. Initially, the LTL body of �𝜑 uses finitely
many first-order formulas (say Θ ⊆fin 𝔖XV ), so we can use a
standard LTL-to-NBA translation to obtain an NBA over al-
phabet 2Θ. We then iteratively eliminate quantifiers by com-
puting the product with T :

– Case 𝜑′ = ∃𝜋. 𝜑: We are given an inductively constructed
automaton A𝜑 = (𝑄,𝑄0, 𝛿, 𝐹) that is T -equivalent to 𝜑.
Note that the alphabet ofA𝜑 is 2Θ for some set of formu-
las Θ ⊆fin 𝔖X𝑉�{𝜋} for some 𝑉 ⊆ V . We ensure that A𝜑

is an NBA and define the NBA A𝜑′ over alphabet 2Θ𝜋
(cf. Definition 9) as

A𝜑′ := (𝑆 ×𝑄, 𝑆0 ×𝑄0, 𝛿
′, 𝑆 × 𝐹),

where 𝛿′ ⊆ (𝑆 ×𝑄) × 2Θ𝜋 × (𝑆 ×𝑄) is defined as

𝛿′ :=
{(
(𝑠, 𝑞), 𝜎, (𝑠′, 𝑞′)

)
| (𝑠, 𝑠′) ∈ 𝜅 ∧

(
𝑞,

{
𝜃 ∈ Θ | (𝜃 ◦ Δ𝜋,𝑠) ∈ 𝜎

}
, 𝑞′

)
∈ 𝛿

}
.

Intuitively, A𝜑′ guesses a path in T and uses this path
to fix the variables in X𝜋 by substituting them within
all formulas 𝜃 ∈ Θ. For example, consider state (𝑠, 𝑞) of
A𝜑′ , and assume the system T has a transition (𝑠, 𝑠′) ∈ 𝜅
and A𝜑 has an edge from 𝑞 to 𝑞′ that can be taken iff
formula 𝜃 ∈ Θ holds, i.e., (𝑞, �𝜎, 𝑞′) ∈ 𝛿 (where �𝜎 ⊆ Θ) iff
𝜃 ∈ �𝜎. In this case, state (𝑠, 𝑞) of A𝜑′ has an outgoing
edge to (𝑠′, 𝑞′) that can be taken iff 𝜃 ◦ Δ𝜋,𝑠 holds, i.e.,(
(𝑠, 𝑞), 𝜎, (𝑠′, 𝑞′)

)
∈ 𝛿′ (where 𝜎 ⊆ Θ𝜋 ) iff 𝜃 ◦ Δ𝜋,𝑠 ∈ 𝜎.

– Case 𝜑′ = ∀𝜋. 𝜑: We are given an automaton A𝜑 over
alphabet 2Θ that is T -equivalent to 𝜑. We ensure that
this automaton is a UCA and define automaton A𝜑′ over
alphabet 2Θ𝜋 as the UCA that is syntactically identical to
the NBA constructed in the previous case.

Proposition 3
For every subformula 𝜑 of �𝜑, the automaton A𝜑 is T -
equivalent to 𝜑.

The final automaton A �𝜑 has alphabet 2Θ for some Θ ⊆fin
𝔖X∅ and T |= �𝜑 holds iff ∅ |=Traces(T) �𝜑 iff zipΘ(∅) ∈ L(A �𝜑)
(see Definition 8). As X∅ = ∅, all formulas used in the alpha-
bet are variable-free. We thus get that zipΘ(∅) =

({
𝜃 ∈ Θ |

∅ |=𝔗 𝜃}
)𝜔 , so checking if zipΘ(∅) ∈ L(A �𝜑) reduces to a

word containment check.

6.5 Leveraging language inclusion

As expected, we can generalize our language-inclusion-
based optimization (Sect. 4.4) to the more general setting
of HyperLTL𝔗 .

For a transition system T , a finite set of trace variable
𝑉 ⊆ V , and a finite set of formulas Θ ⊆fin 𝔖X𝑉 , we de-
fine an NBA AT ,𝑉,Θ over alphabet 2Θ that accepts the Θ-
evaluations of all possible trace combinations in T , i.e.,
L(AT ,𝑉,Θ) =

{
zipΘ(Π) | Π :𝑉→ Traces(T )

}
. We can con-

struct AT ,𝑉,Θ by building a |𝑉 |-fold self-composition of T
similar to Definition 5:

Definition 10
Define the NBA AT ,𝑉,Θ over alphabet 2Θ as AT ,𝑉,Θ :=
(𝑄,𝑄0, 𝛿, 𝐹), where

– 𝑄 := (𝑉→ 𝑆);
– 𝑄0 :=

{
𝑞 ∈ 𝑄 | ∀𝜋 ∈ 𝑉. 𝑞(𝜋) ∈ 𝑆0

}
;

– 𝛿 ⊆ 𝑄 × 2Θ ×𝑄 is defined by

𝛿 :=
{
(𝑞, 𝜎, 𝑞′) | ∀𝜋 ∈ 𝑉.

(
𝑞(𝜋), 𝑞′ (𝜋)

)
∈ 𝜅 ∧

𝜎 =
{
𝜃 ∈ Θ |

[
𝑥𝜋 ↦→ ℓ(𝑞(𝜋))(𝑥)

]
𝑥𝜋 ∈X𝑉

|=𝔗 𝜃
}}

,

i.e., the unique label of all transitions leaving 𝑞 contains
exactly those formulas 𝜃 ∈ Θ that hold in the combined
states in 𝑞;

– 𝐹 :=𝑄. �

Proposition 4
Let �𝜑 = ∀𝜋1. . . .∀𝜋𝑛.𝜑 be a HyperLTL formula (where 𝜑

may contain additional trace quantifiers), and let A𝜑 be an
automaton over alphabet 2Θ (for some Θ ⊆fin 𝔖X{𝜋1 ,..., 𝜋𝑛 }

)
that is T -equivalent to 𝜑. Then T |= �𝜑 if and only if
L(AT ,{𝜋1 ,..., 𝜋𝑛 },Θ) ⊆ L(A𝜑).

7 AutoHyper: tool overview

AutoHyper is written in F# and implements the model-
checking approach for HyperLTL𝔗 described in Sect. 6.
If desired by the user, AutoHyper leverages the language-
inclusion-based optimization. AutoHyper uses spot [33]
for LTL-to-NBA translations and automata complementa-
tions. We always ensure that the model-checked formula
is of the form ∀𝜋1 . . .∀𝜋𝑛. 𝜑, so language inclusion checks
are applicable (see Proposition 2); If the checked formula
starts with existential quantification (so Proposition 2 does
not apply), then we check the negated formula. The newest
version of AutoHyper adds support for propositional quan-
tification within the formula (formally, AutoHyper supports
a more expressive logic called HyperQPTL [48]) by inte-
grating the insights from [9]. To check inclusion between
NBAs, AutoHyper uses spot default inclusion check (which
is based on determinization), RABIT [25] (which is based on
a Ramsey-based approach with heavy use of simulations),
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BAIT [31], FORKLIFT [32] (both based on well-quasiorders),
and spot’s internal implementation of the well-quasiorder-
based inclusion checking algorithm (the same as used in
FORKLIFT [32]) (which we refer to as FORQ). AutoHyper is
designed such that communication with external automata
tools is based on the HANOI [2] and BA automaton formats.
New (or updated) tools that improve on fundamental au-
tomata operations, such as complementation and inclusion
checks, can thus be integrated easily. Internally, AutoHyper
operates on automata with a symbolic alphabet (similar to the
HANOI automaton format). We use spot’s �split-edges
option to convert an automaton with symbolic alphabet to
an explicit-alphabet representation as needed for BA-format-
based tools (RABIT, BAIT, and FORKLIFT).

All experiments in this paper were conducted on a Mac-
Book Pro with an M1 Pro CPU and 32 GB of memory. We
used spot version 2.12; RABIT version 2.4.5; BAIT commit
369e1a4; and FORKLIFT commit 5d519e3.

Input formats AutoHyper supports both explicit-state ex-
tended transition systems with Boolean and integer-based
variables (given in a HANOI-like [2] input format) and sym-
bolic systems that are internally converted to an explicit-
state representation. The support for symbolic systems in-
cludes symbolic models written in a fragment of the NuSMV
input language [22], which we internally convert to an ex-
tended transition system over the variables in the NuSMV
model.

Witness computation AutoHyper supports the compu-
tation of witness traces. That is, if a HyperLTL formula of the
form ∃𝜋1 . . .∃𝜋𝑛.𝜑 holds on a given system (where 𝜑 is any
HyperLTL formula, possibly containing additional quanti-
fiers), then AutoHyper can produce 𝑛 lasso-shaped paths in
the system that serve as witnesses for 𝜋1, . . . , 𝜋𝑛. Likewise, if
a HyperLTL formula of the form ∀𝜋1 . . .∀𝜋𝑛.𝜑 does not hold
on a given system, then AutoHyper can compute concrete
counterexample paths for 𝜋1, . . . , 𝜋𝑛.

Optimizations AutoHyper further implements various
optimizations compared to the presentation in Sect. 6. During
the product construction, we build the alphabet of the new
automaton lazily, i.e., we only start tracking a formula if it is
actually used in the product construction. Additionally, we
simplify the partially evaluated formulas as much as possible
and eliminate them altogether once all variables are instan-
tiated. This helps reduce the number of atomic propositions
tracked in the automaton. Moreover, AutoHyper supports
various preprocessing steps. Most notably, unless otherwise
specified, AutoHyper computes a bisimulation quotient of
each system (with respect to those variables that are actually
needed to evaluate the HyperLTL𝔗 formula). In our experi-
ence, this reduces the size of the system in many instances
and leads to faster model-checking.

8 Evaluation

In this section, we challenge AutoHyper with complex
model-checking problems found in the literature.

8.1 Explicit model checking of symbolic
systems

We evaluate AutoHyper on challenging symbolic NuSMV
models [22]. The set of benchmarks we use was created
by Hsu et al. [42] to evaluate the BMC tool HyperQB.
For further details on the benchmarks, we refer to Hsu et
al. [42].

We model-check each instance using both HyperQB [41]
and AutoHyper and depict the results in Table 2. For
AutoHyper, we report the model-checking time using dif-
ferent inclusion-checking tools (RABIT, BAIT, FORKLIFT,
spot’s FORQ implementation, and spot’s default inclusion-
checking algorithm). Alternation-free formulas can be
checked without any inclusion check, so the runtime of
AutoHyper does not depend on the provided inclusion
checker. For comparison, we additionally use the old ver-
sion of AutoHyper [8], which unfolds all formulas as dis-
cussed in Sect. 6.1 and uses spot for inclusion checking
(𝑡unfold
spot ). For HyperQB, we use the unrolling semantics and

unrolling depth listed in [42, Table 2] and the HyperQB
repository.

Analysis We can draw a few conclusions from the verifi-
cation results. Firstly, the use of HyperLTL𝔗-specific algo-
rithms clearly improves verification. Compared to an unfold-
ing over all possible values, i.e., column 𝑡

unfold
spot ,– treating the

first-order formulas from first principles allows for smaller
alphabets and more efficient solving. Secondly, the flexibil-
ity of using multiple automata inclusion checkers is evident.
We observe that spot’s default algorithm performs gener-
ally best, but in some instances the FORQ-based algorithm
is more efficient. Our results also point to some surpris-
ing findings: In some cases, FORKLIFT is faster than spot’s
implementation of the same FORQ-based algorithm, despite
the fact that the latter supports symbolic alphabets. Lastly,
and perhaps most importantly, we can compare the perfor-
mance of AutoHyper with HyperQB. Here we see that the
additional optimizations of AutoHyper (e.g., the support for
HyperLTL𝔗 and prepossessing) allow us to verify all in-
stances faster than the BMC approach of HyperQB, even on
larger instances such as the SNARK example.

8.2 Hyperproperties for path planning

As a second set of benchmarks, we use planning problems
for robots encoded into HyperLTL as proposed by Wang et
al. [49]. For example, the synthesis of a shortest path can
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Table 2 We evaluate HyperQB and AutoHyper on the bench-
marks from [42]. We list the quantifier structure (𝑄∗), the sizes
of the system(s), and the verification result (✓ if the prop-
erty holds and ✗ if it is violated). For HyperQB, we pro-
vide the unrolling bound 𝑘 and the verification time 𝑡 . For

AutoHyper, we report the verification time when using RABIT,
BAIT, FORKLIFT, spot’s FORQ implementation, and spot’s default
algorithm (𝑡BAIT, 𝑡RABIT, 𝑡FORKLIFT, 𝑡FORQspot , and 𝑡spot, respectively).
Times are given in seconds. The timeout (TO) is set to 2 min-
utes.

HyperQB [42] AutoHyper

Instance Q∗ Size Result k t tunfold
spot tRABIT tBAIT tFORKLIFT tFORQspot tspot

Bakery3 + 𝜑𝑆1 ∃∃ 167 ✗ 10 1.1 0.5 0.4
Bakery3 + 𝜑𝑆2 ∀∃ 167 ✗ 10 1.1 0.5 0.9 0.6 0.6 0.4 0.4
Bakery3 + 𝜑𝑆3 ∃∀ 167 ✗ 10 1.2 0.6 0.8 0.8 0.8 36.4 0.6
Bakery3 + 𝜑sym1 ∀∃ 167 ✗ 10 1.1 3.8 0.5 0.5 0.5 0.5 0.4
Bakery3 + 𝜑sym2 ∀∃ 167 ✗ 10 1.1 1.2 0.5 0.6 0.5 0.4 0.4
Bakery5 + 𝜑sym1 ∀∃ 996 ✗ 10 6.4 118.5 TO TO TO 1.5 1.5
Bakery5 + 𝜑sym2 ∀∃ 996 ✗ 10 6.4 4.6 4.4 2.1 1.3 0.8 0.8

SNARK ∀∃ 4914/548 ✗ 18 75.1 16.5 TO 47.8 41.1 TO 15.9

3-Threadcorrect ∀∃ 64 ✓ 50 1.3 0.3 0.9 0.9 0.8 0.3 0.3
3-Thread incorrect ∀∃ 368 ✗ 50 5.5 2.2 TO TO TO 1.1 1.6

NRPcorrect ∃∀ 55 ✓ 15 1.0 0.3 0.5 0.5 0.4 0.5 0.3
NRP incorrect ∃∀ 54 ✓ 15 0.8 0.6 3.1 1.7 1.6 0.5 0.6

Mutant ∃∀ 32 ✓ 10 0.8 0.4 0.6 0.6 0.5 0.3 0.3

CoTerm ∀∀ 53/28 ✓ 102 1.4 0.3 0.3

DeniabilitySmall ∀∃∃ 240 ✓ 10 5.8 45.0 1.6 1.3 1.4 1.2 2.5

BufferOD ∀∀ 876 ✗ 10 2.6 0.6 0.5
BufferSchedOD ∀∀ 228 ✓ 10 1.2 0.8 0.6
BufferSchedNI ∀∃ 228 ✓ 10 1.2 2.9 2.9 3.5 2.7 0.4 2.8

NIExp + TINI ∀∃ 876 ✓ 10 2.2 TO 6.3 6.3 6.8 1.8 TO
NIExp + TSNI ∀∃ 876 ✓ 10 2.2 TO 6.2 6.3 6.6 1.7 TO

KSafety ∀∀ 150 ✓ 64 2.7 TO 0.6

MapSythEx ∃∀∀∃∃ 16/10/7 ✓ 5 0.6 0.4 0.5 0.5 0.5 0.4 0.4

TeamLTL1 ∃∃∀ 65 ✗ 10 1.6 0.4 0.5 0.4 0.5 TO 0.4
TeamLTL2 ∃∃∀ 257 ✗ 10 10.4 0.7 0.8 0.8 0.9 TO 0.6

NonDet1 ∀∃ 6 ✗ 5 0.6 0.4 0.4 0.4 0.5 0.3 0.3
NonDet2 ∀∃ 33 ✗ 5 0.6 TO TO 53.8 52.4 0.3 TO

CSRF ∀∀ 3434 ✗ 10 14.7 TO 0.8

Bank ∀∀ 648 ✗ 15 5.7 TO 0.5

ATM ∀∀ 1314 ✗ 15 6.1 TO 2.0

be phrased as a ∃∀ property that states that there exists a
path to the goal such that all alternative paths to the goal
take at least as long. Wang et al. [49] check the resulting
HyperLTL property by encoding it in first-order logic. Al-
though not competitive with state-of-the-art planning tools,
HyperLTL allows us to express a broad range of problems
(shortest path, path robustness, etc.) in a very general way.

Hsu et al. [42] observe that the QBF encoding implemented
in HyperQB outperforms the SMT-based approach by Wang
et al. [49]. We depict the results in Table 3.2 It is evident that

2 In these instances, the systems are already AP-based, so our lazily
unfolding does not result in any speed-up or slow-down. Using an
explicit unfolding (as in column 𝒕unfold

spot in Table 2) would result in the
same running times listed in column 𝒕spot.
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Table 3 We evaluate HyperQB and AutoHyper on hyperproperties
that encode the existence of a shortest path 𝜑sp and robust path 𝜑rp.
We give the specification (Spec), the quantifier structure (𝑄∗), the size
of the grid (Grid), and the size of the explicit state space (Size). For
HyperQB, we give the unrolling bound 𝑘, the file size of the QBF gen-

erated ( |QBF |), and the verification time 𝑡 . For AutoHyper, we report
the verification time when using RABIT, BAIT, FORKLIFT, spot’s FORQ
implementation, and spot’s default algorithm (𝑡BAIT, 𝑡RABIT, 𝑡FORKLIFT,
𝑡FORQspot , and 𝑡spot, respectively). Times are given in seconds. The timeout
(TO) is set to 5 minutes.

HyperQB [42] AutoHyper

Spec Q∗ Grid Size k |QBF | t tRABIT tBAIT tFORKLIFT tFORQspot tspot

𝜑sp ∃∀ 10 × 10 146 20 2.1 MB 4.2 0.7 0.6 0.6 TO 0.5
20 × 20 188 40 7.3 MB 132.8 1.1 1.1 1.0 TO 0.9
40 × 40 408 80 - TO 12.1 12.6 12.1 TO 12.0
60 × 60 404 120 - TO 39.4 40.8 39.2 TO 38.7

𝜑rp ∃∀ 10 × 10 266 20 3.6 MB 4.1 1.1 TO 0.8 53.1 1.7
20 × 20 572 40 20.0 MB 10.5 6.9 43.2 1.5 8.0 14.5
40 × 40 1212 80 117.5 MB 179.2 39.7 TO 2.9 TO 152.8
60 × 60 1852 120 - TO TO TO 52.6 TO TO

AutoHyper outperforms HyperQB, sometimes by orders of
magnitude. This is surprising as planning problems (which
are essentially reachability problems) on symbolic systems
should be advantageous for symbolic methods such as BMC.
The large size of the intermediate QBF indicates that a more
optimized encoding (perhaps specific to path planning) could
improve the performance of BMC on such examples.

8.3 Bounded vs. explicit-state model checking

Bounded model checking has seen remarkable success in
the verification of trace properties and frequently scales to
systems whose size is well out of scope for explicit-state
methods [28]. Similarly, in the context of alternation-free hy-
perproperties, symbolic verification tools such as MCHyper
[37] (which internally reduces to the verification of a circuit
using ABC [21]) can verify systems that are well beyond the
reach of explicit-state methods. In contrast, in the context of
model checking for hyperproperties that involve quantifier
alternations, our findings make a strong case for the use of
explicit-state methods (as implemented in AutoHyper):

First, compared to symbolic methods (such as BMC),
explicit-state (automata-based) model checking is currently
the only method that is complete. Although BMC was able
to verify or refute all properties in Tables 2 and 3, many in-
stances cannot be solved with the current BMC encoding. As
a concrete example, BMC can never verify formulas whose
body contains simple invariants (such as (GNI)). Thus the
most significant advantage of explicit-state MC (as imple-
mented in AutoHyper) is that it is both push-button and
complete, i.e., it can, at least in theory, verify or refute all
properties.

Second, the performance of AutoHyper seems to be on-
par with that of BMC and frequently outperforms it (even

by several orders of magnitude; see Table 3). We stress that
this is despite the fact that for the evaluation of HyperQB, we
already fix an unrolling depth and unrolling semantics, thus
creating favorable conditions for HyperQB.3 While BMC for
trace properties reduces to SAT solving, BMC of hyper-
properties reduces to QBF solving, a problem that is much
harder and has seen less support by industry-strength tools.
It is therefore unclear whether the advance of modern QBF
solvers can improve the performance of hyperproperty BMC,
to the same degree that the advance of SAT solvers has stim-
ulated the success of BMC for trace properties. Our findings
seem to indicate that, at the moment, QBF solving (often)
seems inferior to an explicit (automata-based) solving strat-
egy.

9 Analyzing strategy-based verification

In the previous section, we used AutoHyper to check hy-
perproperties on instances arising in the literature. In this
last section, we demonstrate that AutoHyper also serves as
a valuable baseline to evaluate different (possibly incom-
plete) verification methods. Here we focus on strategy-based
verification (SBV), i.e., the idea of automatically synthesiz-
ing a strategy that resolves existential quantification in ∀∗∃∗
HyperLTL properties [6, 11, 17, 26].

3 In Tables 2 and 3, we perform a single QBF query with a fixed
unrolling depth 𝑘 and semantics, i.e., we already know if we want to
show satisfaction or violation and the depth needed to show this (as
done in [42]). In a classical BMC loop, we would check for satisfaction
and violation with an incrementally increasing unrolling depth and thus
perform roughly 2𝑘 many QBF queries, where 𝑘 is the least bound for
which satisfaction or violation can be established (provided that such a
bound exists).
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9.1 Effectiveness of strategy-based verification

SBV is known to be incomplete [6, 26]. However, due to the
previous lack of complete tools for verifying∀∗∃∗ properties,
a detailed study into how effective SBV is in practice was
impossible on a larger scale (i.e., beyond hand-crafted exam-
ples). With AutoHyper, we can, for the first time, rigorously
evaluate SBV. We use the SBV implementation from [6],
which synthesizes a strategy for the ∃-player by translating
the formula to a deterministic parity automaton (DPA) [47]
and phrases the synthesizes as a parity game.

Random instances To evaluate SBV, we use randomly
generated model-checking problems. The advantage of ran-
domly generated instances is twofold. Firstly, it allows for the
easy generation of a large set of benchmarks. Secondly, the
random generation is parameterized by multiple parameters
(such as system size, formula size, etc.), enabling a compre-
hensive analysis of the exact impact of different parameters
on the model checking complexity. We generate random tran-
sition systems based on the Erdős–Rényi–Gilbert model [35].
Given a size 𝑛 and a density parameter 𝑝 ∈ [0,1], we gen-
erate a graph with 𝑛 states, where for every two states 𝑠, 𝑠′,
there is a transition 𝑠→ 𝑠′ with probability 𝑝. We generate
random HyperLTL formulas (with a given quantifier prefix)
by sampling the LTL matrix using spot’s randltl.

Effectiveness We have generated random transition sys-
tems and properties of varying sizes and computed a ground
truth using AutoHyper. We then performed SBV (recall that
SBV can never show that a property does not hold and might
fail to establish that it does). We find that for our gener-
ated instances, the property holds in 61.1% of the cases, and
SBV can verify the property in 60.4% of the cases. Suc-
cessful verification with SBV is thus possible in many cases,
even without the addition of expensive mechanisms such
as prophecies [6]. On the other hand, our results show that
random generation produces instances (albeit not many) on
which SBV fails (so far, examples where SBV fails required
careful construction by hand).

9.2 Efficiency of strategy-based verification

After having analyzed the effectiveness of SBV (i.e., how
many instances can be verified), we turn our attention to
the efficiency of SBV. In theory, model checking of ∀∗∃∗
HyperLTL – as implemented in AutoHyper – is EXPSPACE-
complete in the specification and PSPACE-complete in the
size of the system [24, 48]. Conversely, SBV is 2-EXPTIME-
complete in the size of the specification but only PTIME-
complete in the size of the system [26]. Consequently, we
would expect that AutoHyper fares better on larger speci-
fications and SBV fares better on larger systems (the more
important measure in practice).

Fig. 1 We compare AutoHyper and strategy-based verification (SBV)
[6] on instances of varying system size. We fix the property size to 20.
We generate 100 random model-checking instances for each size and
take the average over the fastest 𝐿 instances, where 𝐿 is the minimum
number of instances solved within a 5 s timeout by both methods.

However, our results show that this does not translate
into practice (at least using the current implementation of
SBV [6]). We compare the running time of AutoHyper (us-
ing spot’s inclusion checker) and SBV. We break the run-
ning time into the three main steps for each method. For
AutoHyper, this is the LTL-to-NBA translation, the con-
struction of the product automaton, and the inclusion check.
For SBV, it is the LTL-to-DPA translation, the construction
of the game, and the game-solving.

We depict the average cost for varying system sizes in
Fig. 1. We observe that SBV performs worse thanAutoHyper
and, more importantly, scales poorly in the size of the system.
This is contrary to the theoretical analysis of automata-based
model-checking and SBV. As the detailed breakdown of the
running time suggests, the poor performance is due to the
costly construction of the game and the time taken to solve
the game. An almost identical picture emerges if we com-
pare AutoHyper and SBV relative to the property size (see
Fig. 2). Although in this case the results match the theory
(i.e., SBV scales worse in the size of the specification), we
find that the bottleneck for SBV is again the construction
and solving of the parity game. We remark that the SBV
engine we used [6] is not optimized and always constructs
the full (reachable) game graph. The poor performance of
SBV can be attributed to the fact that the size of the game
does, in the worst case, scale quadratically in the size of the
system (when considering ∀1

∃
1 properties). This is ampli-

fied in dense systems (i.e., systems with many transitions),
as, with increasing transition density, the size of the parity
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Fig. 2 We compare AutoHyper and strategy-based verification (SBV)
on instances with varying property size. For each size, we generate 100
random ∀1

∃
1 model-checking instances. The timeout is set to 5 s. We

take the average over the fastest 𝐿 instances, where 𝐿 is the minimum
of the instances solved within the timeout by both methods.

games approaches its worst-case size. In contrast, the heav-
ily optimized inclusion checker (in this case, spot) seems
to be able to check inclusion very efficiently (despite being
exponential in theory). This efficiency of mature language
inclusion checkers is what enables AutoHyper to achieve
remarkable performance that often exceeds that of symbolic
methods such as BMC (see Sect. 8) and further strengthens
the practical impact of Proposition 2.

10 Conclusion

In this paper, we have presented AutoHyper, the first com-
plete model checker for HyperLTL formulas with arbi-
trary quantifier prefixes. We extended an automata-based
verification algorithm for HyperLTL [37] to support first-
order formulas modulo theories. Our extension tracks par-
tially evaluated formulas and expands the alphabet on de-
mand. AutoHyper integrates language inclusion checks to
further improve mode-checking performance for the out-
ermost quantifier alternation. We have demonstrated that
AutoHyper can check many interesting properties involv-
ing quantifier alternations and often outperforms symbolic
methods such as BMC.
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