
FM
Artifact
Evaluation

Available

FM
Artifact
Evaluation

FunctionalFunctional

Visualizing Game-Based Certificates for
Hyperproperty Verification

Raven Beutner , Bernd Finkbeiner , and Angelina Göbl

CISPA Helmholtz Center for Information Security, Germany
{raven.beutner,finkbeiner,angelina.goebl}@cispa.de

Abstract. Hyperproperties relate multiple executions of a system and
are commonly used to specify security and information-flow policies.
While many verification approaches for hyperproperties exist, provid-
ing a convincing certificate that the system satisfies a given property is
still a major challenge. In this paper, we propose strategies as a suit-
able form of certificate for hyperproperties specified in a fragment of the
temporal logic HyperLTL. Concretely, we interpret the verification of a
HyperLTL property as a game between universal and existential quantifi-
cation, allowing us to leverage strategies for the existential quantifiers as
certificates. We present HyGaViz, a browser-based visualization tool that
lets users interactively explore an (automatically synthesized) witness
strategy by taking control over universally quantified executions.

1 Introduction

Hyperproperties [17] relate multiple execution traces of a system and occur fre-
quently when reasoning about information flow [38,35], robustness [12,15], inde-
pendence [3], knowledge [14,10], and causality [19,25]. A popular logic for spec-
ifying temporal hyperproperties is HyperLTL [16], an extension of LTL with
explicit quantification over execution traces. For example, we can use HyperLTL
to express a simple non-interference property as follows:

∀π1.∃π2. (lπ1
↔ lπ2

) ∧ (oπ1
↔ oπ2

) ∧ (¬hπ2
) (φNI )

Informally, this property – called non-inference [33] – requires that any possible
observation made via the low-security input (modeled via atomic proposition
l) and output (o) is compatible with a fixed “dummy” sequence of high-security
inputs (h) [33]. Concretely, φNI states that for any execution π1, some execution
π2 combines the low-security observations of π1 with fixed dummy values for h;
here, we require that h is constantly set to false, i.e., (¬hπ2

) (cf. [23]).

Verification and Certificates. In recent years, many verification techniques for
temporal hyperproperties (expressed, e.g., in HyperLTL) have been developed
[16,24,8,30,2,9,35]. However, while checking if a given system satisfies a Hy-
perLTL property is important, an often equally critical aspect is to convince
the user of this satisfaction using explainable certificates. For trace properties –
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specified, e.g., in LTL – user-understandable certificates for positive and negative
verification results have been explored extensively [32,27,4,5,13,28]. Likewise, for
alternation-free HyperLTL formulas (i.e., formulas that use a single type of quan-
tifier), known techniques for LTL apply [29]. In contrast, generating explainable
certificates for the satisfaction of alternating properties like φNI is more com-
plex. For example, φNI states that for any trace π1, there exists some matching
execution π2. A certificate must thus implicitly define a mapping that, given a
concrete choice for π1, produces a witness trace π2. Defining and understanding
such a mapping can be complex, even for simple systems with few states.

Strategies as Certificates. In this paper, we propose strategies as certificates for
the satisfaction of ∀∗∃∗ HyperLTL formulas (i.e., formulas where an arbitrary
number of universal quantifiers is followed by an arbitrary number of existential
quantifiers; e.g., φNI ). To accomplish this, we take a game-based verification
perspective [20,6]. The key idea is to interpret the verification of a ∀π1.∃π2. ψ
formula (where ψ is the LTL body) as a game between universal and existential
quantification. The ∀-player controls the universally quantified trace by mov-
ing through the system (thereby producing a trace π1), and the ∃-player reacts
with moves in a separate copy of the system (thereby producing a trace π2).
Any strategy for the ∃-player that ensures that π1 and π2, together, satisfy ψ,
implies that the formula is satisfied on the given system. We can think of a win-
ning strategy as a step-wise Skolem function that, for every trace π1, iteratively
constructs a witnessing trace π2.

Visualizing Strategies. In this paper, we introduce HyGaViz, a verification and
visualization tool for strategies in the context of HyperLTL verification. In
HyGaViz, the user can input (possibly identical) finite-state transition systems
and a HyperLTL formula φ. HyGaViz then automatically attempts to synthe-
size a strategy that witnesses the satisfaction of φ. If a strategy exists, HyGaViz
displays it to the user. Our key insight is that we can let the user explore the
strategy interactively by taking control of universally quantified traces. That is,
instead of displaying the strategy in its entirety (e.g., as a table or decision di-
agram), we let the user play a game. In each step of the game, the user decides
on a successor state for each universally quantified system (i.e., the user takes
the role of the ∀-player), and HyGaViz automatically updates the states of all
existentially quantified systems (i.e., HyGaViz plays the role of the ∃-player).

Example 1. We consider a simple verification instance in Figure 1. On HyGaViz’s
initial page (Figure 1a), we create two (in this case, equal) transition systems
(labeled A,B) over atomic propositions (APs) o and h, depicted in the top right.
In each system, each state is identified by a natural number and lists all APs
that hold in the given state. From initial state 0, the system can branch on
AP h (states 1 and 2), but, in either case, AP o is set in the next step (states
3 and 4). We want to verify φNI , which – due to the absence of low-security
input l – simplifies to ∀A.∃B. (oA ↔ oB)∧ (¬hB). Note how, in HyGaViz, the
quantifier prefix is determined implicitly by the order and quantifier type of the
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(a)

(b)

Fig. 1: Screenshots of HyGaViz.

systems, and the LTL body is displayed on the bottom left. The user can change
the systems, the quantification type, the name, and the order of the systems
using the buttons above each system. Upon entering the LTL formula, HyGaViz
automatically displays a deterministic automaton for the property (top left).
After clicking the Verify button (top right), the user is directed to the strategy
simulation page (depicted in Figure 1b). During the simulation, HyGaViz displays
the current state of the automaton and the system state for A and B (in green)
and lets the user control the state of (the universally quantified) system A. By
hovering over the successor state of system A, HyGaViz highlights the next state
for system B (in yellow). In this instance, systems A and B are both in state 0.
When the user moves system A to state 1, HyGaViz reacts by moving system B
to state 2 (as it has to ensure (¬hB)). By clicking on a successor state for A,
the user locks the choice, and the game progresses to the next round. △
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Related Work. HyperVis [29] is a tool for the visualization of counterexam-
ple traces for alternation-free ∀k formulas. Notably, a counterexample to a ∀k
property is a concrete list of k traces, so visualization is possible by highlight-
ing the relevant parts of the traces, potentially using causality-based techniques
[18]. Our visualization for properties involving quantifier alternations is rooted
in the game-based verification approach for HyperLTL [20,6], which becomes
complete when adding prophecies [6] (see Section 2.2). To the best of our knowl-
edge, we are the first to propose a principled approach to generate and visualize
user-understandable certificates for alternating hyperproperties.

2 HyperLTL, Game-Based Verification, and Prophecies

We fix a finite set of atomic propositions AP . A transition system (TS) is a tuple
T = (S, sinit , κ, L), where S is a finite set of states, sinit ∈ S is an initial state,
κ : S → (2S \ {∅}) is a transition function, and L : S → 2AP is a state labeling.
HyperLTL formulas are generate by the following grammar

ψ := aπ | ψ ∧ ψ | ¬ψ | ψ | ψ U ψ φ := ∀π. φ | ∃π. φ | ψ

where a ∈ AP is an atomic proposition, and π is a trace variable. In a HyperLTL
formula, we can quantify over traces in a system (bound to some trace variable),
and then evaluate an LTL formula on the resulting traces. In the LTL body,
formula aπ expresses that AP a should hold in the current step on the trace
bound to trace variable π. See [23] for details.

2.1 Game-Based Verification

HyGaViz’s verification certificates are rooted in a game-based verification method
[6]. Given a ∀∗∃∗ HyperLTL formula ∀π1 . . . ∀πk.∃πk+1 . . . ∃πk+l. ψ, we view ver-
ification as a game between the ∀-player (controlling traces π1, . . . , πk) and the
∃-player (controlling traces πk+1 . . . , πk+l). Each state of the game has the form
⟨s1, . . . , sk+l, q⟩, where s1, . . . , sk+l ∈ S are system states (representing the cur-
rent state of π1, . . . , πk+l, respectively), and q is the state of a deterministic
parity automaton (DPA) that tracks the acceptance of the LTL body ψ. When
the game is in state ⟨s1, . . . , sk+l, q⟩, the ∀-player first fixes successor states
s′1, . . . , s

′
k for π1, . . . , πk (such that s′i ∈ κ(si) for all 1 ≤ i ≤ k); the ∃-player

responds by selecting successor states s′k+1, . . . , s
′
k+l for πk+1, . . . , πk+l; and the

game repeats from state ⟨s′1, . . . , s′k+l, q
′⟩ (where q′ is the updated DPA state).

Visualizing Game-Based Verification. In HyGaViz, the user can create a verifi-
cation scenario by manually creating finite-state transition systems and a Hy-
perLTL formula; see Figure 1a. Note how the quantification prefix is determined
implicitly by the order of the systems. In particular, the traces are resolved on
individual (potentially different) transition systems. During simulation (cf. the
example in Figure 1b), we visualize a game state ⟨s1, . . . , sk+l, q⟩ by marking
the current state of each system – separated into user-controlled (universally
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(a)

(b) (c)

Fig. 2: Screenshots of HyGaViz when using prophecies.

quantified) systems (top right) and strategy-controlled (existentially quantified)
ones (bottom right) – and display the current state of the DPA (top left). The
user takes the role of the ∀-player and, in each step, determines successor states
for all universally quantified systems. Once successor states for all universally
quantified systems are confirmed, HyGaViz automatically updates existentially
quantified systems (and the DPA state) based on the internally computed strat-
egy, and the game continues to the next stage. Moreover, HyGaViz highlights the
next states when the user hovers over possible successor states for the universally
quantified systems (once successor states for all but one universally quantified
system are confirmed). Using the information tab in the bottom left, the user
can jump to previous game states and explore the reaction of the strategy to
different choices for the universally quantified systems.

2.2 Prophecies

In our game, the ∃-player only observes a finite prefix of the traces produced by
the ∀-player (or, equivalently, the user of HyGaViz) and is thus missing informa-
tion about the future. We can counteract this by using prophecies [1], which are
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LTL formulas over trace variables π1, . . . , πk [6]. Given an LTL prophecy formula
θ, the ∀-player (i.e., the user) has to, in each step, decide if its future behavior
(on π1, . . . , πk) satisfies θ. If the ∀-player decides that θ holds (resp. does not
hold), the ∃-player can play under the assumption that the future behavior of
the ∀-player satisfies (resp. violates) θ. See [6] for details.

Example 2. We illustrate prophecies with the example in Figure 2. The two sys-
tems A and B in Figure 2a generate all traces over AP a, and the HyperLTL
formula ∀A.∃B. (aB ↔ aA) requires that trace B predicts the future be-
havior of A. Without prophecies, the ∃-player loses: No matter what successor
state the ∃-player picks, the ∀-player can, in the next step, violate the prediction
of the ∃-player. HyGaViz communicates the absence of a winning strategy if the
user pushes the Verify button. Instead, the user can add the LTL prophecy aA
(cf. Figure 2a). During simulation, the user (who takes the role of the ∀-player)
has to, in each step, fix a successor state for system A and determine if prophecy
aA holds. We depict an excerpt of the simulation page in Figure 2b. As ex-

pected, the strategy for the ∃-player (computed automatically by HyGaViz) can
use the prophecy to win: For example, if the user states that aA holds (so the
∃-player can assume that a hold in the next step in A), HyGaViz moves system
B to state 1. If the user violates a previous prophecy decision – e.g., by stating
that prophecy aA holds but, in the next step, moving system A to state 0
where AP a does not hold – HyGaViz detects this violation and forces the user
to restart from an earlier state of the game (Figure 2c). △

3 HyGaViz: Tool Overview

HyGaViz consists of a backend verification engine written in F#. The backend
uses spot [22] to translate LTL formulas to DPAs and oink [21] to synthesize
a strategy for the ∃-player. We use a stateless Node.js [37] backend that com-
municates with the verification engine via JSON. HyGaViz’s frontend is written
in JavaScript and uses Cytoscape.js [26] to render transition systems and
automata.

4 Conclusion

We have proposed the first method to generate and visualize certificates for
the satisfaction of ∀∗∃∗ HyperLTL formulas. Our tool, HyGaViz, allows users
to interactively explore the complex dependencies between multiple traces by
challenging a strategy for existentially quantified traces. Ultimately, HyGaViz is a
first step to foster trust in (and understanding of) verification results for complex
alternating hyperproperties, as is needed to, e.g., certify information-flow policies
like φNI . For now, HyGaViz can handle (small) finite state systems, which we
visualize as directed graphs. The underlying strategy-centered approach also
applies to larger (potentially infinite-state) systems represented symbolically [7].
In future work, one could extend HyGaViz to such systems by exploring different
visualization approaches for larger systems [34,31,36].
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Data Availability. HyGaViz is available at [11].
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