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Abstract. This paper presents an adapter for RTLoLA that simpli-
fies the integration of runtime verification into Robot Operating System
(ROS) applications. While ROS is the standard middleware for robotic
development, ensuring the safety and reliability of high-level tasks such
as navigation and object recognition remains challenging. The adapter
facilitates the use of RTLoLA, a stream-based specification language
for defining complex real-time properties, by automatically connecting a
generated RTLoLA monitor to ROS topics and services. As a use case,
the adapter was deployed onboard of an unmanned aircraft to reduce
false positives in detecting people near the landing site. Specifically, our
RTLoLA monitor cross-validates machine-learning-based person detec-
tions against objects in LiDAR depth images using classical computer
vision techniques. This experiment demonstrates that runtime verifica-
tion improves robotic safety while requiring minimal integration effort.
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1 Introduction

We present an adapter that simplifies the integration of RTLOLA into robotic
applications running within the Robot Operating System (ROS). ROS is an
open-source framework that provides essential middleware functionality and ab-
stractions to manage the complexity of scaling autonomous robotic missions. For
instance, ROS is designed with distributed computing in mind, where essential
robotic functions are executed in nodes that receive data from other nodes and
pass their results along. Such an essential function can be low-level as reading
sensors but also more high-level such as navigation and object recognition. For a
safe execution, ROS has basic monitoring capabilities. While sufficient for low-
level tasks, these capabilities are too limited to ensure the safety of high-level
autonomous functions, which often require monitoring complex temporal system
properties with asynchronous inputs. As a result, users are typically forced to
implement custom monitoring solutions using general-purpose code, increasing
the likelihood of errors. To mitigate this risk, runtime verification (RV) offers a
formal, lightweight alternative where complex properties are specified concisely
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using a formal language, from which executable monitors are automatically gen-
erated. RTLOLA is one such specification language. Based on stream computa-
tions, language features natively handle real-time and asynchronicity.

In this paper, we present a ROS adapter for RTLOLAE This adapter enables
seamless integration of a monitor generated with the RTLoLA framework [I]] by
wrapping it as a ROS node, eliminating the need for any manual adjustments.
The key contributions of the paper are:

— automatic input mapping: inspecting the RTLOLA specification and auto-
matically subscribing to ROS topics to match required streams;

— automatic output mapping: inspecting the RTLoLA ROS topic and auto-
matically publish corresponding streams;

— supports ROS service: inspection of RTLOLA specification and stream map-
ping for direct request-reply communication;

— implemented in Rust: safe and efficient, compatible with any ROS 2 version;

— tool validated in flight: used for cross-validation of bounding boxes given by
machine-learning-component and blobs detected in LiDAR image using tra-
ditional computer vision techniques.

Alongside the technical details presented in the subsequent sections, we also
provide information on the experimental flight test, starting with the use-case.

Ezxperimental Use-case We deployed the adapter for safeguarding a machine-
learning (ML) component running onboard of an unmanned aircraft. This ML
component is responsible for detecting people near a designated landing site.
Figure (1] illustrates the scenario, where mannequins simulate people standing
on a vertiport — the intended landing site for the hovering unmanned aircraft.
Figure [2] depicts the unmanned aircraft equipped with a camera and a LiDAR.
In the background, the “container city” is shown. Some mannequins were posi-
tioned within this city to provide occlusion scenarios. The aircraft’s perspective
is shown in Figure 3| highlighting both correct detections (green) and challeng-
ing conditions that may lead to false positives (red) of the ML component. In

! nttps://github.com/DLR-FT/RTLola-R0OS2-Adapter

Fig.1. Task: Safeguard Fig. 2. Compare detected Fig. 3. True positives are
detecting people at land- persons with objects in a shown in green, potential
ing site. LiDAR depth image. false positives in red.
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this experiment, we use the adapter to integrate an RTLOLA monitor that cross-
validates ML-based detections against objects in LIDAR depth images using a
traditional Blob detector. In the following, we focus on the monitor integration,
while referring to [7] for the experimental results where also other properties such
as geofencing were considered for monitoring the operational design domain.

1.1 Related Work

In recent years, the integration of RV into ROS systems has received growing at-
tention. ROS is widely used not only for developing robotic applications but also
for supporting various simulation frameworks such as Gazebo [4] or Carla [3],
as well as visualization tools like PlotJuggler. Several RV frameworks have been
developed to support ROS. For example, RTAMT [g] integrates monitors based
on Signal Temporal Logic into ROS applications. The Ogma [5] tool runs mon-
itors specified in languages such as CoPilot, FRET, and Lustre as ROS nodes.
Similarily, [2] uses the stream-based specification language TeSSLa to integrate
monitors into ROS systems. Similar to them, we introduce the specification lan-
guage RTLoLA to ROS. However, unlike prior tools, our tool supports not only
topic-based communication, i.e., publishing and subscribing, but also introduces
an RTLOLA service interface. This service enables request-response communi-
cation, thereby reducing the need for manual handling of monitoring responses
using topic subscriptions. Although ROSMonitoring 2.0 [6] supports services by
wrapping monitors in Python, we chose Rust for our adapter due to its advan-
tages in safety and performance. Moreover, we refer to our tool as an “adapter”
rather than a “bridge” because it incorporates logic that automatically derives
the mappings between ROS and RTLOLA, offering more intelligent and robust
integration.

2 RTLoLA Specification Language

In stream-based specification languages such as RTLOLA input streams cap-
ture observations of the system as a discrete sequence of measurements. Output
streams aggregate, combine, and transform input streams to compute valuable
statistics about the system. Special output streams called trigger streams can
be declared to specify a Boolean verdict about the systems health based on
these statistics. Output streams can be generalized to sets of stream instances
that are uniquely identified by a set of parameters. Such parameterized output
streams include a spawn and close condition, specifying when and how new
stream instances are created and removed.
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Experimental Setup The specification used in the experimentsﬂ is given in
Listing[T.1] The specification tests whether a blob exists within a given bounding
box, which should be the case for an actual person. First, in Line 2, four input
streams are specified that characterize a single bounding box in the camera
image by the x and y coordinate of its upper left corner and its width and
height. Similarly, the input streams blob_x, blob_y, and blob_r describe the xy-
position and the radius r of a single circular blob in the LiDAR image. Since the
images of the camera and the LiDAR have different resolutions and only partially
overlap w.r.t. their field of views, the two output streams blob_x_in_cam and
blob_y_in_cam transform the coordinates of the detected blob in the LiDAR
image into corresponding coordinates in the camera image. Note that due to lens
curvature, the transformation is inherently non-linear. Furthermore, the solution
depicted here represents a sub-optimal solution that is valid only within a specific
altitude band. The next output stream in Line 10 is parameterized over the x
and y coordinates of blobs and their radii r, specified by the parameter list
followed after its stream name. The spawn condition of the stream (Line 11)
instantiates these parameters with the (transformed) coordinate and radius of a
blob, effectively creating an instance of the stream for each known blob. Each
stream instance then validates whether the current bounding box contains the
blob the stream instance corresponds to, specified in the eval clause of the
stream (Line 12 to 13). Since memorizing every blob received at run-time is
infeasible, we use the close condition: a stream instance (and with that a blob)
becomes irrelevant after 200 milliseconds, using the instance’s local clock starting
upon creation (Line 14). Lastly, the validate stream in Line 16 tests whether the
current bounding box intersects with any blob by aggregating over all instances
of the check strean[]] If such an instance exists, the stream evaluates to true.

// Service inputs: incoming bounding boxes
input bb_x, bb_y, bb_w, bb_h: Float64, Float64, Float64, Float64
// Subscribed inputs: detected blobs in depth image
input blob_x, blob_y, blob_r: Float64, Float64, Float64
// Transform depth image coordinates to camera coordinates
output blob_x_in_cam := -0.01%blob_y**3.0 + 1.81xblob_y**2.0
-66.24*blob_y + 1765.75
output blob_y_in_cam := 13.91%blob_x - 6627.13
// Whenever a new bounding box arrives compare it to all recent blobs
output check(x, y, r)
spawn with (blob_x_in_cam, blob_y_in_cam, blob_r)
eval with x - r > bb_.x A x + r < bb_x + bb_w A
y-r>bb_y ANy +r1r <bb_y+ bb_h
close @Local(200ms) // recent is defined as 200ms
// Service response
output validate := check.aggregate(over_instances: all, using: 3)

Listing 1.1. An RTLoLA specification matching bounding boxes to blobs.

3 The specification together with a toy trace can be tested within a playground:
https://rtlola.cispa.de/playground /tutorial
4 Tn practice, bounding boxes are sent with a delay to not only consider past blobs.
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3 ROS 2 Environment

ROS is a middleware that enables the execution of a distributed system made
up of nodes, where each node typically handles a specific task in the robotic
application. For example, one node may handle a sensor driver that collects
sensor readings, another node may manage control tasks, and a third node may
focus on monitoring. ROS supports different ways of communication between
nodes. Most prominent are topics and services.

A topic is a named communication channel over which structured messages
of a specific type are sent. To send data on a topic, a node must publish messages
to it, while to receive, a node must subscribe to the topic. Multiple nodes can
simultaneously publish to the same topic, and multiple nodes can subscribe.
Each topic is strictly associated with one message type, and all publishers and
subscribers must agree on this type. Listing[T.2] provides the interface file for the
“blob” topic published by the Blob detector: a blob’s xy-position and radius.

A service is a named communication channel that allows one node to request
a specific response from another node. To initiate a service, a node must send a
request message (client), while the node providing the service must process the
request and sends a response (server). Each service is associated with a request
and response message type, which must be defined beforehand, ensuring both
the client and server nodes agree. Unlike topics, services operate in a one-to-one
manner. A service call is blocking, meaning the client waits for a response before
continuing. Listing provides the interface file for the RTLOLA service that
validates bounding boxes. The request and the response are separated by “---":
the request specifies the xy-position, width, and height of the bounding box,
while the response returns a single Boolean which indicates a matching blob.

Quality of Service (QoS) defines how data is exchanged between nodes. Some
example settings include the history policy, which determines whether to keep
only a limited number of recent messages (“keep last”) or all messages (“keep
all”), with the queue size applying only to the former; reliability, which defines
whether messages are delivered with possible loss (“best effort”) or guaranteed
with retries (“reliable”); and durability, which controls if messages are persisted
for late subscribers (“transient local”) or discarded after publishing (“volatile”).

ROS primarily support C++ and Python. C++ is widely used for performance-
critical and hardware-related tasks, while Python is popular for scripting, rapid
prototyping, and creating simpler nodes. Therefore, most core ROS components
are written in C++. ROS comes with its own build system using CMake/Catkin,
which makes the use of other compiling languages building on other build systems
challenging, e.g., Rust using Cargo.

float64 x // x-position float64 x // x-position
float64 y // y-position float64 y // y-position
float64 r // radius float64 w // width
float64 h // height
2 2 113 79 3
Listing 1.2. “blob” interface file ___ // Separates request and response

bool validate // is true positive

Listing 1.3. “bb” service interface file
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Experimental Setup The unmanned aircraft was a hexacopter with a maximal
takeoff weight of 15.5 kg that followed a preprogrammed waypoint mission flying
above the mannequins. To guarantee safety, a human remote pilot had always
the possibility to takeover control when observing unintended drone behavior.
As hardware payload, the drone carries a Pixhawk 4 flight controller hardware,
a Jetson jAi Go 2400 camera, an Ouster OS0O LiDAR, and a Nvidia Jetson AGX
Orin companion computer. The companion computer is connected via 5 GHz
Wlan to a ground control station for controlling the experiment and visualizing
the validated bounding boxes.

Software-wise, the Pixhawk 4 runs the PX4 autopilot software and the Nvidia
Jetson executes a ROS environment with multiple nodes. As PX4 and ROS pro-
vide a deep integration that directly allows to exchange informatiorﬂ numerous
PX4 messages are directly available as ROS topics for the companion computer.
This includes for instance information about battery, actuators, and sensor read-
ings such as positimﬁ The central ROS nodes for this experiments running on
the companion computer were a node that publishes the camera images, a node
for publishing the LiDAR depth images, a node that runs a OpenCV Blob detec-
tor on the depth images, an RTLOLA monitor, and DLR’s UAVISION that runs
a ML-based object detector and streams verified detections to a ground control
station. The ML-component ran at ~3 Hz and the Blob detector ran at around
~20 Hz. UAVISION is subscribed to the images from the camera publisher. When
UAVISION receives a camera image, it first runs the ML-based detector to obtain
bounding boxes. It then uses a service provided by the RTLOLA monitor node to
send each detected bounding box for cross-validation with the Blob detections
subscribed to by the monitor If such a corresponding blob exists, the bound-
ing box is validated; otherwise, it is falsified. This information, along with the
bounding box, is transmitted to the ground control station. Validated bounding
boxes are depicted in cyan, while falsified ones are shown in pink.

4 A ROS Adapter for RTLola

The adapter is written in Rust to ensure seamless integration with RTLOLA. It
assumes a running ROS 2 workspace. To build and integrate the monitor for a
given RTLOLA specification, the user simply needs to execute:
cargo run - <specification>.

Figure [4] shows the corresponding pipeline stages. During the “Generate” stage,
the adapter collects information about available topics using ROS command-line
tools. It starts by executing ros2 topic list to retrieve a list of currently avail-
able topics. Then, ros2 interface show <topic/service> is used to obtain
the corresponding interface definitions. Finally, QoS details are accessed via ros2
topic info <topic/service> -verbose. This gathered information is used to
generate Rust code instances of pre-defined templates, enabling topic subscrip-

® https://docs.px4.io/main/en/ros2/user_guide.html
S https://github.com/PX4/px4_msgs
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Fig. 4. Execution pipeline of the ROS adapter for RTLoLa

tion. These templates utilize the Rust crate r21ﬂ which avoids the integration
with the ROS build system and instead relies solely on cargo. By default, the
subscriptions matches the QoS settings of the publisher to ensure compability.
Whether the monitor publishes or provides a service depends on the presence of
the RTLolaOutput topic and the RTLolaService service interface in the running
ROS workspace, respectively. If either interface is available, corresponding tem-
plates are instantiated to implement a publisher or a service server. Note that
this stage is independent of the provided RTLOLA specification — the mapping of
input/output RTLOLA streams are derived in a later stage. Further, a configura-
tion file allows for QoS customization and includes a flag to “freeze” this stage’s
output, preventing overwriting of already generated code. During the next stage,
the generated template instances and the monitor code are compiled. Finally,
the wrapped RTLOLA monitor is executed as ROS node. An executed RTLoLA
monitor first generates a mapping between RTLOLA input/output streams and
corresponding topic members. This mapping adheres to a naming convention:
<package_name_lowercase>_<member>, which is also applied during template
instantiation. For example, the input stream input adc_aO: Float32 maps to
the float member a0 of topic adc. Moreover, fixed-length arrays in topics are
unrolled, e.g., a topic Gps with member float64[2] x results in two streams:
gps_x_0 and gps_x_1. If any required stream is missing, the adapter will raise
an error to notify the user. Note that the adapter only needs to be recompiled
when topics or services are added or modified. Limitations: When responding
to a service request, the adapter uses the immediate output stream values af-
ter processing the inputs. As a consequence, outputs of periodic streams may
remain unchanged in the response. Additionally, topic members of unbounded
array types are currently not supported and are therefore ignored.

" https://github.com/sequenceplanner/r2r
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Ezxperimental Results Prior to the flight test, the adapter was used during
ground tests. The code generated during these tests was frozen by setting the
respective flag to avoid code generation during flight tests. The PX4 autopilot
provides over 50 topics. The adapter generated code for all necessary topics, so
the user can focus fully on writing the specification while required topics are
subscribed automatically

The provided RTLoOLA service simplified the implementation of the cross-
validation called by UAVISION. If these requests were implemented using topics,
additional boilerplate code would be required to handle the request-response
pattern manually. Using a service avoids this overhead. Listing[I.4] shows a code
snippet demonstrating how to integrate the service. Line 4 and 5 retrieve an
image, detect persons, and create requests. For each detected bounding box, a
blocking request req_bb is sent and handled asynchronously using a “future”
response (Line 7). This response, once available, is passed to a callback function,
responsible for forwarding the result to the ground control station (Line 8).

def callback(request, response): # callback function

while True:
frame = self.camera.read() # reads camera frame
req_bbs = self.ml.detect(frame) # detection and creation of requests
for req_bb in req_bbs: # iterates over bounding box requests
self.ros_client.call_async(req_bb).add_done_callback(
functools.partial(self.callback, req_bb)) # bind request to callback

Listing 1.4. Excerpt of Python code demonstrating how the RTLoLA service simplifies
monitor integration into UAVIsION, avoiding explicit subscription handling.

The experiment also demonstrates that runtime verification improves the
system’s performance. Figure [j] illustrates a scenario where detections were suc-
cessfully validated and could therefore be trusted. In contrast, Figure [6] shows
an example of a false positive detection that was identified as untrustworthy and
subsequently discarded by the system.

Fig. 5. The monitor validated two correct Fig. 6. Monitor flags a false positive (pink)
human bounding boxes (cyan). with no matching blob.
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5 Conclusion

We presented a ROS adapter for RTLoOLA, designed to simplify the integra-
tion of RTLoLA into ROS-based applications by automatically mapping ROS
topics to RTLOLA streams. In real-flight experiments, the adapter successfully
generated code for all required topics, significantly reducing user effort given
the large number of available topics. Further, we demonstrated that providing
a service interface by the monitor simplifies the usage of monitoring verdicts by
eliminating manual request-response handling. In future, we plan to advance the
cross-validation specification. Instead of checking if a blob is within a bounding
box, we plan to test other metrics such as the Hausdorfl distance or explicit
overlap computation — thereby improving the accuracy of the cross-validation.
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