
Monitoring Unmanned Aircraft: Specification,
Integration, and Lessons-learned⋆

Jan Baumeister1, Bernd Finkbeiner1, Florian Kohn1, Florian Löhr2, Guido
Manfredi2, Sebastian Schirmer3, and Christoph Torens3

1 CISPA Helmholtz Center for Information Security
{jan.baumeister, finkbeiner, florian.kohn}@cispa.de

2 Volocopter GmbH
{florian.loehr, guido.manfredi}@volocopter.com

3 German Aerospace Center (DLR)
{sebastian.schirmer, christoph.torens}@dlr.de

Abstract This paper reports on the integration of runtime monitor-
ing into fully-electric aircraft designed by Volocopter, a German aircraft
manufacturer of electric multi-rotor helicopters. The runtime monitor
recognizes hazardous situations and system faults. Since the correct op-
eration of the monitor is critical for the safety of the aircraft, the devel-
opment of the monitor must follow strict aeronautical standards. This in-
cludes the integration of the monitor into different development environ-
ments, such as log-file analysis, hardware/software-in-the-loop testing,
and test flights. We have used the stream-based monitoring framework
RTLola to generate monitors for a range of requirements. In this pa-
per, we present representative monitoring specifications and our lessons
learned from integrating the generated monitors. Our main finding is
that the specification and the integration need to be decoupled, because
the specification remains stable throughout the development process,
whereas the different development stages require a separate integration
of the monitor into each environment. We achieve this decoupling with
a novel abstraction layer in the monitoring framework that adapts the
monitor to each environment without affecting the core component gen-
erated from the specification. The decoupling of the integration has also
allowed us to react quickly to the frequent changes in the hardware and
software environment of the monitor due to the fast-paced development
of the aircraft in a startup company.

Keywords: Runtime Verification · Stream Monitoring · Autonomous
Aircraft

⋆ This work was partially supported by the Aviation Research Program LuFo of the
German Federal Ministry for Economic Affairs and Energy as part of ”Volocopter
Sicherheitstechnologie zur robusten eVTOL Flugzustandsabsicherung durch formales
Monitoring”(No. 20Q1963C).



2 Baumeister et al.

1 Introduction

The new generation of fully-electric aircraft pioneered by companies like Volo-
copter promises a revolution in urban air mobility. Fully-electric aircraft air taxis,
cargo drones, and longer-range passenger aircraft will provide transit solutions
that are emission-free and thus more sustainable and efficient than traditional
forms of air transport. A critical part of the safety engineering of such aircraft
is to analyze log-files and tests, as well as the real-time data obtained during
the actual flight, so that the health status of the system can be assessed and
mitigation procedures can be initiated when needed. In this paper, we report
on the design and integration of formally specified monitors into aircraft devel-
oped by Volocopter, based on the monitoring framework RTLola. The goal of
our collaboration over the past three years has been to explore the benefits and
challenges of applying formal runtime verification within the strict aeronautical
standards of aircraft development.

Volocopter specializes in the design, manufacturing, and operations of electric
Vertical Takeoff and Landing (eVTOL) vehicles. The company targets Urban Air
Mobility (UAM) operations, i.e., passenger and cargo transportation above and
around cities. These operations involve high population density on the ground
and high traffic density in the air. Consequently, all developments must meet
the highest level of safety similar to airliners: one failure for every billion hours
flown. To ensure such a level of safety, the design of the vehicles follows aero-
nautical standards, especially SAE’s ARP4754b [14] to ensure the coherency
between the concept of operation, requirements, design, and implementation.
The development cycle described in this standard uses a layered approach with
multiple verification and validation steps.

RTLola [8,3] is a formal monitoring framework that consists of a stream-based
specification language for real-time properties, an interpreter, and compilers into
software- and hardware-based execution platforms. An RTLola specification of
hazardous situations and system failures is statically analyzed in terms of consis-
tency and resource usage and then automatically translated into an FPGA-based
monitor. This approach leads to highly efficient, parallelized monitors with for-
mal guarantees on the noninterference of the monitor with the normal operation
of the monitored system.

Previous case studies with RTLola [2] and similar frameworks, such as R2U2 [10]
and Copilot [12], have already shown that properties that are critical for the
safety of the aircraft can readily be expressed in such formal languages and
that the resulting monitors can be integrated into real systems. Our ambition
has been to go beyond such one-time applications, and integrate the specified
monitors into the complete development process. This means that the gener-
ated monitors are not only integrated into the specific setup of the case study,
but rather are continuously adapted according to the needs of the development
process.

We consider monitoring in all stages of the development process. Initially,
the role of the monitor is to annotate log-files and guide the user during an
offline analysis, e.g. these annotations split a test flight into flight-phases for



Monitoring Unmanned Aircraft 3

separate inspection. Next, the monitor validates data from test-benches that
check that external components conform to their specifications, such as delivering
data within deadlines. Finally, the monitor validates safety requirements during
test flights. The monitoring specifications are based on the requirements of the
various regulatory authorities and cover a range of safety-critical requirements
from single-component checks to system-level health.

Our main finding is that the specification and the integration need to be
decoupled, because the specification remains stable throughout the development
process, whereas the different development stages require a separate integration
of the monitor into each environment. We achieve this decoupling with a novel
abstraction layer in the monitoring framework that adapts the monitor to each
environment without affecting the core component generated from the specifica-
tion. In the abstraction layer, the monitor is framed with two new components,
the event conversion and the verdict converison. The decoupling of the integra-
tion has also allowed us to react quickly to the frequent changes in the hardware
and software environment of the monitor due to the fast-paced development of
the aircraft in a startup company.

1.1 Related Work

Runtime monitoring is a scalable dynamic verification approach that has been
applied to a variety of domains [11,9]. For cyber-physical systems, many mon-
itoring tools exist [1,12,2], but despite integration being an important part of
the usage of monitoring [7], tools are often specific to certain environments
and leave embedding in different environments to the user, i.e., the user needs
to establish a connection, parse received events, and forward it to the moni-
tor. For some specific environments, these user efforts are reduced. For instance,
SOTER [4] a specification language that is based on the P language [5], was
recently extended [16] to produce code for the Robot Operating System (ROS),
which allows to just specify which ROS topics are subscribed and published.
Similarly, TeSSLa features keywords to subscribe and publish ROS topics [16].
A more generic approach is pursued by R2U2 Version 3.0 [10] which allows to
specify C-like structs. This makes it easy for engineers to receive structs and just
forward them to the monitor unit. In this work, we foster this kind of general-
ization by providing an automatic mapping of the received and the forwarded
events.

2 Stream-based Monitoring

RTLola is a real-time monitoring framework [8] aimed at, but not exclusively
applicable to, cyber-physical systems. At its core is a stream-based specification
language that distinguishes between two kinds of streams: Input streams repre-
sent sensor readings from the system under observation. Output streams perform
computations over these input streams and other output streams. Special kinds
of output streams, called triggers, define violations based on boolean conditions.



4 Baumeister et al.

Equipped with a message, they notify the system operator when a violation is
detected. Consider the following example:

1 input altitude: Float
2 output average_alt @1Hz := altitude.aggregate(over: 60s, using: avg).defaults(to: 0.0)
3 trigger average_alt > 300.0

In this example, the monitor observes the altitude of the system through the
input stream altitude. The output stream average alt aggregates all values of
this input stream over the last minute and computes the average of these values.
It also highlights the real-time capabilities of RTLola. By explicitly annotating
the output stream with a frequency, the monitor cannot only react to events
but also proactively perform computations. More concretely, the output stream
evaluates at a fixed frequency of 1Hz. The final defined trigger then notifies an
operator if the average altitude is above 300.

3 Setup

All components that are integrated into aircrafts designed by Volocopter need to
follow aeronautical standards, especially SAE’s ARP4754b [14]. This standard
ensures that the concept of operation, requirements, design, and implementa-
tion are coherent. In general, it describes a development cycle using a layered
approach with multiple verification and validation steps, i.e., new components
are validated in different environments that get closer to the operation with each
step.

Integrating a monitor in this setup is two-folded: The monitor can provide
valuable feedback when new components undergo the aforementioned valida-
tion steps. This feedback includes statistical assessments or violations of given
requirements. Yet, the monitor as a safety-critical component needs to be eval-
uated in the same manner.

3.1 Monitoring Applications

This section presents four applications that highlight the benefit of the monitors
feedback during the development of new components:

1. Debugging A monitor is developed alongside the component giving full in-
formation about its internal state. During the execution of the system, the
monitor checks whether the component works as intended by the developer
used as a white-box testing component.

2. Validation The monitor is developed independently of the component and
checks its behavior based on the inputs and outputs of defined test cases.
Hence, the monitor functions as a black-box testing component. The monitor
output on these test cases is then used as a report for internal validation,
validation of components by external companies, or as proof of conformity
for aviation authorities.



Monitoring Unmanned Aircraft 5

3. Pre-Post-Flight Analysis Before the flight, the monitor checks whether all
necessary components are operational. After the flight, the monitor com-
putes more sophisticated information to better evaluate the flight and detect
irregularities that were not detected during the flight.

4. In-Flight Analysis / Safe Integration The monitor communicates with the re-
mote operator. e.g., through the User Interface of the ground control station,
to provide feedback about the safety of the drone. It validates the correctness
of individual components to ensure a safe flight or monitors the flight oper-
ation. For instance, it supports the pilot by checking that the drone stays
within safe flight parameters such as a geofence.

Before presenting concrete specifications for each application in Section 5, we
elaborate on the validation of a monitor.

3.2 Development Cycle for the Monitor

This section introduces the four environments into which the monitor must be
integrated to validate its correctness.

1. Log-File Analysis This step evaluates the functional correctness of the speci-
fication. We test the generated monitors against traces that violate or satisfy
the specification and analyze the output of the monitor.

2. Software-in-the-Loop (SiL) The monitor interacts with simulated systems
and environments. This step is crucial for a runtime monitor since most
temporal behaviors are not visible until these tests.

3. Hardware-in-the-loop (HiL) This step is similar to the SiL environment. How-
ever, the monitor and the system run on the actual resource-constrained
hardware used in the aircraft. This setup brings even more time-related ef-
fects to the evaluation and allows an evaluation with replayed flight data.

4. Flight Testing Running the monitor in parallel with the flying aircraft allows
for assessing the impact of all effects coming from the aircraft, the ground
system, and the environment.

The integration of the monitors in the different validation environments poses
new challenges for the monitoring framework. In our experience, each step in the
development process relies on different ways of communication. For instance, in
the log-file analysis, events are processed in CSV-format, while during test flights,
the communication with the monitor uses a custom protocol over TCP. Yet, the
changes in the monitor should be as minimal as possible to simplify its validation.
Specifically, the specification has to remain unchanged after the Log-file Analysis
as otherwise its functional correctness is not guaranteed anymore.

4 Abstract Integration

In this section, we present our approach integrating the RTLola framework [8]
into the different environments described in Section 3.



6 Baumeister et al.

Monitor

Verdict

Conversion

Event

Conversion

Spec

Unchanged

Event

Monitor

Input

Monitor

Output

Verdict

Sensor 2Sensor 1

Controller 1
Monitor

Framework

User

Interface
...

System

Figure 1: Overview of the Generalization

Figure 1 shows an overview of this approach. The system on the left side rep-
resents the UAV under development. From a monitoring perspective, the current
step in the development cycle does not influence the underlying monitor, only
its integration into the system. This is depicted on the right side of Figure 1.
The monitor framework receives or requests incoming data from the different
components of the system (Event), analyses this data, and produces an output
(Verdict). In the center of the monitoring framework is a fixed monitor gener-
ated from a formal specification. This monitor has a fixed representation of the
Monitor Input and Monitor Output that are independent of the integration.

To bridge the communication gap between the system and the monitor, we
propose an abstraction layer that translates system outputs to monitor inputs
and vice versa. This abstraction also generalizes the monitor’s interface such that
no expert knowledge about the concrete monitor is necessary to integrate the
monitor. This abstraction layer can vary depending on the specific integration
into the development cycle but allows the monitor to remain unchanged following
the idea of decoupling the specification from the integration.

Our approach introduces two translation components: the Event Conversion

and the Verdict Conversion. Each component is again split into two parts:
data-acquisition/data-dispatch and data-conversion to allow a generic implemen-
tation of the data-acquisition/data-dispatch. This results in reusable and main-
tainable implementation while keeping the changes between the development
stages minimal.

In the following, we elaborate on the data-acquisition and data-conversion of
the Event Conversion in more detail. The results are transferable to the Verdict
Conversion.

4.1 Common Interfaces

The Event Conversion is a generic translation layer between the systems output
and the monitor input. During instantiation it validates the mapping between
the system output and the monitor input, representing the input streams in the
specification. Hence, it checks that the Events are a superset of the Monitor

Input avoiding any runtime errors resulting from an invalid mapping. The data-
acquisition part of the Event Conversion is handled through the Event Source



Monitoring Unmanned Aircraft 7

1 pub trait EventSource {
2 fn next_event(&mut self)
3 -> Result<Event, Error>;
4 }

(a) Event Source Interface

1 pub trait EventFactory {
2 fn new(map: &InputStreams, cfg: Config)
3 -> Result<Self, Error>;
4 fn create(&mut self, ev: Event)
5 -> Result<MonitorInput, Error>;
6 }

(b) Event Factory Interface

Figure 2: Common interfaces for the Event Conversion.

interface, while the data-conversion is handled by an Event Factory. Both inter-
faces are defined in Figure 2.

The Event Source consists of a single function called next event. It is used
to communicate to the system that the monitor is ready to accept the next
event. The Event Factory as a counterpart has two functions: The new function
gets a description of the input streams derived from the specification and the
configuration of the Event Source. It then checks if each input in the specification
can be matched with the data provided by the Event Factory implementation.
If successful, it computes a static mapping for each input stream to a data
segment in an incoming Event. The second function create is called for every
Event and creates the internal event structure Monitor Input, given the input
mapping.

Implementation. We implemented the approach from this section in the RT-
Lola framework and were able to provide implementations for a variety of Event
Sources that are independent of the data format they receive. These include ba-
sic file-based input methods such as reading from stdin or a local file, up to
network protocols that receive data over UDP, TCP, or MQTT. We also provide
ready-to-use Event Factories to parse, for example, data in CSV or PCAP for-
mat as well as a binary data parser derived from a user-provided configuration.

1 #[derive(ValueFactory)]
2 #[factory(prefix)]
3 struct GPS {
4 lat: Float64,
5 lon: Float64
6 }

Figure 3: Interfacing a
custom data structure.

Yet, implementing a custom Event Factory still re-
quires knowledge about the structure of the Monitor

Input that is undesired for a successful integration
in real-production where implementations need to be
maintained by non-monitoring experts. In the RT-
Lola framework, we provide further abstractions over
the interfaces presented in Figure 2 to reduce the re-
quired knowledge about the monitoring framework.
These abstractions range from helper implementa-
tions encapsulating common functionality to proce-
dural macros that automatically generate implemen-
tations of these interfaces. Figure 3 shows an example of the macro application.
It demonstrates a simplified version of a GPS-Package, exposing the fields of the
struct to input streams named GPS lat and GPS lon.



8 Baumeister et al.

Validation Environments

Log-File SiL HiL Test Flight

Debugging Flight-Phase-Detection

Validation Remote-Control-System

Pre-Post-Flight System Checks

In-Flight Flight-Phase-Detection, Geofence

Safe-Intergration Detect-And-Avoid

Figure 4: Overview of the concrete integrations that have been performed in the
research project

5 Concrete Integration of Representative Specifications

This section provides a set of representative specifications to validate our ap-
proach presented in Section 4. The specifications have been obtained by collab-
orating with flight engineers or from official RTCA[13] standards and cover all
monitoring applications from Section 3.1. Figure 4 provides an overview of the
concrete specifications and the integration of the generated monitors.

The x-axis in this graph maps each specification to the environments in which
the monitor was integrated. Not all monitors could be validated up to a flight
test, but we validated our approach in at least two environments presented in
Section 3.2. In our experience, the provided Event Sources are sufficient for all
environments. For the concrete implementation of the Event Factories, we either
use the implementation from Section 4 or create new implementations using the
macros shown in Figure 3. These implementations do not require any internal
knowledge of the monitoring tool as intended by our approach.

In our setup, log-files are usually given in the csv-format, the SiL is a Matlab
Simulation or a simplified replay of log-files and the Hil is a concrete replay
of the simulated data or flights on the actual hardware. The test flights were
performed on the VoloDrone, a cargo transportation drone that offers highly
automated flights with a range of 40km and a payload of up to 200kg.

The y-axis of the graph in Figure 4 maps the specification to the application.
We separately validated the specifications with a log-file analysis and refined the
requirements before integrating the monitors. We published the specifications
on Github4 after replacing some sensitive information, e.g., by replacing some
streams with arbitrary constants. The rest of the section describes the general
idea of the specifications and refers to the concrete monitoring application.

Flight-Phase-Detection (FPD) The FPD specification detects different flight
phases, helping the debugging of correct automated flights. In the log-file anal-
ysis, the monitor annotates previous test flights pointing the engineer to critical
points, e.g., when no clear phase could be detected. In the software and hardware
simulation, we evaluate the handling of asynchronous inputs and the timing of
the monitor. For a final flight test, the monitor was integrated into the ground

4 https://github.com/reactive-systems/rtlola-uav-specifications



Monitoring Unmanned Aircraft 9

1 input rpm : Int64
2 input src : UInt8
3 output rpm_1 eval when src == ROTOR_1 with abs(rpm)
4 output rpm_2 eval when src == ROTOR_2 with abs(rpm)
5 ...
6 output rpm_on_check := avg(rpm_1.hold(or: 0), rpm_2.hold(or: 0), ...) > ϵrpm on

7 output rpm_on @1s := rpm_on_check.aggregate(over: 1s, using: avg, or: 0.0) > ϵrpm on per

8 ...
9 output phase_1 := ¬take_off ∧ ¬landed ∧ rpm_on ∧ ¬rpm_in_air

Figure 5: Excerpt of the specification of the Flight-Phase-Detection

1 /// Property 1: Log message increment
2 output valid_seq_number := seq_number = seq_number.offset(by: -1, or: -1) + 1
3 /// Property 7: RC fallback test
4 output main_fallback_valid_dyn
5 spawn when lost_connection_to_master
6 close when switch_to_secondary ∨ both_rc_disconnected
7 eval @200ms with false
8 output main_fallback_valid @true := main_fallback_valid_dyn.hold(or: true)

Figure 6: Excerpt of the requirements specific to one RCC

station to check if a flight phase is always detected moving the monitor also to
the in-flight application.

Figure 5 presents partially the specification for the FPD. It gets data from
several sensors and computes binary flags describing the current state of the
drone. One example is the rpm one check flag that compares the average rota-
tions per minute of all rotors against a threshold. In general, a simple state
machine then decides based on these flags if a flight phase is detected and
which one. However, the data of the sensors arrives asynchronously with dif-
ferent frequencies and we need to synchronize the flags for the comparison. For
this synchronization, the streams rpm on aggregate over the corresponding flags,
computing the percentage of how often the condition is satisfied during the last
second. This value is then used in phase 1 stream for the flight phase detection
instead of asynchronous rpm one check flag.

Remote-Control System (RCS) Assuring a safe development is especially chal-
lenging when combining in-house products with commercial off-the-shelf hard-
ware or software products. In our example, we validated the correctness of an
RCS that receives flight commands from different sources and dependent on
the configuration decides which source should be used by the system. More con-
cretely, we used RTLola to validate that the requirements given to the company
developing the RCS are satisfied by the resulting product. Besides the in-house
validation, this approach comes with certification evidence that can be submitted
to the safety agency for the certification process.

As a redundant system, the RCS runs several instances of remote control
computers (RCCs) and unions their output. Figure 6 presents some stream-
declarations for requirements validating each RCC individually. This specifica-



10 Baumeister et al.

tion includes checks of simple invariants such as property one that validates if
the sequence number increments, but also includes complex real-time properties
exemplified with property seven. The stream declarations for this property im-
plement a watchdog. It reports a violation in the case that the connection to
the main controller is lost and the RCC does not switch from the main to the
secondary controller in a time frame of 200ms.

System Checks We developed a specification to validate the system parame-
ters of different sensors. This specification included requirements monitoring the
battery level and voltage drops, pre-flight sensor inconsistencies, and accelera-
tions bound. Due to the sensible information of this specification that requires
knowledge of the complete system, we cannot publish this specification.

Geofence Defining a geography volume and a contingency volume, where the
UAV will operate and can be used to maneuver in case of a problem, is part of
a risk assessment required for a flight permit in the specific category [6]. This
risk assessment also requires a runtime validation that the position of the UAV
is within these bounds for which we use the monitors generated from an RT-
Lola specification. Similar to the FPD, we integrated the monitor in the ground
station to communicate with the remote pilot. We used the geofence specifica-
tion from previous case-studies with RTLola [2,15] describing the intersection
between the flight vehicle line and the geofence polygon. Further, this paper ex-
tends the specification to predict a possible breach of the geofence by computing
the minimum distance to each polygon line and to approximate the time until
that breach.

Detect-And-Avoid (DAA) We use the validation of the DAA function as a rep-
resentative specification for the safe integration monitoring application. This
function is essential for any UAV flying beyond visual line of sight and ensures
that the UAV avoids any collision with the surrounding traffic. One of the most
common sensors in commercial aviation is the ADS-B in receiver which can sense
all surrounding aircraft equipped with ADS-B out emitters. However, this sen-
sor is susceptible to attacks by spoofing, so the RTCA standard [13] demands
a safe integration in which this sensor needs to be supported by a secondary
sensor, usually an ”active surveillance” sensor. Instead of merging both signals,
it is common practice to use the active surveillance sensor data to check if parts
or all of the ADS-B in signal have been compromised. The challenges for the
RTLola specification are similar to the flight phase detection. The specifica-
tion compares data from sensors with different frequencies and validates these
frequencies. Compared to the FPD, the standard assumes in its validation these
frequencies, so a comparison with the last values is sufficient instead of aggre-
gating the data.



Monitoring Unmanned Aircraft 11

6 Conclusion

This paper presents the results of our research project investigating the use of
runtime monitors implemented in the RTLola framework for the development
of unmanned aircraft systems. We demonstrate the benefits of decoupling the
specification and integration when the monitor has to undergo the same devel-
opment as other safety-critical components, in this safety-critical environment.
To keep the changes for the monitor during the development as minimal as pos-
sible, we presented an abstraction for monitoring frameworks. This abstraction
introduces two layers that translate between system outputs and monitoring in-
puts and vice versa. We conducted a large case study to validate our approach
and presented representative specifications for different monitoring applications
derived from aeronautical safety standards and internal requirements from Volo-
copter. In a final step, we performed a test flight where the monitor reported
its feedback to the ground control station used by the remote pilot. From a
monitoring perspective, this approach can be used to start the development of
automatic contingencies triggered by the monitor instead of notifying the pilot.

References

1. Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Ničković, D.,
Sankaranarayanan, S.: Specification-Based Monitoring of Cyber-Physical Sys-
tems: A Survey on Theory, Tools and Applications, pp. 135–175. Springer Inter-
national Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5 5,
https://doi.org/10.1007/978-3-319-75632-5 5

2. Baumeister, J., Finkbeiner, B., Schirmer, S., Schwenger, M., Torens, C.: Rt-
lola cleared for take-off: Monitoring autonomous aircraft. In: Lahiri, S.K.,
Wang, C. (eds.) Computer Aided Verification - 32nd International Conference,
CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 12225, pp. 28–39. Springer (2020).
https://doi.org/10.1007/978-3-030-53291-8 3, https://doi.org/10.1007/978-3-030-
53291-8 3

3. Baumeister, J., Finkbeiner, B., Schwenger, M., Torfah, H.: FPGA stream-
monitoring of real-time properties. CoRR abs/2003.12477 (2020),
https://arxiv.org/abs/2003.12477

4. Desai, A., Ghosh, S., Seshia, S.A., Shankar, N., Tiwari, A.: SOTER: A
runtime assurance framework for programming safe robotics systems.
In: 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2019, Portland, OR, USA, June 24-27,
2019. pp. 138–150. IEEE (2019). https://doi.org/10.1109/DSN.2019.00027,
https://doi.org/10.1109/DSN.2019.00027

5. Desai, A., Gupta, V., Jackson, E.K., Qadeer, S., Rajamani, S.K., Zuf-
ferey, D.: P: safe asynchronous event-driven programming. In: Boehm, H.,
Flanagan, C. (eds.) ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-
19, 2013. pp. 321–332. ACM (2013). https://doi.org/10.1145/2491956.2462184,
https://doi.org/10.1145/2491956.2462184



12 Baumeister et al.

6. European Union Aviation Safety Agency (EASA): Specific operations risk
assessment (sora) (2019), https://www.easa.europa.eu/en/domains/civil-drones-
rpas/specific-category-civil-drones/specific-operations-risk-assessment-sora

7. Falcone, Y., Krstic, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime
verification tools. Int. J. Softw. Tools Technol. Transf. 23(2), 255–284 (2021).
https://doi.org/10.1007/S10009-021-00609-Z, https://doi.org/10.1007/s10009-
021-00609-z

8. Faymonville, P., Finkbeiner, B., Schledjewski, M., Schwenger, M., Stenger,
M., Tentrup, L., Torfah, H.: Streamlab: Stream-based monitoring of cyber-
physical systems. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verifica-
tion - 31st International Conference, CAV 2019, New York City, NY, USA,
July 15-18, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol.
11561, pp. 421–431. Springer (2019). https://doi.org/10.1007/978-3-030-25540-
4 24, https://doi.org/10.1007/978-3-030-25540-4 24

9. Henzinger, T.A., Karimi, M., Kueffner, K., Mallik, K.: Monitoring algorithmic
fairness. In: Enea, C., Lal, A. (eds.) Computer Aided Verification. pp. 358–382.
Springer Nature Switzerland, Cham (2023)

10. Johannsen, C., Jones, P., Kempa, B., Rozier, K.Y., Zhang, P.: R2u2 version 3.0: Re-
imagining a toolchain for specification, resource estimation, and optimized observer
generation for runtime verification in hardware and software. In: Enea, C., Lal, A.
(eds.) Computer Aided Verification. pp. 483–497. Springer Nature Switzerland,
Cham (2023)

11. Junges, S., Torfah, H., Seshia, S.A.: Runtime monitors for markov deci-
sion processes. In: Silva, A., Leino, K.R.M. (eds.) Computer Aided Verifi-
cation - 33rd International Conference, CAV 2021, Virtual Event, July 20-
23, 2021, Proceedings, Part II. Lecture Notes in Computer Science, vol.
12760, pp. 553–576. Springer (2021). https://doi.org/10.1007/978-3-030-81688-
9 26, https://doi.org/10.1007/978-3-030-81688-9 26

12. Perez, I., Dedden, F., Goodloe, A.: Copilot 3. Tech. rep. (2020),
https://ntrs.nasa.gov/citations/20200003164

13. Radio Technical Commission for Aeronautics (RTCA): Minimum operational
performance standards (mops) for detect and avoid (daa) systems (2022),
https://my.rtca.org/productdetails?id=a1B36000003FXGyEAO

14. S-18 Aircraft and Sys Dev and Safety Assessment Committee: Guide-
lines for development of civil aircraft and systems arp4754b (2023),
https://doi.org/10.4271/ARP4754B

15. Schirmer, S., Torens, C.: Safe Operation Monitoring for Specific Category Un-
manned Aircraft, pp. 393–419. Springer International Publishing, Cham (2022).
https://doi.org/10.1007/978-3-030-83144-8 16, https://doi.org/10.1007/978-3-
030-83144-8 16

16. Shivakumar, S., Torfah, H., Desai, A., Seshia, S.A.: Soter on ros: A run-time as-
surance framework on the robot operating system. In: Deshmukh, J., Ničković, D.
(eds.) Runtime Verification. pp. 184–194. Springer International Publishing, Cham
(2020)


