
Automatic Optimizations for Runtime Verification Specifications

JAN BAUMEISTER, CISPA Helmholtz Center for Information Security, Germany

BERND FINKBEINER, CISPA Helmholtz Center for Information Security, Germany

MATTHIS KRUSE, Saarland University, Germany

STEFAN OSWALD, CISPA Helmholtz Center for Information Security, Germany

NOEMI PASSING, CISPA Helmholtz Center for Information Security, Germany

MAXIMILIAN SCHWENGER, CISPA Helmholtz Center for Information Security, Germany

Automatically transforming program code to yield binaries optimized for execution speed is a heavily researched topic. Research
on program transformations mainly focuses on conventional, imperative programming languages. Formal specification languages
are easier to analyze due to their formal core, restrictiveness and freedom of side effects. This talk reports on recent work on how
to best make use of these properties, exemplified on the stream-based runtime monitoring specification language RTLola. Since a
specification is part of a safety-critical component, it should not forsake legibility for efficiency. At the same time, if the monitor
will be deployed on an embedded system, reducing its resource footprint is essential. To this end, the RTLola framework employs
transformations on several levels when synthesizing executable code from a specification. The first set of transformations work on
an intermediate representation of the specification itself. The second one concerns code generation for high-level monitor code, and
lastly the compilation of the high-level code into an executable employs conventional compiler transformations.

Additional Key Words and Phrases: Runtime Verification, Stream Monitoring, Specification Languages

Runtime monitors are deployed to increase the safety of and confidence into a cyber-physical system. If the monitor is
synthesized from a formal specification, the process has to satisfy two major criteria. First, the underlying specification
has to be legible, which reduces the chance of specification errors and improves understandability for third parties.
Secondly, the resulting monitor needs to be able to operate in the low-resource environment of an embedded system.

Legibility and performance are often contrary, so it is desirable to transform a legible specification into a performant
one automatically. Simple and naive solutions tend to be easiest to grasp and hence perfect in a safety-critical context.
However, they often consume more memory or require more processing power than strictly necessary. A solution is
to apply automatic transformations to a legible specification, leaving the semantics provably intact while benefiting
the performance of the resulting monitor.

In this talk, we are going to report on how recent work employs this idea in the RTLola framework. In a nutshell,
the framework synthesizes an executable monitor for a given specification. The underlying eponymous stream-based
specification language contains information on how to refine incoming data, input streams, into output streams. It also
contains criteria for when the refined data indicates a potentially unsafe situation. The synthesis of the executable
monitor is a multi-step process as outlined in Figure 1. Here, each step can be subject to performance-enhancing
transformations.

The first step is the transformation of a linear specification into a tree-like intermediate representation (IR). Trans-
formations enhancing the IR are particularly effective as they have an immediate effect on any further steps. Hence,

This work was partially supported by the German Research Foundation (DFG) as part of the Collaborative Research Center Foundations of Perspicuous
Software Systems (TRR 248, 389792660), by the European Research Council (ERC) Grant OSARES (No. 683300), and by the Aviation Research Programm
LuFo of the German Federal Ministry for Economic Affairs and Energy as part of “Volocopter Sicherheits-Technologie zur robusten eVTOL Flugzustands-
Absicherung durch formales Monitoring” (No. 20Q1963C)..



2 Jan Baumeister, Bernd Finkbeiner, Matthis Kruse, Stefan Oswald, Noemi Passing, and Maximilian Schwenger

Baumeister et al. [1] presented a collection of IR transformations. Apart from conventional techniques such as constant
folding, there are transformations exclusive to RTLola or stream-based languages. The Pacing Type Refinement (PTR)

considers the pacing types of each stream. This type dictates under which circumstances a stream is supposed to be
re-evaluated. The PTR determines if any pacing type leads to evaluations that have no effect on the output behavior of
the monitor. It then refines the type such that the monitor does not engage in unnecessary computations. An empirical
evaluation showed that this transformation can boost performance by up to 200% for a specification monitoring an
autonomous drone.

input a:Int64
output b:= a + 3

. . .

Specification

IR

struct Monitor {
a: Input
b: Output
. . .

}

Rust Code

0101010
0001011
0101001
1100110
1001101

Executable

0101010
0001011
0101001
1100110
DATA:
1001101
1001101
1001101
1001101

Executable

Sp
ec

Compiler Interpreter

Fig. 1. Overview over the multi-step process synthe-
sizing an executable monitor from a formal specifica-
tion

The next step is to compile the IR into high-level program code
such as Rust. The compilation presented by Finkbeiner et al. [3]
fulfills two secondary goals. First, it injects annotations which al-
lows for verifying the correctness of the monitor with respect to
the semantics of the underlying specification. Secondly, the gener-
ated code reduces the number of conditional statements andmemory
accesses. For this, an analysis of the specification determines three
phases of themonitor execution, the prefix, loop, and postfix. A naive
implementation of the former and latter contains conditionals with
pre-determined outcome. Their identification is relatively simple on
basis of the IR, but complex and non-local in the resulting Rust code.
Lastly, the generated code is compiled into an executable using all
conventional transformations of the Rust compiler.

When using interpretation [2] rather than compilation, the in-
terpreter also benefits from IR and Rust compiler transformations.
However, since the IR is part of the data fragment rather than the
actual code, the interpreter lacks transformations depending on the
particular input specification, and requires many more memory ac-
cesses. Hence, the performance of the compiled version is far supe-
rior to an interpretation: it runs 24 times faster for a specification
monitoring a network and 73 times faster when monitoring an au-
tonomous drone.

Hence, we advocate for development and employment of transformation techniques specific to stream-based speci-
fication languages. Their formal core enables a variety of elaborate analyses resulting in huge performance gains. This
further increases applicability in environments where resource consumption such as memory requirement, running
time, and power consumption is a crucial factor.

REFERENCES
[1] Jan Baumeister, Bernd Finkbeiner, Matthis Kruse, and Maximilian Schwenger. 2020. Automatic Optimizations for Stream-Based Monitor-

ing Languages. In RV 2020 (LNCS), Jyotirmoy Deshmukh and Dejan Nickovic (Eds.), Vol. 12399. Springer, 451–461. https://doi.org/10.1007/
978-3-030-60508-7_25

[2] Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximilian Schwenger, Marvin Stenger, Leander Tentrup, and Hazem Torfah. 2019.
StreamLAB: Stream-basedMonitoring of Cyber-Physical Systems. InCAV 2019, Part I (LNCS), Isil Dillig and Serdar Tasiran (Eds.), Vol. 11561. Springer,
421–431. https://doi.org/10.1007/978-3-030-25540-4_24

[3] Bernd Finkbeiner, Stefan Oswald, Noemi Passing, and Maximilian Schwenger. 2020. Verified Rust Monitors for Lola Specifications. In RV 2020
(LNCS), Jyotirmoy Deshmukh and Dejan Nickovic (Eds.), Vol. 12399. Springer, 431–450. https://doi.org/10.1007/978-3-030-60508-7_24

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-030-60508-7_25
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-60508-7_24

