
Active Monitoring with RTLola:
A Specification-Guided Scheduling Approach

Jan Baumeister , Bernd Finkbeiner , and Frederik Scheerer

CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

{jan.baumeister, finkbeiner, frederik.scheerer}@cispa.de

Abstract. Stream-based monitoring is a well-established runtime verifi-
cation approach which relates input streams, representing sensor readings
from the monitored system, with output streams that capture filtered or
aggregated results. In such approaches, the monitor is a passive external
component that continuously receives sensor data from the system under
observation. This setup assumes that the system dictates what data is
sent and when, regardless of the monitor’s current needs. However, in
many applications – particularly in resource-constrained environments
like autonomous aircraft, where energy, size, or weight are limited – this
can lead to inefficient use of communication resources. We propose mak-
ing the monitor an active component that decides, based on its current
internal state, which sensors to query and how often. This behavior is
driven by scheduling annotations in the specification, which guide the dy-
namic allocation of bandwidth towards the most relevant data, thereby
improving monitoring efficiency. We demonstrate our approach using the
stream-based specification language RTLola and assess the performance
by monitoring a specification from the aerospace domain. With equal
bandwidth usage, our approach detects specification violations signifi-
cantly sooner than monitors sampling all inputs at a fixed frequency.

Keywords: Stream-based Monitoring · Constraint-Based Scheduling ·
Real-time Properties

1 Introduction

Cyber-physical systems are increasingly prevalent, and many now operate fully
autonomously in complex, real-world environments. These systems are often
deployed in safety-critical domains, such as autonomous vehicles or drones, where
incorrect behavior can lead to catastrophic outcomes. Runtime monitoring is a
well-established technique for checking the system’s behavior at runtime against
a formal specification and, therefore, ensuring its correct behavior [14,18,22].

A prominent class of runtime monitoring frameworks is stream-based mon-
itoring [6,21,16]. There, the system continuously supplies a monitor with data
about its current state via input streams. Output streams compute new values
by aggregating and filtering the inputs, often leveraging temporal operators to

https://orcid.org/0000-0002-8891-7483
https://orcid.org/0000-0002-4280-8441
https://orcid.org/0009-0007-8115-0359

2 Baumeister et al.

express rich, time-dependent specifications. This makes stream-based monitoring
particularly suitable for complex safety requirements of cyber-physical systems.

However, in modern autonomous systems, monitors must process data from
a diverse set of sources in real-time. For example, an autonomous vehicle or
drone might rely on GPS, camera feeds, and many other sensors to assess its
environment and maintain safety. Here, the monitor is a passive component,
consuming the updates about the current state of the system under observation.
A key challenge in such settings is limited bandwidth: the connection between
sensors and the monitor cannot support arbitrarily high-frequency updates from
all sources due to factors like energy consumption, physical size, or weight con-
straints. Consequently, it is not feasible to transmit all sensor data at its highest
possible frequency. However, reducing the sampling frequency leads to increased
latency in detecting critical events and dangerous situations, undermining the
effectiveness of the monitor.

We propose that, since the monitor has a comprehensive view of all received
data, it has a better understanding of which data is currently needed than the
different sources individually. For instance, consider a drone equipped with both
an altitude sensor and a camera. When the drone is landed, altitude readings
are irrelevant, while the ground-level camera might be more important for mon-
itoring the surrounding ground. Conversely, at higher altitudes, the camera data
becomes less informative, whereas altitude measurements become more signifi-
cant as the drone is approaching predefined upper altitude limits. We present an
active monitoring approach in which the system adaptively queries the sensors
based on the drone’s current altitude. This enables dynamic prioritization of
sensor data, emphasizing ground-level visual input when near the ground and
focusing on altitude measurements when high up in the sky – therefore making
more effective use of the limited bandwidth between the sensors and the monitor.

Such an approach is especially interesting for applications that are designed
for actively requesting individual sensors’ data. A prominent example is the
OBD-II interface present in all modern vehicles, which must be explicitly queried
for individual sensors of the car, instead of receiving a stream of new sensor data
on its own.

Given the availability of well-established monitoring tools [6,21,24,25], we
chose not to develop a new monitoring framework from scratch. Instead, our
approach builds on existing monitoring tools by introducing a scheduling com-
ponent that interfaces between the monitor and the sensors. This scheduler ob-
serves the current monitoring state and determines which sensors to query next.
Once the selected data has been acquired, the scheduler forwards it to the un-
derlying monitor to initiate the next monitoring cycle. This architecture allows
our method to remain independent of the monitor implementation and be com-
patible with a wide range of existing monitoring infrastructures.

We demonstrate our approach through an implementation based on the
stream-based monitoring language RTLola [6], which has previously been suc-
cessfully applied to the monitoring of unmanned aircraft [5,8] or for increasing
trust in automatic decision and prediction systems [7]. We extend RTLola by

Active Monitoring with RTLola 3

introducing scheduling annotations that can be attached to individual streams in
the specification. These annotations guide the scheduling process by indicating
which inputs should be prioritized under certain conditions of the monitor. The
annotated specification is then automatically transformed into a ”regular” RT-
Lola specification compatible with all existing RTLola implementations [3,15,9].
The schedule is embedded into this transformed specification through additional
output streams, which are then interpreted by the scheduler to determine which
inputs should be queried in the next cycle.

We evaluated our approach using data obtained through the Microsoft Air-
Sim simulator. Our results demonstrate that the proposed method can signifi-
cantly reduce bandwidth consumption without compromising monitoring qual-
ity, or, on the other hand, detect violations earlier compared to a fixed-frequency
approach, while utilizing the same amount of bandwidth.

Contribution. To summarize, we make the following contributions:

– We define a formal semantics for stream-based specification languages that
incorporate scheduling of streams,

– We extend RTLola with an annotation mechanism to express scheduling
constraints directly within the specification,

– We present a translation from annotated specifications to regular ones, which
integrate the scheduling information as additional streams, and

– We implement our approach on top of RTLola and evaluate it in an online
setting using simulated drone data.

The remainder of this paper is structured as follows: In Section 2, we provide
a background on the RTLola monitoring language and define formal semantics
for stream-based specification languages. In Section 3, we extend these seman-
tics to incorporate the scheduling mechanism. Section 4 introduces our active
monitoring framework and discusses challenges specific to integrating scheduling
into RTLola. Finally, we present our evaluation in Section 5.

1.1 Related Work

Many monitoring frameworks assume that every change in the system is ob-
servable by the monitor. However, this assumption does not hold in bandwidth-
constrained environments, where the monitor must instead periodically sample
the system state. Bonakdarpour et al. [10] propose a time-driven monitoring
approach that samples the system at a fixed frequency to reduce overhead. This
frequency is statically determined to guarantee that no violations are missed, but
it treats all inputs equally throughout execution. Navabpour et al. [23] extend
this work by making the sampling path-aware, allowing the frequency to vary
over time. Stoller et al. [26] also aim to reduce monitoring overhead by sampling
the system periodically and use Hidden Markov Models to estimate unobserved
states between samples. In contrast to the previous approaches which sample the
system, our setting allows explicitly querying individual sensor, giving us the po-
tential to prioritze inputs according to their importance. Huang et al. [20] take

4 Baumeister et al.

a different approach by dynamically adjusting the amount of monitoring to stay
within a user-specified target overhead. Instead of sampling, they temporarily
disable the monitoring of certain events when the limit is exceeded otherwise.

Our approach is designed for the stream-based specification language RT-
Lola [6], a successor of the synchronous stream-based specification language
Lola [12]. RTLola has been successfully applied to the monitoring of cyber-
physical systems, such as unmanned aircraft [5,8]. However, our approach is also
transferable to other asynchronous stream-based languages, including Tessla [21]
and Striver [16]. While there exist stream-based approaches that utilize anno-
tations in specifications for correctness guarantees [4,17], we use annotations to
represent timing constraints.

Another relevant area of research is scheduling in real-time systems, assign-
ing tasks to processors – a topic comprehensively overviewed by Buttazzo [11]
– and various approaches also consider bandwidth constraints (e.g., [27,13,1,2]).
In this paper, we adapted these concepts to stream-based languages, by defining
the scheduling semantics in the context of stream-based monitoring and integrat-
ing them into the specification language. While scheduling of real-time systems
defines dependencies between tasks, stream-based settings provide a different
kind of dependency constraints, relating jointly evaluated tasks. Our approach
is closest to non-preemptive scheduling with dynamic priorities and hard aperi-
odic deadlines.

2 RTLola

Stream-based monitors operate over a set of streams, each representing an in-
finite sequence of values. RTLola specifications define these streams through
stream-equations, which describe how the values in the sequences are computed.
We distinguish between input streams, which are populated with data from the
monitored system, and output streams, which compute new values by aggregating
and filtering the inputs.

Consider the following example of an RTLola specification:

1 input alt : Float64

2 output alt_diff

3 eval @alt with abs(alt - alt.offset(by:-1).defaults(to: 0.0))

4 trigger alt_diff > 10.0

The specification defines one input stream alt which is automatically populated
with new readings from the drone’s altitude sensor as they arrive at the monitor.
Next, the specification defines the output stream alt_diff, which computes the
absolute difference between two consecutive altitude readings. This is achieved
using the offset operator, which allows access to past stream values. Because such
previous values are unavailable at the startup of the monitor, a default value
must be provided that is used instead in this case. Finally, a trigger is defined
to check whether the altitude difference exceeds 10. If the expression evaluates
to true, the trigger activates, indicating a violation of the specification.

Active Monitoring with RTLola 5

2.1 Types

Each stream in RTLola has two associated types: a value type and a pacing
type. The value type specifies the kind of data contained in the stream, such as
integers, floating-point numbers, or booleans. The pacing type defines when new
values of a stream are computed and is indicated using the @-symbol following the
eval keyword. In this paper, all output streams are event-driven, meaning they
are evaluated whenever new inputs arrive. For example, the alt_diff stream
always computes a new value whenever the alt stream receives a new value, as
indicated by its pacing type.

Next, consider the following extension of the previous specification:

1 output num_high_alt

2 eval @alt when alt > 20.0

3 with num_high_alt.offset(by:-1).defaults(to: 0) + 1

This stream is evaluated whenever the alt input stream receives a new value.
Here, the evaluation is further conditioned by the dynamic filter condition pro-
vided after the when keyword: A new value is computed only if the condition
evaluates to true. In this case, the stream counts how often a high-altitude read-
ing occurs. RTLola also allows multiple eval clauses per stream. Clauses are
checked from top to bottom, and the stream is evaluated using the with expres-
sion of the first clause whose when condition is satisfied.

For a more detailed explanation of the RTLola monitoring language – includ-
ing features such as time-driven streams, aggregations, and parametrization –
we refer the reader to the RTLola Tutorial [6].

2.2 Semantics

We use the following semantics for stream-based monitors. Although the formu-
lation is applied to RTLola, the semantics are transferable to accommodate other
stream-based specification languages. We define the semantics via an evaluation
model ω ∈ W, which assigns stream references ID, consiting of input stream
references ID↑ and output stream references ID↓, to a timed series of values. We
write ω(t) to refer to the real-time timestamp at discrete timestep t ∈ Time, and
ω(sid)(t) to refer to the value of the stream sid at time t. If this stream did not
calculate a new value at that time because of its pacing or filter conditions, ⊥
is returned instead.

The semantics ensure that each output stream value in the evaluation model
is correctly computed according to the specification’s defining equations. For-
mally, given an RTLola specification φ, we define its semantics as the set:

JφK =
{
ω ∈ W | ∀sid ∈ ID↓.∀t ∈ Time.φ(sid) ⇓tw ω(sid)(t)

∧ ∀t ∈ Time.ω(t) < ω(t+ 1)
}
,

In the formula, φ(sid) ⇓tw v denotes that the defining stream equations φ(sid) of
stream sid evaluate to v at time t. This evaluation yields the result of the with-
expression of the first eval clause whose pacing and when condition is satisfied
at time t. If no clause is evaluated, the result is ⊥.

6 Baumeister et al.

An evaluation model is considered valid with respect to a specification if, at
every time step, all output stream values are correctly computed according to the
defining stream equations and the time map is strictly monotonically increasing.

An RTLola specification φ is considered well-defined, if for every possible
input trace I ∈ Time → InputValues with InputValues : ID↑ → V⊥, there exists
a unique evaluation model ω ∈ JφK with ∀t ∈ Time.∀i ∈ ID↑.ω(i)(t) = I(t)(i).

3 Scheduled Monitor Semantics

This section introduces the general concept for stream-based scheduling, where
a scheduler must dynamically adapt to the current state of the monitor. We
describe a valid schedule with a set of static constraints and later determine
whether a scheduler satisfies them. We start by defining dynamic schedule con-
straints to decide at each time point if the evaluation violates the constraint.
Then, we describe how to transform a static schedule into its dynamic counter-
part – the transformation later implemented by the scheduling component.

In our setting, the scheduler determines at each time step which tasks are
evaluated in the next step. The set of possible tasks defines the space of schedul-
ing decisions available to the scheduler at each time step.

Definition 1 (Task). For each τ ∈ Tasks there exists: 1. a predicate ω |=t τ to
dermine if the evaluation model ω ∈ W satisfies the task τ at time t, 2. a partial
order ⪯ representing dependencies between tasks, and 3. a predicate iv |= T to
determine if an input iv : InputValues reflects the set of tasks T .

To illustrate different choices for the task space, consider two examples.

Example 1 (Individual Streams). For this example, consider a scheduler that
selects individual streams during evaluation. Then Tasks = ID consisting of all
stream’s references and

ω |=t sref iff ω(sref)(t) ̸= ⊥
τ1 ⪯ τ2 iff τ1 = τ2

iv |= T iff ∀i ∈ ID↑.iv(i) ̸= ⊥ ⇔ ∃sref ∈ T .sref = i.

In this case, tasks are satisfied at time t whenever their stream receives a value,
i.e., is not ⊥ at time t. There exist no dependencies between tasks, and an input
reflects a set of tasks if each input receives a new value iff it is contained in the
set of tasks.

Example 2 (Stream Sets). Alternatively, consider a scheduler selecting groups of
streams to be jointly evaluated. We then set Tasks = P (ID) and

ω |=t τ iff ∀sref ∈ τ.ω(sref)(t) ̸= ⊥
τ1 ⪯ τ2 iff τ1 ⊆ τ2

iv |= T iff ∀i ∈ ID↑.iv(i) ̸= ⊥ ⇔ ∃τ ∈ T .i ∈ τ.

In this representation, tasks have dependencies through a subset relation, and
an input reflects a set of tasks if at least one task updates each input.

Active Monitoring with RTLola 7

3.1 Dynamic Schedule Constraints

Next, we introduce the concept of dynamic scheduling constraints, which specify
how each task is expected to be evaluated:

Definition 2 (Dynamic Schedule Constraint). A dynamic schedule con-
straint is a function that maps the current monitor state (W,Time) to a schedul-
ing decision over tasks:

S : (W× Time) → Tasks → S S = {Y,M,N}

For each task, the constraint assignes whether the task must (Y), may (M), or
must not (N) be evaluated at that time.

The semantics of stream-based languages ensure that all stream values are
computed in accordance with their defining stream equations. We extend this
semantics to account for scheduling constraints, requiring the evaluation model
to also satisfy the tasks according to a constraint. In addition, we introduce a
bandwidth bound B, which encodes the bandwidth limitations between sensors
and the monitor. Formally, given a specification φ, a schedule constraint ψ ∈ S,
and a bandwidth constraint B, the scheduled semantics is defined as:

J(φ,ψ,B)K =
{
ω ∈ W | ω ∈ JφK ∧ ω ∈ JψK ∧ ∀t ∈ Time.B(ω, t)

}
.

Intuitively, an evaluation model is valid if it: 1. correctly computes all stream
values according to φ, 2. adheres to the scheduling decisions made by ψ, and
3. respects the bandwidth constraint B at all times.

For an evaluation model to satisfy a constraint ψ ∈ S, the satisfaction or
non-satisfaction of tasks must always align with ψ:

JψK =

ω ∈ W | ∀t ∈ Time.∀τ ∈ Tasks.


ω |=t+1 τ if ψ(ω, t)(τ) = Y

⊤ if ψ(ω, t)(τ) = M

ω ̸|=t+1 τ if ψ(ω, t)(τ) = N

 .

If the schedule constraints assign Y to τ at time t, the evaluation model must
satisfy that task at time t+1. If the decision is N, it must not satisfy that task,
while for M, both outcomes are permitted.

Last, we define the bandwidth constraints imposed by the communication
between sensors and the monitor. These constraints are formalized as a pred-
icate B : (W × Time) → B, which determines whether the inputs received by
the monitor at time t conform to the bandwidth limitations. In this paper, we
consider a simple constraint model InputEventBoundb that limits the number of
input streams that can receive a value at the same time to a fixed threshold b:

InputEventBoundb(ω, t) = |
{
i ∈ ID↑

∣∣ ω(i)(t) ̸= ⊥
}
| ≤ b.

Other constraints could account for the varying bit widths of individual input
types or enforce protocols that require specific combinations of inputs.

8 Baumeister et al.

3.2 Static Scheduling Constraints

This section introduces three static schedule constraints – deadlines, priorities,
and their combination – and presents a translation deriving their dynamic coun-
terpart. Static schedule constraints contain conditions Cond, which can be eval-
uated to a boolean under a given evaluation state ⇓ωt : Cond → B, to constrain a
task differently at runtime. In the following paragraphs, we describe these static
schedules individually.

Deadline The first static schedule constraints describe deadlines. The con-
straints assign upper bounds to tasks, which indicate that a task should not be
evaluated later than its deadline. It is defined as

Deadline : Tasks → P (Cond× R)

and assigns each task to a set of pairs, each consisting of conditions and a
corresponding deadline. Given such a static schedule constraint ξ ∈ Deadline,
we derive a dynamic schedule ψ ∈ S as follows:

ψ(ω, t)(τ) =


Y if ∃(c, dl) ∈ ξ(τ) ∧ ∃t′ < t.c ⇓ωt′ ⊤

∧ ∀t′′ ∈ (t′, t].ω ̸|=t′′ τ
∧ ω(t+ 2) > ω(t′) + dl

M otherwise

Intuitively, assuming tasks represent individual streams, a stream must be eval-
uated at time t+ 1 (i.e., ψ(ω, t)(τ) = Y) if there exists a condition in the static
schedule that was satisfied at an earlier time t′ and no new value has been pro-
duced for that stream since. Then, t + 1 is the last chance to produce a value
for that stream before violating its deadline. Otherwise, the scheduling decision
defaults to M, allowing the stream’s evaluation to be postponed.

Priority Wemay want to fully utilize the available bandwidth without manually
assigning explicit deadlines. To support this use case, we introduce the priority-
based static schedule constraint. In this case, each task is assigned a priority
depending on conditions, dynamically determining its importance:

Priority : Tasks → P (Cond× N) .

At each time step, the scheduler must select the streams with the highest priority.
Given a static schedule constraint ξ ∈ Priority, we determine the current priority
of a task with Prioξ:

Prioξ : Tasks×W× Time → (Cond× N)⊥

Prioξ(τ, ω, t) =

argmax
(c,p)∈S

(max{t′ | t′ ≤ t ∧ c ⇓ωt′ ⊤}) if (c, p) exists

⊥ otherwise

Active Monitoring with RTLola 9

Prioξ returns the most recent priority assignment of a task (if any) whose con-
dition evaluates to true in ω at some time point t′ ≤ t. Using this function, we
translate a static schedule ξ ∈ Priority into a dynamic schedule ψ ∈ S with

ψ(ω, t)(τ) =



Y if (c1, p1) = Prioξ(τ, ω, t)

∧ ∃τ ′.(c2, p2) = Prioξ(τ
′, ω, t)

∧ ω |=t+1 τ
′ ∧ p1 > p2

∧ ¬∃τ ′′ ⪰ τ.ω |=t+1 τ
′′

M otherwise

With this definition, a task must be selected if another, lower-priority task is
selected for evaluation at the next step. This restriction, however, does not hold
if the task is part of a larger, high-priority task, indicated by the dependency
relation.

Deadline and Priority The priority schedule allows specifying the relative im-
portance of tasks without explicitly reasoning about individual deadlines. How-
ever, this can lead to starvation: a lower-priority task may never be evaluated
if higher-priority tasks continuously occupy all available bandwidth. To address
this issue, we propose a combined schedule that merges priorities with deadlines.
By default, the schedule behaves like the priority schedule. However, each τ is
assigned a deadline dlτ , which defines the maximum duration it may remain
unevaluated before it is considered overdue:

overdue : Tasks×W× Time → B
overdue(τ, ω, t) = ∃τ ′ ⊆ τ.

ω(t)− ω(max{t′ ∈ Time | t′ < t ∧ ω |=t′ τ ′}) > dlτ

An overdue stream should be evaluated, regardless of the assigned priority. We
translate a static schedule constraint ξ ∈ Priority into a dynamic schedule con-
straint ψ ∈ S with:

ψ(ω, t)(τ) =



Y if ∃τ ′.overdue(τ, ω, t+ 1) ∧ ¬overdue(τ ′, ω, t+ 1)

∧ ω |=t+1 τ
′

Y if (, p1) = Prios(τ, ω, t)

∧ ∃τ ′.(, p2) = Prios(τ
′, ω, t)

∧ ω |=t+1 τ
′ ∧ p1 > p2 ∧ ¬overdue(τ ′, ω, t+ 1)

∧ ¬∃τ ′′ ⪰ τ.ω |=t+1 τ
′′

M otherwise

This definition assigns overdue tasks an even higher priority, but in general, it
follows the previous definition.

10 Baumeister et al.

3.3 Valid Scheduler

A scheduler is a program that, given schedule and bandwidth constraints, decides
at each time point which set of tasks to evaluate. If all selections respect the
constraints, the scheduler is considered valid:

Definition 3 (Valid Scheduler). Given a static schedule constraint ξ over
a set of Tasks, a specification φ and a bandwidth bound B, a scheduler SAξ,B :
W×Time → P (Tasks) that decides at each timepoint which streams are evaluated
at the next time step, is valid if

1. ∀ω ∈ J(φ, ξ,B)K.∀t ∈ Time.∀T ⊆ Tasks.∀i ∈ InputValues.

prefixSAξ,B
(ω, t) ∧ SAξ,B(ω, t) = T ∧ i |= T

→ ∃ω′ ∈ J(φ, ξ,B)K.validTasks(ω′, t+ 1, T) ∧ ω′[..t] = ω[..t] ∧ ω′[t+ 1] = i.

2. ∀ω ∈ J(φ, ξ,B)K.∀t ∈ Time.∃t′ > t.|SAψ,B(ω, t′)| ≥ 1

with

validTasks : W× Time× P (Tasks) → B
validTasks(ω, t, T) = ∀τ ∈ T .ω |=t τ ∧ ∀τ /∈ T .ω ̸|=t τ

∧ ∀τ1, τ2 ∈ Tasks.τ1 ⪯ τ2 ∧ τ2 ∈ T → τ1 ∈ T
prefixSAξ,B

: W× Time → B

prefixSAξ,B
(ω, t) = ∀t′ < t.validTasks(ω, t′ + 1,SAξ,B(ω, t

′))

A scheduler is considered valid if it satisfies two properties: 1. The scheduler
must never get stuck. That is, for every point in time and any possible choice
of input values consistent with the selected tasks, the evaluation model must be
able to continue as a correctly scheduled evaluation model. 2. The scheduler may
not indefinitely select empty tasks. These conditions ensure that the scheduler
defines a sound evaluation strategy.

4 Active Scheduling in RTLola

This section demonstrates how our scheduling approach is integrated with the
stream-based monitoring language RTLola. The overall architecture is illustrated
in Figure 1. First, we allow users to augment RTLola specifications with schedul-
ing annotations, as shown on the left side of the figure. These annotations assign
deadlines or priorities to individual streams or clauses, and are detailed in Sec-
tion 4.1. A translator then processes the annotated specification and produces
a transformed RTLola specification. During this step, the translator interprets
the scheduling annotations and adds helper streams that encode the scheduling
constraints. We describe the translation process in Section 4.2 in more detail.
The resulting specification is compatible with existing RTLola implementations,
while a separate scheduling component interfaces between the backend and the
sensors to issue sensor queries at runtime. We further explain this scheduler
interface in Section 4.3.

Active Monitoring with RTLola 11

#

#

Translator

Monitor

Sensors

Scheduler

Fig. 1: Overview of the scheduling process.

4.1 Annotations

For the configuration of the scheduler, we embed the scheduling-related informa-
tion as annotations directly within the specification. These annotations attach
constraints to streams – either directly on input streams or on the eval-clause
of output streams. Each annotation defines either a priority or a deadline – fol-
lowing the idea from Section 3.2. We represent the annotations as a mapping
a ∈ ID → P (Cond× V). The conditions are a combination of the pacing of the
stream and an expression derived from the when-conditions of the annotated eval
clause. However, since when-conditions are evaluated top-to-bottom, the effec-
tive condition for each clause includes not only its own when-condition but also
the negation of all preceding ones. This ensures that conditions are mutually
exclusive, reflecting the semantics of sequential when evaluation. Depending on
the kind of static schedule used for scheduling, the value V is either a deadline
∈ R or a priority ∈ N. For deadline-priority scheduling, annotations consist of
priorities, while deadlines of individual tasks are configured globally.

Example 3. The specification in Figure 2 monitors two conditions: 1. whether
the current latitude and longitude violate a geofence, and 2. whether the cur-
rent altitude exceeds an upper bound. The annotations result in the following
representation:

s(bound_violation) = {(@lat&&lon, distance_to_bound < 12.0), 10),

(@lat&&lon, distance_to_bound >= 12.0), 1)},
s(altitude_violation) = {(@alt, true), 5)}

The specification assigns the output bound_violation a high priority, numer-
ically represented as 10, if the distance to the bound is smaller than 12. If it
is further away from the bound, the bound check is assigned a low priority, a
1. The altitude check is assigned a constant medium priority, represented as a
5. As a result, when the system is far away from a geofence boundary, the alti-
tude has a higher priority and is therefore checked more frequently. Conversely,
as the system approaches a potential geofence violation, geofence monitoring is
prioritized.

12 Baumeister et al.

1 input lat, lon, alt : Float64

2 output distance_to_bound

3 eval @lat&&lon

4 with min(lat - 3, UPPER_LAT - 8, lon - 5, UPPER_LON - 10)

5 output bound_violation

6 #[priority="high"]

7 eval @lat&&lon when distance_to_bound < 12.0

8 with distance_to_bound < 0.0

9 #[priority="low"]

10 eval @lat&&lon when distance_to_bound >= 12.0

11 with false

12 output altitude_violation

13 #[priority="medium"]

14 eval @alt with altitude > 50.0

Fig. 2: Example of scheduling annotations in RTLola.

4.2 Translation

A translator converts the annotated specification into a standard RTLola speci-
fication that any existing implementation can process. This translation aims to
ensure that the resulting monitor satisfies the specified scheduling constraints by
guiding the scheduling component to supply the necessary inputs at appropriate
times. For this, it adds additional output streams to the resulting specification,
which are in turn read by the scheduling component.

1 #[priority="high"]

2 input a : UInt64

3 #[priority="medium"]

4 input b : UInt64

5 output c

6 #[priority="low"]

7 eval @a when true with a + 1

Fig. 3: Example specification.

At first glance, one expects the
scheduling annotations to correspond
directly to the static schedule. How-
ever, setting Tasks = ID leads to an is-
sue, as illustrated in Figure 3. Assume
the scheduler is restricted to providing
a new value to only one input stream
at a time. In this scenario, there is
no valid schedule that updates any in-
puts. If stream a receives a new value
due to its high priority, stream c is also evaluated, triggered by its pacing. Yet, a
stream with higher priority, namely b, is not evaluated, contradicting the schedul-
ing semantics.

The root of the issue is, that while output streams can be annotated with
scheduling constraints, in practice, the evaluation of output streams is controlled
by the underlying monitor and determined by its pacing type – the scheduler
can only decide when to emit new input values to the monitor – and not prevent
the evaluation of outputs. Consequently, the scheduler must supply inputs at
a frequency that respects the scheduling annotations of all outputs streams, by
satisfying their pacing at the right times. To support this idea, we restrict tasks to
sets of input streams, i.e., Tasks = P

(
ID↑

)
, and propagate all annotations from

Active Monitoring with RTLola 13

output streams to the corresponding sets of inputs necessary for their evaluation.

Definition 4 (RTLola Tasks). Given an RTLola specification φ containing
input streams ID↑, we define the task set Tasks = P

(
ID↑

)
with

ω |=t τ iff ∀i ∈ τ.ω(i)(t) ̸= ⊥
τ1 ⪯ τ2 iff τ1 ⊆ τ2

i |= T iff ∀s ∈ ID↑.i(s) ̸= ⊥ ⇔ {i} ∈ T .

Given annotations a : ID → P (Cond× V), we construct the static schedule
ξa as the following, where pac(s) returns the pacing of stream s ∈ ID:

ξa : P
(
ID↑

)
→ P (Cond× V)

ξa(τ) =
{
(c, v) | v = max

{
v′ | ∃s ∈ ID.pac(s) ⊆ τ ∧ (c′, v′) ∈ a(s) ∧ c′ ⇒ c

}}
In other words, for each task – i.e., set of input streams – the schedule includes
all constraint-condition pairs (c, v) such that v is the maximal value out of all
annotations of streams whose pacing is implied by τ , and whose conditions imply
c. The maximal value is chosen according to the domain V: it represents the most
restrictive constraint, e.g., the highest priority, or the shortest deadline.

Through pacing types in RTLola, the task dependency relation is not suffi-
cient to determine if a task set is valid. Consider the following example where
we have two input streams, i and i′, and a task set containing the tasks i and i′.
When both input streams are updated, the pacing consisting of their combina-
tion also activates because of the RTLola semantics. Therefore, we need to ensure
that the task containing the combination is also part of the task set. We there-
fore have to strengthen the notion of valid task sets introduced in Definition 3
with the additional constraint

∀τ1, τ2 ∈ Tasks.τ1, τ2 ∈ T → τ1 ∪ τ2 ∈ T .

To represent this static schedule as additional RTLola streams, we construct
a single stream for each task, i.e., each pacing type. We utilize different clauses
guarded by the corresponding condition to dynamically assign the schedule value
of a task based on the current state. The clauses are ordered by their schedule
value in ascending order, so that more restrictive schedules are considered first.
Further, for each task, separate output streams are added, which note the time
of the task’s last evaluation, and if needed, additional streams to indicate if a
task is overdue. For the specification in Figure 2, the translation process would
add the following output streams to the specification:

1 output schedule_lat_lon

2 eval @lat&&lon when distance_to_bound < 10.0 with 10

3 eval @lat&&lon when distance_to_bound >= 10.0 with 1

4 output last_lat_lon eval @lat&&lon with now

5 output schedule_alt eval @alt with 5

6 output last_alt eval @alt with now

14 Baumeister et al.

4.3 Scheduler

While all previous steps occur before the monitor is executed, the scheduler is
the runtime component responsible for querying new inputs and passing them to
the underlying monitor. In each cycle, the scheduler queries sensors and forwards
the obtained values to the monitor, triggering a new evaluation step. As usual,
the monitor computes new output stream values, including the schedule streams
that guide the scheduling decisions. The scheduler uses these newly computed
values to decide which inputs to query in the next cycle.

The strategy the scheduler uses to populate the available bandwidth depends
on the type of scheduling constraints. For all strategies, the bandwidth is spec-
ified as the number of input values per event b and the number of events per
second fe. At runtime, the scheduler emits events to the monitor at the speci-
fied frequency and populates each event with the predefined number of inputs
according to the scheduling strategy.

For deadline scheduling, the scheduler DSξ,B employs an earliest-deadline-
first strategy [19]. In this mode, each task is associated with a deadline repre-
senting the maximum allowable timestamp of the next update. The scheduler
tracks the current time and selects the task with the most urgent deadlines
first until the bandwidth is fully utilized. In contrast, for priority scheduling,
the scheduler PSξ,B fills the event with tasks, selected in decreasing order of
priority. It is the same for the deadline-priority scheduler DPSξ,B , only that
overdue tasks are assigned to a new, highest priority. If multiple streams share
the same priority level, the scheduler resolves this by choosing the stream that
was updated the longest time ago. The formal definition of these schedulers can
be found in Appendix B. With some restrictions, these schedulers satisfy the
validity conditions in Definition 3:

Theorem 1 (Valid RTLola Schedulers). Given a well-defined specification
φ, an annotation a ∈ ID → P (Cond× V), and a bound B = InputEventBoundb:

– The schedulers PSSa,B and DPSSa,B are valid if b ≥ maxτ∈Tasks |τ |,
– The scheduler DSξa,B is valid if ∀τ ∈ Tasks.∀(c, dl) ∈ ξ(τ).dl > n and
b ≥ maxτ∈Tasks |τ |, with:

n = min
{
n′

∣∣ ∀T ∈ Permutations |Tasks|(Tasks).splitsB(T , ε) = n′
}

Permutations |Tasks|(Tasks) =
{
τ1τ2 . . . ∈ Tasks|Tasks|

∣∣∣ ∀i, j.i = j ∨ τi ̸= τj

}
splitsB(ε, cur) = 1

splitsB(τ1 ◦ T , cur) =

{
1 + splitsB(τ1 ◦ T , ε) if |cur ∪ τ1| > b

splitsB(T , cur ∪ τ1) otherwise

Generally, the bandwidth bound b needs to be large enough to accommodate each
task individually. For the priority and deadline-priority schedulers, in each step,
the tasks can be selected purely on the current priority assignments, and there

Active Monitoring with RTLola 15

are no constraints from previous evaluations. The schedule selects the highest
priority tasks. Our construction can trigger tasks with a potentially lower pri-
ority; however, the dependency relation, together with the construction through
the scheduling annotations, ensures that these priorities do not conflict with the
semantics. For the deadline scheduler, we need to account for constraints from
previous cycles. There, the bound ensures that previously imposed deadlines
can’t conflict with newly added ones. Detailed proof sketches for the validity of
each scheduler can be found in Appendix B.

5 Implementation & Evaluation

We have implemented our approach1 from Section 4 on top of the RTLola mon-
itoring framework [6]. For the evaluation, we use the AirSim simulator, a simu-
lation environment for drones and cars developed by Microsoft. AirSim exposes
various sensors through an API, including GPS coordinates, altitude readings,
camera images, and LIDAR data.

For our evaluation, we investigate the following setting with the deadline-
priority constraints. A drone is tasked to collect barometer data during flight
for an experiment in a restricted airspace. It relies on four sensors, which must
share the limited available bandwidth of the drone: the GPS and altitude sensor
for enforcing their respective bounds, and two barometers, whose data collection
for the experiment is the primary target of the flight. We use stream annotations
as presented in Section 4.1 to represent different priorities for the tasks in the
specification. The closer the drone comes to the geofence border, threatening a
violation, the higher the assigned priority of the geofence task becomes. Likewise,
the closer the drone comes to an altitude violation, the higher the assigned
priority. The barometers, which serve the experiment, are assigned a constant
medium priority. As a result, they receive most of the bandwidth if there is
no immediate danger of a boundary violation. We employ overdue deadlines
to ensure the geofence bounds are checked at least every 3 seconds to prevent
violations from being missed because of higher priority tasks. The annotated
specification can be found in Figure 4.

In our experiments, we compare the behavior of our scheduled monitoring
approach against a set of baseline monitors that query all inputs at fixed fre-
quencies. Each baseline monitor queries all sensors at the same frequency, but we
vary this frequency across baselines to explore the trade-off between bandwidth
and responsiveness. To ensure a fair comparison, all monitors observe the same
drone flight in parallel.

The goal of the evaluation is to assess the effectiveness of actively scheduling
the inputs in runtime monitoring under bandwidth constraints. Specifically, we
aim to answer the following questions: 1. Can we reduce the overall bandwidth
consumption while maintaining a comparable level of monitoring quality? 2. Can

1 The artifacts can be found on https://github.com/reactive-systems/

rtlola-active-monitoring.

https://github.com/reactive-systems/rtlola-active-monitoring
https://github.com/reactive-systems/rtlola-active-monitoring

16 Baumeister et al.

1 #![frequency="2Hz",bound="2"]

2 import math

3 #[deadline="3s"]

4 input gps_lat_long : (Float64, Float64)

5 #[deadline="3s"]

6 input gps_altitude : Float64

7 #[priority="medium",deadline="3s"]

8 input barometer_pressure : Float64

9 #[priority="medium",deadline="3s"]

10 input barometer_altitude : Float64

11 output lat := gps_lat_long.0

12 output long := gps_lat_long.1

13 output start_lat @gps_lat_long :=

start_lat.offset(by:-1).defaults(to: lat)

14 output start_long @gps_lat_long :=

start_long.offset(by:-1).defaults(to: long)

15 output start_altitude @gps_altitude :=

start_altitude.offset(by:-1).defaults(to: gps_altitude)

16 output distance_to_start := sqrt((lat-start_lat)*(lat-start_lat)

17 + (long-start_long)*(long-start_long))*10000.0

18 output altitude_above_ground := gps_altitude - start_altitude

19 output geofence := distance_to_start ≥ 8.0

20 output scheduled_geofence

21 #[priority="low"]

22 eval @gps_lat_long when distance_to_start ≤ 4.0

23 with geofence

24 #[priority="medium"]

25 eval @gps_lat_long when distance_to_start ≤ 6.0

26 with geofence

27 #[priority="high"]

28 eval @gps_lat_long with geofence

29 trigger scheduled_geofence "outside geofence"

30 output altitude_bound := altitude_above_ground ≥ 10.0

31 output scheduled_altitude_bound

32 #[priority="low"]

33 eval @gps_altitude when altitude_above_ground ≤ 5.0

34 with altitude_bound

35 #[priority="medium"]

36 eval @gps_altitude when altitude_above_ground ≤ 7.5

37 with altitude_bound

38 #[priority="high"]

39 eval @gps_altitude with altitude_bound

40 trigger scheduled_altitude_bound "altitude too high"

Fig. 4: Evaluation Specification

Active Monitoring with RTLola 17

0 1 2 3 4
Values / s

2 Hz

1 Hz

1/2 Hz

1/3 Hz

Sched.

GPS
Altitude
Barometer 1
Barometer 2

(a) Bandwidth consumption of each sensor.

0.0 0.5 1.0 1.5 2.0
Delay [s]

2 Hz

1 Hz

1/2 Hz

1/3 Hz

Sched.

(b) Delay until trigger is detected.

Fig. 5: Comparison between the scheduled monitor and four fixed-frequency ones.

we detect specification violations earlier by allocating the bandwidth more in-
telligently – focusing on data that is more likely to reveal a violation?

We evaluate the performance of our scheduling approach over 10 flights with
the simulator by analyzing two metrics obtained from the evaluation. Figure 5a
shows the average number of values that occupy the bandwidth for each sen-
sor. For each monitor, we group the sensors into two categories, represented
by the horizontal bars: The blue bar captures the bandwidth used for geofence
and altitude checks, while the red bar shows the bandwidth used for collecting
barometer data for the experiment. In the fixed-frequency monitors, bandwidth
is distributed evenly across all sensors. In contrast, the scheduled monitor dy-
namically adjusts the frequency of sensor queries based on the current state of
the system, resulting in an uneven allocation of bandwidth. As shown in the fig-
ure, the scheduled monitor allocates more bandwidth to the barometer sensors,
aligning with the experiment’s objective of maximizing barometer data collec-
tion. Meanwhile, the sensors responsible for enforcing the geofence and altitude
boundaries are queried less frequently. In contrast, Figure 5 presents a boxplot
of the delay in detecting violations. Delays are measured relative to the earliest
point in time any monitor detects the same violation.

To answer the first question, the results show that our scheduled monitor
detects violations as early as the fastest fixed-frequency monitor operating at
2 Hz. Notably, it achieves this while consuming half the bandwidth, as evident
from the comparison in the previous figure.

To answer the second question, we compare the scheduled monitor against
a fixed-frequency monitor with equal bandwidth usage. The scheduled moni-
tor consumes four values per second – equivalent to the bandwidth of a 1 Hz
fixed-frequency monitor. Despite this, the scheduled monitor detects violations
significantly earlier than the 1 Hz monitor, because in critical situations, the
scheduled monitor focuses on the more critical inputs. This demonstrates that
our approach makes more effective use of the available bandwidth through our
scheduling approach.

18 Baumeister et al.

6 Conclusion

We addressed the challenge of runtime monitoring in bandwidth-constrained en-
vironments by presenting an approach to dynamically allocating the available
bandwidth to different sensors depending on the monitor’s current state. This
approach enables the monitor to prioritize inputs and allocate bandwidth to
data most likely to reveal specification violations. To facilitate this, we define
a formal semantics for scheduled monitors and introduce several static sched-
ules. Scheduling annotations, embedded directly within the specification, offer
an intuitive and flexible mechanism to express constraints guiding the scheduler.
A scheduler interfacing between the monitor and the sensors is responsible for
querying sensors at the appropriate times and passing the values to the underly-
ing monitor. We evaluated our approach using simulations in the AirSim drone
simulator. The results demonstrate the effectiveness of scheduled monitoring in
detecting violations early on, while consuming significantly less bandwidth com-
pared to a monitor receiving all inputs at a fixed frequency.

For future work, we want to evaluate our approach in a real-world setting to
assess the overhead introduced by querying sensors with the active role of the
monitor. Furthermore, many real-world settings involve sensors producing mul-
tiple values, leading to more complex task dependencies. We want to investigate
how our approach can be extended to handle such cases.

Acknowledgments. This work was partially supported by the German Re-
search Foundation (DFG) as part of TRR 248 (No. 389792660) and by the Eu-
ropean Research Council (ERC) Grant HYPER (No. 101055412).

References

1. Afshar, S., Behnam, M., Bril, R.J., Nolte, T.: Resource sharing under global
scheduling with partial processor bandwidth. In: 10th IEEE International Sym-
posium on Industrial Embedded Systems, SIES 2015, Siegen, Germany, June 8-10,
2015. pp. 195–206. IEEE (2015). https://doi.org/10.1109/SIES.2015.7185061

2. Agrawal, A.: Hardware Contention-Aware Real-Time Scheduling on Multi-Core
Platforms in Safety-Critical Systems. Ph.D. thesis, Kaiserslautern University
of Technology, Germany (2019), https://kluedo.ub.rptu.de/frontdoor/index/
index/docId/5612

3. Baumeister, J., Correnson, A., Finkbeiner, B., Scheerer, F.: An intermediate
program representation for optimizing stream-based languages. In: Piskac, R.,
Rakamarić, Z. (eds.) Computer Aided Verification. pp. 393–407. Springer Nature
Switzerland, Cham (2025). https://doi.org/10.1007/978-3-031-98682-6_20

4. Baumeister, J., Dauer, J.C., Finkbeiner, B., Schirmer, S.: Monitoring with verified
guarantees. Int. J. Softw. Tools Technol. Transf. 25(4), 593–616 (2023). https:
//doi.org/10.1007/S10009-023-00712-3

5. Baumeister, J., Finkbeiner, B., Kohn, F., Löhr, F., Manfredi, G., Schirmer, S.,
Torens, C.: Monitoring unmanned aircraft: Specification, integration, and lessons-
learned. In: Gurfinkel, A., Ganesh, V. (eds.) Computer Aided Verification - 36th

https://doi.org/10.1109/SIES.2015.7185061
https://doi.org/10.1109/SIES.2015.7185061
https://kluedo.ub.rptu.de/frontdoor/index/index/docId/5612
https://kluedo.ub.rptu.de/frontdoor/index/index/docId/5612
https://doi.org/10.1007/978-3-031-98682-6_20
https://doi.org/10.1007/978-3-031-98682-6_20
https://doi.org/10.1007/S10009-023-00712-3
https://doi.org/10.1007/S10009-023-00712-3
https://doi.org/10.1007/S10009-023-00712-3
https://doi.org/10.1007/S10009-023-00712-3

Active Monitoring with RTLola 19

International Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 14682, pp. 207–218.
Springer (2024). https://doi.org/10.1007/978-3-031-65630-9_10

6. Baumeister, J., Finkbeiner, B., Kohn, F., Scheerer, F.: A tutorial on stream-
based monitoring. In: International Symposium on Formal Methods. pp. 624–648.
Springer (2024)

7. Baumeister, J., Finkbeiner, B., Scheerer, F., Siber, J., Wagenpfeil, T.: Stream-
Based Monitoring of Algorithmic Fairness. In: Gurfinkel, A., Heule, M. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems. pp.
60–81. Springer Nature Switzerland, Cham (2025). https://doi.org/10.1007/

978-3-031-90643-5_4

8. Baumeister, J., Finkbeiner, B., Schirmer, S., Schwenger, M., Torens, C.: Rtlola
cleared for take-off: Monitoring autonomous aircraft. In: Lahiri, S.K., Wang, C.
(eds.) Computer Aided Verification - 32nd International Conference, CAV 2020,
Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 12225, pp. 28–39. Springer (2020). https://doi.org/10.
1007/978-3-030-53291-8_3

9. Baumeister, J., Finkbeiner, B., Schwenger, M., Torfah, H.: FPGA stream-
monitoring of real-time properties. ACM Trans. Embed. Comput. Syst. 18(5s),
88:1–88:24 (2019). https://doi.org/10.1145/3358220

10. Bonakdarpour, B., Navabpour, S., Fischmeister, S.: Sampling-based runtime ver-
ification. In: Butler, M.J., Schulte, W. (eds.) FM 2011: Formal Methods - 17th
International Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6664, pp. 88–102. Springer
(2011). https://doi.org/10.1007/978-3-642-21437-0_9

11. Buttazzo, G.: Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. Real-Time Systems Series, Springer US (2011)

12. d’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: Lola: runtime monitoring of synchronous
systems. In: 12th International Symposium on Temporal Representation and Rea-
soning (TIME’05). pp. 166–174. IEEE (2005)

13. Eremeev, A.V., Malakhov, A.A., Sakhno, M.A., Sosnovskaya, M.Y.: Multi-core
processor scheduling with respect to data bus bandwidth. CoRR abs/2010.16058
(2020), https://arxiv.org/abs/2010.16058

14. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Broy,
M., Peled, D.A., Kalus, G. (eds.) Engineering Dependable Software Systems,
NATO Science for Peace and Security Series, D: Information and Communica-
tion Security, vol. 34, pp. 141–175. IOS Press (2013). https://doi.org/10.3233/
978-1-61499-207-3-141

15. Faymonville, P., Finkbeiner, B., Schledjewski, M., Schwenger, M., Stenger, M.,
Tentrup, L., Torfah, H.: Streamlab: Stream-based monitoring of cyber-physical
systems. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification - 31st In-
ternational Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 11561, pp. 421–431.
Springer (2019). https://doi.org/10.1007/978-3-030-25540-4_24

16. Gorostiaga, F., Sánchez, C.: Striver: Stream runtime verification for real-time
event-streams. In: International Conference on Runtime Verification. pp. 282–298.
Springer (2018)

17. Hagen, G., Tinelli, C.: Scaling up the formal verification of lustre programs with
smt-based techniques. In: Cimatti, A., Jones, R.B. (eds.) Formal Methods in

https://doi.org/10.1007/978-3-031-65630-9_10
https://doi.org/10.1007/978-3-031-65630-9_10
https://doi.org/10.1007/978-3-031-90643-5_4
https://doi.org/10.1007/978-3-031-90643-5_4
https://doi.org/10.1007/978-3-031-90643-5_4
https://doi.org/10.1007/978-3-031-90643-5_4
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1145/3358220
https://doi.org/10.1145/3358220
https://doi.org/10.1007/978-3-642-21437-0_9
https://doi.org/10.1007/978-3-642-21437-0_9
https://arxiv.org/abs/2010.16058
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-25540-4_24

20 Baumeister et al.

Computer-Aided Design, FMCAD 2008, Portland, Oregon, USA, 17-20 Novem-
ber 2008. pp. 1–9. IEEE (2008). https://doi.org/10.1109/FMCAD.2008.ECP.19

18. Havelund, K., Goldberg, A.: Verify your runs. In: Meyer, B., Woodcock, J. (eds.)
Verified Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Con-
ference, VSTTE 2005, Zurich, Switzerland, October 10-13, 2005, Revised Selected
Papers and Discussions. Lecture Notes in Computer Science, vol. 4171, pp. 374–
383. Springer (2005). https://doi.org/10.1007/978-3-540-69149-5_40

19. Horn, W.: Some simple scheduling algorithms. Naval Research Logistics Quarterly
21(1), 177–185 (1974)

20. Huang, X., Seyster, J., Callanan, S., Dixit, K., Grosu, R., Smolka, S.A.,
Stoller, S.D., Zadok, E.: Software monitoring with controllable overhead. Int. J.
Softw. Tools Technol. Transf. 14(3), 327–347 (2012). https://doi.org/10.1007/
S10009-010-0184-4

21. Kallwies, H., Leucker, M., Schmitz, M., Schulz, A., Thoma, D., Weiss, A.: Tessla–
an ecosystem for runtime verification. In: International Conference on Runtime
Verification. pp. 314–324. Springer (2022)

22. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Al-
gebraic Methods Program. 78(5), 293–303 (2009). https://doi.org/10.1016/J.
JLAP.2008.08.004

23. Navabpour, S., Bonakdarpour, B., Fischmeister, S.: Path-aware time-triggered run-
time verification. In: Qadeer, S., Tasiran, S. (eds.) Runtime Verification, Third
International Conference, RV 2012, Istanbul, Turkey, September 25-28, 2012, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 7687, pp. 199–213.
Springer (2012). https://doi.org/10.1007/978-3-642-35632-2_21

24. Perez, I., Goodloe, A.E., Dedden, F.: Runtime verification in real-time with the
copilot language: A tutorial. In: Platzer, A., Rozier, K.Y., Pradella, M., Rossi,
M. (eds.) Formal Methods - 26th International Symposium, FM 2024, Milan,
Italy, September 9-13, 2024, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 14934, pp. 469–491. Springer (2024). https://doi.org/10.1007/

978-3-031-71177-0_27

25. Rozier, K.Y., Schumann, J.: R2U2: tool overview. In: Reger, G., Havelund, K. (eds.)
RV-CuBES 2017. An International Workshop on Competitions, Usability, Bench-
marks, Evaluation, and Standardisation for Runtime Verification Tools, September
15, 2017, Seattle, WA, USA. Kalpa Publications in Computing, vol. 3, pp. 138–156.
EasyChair (2017). https://doi.org/10.29007/5PCH

26. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: Khurshid, S., Sen,
K. (eds.) Runtime Verification - Second International Conference, RV 2011, San
Francisco, CA, USA, September 27-30, 2011, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 7186, pp. 193–207. Springer (2011). https:

//doi.org/10.1007/978-3-642-29860-8_15

27. Xu, D., Wu, C., Yew, P.: On mitigating memory bandwidth contention through
bandwidth-aware scheduling. In: Salapura, V., Gschwind, M., Knoop, J. (eds.) 19th
International Conference on Parallel Architectures and Compilation Techniques,
PACT 2010, Vienna, Austria, September 11-15, 2010. pp. 237–248. ACM (2010).
https://doi.org/10.1145/1854273.1854306

https://doi.org/10.1109/FMCAD.2008.ECP.19
https://doi.org/10.1109/FMCAD.2008.ECP.19
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/S10009-010-0184-4
https://doi.org/10.1007/S10009-010-0184-4
https://doi.org/10.1007/S10009-010-0184-4
https://doi.org/10.1007/S10009-010-0184-4
https://doi.org/10.1016/J.JLAP.2008.08.004
https://doi.org/10.1016/J.JLAP.2008.08.004
https://doi.org/10.1016/J.JLAP.2008.08.004
https://doi.org/10.1016/J.JLAP.2008.08.004
https://doi.org/10.1007/978-3-642-35632-2_21
https://doi.org/10.1007/978-3-642-35632-2_21
https://doi.org/10.1007/978-3-031-71177-0_27
https://doi.org/10.1007/978-3-031-71177-0_27
https://doi.org/10.1007/978-3-031-71177-0_27
https://doi.org/10.1007/978-3-031-71177-0_27
https://doi.org/10.29007/5PCH
https://doi.org/10.29007/5PCH
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1145/1854273.1854306
https://doi.org/10.1145/1854273.1854306

Active Monitoring with RTLola 21

A Semantics

Definition 5 (Evaluation Model).

Stream : Time → V⊥

StreamMap : ID → Stream

TimeMap : Time → R
W : StreamMap× TimeMap

The evaluation model includes a mapping StreamMap that assigns each input and
output stream reference to a stream – a sequence of values indexed by discrete
time steps. At any time t ∈ Time, a stream may either contain a value or
⊥, indicating that the stream does not contain a value at that time (e.g., due
to pacing or a filter condition not being satisfied). The TimeMap assigns each
discrete time step a real-valued timestamp.

For convenience, we use the following shorthand notation for ω = (streams, times):

– ω(t) := times(t) gives the real-time timestamp at step t ∈ Time, and
– ω(sid)(t) := streams(sid)(t) gives the value of stream sid ∈ ID at time
t ∈ Time.

B RTLola Schedulers

A Scheduler is formally defines as:

Definition 6 (Scheduler). Given τi, τj ∈ Tasks, we define total orders

τi ≤DL τj ⇔ le(τi) + v(τi) ≤ le(τj) + v(τj)

τi ≤P τj ⇔

{
v(τi) ≤ v(τj) if v(τi) ̸= v(τj)

le(τi) ≤ le(τj) otherwise

τi ≤DP τj ⇔


od(τi) ∧ ¬od(τj) if od(τi) ̸= od(τj)

v(τi) ≤ v(τj)
if od(τi) = od(τj)

∧ v(τi) ̸= v(τj)

le(τi) ≤ le(τj) otherwise

where v(τ), le(τ), and od(τ) are shorthand notations for stream-accesses to the
helper streams holding the schedule value, the time of last evaluation and their
overdue status respetively.

Given a schedule ξ, a bound B, and a total order ≤, we define

PSξ,B,≤ = takeEventB(sort≤(Tasks))

with

takeEventB(T , cur) =

{
takeEventB(tail, cur ∪ task1) if T τ1 ◦ tail ∧ |cur ∪ τ1| < B

{τ ∈ Tasks | τ ⊆ cur} otherwise

22 Baumeister et al.

The schedulers are then defined as DSξ,B = PSξ,B,≤DL
, PSξ,B = PSξ,B,≤P

, and
DPSξ,B = PSξ,B,≤DP

.

Then, we can first proof that these schedulers only produce valid task sets:

Theorem 2 (Valid RTLola Task Sets). Given a well-defined specification φ,
an annotation mapping a, and a bound b ≥ maxτ∈Tasks |τ | with B = InputEventBoundb,
the schedulers DSξa,B, PSξa,B, and DPSξa,B produce at every time point valid
task sets.

Proof. The proof follows directly from the construction of the task sets from the
takeUntil definition and the relations ≤DL, ≤P , and ≤DP .

To proof Theorem 1, we proof that each scheduler individually is valid, but
first we introduce two side lemmas:

Lemma 1. Given a well-defined specification φ, an evaluation model ω ∈ JφK,
an annotation mapping a, and a bound B = InputEventBoundb with b ≥ maxτ∈Tasks |τ |,
and ∀τ ∈ Tasks.∀(c, dl) ∈ ξa(τ).dl > n where

n = max
{
n′

∣∣ ∀τ1τ2 . . . ∈ Permutations |Tasks|(Tasks).splitsB(τ1τ2 . . . , ε) = n′
}

. Then for every time t ∈ Time:

(∀t′ < t.validTasks(ω, t′, DSξa,B(ω, t
′)))

→ split ′(sort≤DL
(Tasks)) = e0 . . . em ∧ ∀τ ∈ ej .relativeDlξa(τ, ω, t) ≥ j

, with relativeDl returns the relative timepoint when the least deadline of this
task is due and split ′:

splits′B(ε, cur) =

{
{τ ∈ Tasks | τ ⊆ cur} ◦ ϵ if cur ̸= ∅
ϵ otherwise

splits′B(τ0 ◦ T , cur) =

{
{τ ∈ tail | τ ⊆ cur} ◦ splits′B(τ0 ◦ tail , ε) if |cur ∪ τ0| > b

splits′B(tail , cur ∪ τ0) otherwise

Proof. We proof this lemma by induction over t:

t=0 Since ∀τ ∈ Tasks.∀(c, dl) ∈ ξa(τ).dl > n, we know from the assumption with
the minimal deadlines

∀τ ∈ Tasks.relativeDlξa(τ, ω, t) > n

since τ is either a new task, where the assumption holds or does not have yet a
relative deadline. In addition, by construction of split ′, split ′(sort≤DL

(Tasks))
returns a sequence with a size of at most n. So τ ∈ ej .relativeDlξa(τ, ω, t) >
n ≥ j.

Active Monitoring with RTLola 23

t→ t+ 1 From the induction, we know at time t

split ′(sort≤DL
(Tasks)) = e0 . . . em ∧ ∀τ ∈ ej .relativeDlSa

(τ, ω, t) ≥ j

Since ω follows the earliest deadline first algorithm, the inputs at time t+1
follow e0, so ∀τ ∈ e0.ω |=t+1 τ . If we assume that at t+ 1 no new deadlines
are added, then at time t+ 1:

split ′(sort≤DL
(Tasks)) = e1 . . . eme0

due to the ordering ≤DL and by construction it follows directly:

∀τ ∈ ej .relativeDlξa(τ, ω, t) ≥ j

, since the relative deadline is reduced by one step but so also the position.
If new deadlines are added at time t+ 1, then

∀τ ∈ ej .relativeDlξa(τ, ω, t) ≥ min(n, j) ≥ j

, since either the task τ is assigned with a new deadline then relativeDlξa(τ, ω, t) >
n or the task keeps its old deadline. Then, this relative deadline is
• either smaller than n, then because of the ordering at time t, τ ∈ ei
and relativeDlξa(τ, ω, t) ≥ i and at time t+ a it holds τ ∈ e′i = ei+1, so
relativeDlξa(τ, ω, t) ≥ i.

• greater or equal n, then relativeDlξa(τ, ω, t) > n ≥ i

Lemma 2. Given a well-defined specification φ, a world ω ∈ JφK, an annotation
mapping a, and a bound B = InputEventBoundb with b ≥ maxτ∈Tasks |τ |, and
∀τ ∈ Tasks.∀(c, dl) ∈ ξa(τ).dl > n where

n = max
{
n′

∣∣ ∀τ1τ2 . . . ∈ Permutations |Tasks|(Tasks).splitsB(τ1τ2 . . . , ε) = n′
}

. Then ω ∈ JψξaK if ∀t.validTasks(ω, t,DSξa,B(ω, t′))).

Proof. For this proof, we unroll the definition of ω ∈ JψξaK, so we have to proof:

∀t ∈ Time.∀τ ∈ Tasks.


ω |=t+1 τ if ψξa(ω, t)(τ) = Y

⊤ if ψξa(ω, t)(τ) = M

ω ̸|=t+1 τ if ψξa(ω, t)(τ) = N

.

with

ψSa(ω, t)(τ) =


Y if ∃(c, dl) ∈ ξa(τ) ∧ ∃t′ < t.c ⇓ωt′ ⊤

∧ ∀t′′ ∈ (t′, t].ω ̸|=t′′ τ ∧ ω(t+ 2) > ω(t′) + dl

M otherwise

Given an arbitrary but fix t and τ , then

ψξa(ω, t)(τ) = Y → ω |=t+1 τ

24 Baumeister et al.

ψξa(ω, t)(τ) = Y is by construction equivalent to relativeDlξa(τ, ω, t) = 1 and
from Lemma 1, we know ∀τ ∈ ej .relativeDlξa(τ, ω, t) ≥ j, so the fixed τ ∈ e0
otherwise the relative deadline would not be 1 and by the construction of the
scheduler ∀τ ∈ e0.ω |=t+1 τ

Theorem 3 (Valid Deadline Scheduler). Given a well-defined specification
φ, an annotation mapping a, and a bound B = InputEventBoundb. The scheduler
DSξa,B is valid if ∀τ ∈ Tasks.∀(c, dl) ∈ ξa(τ).dl > n and b ≥ maxτ∈Tasks |τ | with

n = min
{
n′

∣∣ ∀τ1τ2 . . . ∈ Permutations |Tasks|(Tasks).splitsB(τ1τ2 . . . , ε) = n′
}

.

Proof. By definition, we have to proof the following conditions:

1. ∀ω ∈ J(φ,ψξa , B)K.∀t ∈ Time.∀T ⊆ Tasks.∀i ∈ InputValues.

prefixDSξa,B
(ω, t) ∧DSξa,B(ω, t) = T ∧ i |= T

→ ∃ω′ ∈ J(φ, Sa, B)K.validTasks(ω′, t+ 1, T) ∧ ω′[..t] = ω[..t] ∧ ω′[t+ 1] = i.

2. ∀ω ∈ J(φ,ψξa , B)K.∀t ∈ Time.∃t′ > t.|DSξa,B(ω, t′)| ≥ 1

We proof each condition separately:

1. We proof this condition by constructing ω′, with ω′[..t] = ω[..t], ω′[t+1] = i,
and ω′ follows the scheduler DSSa,B . Then we have to proof:
– ω ∈ JφK follows from the well-definedness of φ
– ω ∈ JψξaK follows from Lemma 2
– ∀t ∈ Time.B(ω, t) and validTasks(ω′, t+ 1, T) follows from Theorem 2.

2. This condition follows directly from the scheduler DSξa,B . By taking the
task with the earliest deadlines and the partial order ≤DL over the tasks,
the task list is never empty.

Lemma 3. Given a well-defined specification φ, a world ω ∈ JφK, an annotation
mapping a, and a bound B = InputEventBoundb with b ≥ maxτ∈Tasks |τ |. Then
ω ∈ JψξaK if ∀t.validTasks(ω, t, PSξa,B(ω, t′))).

Proof. By unrolling the defintion of ω ∈ JψξaK, we get:

∀t ∈ Time.∀τ ∈ Tasks.


ω |=t+1 τ if ψξa(ω, t)(τ) = Y

⊤ if ψξa(ω, t)(τ) = M

ω ̸|=t+1 τ if ψξa(ω, t)(τ) = N

.

with

ψ(ω, t)(τ) =


Y if (c1, p1) = Prioξ(τ, ω, t) ∧ ∃τ ′.(c2, p2) = Prioξ(τ

′, ω, t)

∧ ω |=t+1 τ
′ ∧ p1 > p2 ∧ ¬∃τ ′′ ⪰ τ.ω |=t+1 τ

′′

M otherwise

Active Monitoring with RTLola 25

Given an arbitrary but fix t ∈ Time and τ ∈ Tasks then, we have to proof:

ψξa(ω, t)(τ) = Y → t+ 1 |=ω τ

In priority schedules ψξa(ω, t)(τ) = Y is true if there exists a task τ ′ where the
world satisfies this task at the next timestep and this task has a lower priority as
τ and τ ′ is not triggered by a task dependency. Since the world follows PS and
PS picks the tasks according to their priority, then the world als satisfies this
task τ at the next timestamp or τ = τ1 ∪ τ2 and is for this triggered. However,
due to the construction of ξa the priority of τ is at least the priority of τ1 and
τ2. For this, if τ1 and τ2 are in the next taskset so is also τ and the condition
holds.

Theorem 4 (Valid Priority Scheduler). Given a well-defined specification
φ, an annotation mapping a, and a bound B = InputEventBoundb. The scheduler
PSξa,B is valid b ≥ maxτ∈Tasks |τ |.

Proof. By definition, we have to proof the following conditions:

1. ∀ω ∈ J(φ,ψξa , B)K.∀t ∈ Time.∀T ⊆ Tasks.∀i ∈ InputValues.

prefixPSξa,B
(ω, t) ∧ PSξa,B(ω, t) = T ∧ i |= T

→ ∃ω′ ∈ J(φ,ψξa , B)K.validTasks(ω′, t+ 1, T) ∧ ω′[..t] = ω[..t] ∧ ω′[t+ 1] = i.

2. ∀ω ∈ J(φ,ψξa , B)K.∀t ∈ Time.∃t′ > t.|PSξa,B(ω, t′)| ≥ 1

We proof each condition separately:

1. We proof this condition by constructing ω′, with ω′[..t] = ω[..t], ω′[t+1] = i,
and ω′ follows the scheduler PSξa,B . Then we have to proof:
– ω ∈ JφK follows from the well-definedness of φ
– ω ∈ JψξaK follows from Lemma 3
– ∀t ∈ Time.B(ω, t) and validTasks(ω′, t+ 1, T) follows from Theorem 2.

2. This condition follows directly from the scheduler PSξa,B . By taking the
task with the earliest deadlines and the partial order ≤P over the tasks, the
task list is never empty.

Theorem 5 (Valid Deadline-Priority Scheduler). Given a well-defined
specification φ, an annotation mapping a, and a bound B = InputEventBoundb.
The scheduler DPSξa,B is valid b ≥ maxτ∈Tasks |τ |.

Proof. The proof follows the same structure as the proof of Theorem 5 but adds
with the overdue function an additional priority that is higher than the other
priorities. This is reflected in the semantics and in the scheduler

	Active Monitoring with RTLola:A Specification-Guided Scheduling Approach

