
RTLola Cleared for Take-Off:
Monitoring Autonomous Aircraft

Jan Baumeister1[0000−0002−8891−7483], Bernd Finkbeiner1[0000−0002−4280−8441],
Sebastian Schirmer2,

Maximilian Schwenger1[0000−0002−2091−7575], and Christoph Torens2

1 Saarland University, Department of Computer Science,
66123 Saarbrücken, Germany

{jbaumeister, finkbeiner, schwenger}@react.uni-saarland.de
2 German Aerospace Center (DLR),

38108 Braunschweig, Germany
{christoph.torens, sebastian.schirmer}@dlr.de

Abstract. The autonomous control of unmanned aircraft is a highly
safety-critical domain with great economic potential in a wide range of
application areas, including logistics, agriculture, civil engineering, and
disaster recovery. We report on the development of a dynamic moni-
toring framework for the DLR ARTIS (Autonomous Rotorcraft Testbed
for Intelligent Systems) family of unmanned aircraft based on the for-
mal specification language RTLola. RTLola is a stream-based specifica-
tion language for real-time properties. An RTLola specification of haz-
ardous situations and system failures is statically analyzed in terms of
consistency and resource usage and then automatically translated into
an FPGA-based monitor. Our approach leads to highly efficient, par-
allelized monitors with formal guarantees on the noninterference of the
monitor with the normal operation of the autonomous system.

Keywords: Runtime Verification, Stream Monitoring, FPGA, Autono-
mous Aircraft

1 Introduction

An unmanned aerial vehicle, commonly known as a drone, is an aircraft with-
out a human pilot on board. While usually connected via radio transmissions
to a base station on the ground, such aircraft are increasingly equipped with
decision-making capabilities that allow them to autonomously carry out com-
plex missions in applications such as transport, mapping and surveillance, or crop
and irrigation monitoring. Despite the obvious safety-criticality of such systems,
it is impossible to foresee all situations an autonomous aircraft might encounter
and thus make a safety case purely by analyzing all of the potential behaviors
in advance. A critical part of the safety engineering of a drone is therefore to
carefully monitor the actual behavior during the flight, so that the health status
of the system can be assessed and mitigation procedures (such as a return to the
base station or an emergency landing) can be initiated when needed.



2 Baumeister et al.

In this paper, we report on the development of a dynamic monitoring frame-
work for the DLR ARTIS (Autonomous Rotorcraft Testbed for Intelligent Sys-
tems) family of aircraft based on the formal specification language RTLola.
The development of a monitoring framework for an autonomous aircraft differs
significantly from a monitoring framework in a more standard setting, such as
network monitoring. A key consideration is that while the specification language
needs to be highly expressive, the monitor must operate within strictly limited
resources, and the monitor itself needs to be highly reliable: any interference
with the normal operation of the aircraft could have fatal consequences.

A high level of expressiveness is necessary because the assessment of the
health status requires complex analyses, including a cross-validation of differ-
ent sensor modules such as the agreement between the GPS module and the
accelerometer. This is necessary in order to discover a deterioration of a sensor
module. At the same time, the expressiveness and the precision of the monitor
must be balanced against the available computing resources. The reliability re-
quirement goes beyond pure correctness and robustness of the execution. Most
importantly, reliability requires that the peak resource consumption of the mon-
itor in terms of energy, time, and space needs to be known ahead of time. This
means that it must be possible to compute these resource requirements statically
based on an analysis of the specification. The determination whether the drone
is equipped with sufficient hardware can then be made before the flight, and the
occurrence of dynamic failures such as running out of memory or sudden drops
in voltage can be ruled out. Finally, the collection of the data from the on-board
architecture is a non-trivial problem: While the monitor needs access to almost
the complete system state, the data needs to be retrieved non-intrusively such
that it does not interfere with the normal system operation.

Our monitoring approach is based on the formal stream specification lan-
guage RTLola [11]. In an RTLola specification, input streams that collect
data from sensors, networks, etc., are filtered and combined into output streams
that contain data aggregated from multiple sources and over multiple points in
time such as over sliding windows of some real-time length. Trigger conditions
over these output streams then identify critical situations. An RTLola specifi-
cation is translated into a monitor defined in a hardware description language
and subsequently realized on an FPGA. Before deployment, the specification is
checked for consistency and the minimal requirements on the FPGA are com-
puted. The hardware monitor is then placed in a central position where as much
sensor data as possible can be collected; during the execution, it then extracts
the relevant information. In addition to requiring no physical changes to the
system architecture, this integration incurs no further traffic on the bus.

Our experience has been extremely positive: Our approach leads to highly
efficient, parallelized monitors with formal guarantees on the non-interference of
the monitor with the normal operation of the autonomous system. The monitor
is able to detect violations to complex specifications without intruding into the
system execution, and operates within narrow resource constraints. RTLola is
cleared for take-off.



RTLola Cleared for Take-Off 3

1.1 Related Work

Stream-based monitoring approaches focus on an expressive specification lan-
guage while handling non-binary data. Its roots lie in synchronous, declara-
tive stream processing languages like Lustre [13] and Lola [8]. The Copilot
framework [19] features a declarative data-flow language from which constant
space and constant time C monitors are generated; these guarantees enable us-
age on an embedded device. Rather than focusing on data-flow, the family of
Lola-languages puts an emphasis on statistical measures and has successfully
been used to monitor synchronous, discrete time properties of autonomous air-
craft [1,23]. In contrast to that, RTLola [12,22] supports real-time capabilities
and efficient aggregation of data occurring with arbitrary frequency, while forgo-
ing parametrization for efficiency [11]. RTLola can also be compiled to VHDL
and subsequently realized on an FPGA [7].

Apart from stream-based monitoring, there is a rich body of monitoring
based on real-time temporal logics [2,9,14–16,20] such as Signal Temporal Logic
(STL) [17]. Such languages are a concise way to describe temporal behaviors
with the shortcoming that they are usually limited to qualitative statements,
i.e. boolean verdicts. This limitation was addressed for STL [10] by introducing
a quantitative semantics indicating the robustness of a satisfaction. To specify
continuous signal patterns, specification languages based on regular expressions
can be beneficial, e.g. Signal Regular Expressions (SRE) [5]. The R2U2 tool [18]
stands out in particular as it successfully brought a logic closely related to STL
onto unmanned aerial systems as an external hardware implementation.

2 Setup

The Autonomous Rotorcraft Testbed for Intelligent Systems (ARTIS) is a plat-
form used by the Institute of Flight Systems of the German Aerospace Center
(DLR) to conduct research on autonomous flight. It consists of a set of unmanned
helicopters and fixed-wing aircraft of different sizes which can be used to develop
new techniques and evaluate them under real-world conditions.

The case study presented in this paper revolves around the superARTIS, a
large helicopter with a maximum payload of 85kg, depicted in Fig. 1. The high
payload capabilities allow the aircraft to carry multiple sensor systems, com-
putational resources, and data links. This extensive range of avionic equipment
plays an important role in improving the situational awareness of the aircraft [3]
during the flight. It facilitates safe autonomous research missions which include
flying in urban or maritime areas, alone or with other aircraft. Before an actual
flight test, software- and hardware-in-the-loop simulations, as well as real-time
logfile replays strengthen confidence in the developed technology.

2.1 Mission

One field of application for unmanned aerial vehicles (UAVs) is reconnaissance
missions. In such missions, the aircraft is expected to operate within a fixed area



4 Baumeister et al.

in which it can cause no harm. The polygonal boundary of this area is called
a geo-fence. As soon as the vehicle passes the geo-fence, mitigation procedures
need to be initiated to ensure that the aircraft does not stray further away from
the safe area.

The case study presented in this paper features a reconnaissance mission.
Fig. 2 shows the flight path (blue line) within a geo-fence (red line). Evidently,
the aircraft violates the fence several times temporarily. A reason for this can be
flawed position estimation: An aircraft estimates its position based on several
factors such as landmarks detected optically or GPS sensor readings. In the
latter case, GPS satellites send position and time information to earth. The
GPS module uses this data to compute the aircraft’s absolute position with
trilateration. However, signal reflection or a low number of GPS satellites in
range can result in imprecisions in the position approximation. If the aircraft
is continuously exposed to imprecise position updates, the error adds up and
results in a strong deviation from the expected flight path.

The impact of this effect can be seen in Fig. 3. It shows the velocity of a
ground-borne aircraft in an enclosed backyard according to its GPS module.3

During the reported period of time, the aircraft was pushed across the backyard
by hand. While the expected graph is a smooth curve, the actual measurements
show an erratic curve with errors of up to ±1.5ms−1, which can be mainly
attributed to signals being reflected on the enclosure. The strictly positive trend
of the horizontal velocity can explain strong deviations from the desired flight
path seen in Fig. 3.

A counter-measure to these imprecisions is the cross-validation of several re-
dundant sensors. As an example, rather than just relying on the velocity reported
by a GPS module, its measured velocity can be compared to the integrated out-
put of an accelerometer. When the values deviate strongly, the values can be
classified as less reliable than when both sensors agree.

2.2 Non-Intrusive Instrumentation

When integrating the monitor into an existing system, the system architecture
usually cannot be altered drastically. Moreover, the monitor should not interfere
with the regular execution of the system, e.g. by requiring the controller to send
explicit messages to it. Such a requirement could offset the timing behavior and
thus have a negative impact on the overall performance of the system.

The issue can be circumvented by placing the monitor at a point where it can
access all data necessary for the monitoring process non-intrusively. In the case
of the superARTIS, the logger interface provides such a place as it compiled
the data of all position-related sensors as well as the output of the position
estimation [3, 4]. Fig. 4 outlines the relevant data lines of the aircraft. Sensors
were polled with fixed frequencies of up to 100Hz. The schematic shows that the
logger explicitly sends data to the monitor. This is not a strict requirement of

3 GPS modules only provide absolute position information; the first derivative thereof,
however, is the velocity.



RTLola Cleared for Take-Off 5

Fig. 1: DLR’s autonomous superAR-
TIS equipped with optical navigation.

Fig. 2: Reconnaissance mission for a
UAV. The thin blue line represents its
trajectory, the thick red line a geo-
fence.

the monitor as it could be connected to the data busses leading to the logger and
passively read incoming data packets. However, in the present setting, the logger
did not run at full capacity. Thus sending information to the monitor came at
no relevant cost while requiring few hardware changes to the bus layout.

In turn, the monitor provides feedback regarding violations of the specifica-
tion. Here, we distinguish between different timing behaviors of triggers. The
monitor evaluates event-based triggers whenever the system passes new events
to the monitor and immediately replies with the results. For periodic triggers,
i.e., those annotated with an evaluation frequency, the evaluation is decoupled
from the communication between monitor and system. Thus, the monitor needs
to wait until it receives another event until reporting the verdict. This incurs a
short delay between detection and report.

2.3 StreamLAB

StreamLAB4 [11] is a monitoring framework revolving around the stream-based
specification language RTLola. It emphasizes on analyses conducted before de-
ployment of the monitor. This increases the confidence in a successful execution
by providing information to aid the specifier. To this end, it detects inconsisten-
cies in the specification such as type errors, e.g. an lossy conversion of a floating
point number to an integer, or timing errors, e.g. accessing values that might not
exist. Further, it provides two execution modes: an interpreter and an FPGA
compilation. The interpreter allows the specifier to validate their specification.
For this, it requires a trace, i.e. a series of data that is expected to occur dur-
ing an execution of the system. It then checks whether a trace complies with
the specification and reports the points in time when specified bounds are vi-
olated. After successfully validating the specification, it can be compiled into

4 stream-lab.eu

stream-lab.eu


6 Baumeister et al.

Fig. 3: Line plot of the horizontal and
vertical speed calculated by a GPS re-
ceiver.

. . .

IMU

GNSS

Lidar

Camera

PositionAlgorithm

Logger

Monitor HardDisk

Fig. 4: Overview of data flow in sys-
tem architecture.

VHDL code. Yet again, the compiled code can be analyzed with respect to the
space and power consumption. This information allows for evaluating whether
the available hardware suffices for running the RTLola monitor.

An RTLola specification consists of input and output streams, as well
as trigger conditions. Input streams describe data the system produces asyn-
chronously and provides to the monitor. Output streams use this data to assess
the health state of the system e.g. by computing statistical information. Trig-
ger conditions distinguish desired and undesired behavior. A violation of the
condition issues an alarm to the system.

The following specification declares a floating point input stream height

representing sensor readings of an altimeter. The output stream avg_height

computes the average value of the height stream over two minutes. The ag-
gregation is a sliding window computed once per second, as indicated with the
@1Hz annotation.5 The stream δheight computes the difference between the av-
erage and the current height. A strong deviation of these values constitutes a
suspicious jump in sensor readings, which might indicate a faulty sensor or an
unexpected loss or gain in height. In this case, the trigger in the specification
issues a warning to the system, which can initiate mitigation measures.

input height: Float32

output avg_height @1Hz := height.aggregate(over: 2min, using: avg)

output δheight := abs(avg_height.hold().defaults(to: height) - height)

trigger δheight > 50.0 "WARNING: Suspicious jump in height."

Note that this is just a brief introduction to RTLola and the StreamLAB
framework. For more details, the authors refer to [7, 11,12,22].

5 Details on how such a computation can cope with a statically-bounded amount of
memory can be found in [12,22].



RTLola Cleared for Take-Off 7

2.4 FPGA as Monitoring Platform

An RTLola specification can be compiled into the hardware description lan-
guage VHDL and subsequently realized on an FPGA as proposed by Baumeis-
ter et al. [7]. An FPGA as target platform for the monitor has several advantages
in terms of improving the development process, reducing its cost, and increasing
the overall confidence in the execution.

Since the FPGA is a separate module and thus decoupled from the con-
trol software, these components do not share processor time or memory. This
especially means that control and monitoring computations happen in parallel.
Further, the monitor itself parallelizes the computation of independent RTLola
output streams with almost no additional overhead. This significantly acceler-
ates the monitoring process [7]. The compiled VHDL specification allows for
extensive static analyses. Most notably, the results include whether the board
is sufficiently large in terms of look-up tables and storage capabilities to host
the monitor, and the power consumption when idle or at peak performance.
Lastly, an FPGA is the sweet spot between generality and specificity: it runs
faster, is lighter, and consumes less energy than general purpose hardware while
retaining a similar time-to-deployment. The latter combined with a drastically
lower cost renders the FPGA superior to application-specific integrated circuits
(ASIC) during development phase. After that, when the specification is fixed,
an ASIC might be considered for its yet increased performance.

2.5 RTLola Specifications

The entire specification for the mission is comprised of three sub-specifications.
This section briefly outlines each of them and explains representative properties
in Fig. 5. The complete specifications as well as a detailed description were
presented in earlier work [6, 21].

Sensor Validation (Appendix A.1) Sensors can produce incorrect values,
e.g. when too few GPS satellites are in range for an accurate trilateration or
if the aircraft flies above the range of a radio altimeter. A simple exemplary
validation is to check whether the measured altitude is non-negative. If such
a check fails, the values are meaningless, so the system should not take them
into account in its computations.

Geo-Fence (Appendix A.2) During the mission, the aircraft has permission
to fly inside a zone delimited by a polygon, called a geo-fence. The specifica-
tion checks whether a face of the fence has been crossed, in which case the
aircraft needs to ensure that it does not stray further from the permitted
zone.

Sensor Cross-Validation (Appendix A.3) Sensor redundancy allows for val-
idating a sensor reading by comparing it against readings of other sensors.
An agreement between the values raises the confidence in their correctness.
An example is the cross-validation of the GPS module against the accelerom-
eter. Integrating the readings of the latter twice yields an absolute position
which can be compared against the GPS position.



8 Baumeister et al.

input gps x: Float16 // Absolute x positive from GPS module
input num sat : UInt8 // Number of GPS satellites in range
input imu acc x: Float32 // Acceleration in x direction from IMU
// Check if the GPS module emitted few readings in the last 3s.
trigger @1Hz gps x.aggregate(over: 3s, using: count) < 10

”VIOLATION: Few GPS updates ”
// 1 if there are few GPS Satellites in range, otherwise 0.
output few sat: UInt8 := Int(num sat < 9)
// Check if there rarely were enough GPS satellites in range.
trigger @1Hz few sat.aggregate(over: 5s, using: Σ) > 12 ”WARNING:

Unreliable GPS data.”
// Integrate acceleration twice to obtain absolute position.
output imu vel x@1Hz := imu acc x.aggregate(over: ∞, using:

∫
)

output imu x@1Hz := imu vel x.aggregate(over: ∞, using:
∫

)
// Issue an alarm if readings from GPS and IMU disagree.
trigger abs(imu x − gps x) > 0.5 ”VIOLATION: GPS and IMU readings

deviate.”

Fig. 5: An RTLola specification validating GPS sensor data and cross validating
readings from the GPS module and IMU.

Fig. 5 points out some representative sub-properties of the previously de-
scribed specification in RTLola, which are too long to discuss them in detail.
It contains a validation of GPS readings as well as a cross-validation of the GPS
module against the Inertial Measurement Unit (IMU). The specification declares
three input streams, the x-position and number of GPS satellites in range from
the GPS module, and the acceleration in x-direction according to the IMU.

The first trigger counts the number of updates received from the GPS module
by counting how often the input stream gps_x gets updated to validate the
timing behavior of the module.

The output stream few_sat computes the indicator function for num_sat <

9, which indicates that the GPS module might report unreliable data due to few
satellites in reach. If this happens more than 12 times within five seconds, the
next trigger issues a warning to indicate that the incoming GPS values might
be inaccurate. The last trigger checks whether the double integral of the IMU
acceleration coincides with the GPS position up to a threshold of 0.5 meters.

2.6 VHDL Synthesis

The specifications mentioned above were compiled into VHDL and realized on
the Xilinx ZC702 Base Board6. The following table details the resource con-
sumption of each sub-specification reported by the synthesis tool Vivado.

6 https://www.xilinx.com/support/documentation/boards and kits/zc702 zvik/
ug850-zc702-eval-bd.pdf

https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf


RTLola Cleared for Take-Off 9

Spec FF FF[%] LUT LUT[%] MUX Idle [mW] Peak [W]

Geo-fence 2,853 3 26,181 71 4 149 1.871
Validation 4,792 5 34,630 67 104 156 2.085

Cross 3,441 4 23,261 46 99 150 1.911

The number of flip-flops (FF) indicates the memory consumption in bits; neither
specification requires more than 600B of memory. The number of LUTs (Look-
up Tables) is an indicator for the complexity of the logic. The sensor validation,
despite being significantly longer than the cross-validation, requires the least
amount of LUTs. The reason is that its computations are simple in compari-
son: Rather than computing sliding window aggregations or line intersections,
it mainly consists of simple thresholding. The number of multiplexers (MUX)
reflects this as well: Since thresholding requires comparisons, which translate to
multiplexers, the validation requires twice as many of them. Lastly, the power
consumption of the monitor is extremely low: When idle, neither specification
requires more than 156mW and even under peak pressure, the power consump-
tion does not exceed 2.1W. For comparison, a Raspberry Pi needs between 1.1W
(Model 2B) and 2.7W (Model 4B) when idle and roughly twice as much under
peak pressure, i.e., 2.1W and 6.4W, respectively.7

Note that the geo-fence specification checks for 12 intersections in parallel,
one for each face of the fence (cf. Fig. 2). Adapting the number of faces allows
for scaling the amount of FPGA resources required, as can be seen in Fig. 6a.
The graph does not grow linearly because the realization problem of VHDL
code onto an FPGA is a multi-dimensional optimization problem with several
pareto-optimal solutions. Under default settings, the optimizer found a solution
for four faces that required fewer LUTs than for three faces. At the same time,
the worst negative slack time (WNST) of the four-face solution was lower than
the WNST for the three-face solution as well (cf. Fig. 6b), indicating that the
former performs worst in terms of running time.

3 Results

As the title of the paper suggests, the superARTIS with the RTLola monitor
component is cleared to fly and a flight test is already scheduled. In the mean-
time, the monitor was validated on log files from past missions of the superARTIS
replayed under realistic conditions. During a flight, the controller polls samples
from sensors, estimates the current position, and sends the respective data to the
logger and monitor. In the replay setting, the process remains the same except
for one detail: Rather than receiving data from the actual sensors, the data sent
to the controller is read from a past log file in the same frequency in which they
were recorded. The timing and logging behavior is equivalent to a real execution.
This especially means that the replayed data points will be recorded again in

7 Information collected from https://www.pidramble.com/wiki/benchmarks/
power-consumption in January, 2020.

https://www.pidramble.com/wiki/benchmarks/power-consumption
https://www.pidramble.com/wiki/benchmarks/power-consumption


10 Baumeister et al.

0 2 4 6 8 10 12 14

0

1

2

3

4

· 104

Number of Faces

L
o
o
k
-U

p
T

a
b
le

s

(a) Look-Up Tabels

0 2 4 6 8 10 12 14

8

10

12

Number of Faces

W
o
rs

t
N

eg
a
ti

v
e

S
la

ck
T

im
e

(b) Worst Negative Slack Time

Fig. 6: Result of the static analysis for different amounts of face of the geo-fence.

the same way. Control computations take place on a machine identical to the
one on the actual aircraft. As a result, from the point of view of the monitor,
the replay mode and the actual flight are indistinguishable. Note that the setup
is open-loop, i.e., the monitor cannot influence the running system. Therefore,
the replay mode using real data is more realistic than a high-fidelity simulation.

When monitoring the geo-fence of the reconnaissance mission in Fig. 2, all
twelve face crossings were detected successfully. Additionally, when replaying
the sensor data of the experiment in the enclosed backyard from Section 2.1,
the erratic GPS sensor data lead to 113 violations regarding the GPS module
on its own. Note that many of these violations point to the same culprit: a low
number of available GPS satellites, for example, correlates with the occurrence
of peaks in the GPS velocity. Moreover, the cross validation issued another 36
alarms due to a divergence of IMU and GPS readings. Other checks, for example
detecting a deterioration of the GPS module based on its output frequency, were
not violated in either flight and thus not reported.

4 Conclusion

We have presented the integration of a hardware-based monitor into the super-
ARTIS UAV. The distinguishing features of our approach are the high level of
expressiveness of the RTLola specification language combined with the formal
guarantees on the resource usage. The comprehensive tool framework facilitates
the development of complex specifications, which can be validated on log data
before they get translated into a hardware-based monitor. The automatic anal-
ysis of the specification derives the minimal requirements on the development
board needed for safe operation. If they are met, the specification is realized
on an FPGA and integrated into the superARTIS architecture. Our experience
shows that the overall system works correctly and reliably, even without thor-
ough system-level testing. This is due to the non-interfering instrumentation,
the validated specification, and the formal guarantees on the absence of dynamic
failures of the monitor.



RTLola Cleared for Take-Off 11

References

1. Adolf, F., Faymonville, P., Finkbeiner, B., Schirmer, S., Torens, C.: Stream run-
time monitoring on UAS. In: Lahiri, S.K., Reger, G. (eds.) Runtime Verification
- 17th International Conference, RV 2017, Seattle, WA, USA, September 13-16,
2017, Proceedings. Lecture Notes in Computer Science, vol. 10548, pp. 33–49.
Springer (2017). https://doi.org/10.1007/978-3-319-67531-2 3, https://doi.org/10.
1007/978-3-319-67531-2 3

2. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. In:
[1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.
pp. 390–401 (Jun 1990). https://doi.org/10.1109/LICS.1990.113764

3. Ammann, N., Andert, F.: Visual navigation for autonomous, precise and safe land-
ing on celestial bodies using unscented kalman filtering. In: 2017 IEEE Aerospace
Conference. pp. 1–12 (March 2017). https://doi.org/10.1109/AERO.2017.7943933

4. Andert, F., Ammann, N., Krause, S., Lorenz, S., Bratanov, D., Mej́ıas, L.:
Optical-aided aircraft navigation using decoupled visual SLAM with range sen-
sor augmentation. Journal of Intelligent and Robotic Systems 88(2-4), 547–
565 (2017). https://doi.org/10.1007/s10846-016-0457-6, https://doi.org/10.1007/
s10846-016-0457-6

5. Bakhirkin, A., Ferrère, T., Maler, O., Ulus, D.: On the quantitative seman-
tics of regular expressions over real-valued signals. In: Abate, A., Geeraerts,
G. (eds.) Formal Modeling and Analysis of Timed Systems - 15th Interna-
tional Conference, FORMATS 2017, Berlin, Germany, September 5-7, 2017,
Proceedings. Lecture Notes in Computer Science, vol. 10419, pp. 189–206.
Springer (2017). https://doi.org/10.1007/978-3-319-65765-3 11, https://doi.org/
10.1007/978-3-319-65765-3 11

6. Baumeister: Tracing Correctness: A Practical Approach to Traceable Runtime
Monitoring. Master thesis, Saarland University (2020)

7. Baumeister, J., Finkbeiner, B., Schwenger, M., Torfah, H.: FPGA stream-
monitoring of real-time properties. ACM Trans. Embedded Comput. Syst.
18(5s), 88:1–88:24 (2019). https://doi.org/10.1145/3358220, https://doi.org/10.
1145/3358220

8. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: Lola: Runtime monitoring of synchronous
systems. In: TIME 2005. pp. 166–174. IEEE Computer Society Press (June 2005)

9. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: FORMATS 2010. pp. 92–106. FORMATS’10, Springer-Verlag, Berlin, Heidel-
berg (2010), http://dl.acm.org/citation.cfm?id=1885174.1885183

10. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) Formal Modeling and Analysis of Timed
Systems - 8th International Conference, FORMATS 2010, Klosterneuburg, Austria,
September 8-10, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6246,
pp. 92–106. Springer (2010). https://doi.org/10.1007/978-3-642-15297-9 9, https:
//doi.org/10.1007/978-3-642-15297-9 9

11. Faymonville, P., Finkbeiner, B., Schledjewski, M., Schwenger, M., Stenger, M.,
Tentrup, L., Torfah, H.: Streamlab: Stream-based monitoring of cyber-physical
systems. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification - 31st In-
ternational Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 11561, pp. 421–
431. Springer (2019). https://doi.org/10.1007/978-3-030-25540-4 24, https://doi.
org/10.1007/978-3-030-25540-4 24

https://doi.org/10.1007/978-3-319-67531-2_3
https://doi.org/10.1007/978-3-319-67531-2_3
https://doi.org/10.1007/978-3-319-67531-2_3
https://doi.org/10.1109/LICS.1990.113764
https://doi.org/10.1109/AERO.2017.7943933
https://doi.org/10.1007/s10846-016-0457-6
https://doi.org/10.1007/s10846-016-0457-6
https://doi.org/10.1007/s10846-016-0457-6
https://doi.org/10.1007/978-3-319-65765-3_11
https://doi.org/10.1007/978-3-319-65765-3_11
https://doi.org/10.1007/978-3-319-65765-3_11
https://doi.org/10.1145/3358220
https://doi.org/10.1145/3358220
https://doi.org/10.1145/3358220
http://dl.acm.org/citation.cfm?id=1885174.1885183
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-25540-4_24


12 Baumeister et al.

12. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based
monitoring. CoRR abs/1711.03829 (2017), http://arxiv.org/abs/1711.03829

13. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language lustre. In: Proceedings of the IEEE. pp. 1305–1320 (1991)

14. Harel, E., Lichtenstein, O., Pnueli, A.: Explicit clock temporal
logic. In: LICS 1990. pp. 402–413. IEEE Computer Society (1990).
https://doi.org/10.1109/LICS.1990.113765, https://doi.org/10.1109/LICS.1990.
113765

15. Jahanian, F., Mok, A.K.L.: Safety analysis of timing properties in real-time sys-
tems. IEEE Transactions on Software Engineering SE-12(9), 890–904 (Sept 1986).
https://doi.org/10.1109/TSE.1986.6313045

16. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

17. Maler, O., Nickovic, D.: Monitoring properties of analog and mixed-signal circuits.
STTT 15(3), 247–268 (2013). https://doi.org/10.1007/s10009-012-0247-9, https:
//doi.org/10.1007/s10009-012-0247-9

18. Moosbrugger, P., Rozier, K.Y., Schumann, J.: R2U2: monitoring and diagnosis of
security threats for unmanned aerial systems. Formal Methods in System Design
51(1), 31–61 (2017). https://doi.org/10.1007/s10703-017-0275-x, https://doi.org/
10.1007/s10703-017-0275-x

19. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: A Hard Real-Time
Runtime Monitor, pp. 345–359. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16612-9˙26, http://dx.doi.org/10.1007/
978-3-642-16612-9 26

20. Raskin, J.F., Schobbens, P.Y.: Real-time logics: Fictitious clock as an abstraction
of dense time, pp. 165–182. Springer Berlin Heidelberg, Berlin, Heidelberg (1997).
https://doi.org/10.1007/BFb0035387

21. Schirmer, S., Torens, C., Adolf, F.: Formal Monitoring of Risk-based
Geofences. https://doi.org/10.2514/6.2018-1986, https://arc.aiaa.org/doi/abs/10.
2514/6.2018-1986

22. Schwenger, M.: Let’s not Trust Experience Blindly: Formal Monitoring of Humans
and other CPS. Master thesis, Saarland University (2019)

23. Torens, C., Adolf, F., Faymonville, P., Schirmer, S.: Towards intelligent system
health management using runtime monitoring. In: AIAA Information Systems-
AIAA Infotech @ Aerospace. American Institute of Aeronautics and Astronau-
tics (AIAA) (jan 2017). https://doi.org/10.2514/6.2017-0419, https://doi.org/10.
2514%2F6.2017-0419

http://arxiv.org/abs/1711.03829
https://doi.org/10.1109/LICS.1990.113765
https://doi.org/10.1109/LICS.1990.113765
https://doi.org/10.1109/LICS.1990.113765
https://doi.org/10.1109/TSE.1986.6313045
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/978-3-642-16612-9_26
http://dx.doi.org/10.1007/978-3-642-16612-9_26
http://dx.doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/BFb0035387
https://doi.org/10.2514/6.2018-1986
https://arc.aiaa.org/doi/abs/10.2514/6.2018-1986
https://arc.aiaa.org/doi/abs/10.2514/6.2018-1986
https://doi.org/10.2514/6.2017-0419
https://doi.org/10.2514%2F6.2017-0419
https://doi.org/10.2514%2F6.2017-0419


RTLola Cleared for Take-Off 13

A RTLola Specifications

This section gives more details on the RTLola specification.

A.1 Sensor Validation

In this subsection, we consider GPS receiver submodules, namely: GPS velocity
and position. In the specification shown in Fig. 7, the outputs of both modules
are declared as inputs to the monitor (lines 5–6 and 15–18). Basic checks whether
the absolute values of the horizontal and vertical speed are within bounds are
performed in lines 9 and 10, where triggers check if any bound is exceeded.
Similarly, valid states of the position_type (lines 21) and bounds for diff_age
and solution_age (lines 23–24) are easily checked. Lines 26–33 evaluate the
performance of the position estimation based on the number of satellites in reach.
In line 27, we count once per second, i.e. with 1Hz, the number of satellites over
the last three seconds. We expect to see at least nine satellites within this frame
of time. Next, we trigger a notification on each rising edge of behavior_num_sats
(line 32-33). The stream behavior_num_sats is an aggregation over five seconds
where curr_num_sats_invalid represents an auxiliary stream which valides the
number of satellites. Once per second we check if within the last five seconds
more than twelve events reported a number of satellites below 9. If this is the
case, we warn the system because the GPS modules seems to deteriorate.

The specification in Fig. 8 complements the GPS validation. Here, we focus
on the horizontal (lines 9-11), vertical speed (lines 13-15), and the length of the
speed vector (lines 17-20). Each second, we aggregate the respective speed and
take the average. Each time we receive a new speed event, we compare its value
against the computed average value of the last ten seconds. If there is a strong
deviation, we raise a violation.

The validation specification is the combination of Fig. 7 and Fig. 8.

A.2 Geo-fence

In this section, we depict the detection of a single line crossing of a geo-fence. The
specification can be seen in Fig. 9 where italic variables represent constant points
of the geo-fence (lat, lon) and their respective slopes (m) and y-intercepts (b).
The basic idea is to compute the intersection of the geo-fence line and the vehicle
line, i.e. the line given the last position and the current position of the vehicle.
The vehicle line is computed in lines 12–21. The slope of the line and the y-
intercept are calculated in lines 20 and 21, respectively. Given these parameters,
the computation of the intersection point is basic geometry, i.e. y = m ·x + t.
Finally, we check whether the intersection point lies on both the vehicle line
and the geo-fence face (lines 34-41). The output is_fnc is true if the vehicle
movement can be encoded as a valid function (line 32).



14 Baumeister et al.

1import math

2
3// GPS Velocity Submodule

4// Input Streams

5input speed_h : Float16 // Horizontal Speed

6input speed_v : Float16 // Veritical Speed

7
8// Bound checks

9trigger abs(speed_h) > 1.5 "VIOLATION: Horizontal speed exceeds

threshold."

10trigger abs(speed_v) > 2.0 "VIOLATION: Vertical speed exceeds

threshold."

11
12
13// GPS Position Submodule

14// Input Streams

15input diff_age : Float32 // Time since last correction solution

16input solution_age : Float16 // Elapsed time for solution

17input position_type : UInt8 // Internal state

18input num_sats : UInt8 // Number of received satellites signals

19
20// Internal state validation

21trigger ¬(position_type = 34 ∨ position_type = 17) "VIOLATION:

Invalid position_type state."

22// Solution Validation

23trigger diff_age > 135.0 "VIOLATION: Correction too old."

24trigger solution_age > 0.15 "VIOLATION: Solution took too long."

25
26// Received satellites signal check

27trigger @1Hz num_sats.aggregate(over: 3s, using: count) < 10

28"DEGRADATION: With given frequency, more satellites expected."

29output cur_num_sats_invalid : UInt8 := if num_sats < 9 then 1 else 0

30output behavior_num_sats : Bool @ 1Hz :=

31cur_num_sats_invalid.aggregate(over: 5s,

using: sum) > 12

32trigger @1Hz !behavior_num_sats.offset(by:-1).defaults(to:false) ∧
behavior_num_sats

33"DEGRADATION: Bad gps performance due to recent decline in number

satellites."

Fig. 7: Sensor validation



RTLola Cleared for Take-Off 15

1import math

2
3// GPS Velocity Submodule

4// Input Streams

5input speed_h : Float16 // Horizontal Speed

6input speed_v : Float16 // Veritical Speed

7
8// Peak detection

9output avg_speed_h @1Hz := speed_h.aggregate(over: 10s, using:

avg).defaults(to:0.0)

10output speed_h_diff := abs(speed_h -

avg_speed_h.hold().defaults(to:speed_h))

11trigger speed_h_diff > 0.4 "VIOLATION: Peak in horizontal speed."

12
13output avg_speed_v @1Hz := speed_v.aggregate(over: 10s, using:

avg).defaults(to:0.0)

14output speed_v_diff := abs(speed_v -

avg_speed_v.hold().defaults(to:speed_v))

15trigger abs_speed_v_diff > 1.0 "VIOLATION: Peak in vertical speed."

16
17output speed_all := sqrt(speed_h * speed_h + speed_v * speed_v)

18output avg_speed_all @1Hz := speed_all.aggregate(over: 10s, using:

avg).defaults(to:0.0)

19output speed_all_diff := abs(speed_all -

avg_speed_all.hold().defaults(to:speed_all))

20trigger speed_all_diff > 1.0 "VIOLATION: Peak in speed vector."

Fig. 8: Peak detection



16 Baumeister et al.

1import math

2
3// Declaring Inputs

4input lat_in_degree :Float32

5input lon_in_degree :Float32

6
7// Transform Degree in Radian

8output lat := lat_in_degree * 3.14159265359 / 180.0

9output lon := lon_in_degree * 3.14159265359 / 180.0

10
11// Vehicle Line

12output lat_pre := lat.offset(by: -1).defaults(to: lat)

13output delta_lat := lat - lat_pre

14
15output lon_pre := lon.offset(by: -1).defaults(to: lon)

16output delta_lon := lon - lon_pre

17
18output is_fnc := abs(delta_lat) > ε
19
20output m_v := if is_fnc then (delta_lon) / (delta_lat) else 0.0

21output b_v := if is_fnc then lon - (m_v * lat) else 0.0

22
23output min_lat_v:= if lat < lat_pre then lat else lat_pre

24output max_lat_v := if lat > lat_pre then lat else lat_pre

25
26output min_lon_v := if lon < lon_pre then lon else lon_pre

27output max_lon_v := if lon > lon_pre then lon else lon_pre

28
29// Polygonline p1p2

30output intersect_p1p2 := abs(m_v - ml1) > ε
31output intersect_lat_p1p2

32:= if is_fnc ∧ intersect_p1p2 then (b_v - bl1) / (ml1 - m_v) else lat

33output intersect_lon_p1p2 := ml1 * intersect_lat_p1p2 + bl1
34trigger intersect_p1p2

35∧ ((intersect_lat_p1p2 > min_lat_v ∧ intersect_lat_p1p2 < max_lat_v)

36∧ (intersect_lon_p1p2 > min_lon_v ∧ intersect_lon_p1p2 < max_lon_v))

37∧ ((intersect_lat_p1p2 > min(latp1 , latp2)
38∧ intersect_lat_p1p2 < max (latp1 , latp2))
39∧ (intersect_lon_p1p2 > min(lonp1 , lonp2)
40∧ intersect_lon_p0p1 < max (lonp1 , lonp2)))
41"VIOLATION: line crossing between p1 and p2"

Fig. 9: Geo-fencing



RTLola Cleared for Take-Off 17

A.3 Sensor Cross-Validation

In this section, we consider two complementary sensors. The GPS receiver based
on satellite signals and an Inertial Measurement Unit (IMU) based on accelera-
tion and angular rate data. In the specification given in Fig. 10, we use the fact
that the acceleration is the derivative of the velocity. This correlation should
be present when comparing IMU and GPS receiver events. Since the IMU fre-
quency is known, we compute the expected velocity, by averaging instead of an
integration with the trapezoid abstraction (lines 15-16). This removes undesired
noise. The average velocity given by the GPS receiver is computed in a straight
forward manner (lines 19–22). A warning is raised if the difference in velocity is
greater than 0.5 (line 25).



18 Baumeister et al.

1import math

2
3// GPS Velocity Submodule

4// Input Streams

5input speed_h : Float16 // Horizontal Speed

6input speed_v : Float16 // Veritical Speed

7
8// IMU Module

9input acc_x : Float32 // acceleration in x

10input acc_y : Float32 // acceleration in y

11input acc_z : Float32 // acceleration in z

12
13// Cross Validation

14// IMU velocity

15output acc := sqrt((acc_x * acc_x) + (acc_y * acc_y) + (acc_z *

acc_z))

16output IMU_avg_vel @1Hz := acc.aggregate(over: 10s, using:

avg).defaults(to:0.0) * 0.01

17
18// GPS velocity

19output speed_h_diff : Float32 := cast(speed_h -

speed_h.offset(by:-1).defaults(to:speed_h))

20output speed_v_diff : Float32 := cast(speed_v -

speed_v.offset(by:-1).defaults(to:speed_v))

21output all_speed := sqrt(speed_h_diff * speed_h_diff + speed_v_diff *

speed_v_diff)

22output gps_avg_vel @1Hz := all_speed.aggregate(over: 10s, using:

avg).defaults(to:0.0)

23
24//Comparison

25trigger abs(gps_avg_vel - IMU_avg_vel) > 0.5 "VIOLATION: Cross

Validation."

Fig. 10: Cross-validation


	RTLola Cleared for Take-Off: Monitoring Autonomous Aircraft

