
Stream-Based Monitoring of Algorithmic Fairness

Jan Baumeister(B) , Bernd Finkbeiner , Frederik Scheerer ,
Julian Siber , and Tobias Wagenpfeil

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{jan.baumeister, finkbeiner, frederik.scheerer, julian.siber,

tobias.wagenpfeil}@cispa.de

Abstract. Automatic decision and prediction systems are increasingly
deployed in applications where they significantly impact the livelihood of
people, such as for predicting the creditworthiness of loan applicants or
the recidivism risk of defendants. These applications have given rise to a
new class of algorithmic-fairness specifications that require the systems
to decide and predict without bias against social groups. Verifying these
specifications statically is often out of reach for realistic systems, since
the systems may, e.g., employ complex learning components, and reason
over a large input space. In this paper, we therefore propose stream-based
monitoring as a solution for verifying the algorithmic fairness of decision
and prediction systems at runtime. Concretely, we present a principled
way to formalize algorithmic fairness over temporal data streams in the
specification language RTLola and demonstrate the efficacy of this ap-
proach on a number of benchmarks. Besides synthetic scenarios that
particularly highlight its efficiency on streams with a scaling amount
of data, we notably evaluate the monitor on real-world data from the
recidivism prediction tool COMPAS.

1 Introduction

Machine learning is used to automate an increasing number of critical decisions
pertaining to people’s opportunities in areas such as loan or job application [19],
healthcare [41], and criminal sentencing [5]. It is of vital interest that these
decision and prediction systems adhere to societies’ shared values and, hence,
they should in particular not discriminate against members of protected social
groups, e.g., based on attributes such as gender or perceived ethnicity. Since the
machine-learned systems are trained from historical data, they often inherit the
historical human bias present in these data sets. So far, this usually was revealed
by posterior analyses after the systems have been deployed for years [37,38]
and hence have already produced harmful results. In this paper, we propose
stream-based monitoring of algorithmic fairness properties as a way to alleviate
this situation, and to significantly reduce the impact unfair decisions have on
people that are subject to learned decision and prediction systems. Unlike static
verification of these systems, which is often intractable due to their complex
learning components and large input space, monitors are lightweight and can be
deployed alongside the machine-learned systems, raising awareness once they are

https://orcid.org/0000-0002-8891-7483
https://orcid.org/0000-0002-4280-8441
https://orcid.org/0009-0007-8115-0359
https://orcid.org/0000-0003-0842-0029
https://orcid.org/0009-0005-2680-1150

2 J. Baumeister et al.

sufficiently sure of unfair behavior. While this does not avert all decisions made
by an unfair system, we show empirically that it can still significantly reduce the
number of decisions made by an unfair system by alerting practicioners early.

1.1 Motivating Example
date event id group risk ...

2013-01-02 SCREEN 0 A HIGH ...

2013-01-02 SCREEN 1 B LOW ...

2013-01-03 RECID. 1 - - ...

2013-01-03 SCREEN 2 B HIGH ...

...

Fig. 1: Data streams for an example of re-
cidivism risk assessment with COMPAS [37].

As a motivating example, we
consider the COMPAS tool de-
veloped by Northpointe [37].
COMPAS predicts the recidivism
risk of defendants in criminal tri-
als in order to assist judges in,
e.g., setting bond amounts or in
sentencing during trial. Hence,
the system gives a prediction on
how likely a person is to commit
a(nother) crime, and this predic-
tion has a direct impact on criminal sentencing. A retrospective investigation by
ProPublica into the predictions by COMPAS during 2013 and 2014 in Broward
County, Florida, revealed that the tool is significantly biased against defendants
perceived as black [5]. For instance, the false positive rate for black defendants
was found to be significantly higher than for white defendants, i.e., black defen-
dants were more likely classified with a high risk of re-offending, without actually
committing a crime in the near future. The ultimate vision of our work is that,
instead of such a posterior analysis of algorithmic fairness, runtime monitors
are deployed that assess the fairness of decision and prediction systems during
their execution, in order to raise awareness of unfair treatment early and in this
way mitigate unproportional harm put on groups due to an unfair bias. To illus-
trate our monitoring approach, we will consider a simplified version of the risk
assessment setting as shown in Figure 1. This table shows a number of events
describing an execution of the COMPAS system that is defined on data streams
such as event or id. For example, the first row describes that on the 2nd of
January 2013, an individual of group A was screened via COMPAS and assessed
to have a high risk of recidivism. A (simplified) algorithmic-fairness specification
compares certain conditional probabilities associated with the different groups:∣∣P(HIGH | A, RECIDIVISM)− P(HIGH | B, RECIDIVISM)

∣∣ ≤ ϵ .

This condition states that the probability of a re-offending member of group A
to be labeled as high-risk is not too far (less than ϵ) from the probability of a
re-offending member of group B to be labeled as high-risk. Hence, it compares
the true positive rates between the two groups. In this paper, we show how
we can use the stream-based monitoring language RTLola to process such data
streams and in this way analyze the algorithmic fairness of their underlying sys-
tem in real-time. The main idea is to automatically partition the stream events
into independent trials and to construct RTLola specifications that estimate the
conditional probabilities associated with algorithmic-fairness specifications.

Stream-Based Monitoring of Algorithmic Fairness 3

1.2 Outline and Contributions

The challenges in our stream-based setting are twofold: First, we observe only a
single execution of the system but require a larger number of independent trials
to reliably estimate the conditional probabilities. Second, the independent tri-
als and also the fairness definitions contain a real-time component. We address
the first challenge in Section 3 by defining a principled way to extract individ-
ual trials based on a predefined dependence relation between stream events. In
Section 4, we then describe how this can be implemented in the specification
language RTLola. We show how we can estimate conditional probabilities over
these trials with RTLola, and address the second challenge: RTLola naturally
supports reasoning about real-time events, and hence we can use it to collect
stream events that are spread throughout time and calculate their relative de-
lay, which allows us to express certain intricacies of algorithmic-fairness spec-
ifications, such as an upper time bound between relevant events. We evaluate
this RTLola compilation in a case study including both synthetic and real-world
benchmarks. For the former, we present a benchmark generator that models ap-
plication scenarios at a company and a seminar assignment at a university. In
both cases, we can easily scale, e.g., the number of applicants, which serves as a
stress test for our implementation and allows a thorough comparison with more
traditional approaches based on databases. We show that RTLola significantly
outperforms database approaches, which suggests that stream-based monitoring
is the tool of choice for settings with high data throughput. Moreover, synthetic
benchmarks allow us to set a ground truth for the fairness of the decision system,
and we show that our monitoring approach can detect unfair systems without
raising too many false alarms on fair systems. As a real-world benchmark, we
consider the aforementioned recidivism prediction tool COMPAS [5]. Unlike the
synthetic benchmarks, this is also an example of a prediction system, such that
more complex specifications become relevant. We show that RTLola is able to
express these specifications succinctly and effectively alert to unfairness in the
prediction system early. All experiments can be found in Section 5.

Contributions. To summarize, we make the following contributions:

– We formalize the estimation of probabilities from single executions in stream-
based monitoring.

– We implement RTLola monitors that allow the monitoring of a wide range
of algorithmic-fairness specifications from the literature.

– We present a generator for constructing challenging benchmarks related to
algorithmic fairness in job application and university admission.

– We perform an extensive experimental evaluation on these synthetic bench-
marks, as well as on a real-world data set from the COMPAS tool.

1.3 Related Work

Efforts of the machine learning community generally aim more at improving the
fairness of learned models than rigorously verifying it [35]. Three categories of

4 J. Baumeister et al.

mechanisms stand out, namely Pre-Processing [30,22], In-Processing [1,31], and
Post-Processing [38,17]. Our work on monitoring algorithmic fairness is an or-
thogonal effort that allows us to audit learned systems even when their training
process cannot be influenced, as we treat the learned system as a black box. We
present a general approach based on RTLola and encode popular fairness prop-
erties, such as equalized odds. These techniques can also be used to encode other
fairness properties such as equal opportunity [26] or counterfactual fairness [32].

Related to our effort of verifying and testing fairness, a variety of different
approaches in the formal methods community exist: Udeshi et al. [43] propose an
automated and directed testing technique to generate discriminatory inputs for
machine learning models. FairTest [42] is a framework for specifying and testing
algorithmic fairness. A similar approach is given by Bastiani et al. [7] by using
adaptive concentration inequalities to design a scalable sampling technique for
providing fairness guarantees. Albarghouthi et al. [3] transform fairness proper-
ties as probabilistic program properties and develop an SMT-based technique
to verify fairness of decision-making programs. Albarghouthi and Vinitsky [4]
propose a white-box monitoring technique based on adding annotations in a pro-
gram, but they cannot reason about temporal properties, unlike our approach.
To certify individual fairness, Rouss et al. [39] introduce a local property that
coincides with robustness within a particular distance metric. Another approach
is to repair biased decision systems with a program repair technique [2]. Teuber
and Beckert [40] have made an intriguing connection between secure information-
flow and algorithmic fairness, and use information-flow tools for verifying fair-
ness of white-box programs. Henzinger et al. propose monitoring of probabilistic
specification expressions (PSEs) [27] and extensions [29] for monitoring algo-
rithmic fairness properties [28]. Baum et al. [8] combine monitoring and input
generation for a probabilistic falsification technique aimed at individual fairness.
Cano et al. [14] propose fairness shields that combine monitoring and enforce-
ment of fairness properties. In our work, we show that it is possible to use the
widely studied formalism of stream-based monitoring languages [9] to go even
further by additionally considering temporal aspects of fairness such as delays
between relevant events. Notably, this is possible without any pre-processing of
the stream-events that may be needed for, e.g., PSEs, as this is already han-
dled by stream-based monitoring languages. These languages predate the PSE
approach by decades [18] and have already proven useful in diverse areas such
as unmanned aircraft [10,11] and network monitoring [21]. We use RTLola in
this paper, but the general ideas may also be adapted to other stream-based
languages, such as TeSSLa [16] or Striver [25].

The usage of opaque machine-learning models in high-stake scenarios has
sparked scholarly debate on its ethics [13,34], as well as extensive governmental
regulation [6,15]. Given that these models promise to be more accurate [33] and
ultimately even more impartial than human decision makers, there seems to be
a clear trend toward further adoption. As we show here, RTLola can be a useful
tool for alleviating unintended negative side effects of this trend by promoting
effective monitoring of the decision system during deployment.

Stream-Based Monitoring of Algorithmic Fairness 5

2 Preliminaries

We briefly recall the necessary background on probability theory, algorithmic
fairness and stream-based monitoring with RTLola.

2.1 Probability Theory

A probability space is a tuple (Ω, E ,P), where Ω is a sample space and E is a σ-
algebra over Ω, i.e., we have ∅ ∈ E , A ∈ E =⇒ Ā ∈ E , and A0, A1, . . . ∈ E =⇒⋃∞

i=0 Ai ∈ E . Finally, P is a probability measure E → R, i.e., a non-negative
function with P(Ω) = 1, P(∅) = 0 that satisfies countable additivity: For any
sequence of pairwise disjoint events A0, A1, . . . ∈ E we have that P(

⋃∞
i=0 Ai) =

Σ∞
i=0P(Ai). A random variable is a function X : (Ω, E) → (Γ,V) that maps

elements of the sample space Ω to some set Γ equipped with the σ-algebra V,
such that X−1(B) ∈ E for all B ∈ V. Such an X induces a probability measure
on (Γ,V) as P(B) = P(X−1(B)) for all B ∈ V. Lastly, the conditional probability
of some A ∈ E given some B ∈ E is defined as P(A | B) = P(A∩B)

P(B) .

2.2 Algorithmic Fairness

Algorithmic fairness is an umbrella term for several specifications that have
recently been put forward for decision and classification systems [38]. The general
idea is to compare the probabilities of certain good and bad events between social
groups, e.g., we may require the probability of a loan request being accepted
conditioned on the applicant being in group A to be not too far from the same
probability conditioned on the applicant being in group B. In the following,
we introduce the fairness specifications considered in this work, as they have
been proposed in the literature. Note that these pure definitions do not consider
timing issues such as the good outcome being obtained within a certain bound.

The simplest fairness specification is demographic parity, which requires the
probabilities of good outcomes conditioned on the different groups to differ no
more than the predefined parameter ϵ.

Definition 1 (Demographic Parity [20]). A decision system for the binary
decision A satisfies demographic parity, iff∣∣P(A = 1 | G = 1)− P(A = 1 | G = 0)

∣∣ ≤ ϵ .

The value of G represents the group a person belongs to (e.g., male or female),
while A indicates the positive outcome. Demographic parity ensures that positive
outcomes are assigned to the two groups at a similar rate, but it does not consider
background factors that may be relevant to assess the fairness of a system. For
instance, men and women may apply unproportionally to different departments
of a university, such that the admission process of the university appears to be
unfair while the same processes of the individual departments are fair.1 If the
1 This observation has been termed Simspon’s Paradox by Colin Blyth [12].

6 J. Baumeister et al.

existence of such confounding variables is known, it may be more appropriate to
use a fairness measure such as conditional statistical parity.

Definition 2 (Conditional Statistical Parity [17]). A decision system for
the binary decision A satisfies conditional statistical parity, iff∣∣P(A = 1 | L = 1, G = 1)− P(A = 1 | L = 1, G = 0)

∣∣ ≤ ϵ .

Conditional statistical parity states, similar to demographic parity, that people
from different groups should have an equal probability of positive outcomes.
Additionally, it further conditions the probability on other legitimate factors
L, e.g., confounding variables such as the department that students apply to.
These factors have to be determined a priori and are based on the background
knowledge of the specifier.

While the above parity measures define a notion of fairness for decision sys-
tems with binary outcomes, many fairness issues arise also for prediction systems
that, e.g. classify the recidivism risk of defendants in criminal trials [5]. Fairness
of such systems is more accurately described by comparing the true and false
positive rates between groups, as done by the equalized-odds fairness measure.

Definition 3 (Equalized Odds [26]). A prediction system Ŷ for the outcome
Y satisfies equalized odds, iff∣∣P(Ŷ = 1 | G = 1, Y = 0)− P(Ŷ = 1 | G = 0, Y = 0)

∣∣ ≤ ϵ and∣∣P(Ŷ = 1 | G = 1, Y = 1)− P(Ŷ = 1 | G = 0, Y = 1)
∣∣ ≤ ϵ .

Here, Ŷ describes the predicted value, while Y is the true value of an outcome to
be predicted. Hence, the equalized-odds measure requires the differences between
the false positive rates (FPR) and the differences between the true positive rates
(TPR) of all pairs of groups to be within a predefined bound ϵ.

2.3 Stream-based Monitoring with RTLola

In this work, we use the stream-based specification language RTLola to monitor
the previously described fairness definitions. RTLola uses stream-equations to
translate streams of input data to output streams and trigger conditions that
describe violations of the specification. We illustrate the RTLola language with
a small example and refer for more details to [9,10,23].

Example 1 (RTLola Example).

1 input user_id : UInt64, value : Int64
2 output amount(user)
3 spawn with user_id
4 eval when user_id = user with value + amount(user).last(or: 0)
5 trigger @value amount.aggregate(over_instances: all, using:

max).defaults(to: 0) > 500 "Upper Limit Violation"
6 trigger @1Hz value.aggregate(over: 1s, using: count) > 5 "Too many

transactions"

Stream-Based Monitoring of Algorithmic Fairness 7

The specification declares two input streams describing a transaction to a user:
The input stream user_id encodes a unique identifier for each user and value
represents the amount. Next, the output stream amount sums up the values
per user using parameterization. With parameterization, the output stream de-
scribes a set of instances and the specification can refer to each instance with the
parameter, in this example the parameter user. The spawn declaration describes
when a new instance is added to this set, in our case for every new user_id. The
eval declaration describes for each instance when a new value is computed with
the when-clause and the computation of this value with the with-clause. Here,
each instance of the amount stream is computed when the user_id is equal to
the instance parameter and the new value is computed as the sum of the previ-
ous value of this instance and the current value of the value-stream. The first
trigger then aggregates over all instances of the amount stream, takes the max-
imum value, and compares this value against a threshold. Since in theory this
access could fail, we need to provide a default value. If this condition is true, the
generated monitor for this specification emits the corresponding trigger message.
The second trigger checks the number of transactions over the last five seconds,
illustrating the real-time capabilities of RTLola.

The semantics of RTLola is defined over a collection of timed data streams
and intuitively checks whether the values in the collection correspond to the
computed values for the stream equation. Additionally, it validates that the
time is monotone.

Definition 4 (Data Streams). A collection of timed data streams ω ∈ W
over a set of input streams ID↑ and output streams ID↓ is the combination of a
StreamMap and a TimeMap.

Stream := InstanceID → Time → V⊥
StreamMap := ID↑ ⊎ ID↓ → Stream
TimeMap := Time → R

W := StreamMap × TimeMap

Figure 2 gives an intuition on the data stream representation based on the
specification in Example 1. The TimeMap is a total function from the dis-
crete timestamps, indicated at the top of the figure, to a real-time value. In
the examples, the first three events arrive at the timestamps 0.6, 0.8, and 2.4.
Given ω = (streams, times) ∈ W, we use ω(t) := times(t) to get the real-
time value of a discrete timestamp t ∈ Time. The StreamMap assigns each
stream identifier and instance to an infinite sequence of optional values, where
⊥ indicates that the stream instance does not produce a value. In our exam-
ple, ω(user_id)(⊤) represents the infinite sequence of the input stream, and
ω(user_id)(⊤)(1) returns the value of the input stream at time 1. Note that
we use ⊤ as the instance identifier if the stream is not parameterized, i.e., only
one stream instance exists in the StreamMap. In contrast, the output stream
amount is parameterized, such that different instances (e.g., ω(amount)(1)) ex-
ist. Formally, infinite sequences are represented by total functions, and we define

8 J. Baumeister et al.

Time

TimeMap

StreamMap

Stream ω(user_id)

ω(user_id)(⊤)

Stream ω(amount)

ω(amount)(0)

ω(amount)(1)

ω(amount)(2)

0 1 2 · · ·

ω(0) = 0.6 ω(1) = 0.8 ω(2) = 2.4 · · ·

ω(user_id)(⊤)(0) = 2 ω(user_id)(⊤)(1) = 0 ω(user_id)(⊤)(2) = 2 · · ·

ω(amount)(0)(0) = ⊥ ω(amount)(0)(1) = 2 ω(amount)(0)(2) = ⊥ · · ·

ω(amount)(1)(0) = ⊥ ω(amount)(1)(1) = ⊥ ω(amount)(1)(2) = ⊥ · · ·

ω(amount)(2)(0) = 3 ω(amount)(2)(1) = ⊥ ω(amount)(2)(2) = 5 · · ·

Fig. 2: The data streams exemplified on the specification from Example 1.

the access functions ω(sid) := streams(sid) for the stream sid ∈ ID↑ ⊎ ID↓,
ω(sid)(i) := streams(sid)(i) to access stream instances i ∈ InstanceID of stream
sid , and ω(sid)(i)(t) for the stream instance value at discrete timestamp t.

The set of stream events of ω is defined as Events(ω) := {(r, f) | ∀sid ∈ ID↑⊎
ID↓, i ∈ InstanceID . ω(sid)(i)(ω−1(r)) = f(sid)(i)} ⊆ Eω := R × (ID↑ ⊎ ID↓ →
InstanceID → V⊥). Hence, Eω denotes the set of all conceivable stream events
over the datatypes defined by ω, while Events(ω) denotes the concrete events
appearing in ω. For our example above, Events(ω) would map each real-time
timestamp to the corresponding column in the figure.

3 Statistical Estimates from Data Streams

In this section, we outline the formal background for our RTLola specifications
that estimate algorithmic fairness properties. We first describe how to extract
multiple samples from a single execution of our system, we then describe how
to use random variables to describe fairness properties in this setting, and lastly
how we estimate the probability of events over these random variables.

3.1 Extracting Independent Trials from Data Streams

The central challenge in our setting is that we observe only a single execution
of the system under scrutiny but want to perform a statistical estimation that
naturally gets more accurate the more samples become available. We utilize the
fact that in our applications, the single system execution describes a number of
independent trials pertaining to the specification we care about, e.g., a single
execution of the COMPAS tool for assessing the recidivism risk of defendants
describes a large number of independent risk screenings. Hence, we propose a
principled way to extract multiple samples from the observed system execution.
At its core lies the definition of the probability space (Ωω, Eω,Pω) associated
with the data streams ω ∈ W. The sample space Ωω is constructed as the
set of all possible sequences of dependent events, which we identify through a

Stream-Based Monitoring of Algorithmic Fairness 9

dependence relation δ ⊆ E2
ω. This predefined δ is an equivalence relation over

the stream events Eω whose equivalence classes define the possible sets of events
that form mutually independent trials. Elements of the sample space Ωω are
ordered subsets of such dependent events: Ωω := {E0 . . . En ∈ En | ∀ 0 ≤ i ≤
j ≤ n. t(Ei) ≤ t(Ej) ∧ δ(Ei, Ej)} and we take Eω simply as the powerset of Ωω,
while Pω is unknown to us.

Example 2. Consider the COMPAS recidivism risk assessment tool described
in Section 1.1 and the corresponding data streams illustrated in Figure 1. We
assume that the outcomes of individual screenings do not affect each other,
and hence define the dependence relation such that two events are dependent if
they refer to the same defendant (identified through the stream id), i.e., δ :=
{(E0, E1) | E0(id) = E1(id)}. Consequently, the data streams ω illustrated in
Figure 1 describe the following samples s0,1,2 ∈ Ωω.

s0 = (0.0, SCREEN, 0, A, HIGH) . . .

s1 = (0.0, SCREEN, 1, B, LOW)(1.0, RECIDIVISM, 1, -, -) . . .

s2 = (1.0, SCREEN, 2, B, HIGH) . . .

Hence, our dependence relation δ partitions the data streams of the system into
independent sequences of stream events, that naturally grow the more events are
produced by the system. Note that the first components in the stream events
with the values 0.0 and 1.0 encode the dates, i.e., 2013-01-02 and 2013-01-03,
via the StreamMap as outlined in Definition 4.

3.2 Defining Indicator Variables

Having defined our probability space through a dependence relation δ, the next
step is to define Bernoulli random variables X : Ωω → {0, 1} that serve as
indicator variables for the events relevant to algorithmic fairness.

Example 3. For instance, we may want to specify equalized odds (Definition 3)
for the COMPAS risk assessment tool from Section 1.1. We may naturally de-
fine the prediction Ŷ for a defendant associated with the sample ω as Ŷ (ω) :=
∃i. ω(event)(i) = SCREEN ∧ ω(risk)(i) = HIGH, and similarly, the true out-
come is defined as Y (ω) := ∃i. ω(event)(i) = RECIDIVISM. Here, we quantify
over the time stamps i. Membership to, e.g., group A is captured by GA(ω) :=
∃i. ω(event)(i) = SCREEN ∧ ω(group)(i) = A. It is also possible to define a san-
ity check as an additional variable that we condition on. For example, we may
only consider recidivism events that happen less than two years after a screen-
ing event, as this is the specific time horizon that the COMPAS tool is target-
ing [5,37]. We can achieve this by utilizing the real-time information of the stream
events with the variable Y<2y := ∃i, j. ω(event)(i) = SCREEN ∧ ω(event)(j) =
RECIDIVISM ∧ ω(j) − ω(i) < 730.0. Hence the FPR part of a specification of
equalized odds with ϵ = 0.1 is:

φ :=
∣∣P(Ŷ = 1 | GA = 1, Y<2y = 1) − P(Ŷ = 1 | GA = 0, Y<2y = 1)

∣∣ ≤ 0.1 .

10 J. Baumeister et al.

3.3 Maximum A Posteriori Estimation

Since during monitoring we obtain samples sequentially, the first samples have
an unproportionally large impact on the assessment of fairness at the start of
monitoring, since the estimation of the conditional probabilities in a formula
like φ only gets more robust over time. Hence, we use methods from Bayesian
statistics to control the trigger behavior of the monitor at the start of an exe-
cution: maximum a posteriori (MAP) estimation [36] allows us to take a prior
belief about the conditional probabilities that make up the fairness specifications
into consideration, as well as a degree of confidence therein. Formally, for every
conditional probability Θ = P(A | B) in our specification we require a prior γ
and a confidence κ. Then, the estimate Θ̂ is given as:

Θ̂ =
SA∩B + γ(ω)κ

SB + κ
,

where SA∩B is the number of samples that satisfy A and B, while SB is the
number of samples satisfying B. The parameters γ, κ and ϵ suffice to achieve
sufficient initial robustness of the monitor, which we demonstrate experimentally
in Section 5. The longer the observed system execution gets and the more samples
become available, the less influence these parameters have on the monitor verdict.

Dynamic Updating of the Prior Belief. While MAP is a standard method from
statistics, we face unique challenges when dynamically analyzing data streams,
since we only have limited knowledge about the monitored system. Certain back-
ground knowledge like how many free places and applicants emerge during the
execution may change the prior belief we have about the conditional probabili-
ties. For instance, we may know that a university always fills all seminars with
students, but the chance of an individual student’s application to be accepted of
course still depends on the number of seminar places and the number of other
students applying. To account for such dynamic updates to the prior belief, we
consider the prior γ to be a function of the data streams ω, such that it may be
defined, e.g., as the ratio of places and applying students.

4 Implementation in RTLola

This section describes the implementation of the fairness definitions from Sec-
tion 2.2 in the stream-based specification language RTLola. In general, each fair-
ness specification follows the same structure: First, we extract information on
independent trials from the input data and store it in parameterized streams that
directly correspond to the indicator variables that are relevant in a given fairness
specification. These variables can use the full power of RTLola expressions such
as stream aggregations and real-time properties. We then build accumulators
that are used in estimating the conditional probabilities. Last, we define trigger
conditions that indicate that the estimates violate the fairness specification.

Stream-Based Monitoring of Algorithmic Fairness 11

4.1 Implementation of Equalized Odds for the COMPAS Tool

We illustrate this principle by discussing the implementation of equalized odds
(cf. Example 3). The RTLola specification for this fairness property, in the con-
text of the COMPAS system, is shown in Figure 3. The specification is defined
over input data streams that encode the relevant events of the COMPAS system
as described in Section 1.1: The "SCREEN" event includes the unique identifier
of a defendant in the input stream id, their group attribute in the input stream
group and the COMPAS score describing the predicted likelihood of that person
re-offending in the input stream score. The COMPAS score is an integer value
between 0 and 10 as in the original data set. We use the same classification of
any score above 6 as high risk as used by ProPublica [5] in the original investiga-
tion. If the defendant re-offends, the second event "RECIDIVISM" is given to the
monitor together with the identifier of the defendant. The timestamps of these
events are implicitly included through RTLola.

Storing Independent Trials in Parameterized Streams. The specification uses
three parameterized output streams to store the relevant information of inde-
pendent trials, where the parameter i identifies the trial, e.g., an individual
defendant. The streams are days_per, has_re and tp_event. Each of these
streams has a lifecycle of exactly 730 days after screening the defendant. In RT-
Lola, this lifecycle is represented with the spawn, starting the lifecycle with the
first occurrence for each identifier, and the close declaration, ending the lifecycle
when the associated condition is satisfied. The output stream days_per counts
the number of days after the screening of the defendant and the output stream
has_re maps a "RECIDIVISM" event to the defendant. Then, the output stream
tp_event synchronizes all information about one defendant after 730 days. This
realizes the extraction of independent trials as described formally in Section 3.1.
For example, the indicator variable Y<2y is described with the second clause of
the eval-when declaration of the stream using stream aggregation (line 18), i.e.,
has_re(i).aggregate(over: 730d, using: ∃). This expression checks if the
defendant re-offended during a timeframe of 730 days using stream aggregation
and follows the definition from Example 3. The stream tp_event is additionally
parametrized with the group and the score of the defendant from which we can
derive the indicator variables GA and C directly. After the indicator variables are
computed and used by the accumulators as described in the following paragraph,
we close these stream instances to free the underlying memory since their value
is not required after the first use of the variable.

Accumulator Variables and MAP Estimation. The specification then stores the
accumulated information for each group using stream parameterization, where
this time the parameter g identifies the group associated with the stream. It
uses the stream abs_re to count the number of defendants that re-offendend
in a given group (line 22). Similarly, the stream abs_hr_re counts the number
of re-offenders per group that were scored as high-risk by COMPAS (line 26).
The parameterized stream tp_ratio then computes for each group the true-
positive ratio P(Ŷ = 1 | G = g, Y = 1), i.e., the probability that a person was

12 J. Baumeister et al.

1 input event : String
2 input id : Int64
3 input group : String
4 input score : Int64
5
6 /// Defendant Information
7 output days_per(i)
8 spawn with id
9 eval @Global(1d) with days_per(i).last(or: 0) + 1

10 close when days_per(i) = 730
11 output has_re(i)
12 spawn with id
13 eval when id == i with event == "RECIDIVISM"
14 close @Global(1d) when days_per(i).hold(or: 0) = 730
15 output tp_event(i, g, s)
16 spawn with (id, group, score)
17 eval @Global(1d)
18 when days_per(i).hold(or: 0) = 730 ∧ has_re(i).aggregate(over:

730d, using: ∃) with s > 6
19 close @Global(1d) when days_per(i).hold(or: 0) = 730
20
21 /// TP Ratio
22 output abs_re(g) : UInt64
23 spawn with group
24 eval @Global(1d) with abs_re(g).last(or: 100) +
25 tp_event.aggregate(over_instances: All(ii, ig, is => ig = g),

using: count)
26 output abs_hr_re(g) : UInt64
27 spawn with group
28 eval @Global(1d) with abs_hr_re(g).last(or: 50) +
29 tp_event.aggregate(over_instances: All(ii, ig, is => ig = g),

using: sum)
30 output tp_ratio(g)
31 spawn with group
32 eval when abs_re(g) != 0
33 with cast<UInt64, Float64>(abs_hr_re(g)) / cast<UInt64,

Float64>(abs_re(g))
34
35 /// Equalized Odds: True Positive
36 trigger @1d tp_ratio.aggregate(over_instances: all, using:

max).defaults(to: 0.0) - tp_ratio.aggregate(over_instances: all,
using: min).defaults(to: 0.0) > 0.1

Fig. 3: RTLola specification computing and checking the differences of the true
positive ratios between all groups, which makes up one half of the equalized-odds
specification for the COMPAS data set.

Stream-Based Monitoring of Algorithmic Fairness 13

assigned a high-risk score under the condition that this person has re-offended.
To encode the MAP estimation from Section 3.3, we assign the abs_re and
abs_hr_re streams different default values when accessing the previous value,
which effectively initializes the streams with these default values at the first time
point. Finally, the trigger (line 36) encodes a violation of the fairness definition
using the following underlying formula:

max g∈G{P(Ŷ = 1 | G = g, Y = 1)} −ming∈G{P(Ŷ = 1 | G = g, Y = 1)} ≤ ϵ.

Here, G is the set of all groups. Hence, this formula takes the maximum dif-
ference between any two groups and compares it against the threshold ϵ. This
suffices to infer a violation in all cases. Additionally, the exact values of the ratios
can be read from the parameterized streams such as tp_ratio. The full spec-
ification for equalized odds extends this principle to the false positive ratio by
defining parameterized streams abs_not_re to count the defendants per group
that did not re-offend, abs_hr_not_re to count the number of these that were
screened high-risk, and fp_ratio for the resulting ratio. Additionally, the trig-
ger condition is extended to account for all pairs of parameters of the fp_ratio
stream. The experimental results of running this specification on the COMPAS
data from the original ProPublica investigation can be found in Section 5.2.

5 Case Studies

We specified all algorithmic fairness requirements defined in Section 2.2 with
RTLola in a similar way as outlined for equalized odds in Section 4. In this
section, we report on experiments with these fairness specifications in a variety
of settings2. We first consider synthetically constructed data streams related to
hiring and application scenarios that allow us to study the utility and efficiency of
the approach under varying assumptions. Afterward, we consider data from the
COMPAS recidivism risk assessment tool discussed in Section 1.1 to assess the
utility of our tool in a real-world setting. The experiments were conducted with
Ubuntu 24.04, a 4-core Intel i5 2.30GHz processor, as well as 8GB of memory.

5.1 Synthetic Scenarios

Our two synthetic scenarios deal with hiring done by a company and seminar
assignments at a university. For the hiring scenario, we make the simplifying
assumption that the company has no fixed limit on the number of employees
it can hire. For the seminar assignment, we assume that each seminar has a
fixed number of places. Both scenarios are synthesized from a generator script
that allows us to specify and scale a number of interesting parameters such as
the number of applicants and seminars, as well as the number of places per
seminar. The input streams of both scenarios encode the individual applicants
and events related to them, i.e., there is an event for an applicant with a specific
2 Our artifact is available on Zenodo: https://doi.org/10.5281/zenodo.14627198.

https://doi.org/10.5281/zenodo.14627198

14 J. Baumeister et al.

(a) Fair algorithm. (b) Unfair algorithm.

Fig. 4: Demographic parity of hiring algorithms. The Female and Male lines cor-
respond to the estimates Θ̂F,M for women and men, respectively. The Difference
line shows the absolute difference between these ratios, while the dashed red line
at 0.1 indicates the threshold parameter ϵ (cf. Definition 1).

id, gender, and qualification. For the seminar assignment system, also an input
seminar to indicate which seminar the applicant applies to, such that we can also
monitor conditional statistical parity in addition to demographic parity. Further,
seminars have a predefined maximum number of places. Additionally, there is a
separate input stream accepted that gives the IDs of accepted applicants. The
generator allows to specify which decision algorithm should be used. We discuss
these with the experimental results in the following.

Company Hiring. This scenario modeling a hiring system at a company consists
of truly independent trials. We can adjust the probabilities ΘF = P(A = 1 |
F = 1) and ΘM = P(A = 1 | M = 1) with which women and men get accepted,
respectively. In this way, we can compare the monitoring outcome of a hiring
system that is unfair by construction to a truly fair one. In the unfair system,
we set the probability to be accepted for men to ΘM = 0.5 and for women to
ΘF = 0.2, while both are 0.5 in the fair system. We then monitor for demographic
parity (cf. Definition 1). The prior (cf. Section 3.3) is set to 0.5 with a confidence
of 24 (a more detailed discussion on how to set these parameters follows in the
next paragraph). Graphs for the estimated conditional probabilities Θ̂F,M , their
difference, and the trigger condition (based on ϵ = 0.1) are depicted in Figure 4.
As we can see, the fair algorithm stabilizes far below the trigger threshold. The
diffuse behavior at the start, which usually would result in a number of false
alarms, is held back by our MAP approach, such that no triggers are thrown.
In contrast, after around time point 85, the unfair algorithm constantly raises
triggers indicating unfairness, as the difference of the conditional probabilities
stabilizes far above the threshold of 0.1, overpowering the prior belief. These
results confirm that monitoring can adequately discern between unfair and fair
systems after a reasonably small number of decisions has been made.

Stream-Based Monitoring of Algorithmic Fairness 15

Fig. 5: Number of triggers thrown for different
values of confidence κ (k) and threshold ϵ (e).

University Application. How to
choose the right parameters?
We now show that synthetic ex-
periments can be an effective
way to choose the confidence
κ and threshold ϵ. We consider
different decision-making algo-
rithms for distributing places to
applicants. This lets us explore
how the different parameters
influence the number of triggers
on different algorithms. The
first algorithm is First Come
First Served (FCFS), which accepts the first people applying regardless of other
attributes. The second is Randomize, which picks randomly in the pool of ap-
plicants for a given seminar. The third algorithm, called Qualification, picks the
most qualified people for each seminar. The last algorithm is EqualGender, which
tries to ensure the same acceptance rates for all groups in the long run. Note
that demographic parity does not take into account additional attributes such
as the qualification, and hence the fairness of, e.g., the Qualification algorithm
completely depends on the randomization of the qualification values. Similarly,
the fairness of FCFS depends on the application times which are generated ran-
domly. In Figure 5, we compare the number of thrown triggers for the different
parameters on two thousand generated scenarios for every algorithm with a hun-
dred applicants each. Our specification of demographic parity with parameters
κ = 54 and ϵ = 0.085 gets violated 1031 times over all the scenarios generated
with the EqualGender algorithm (which have 200000 distinct events). A general
trend that can be inferred from Figure 5 is that parameter values that are too
low lead to a large amount of triggers. Finding the right parameters requires
estimating how many applicants are expected, and selecting them to achieve
a desired contrast between the different algorithms on the simulated scenarios.
For instance, a confidence of 80 and threshold of 0.1 results in 187× as many
triggers on the random algorithm than on the EqualGender algorithm, while a
confidence of 30 and threshold of 0.1 results only in around 6× as many triggers
on the random algorithm.

Runtime Comparison. It is a viable question to ask what advantages monitoring
with a stream-based specification language has over a simple database implemen-
tation. Therefore, we have compared our approach with a naïve implementation
using SQLite, and an advanced implementation using RisingWave [44], a state-of-
the-art streaming database [24]. For the databases we first defined a SQL query
that encodes the fairness specifications and returns a Boolean value, similar to
an RTLola trigger. During execution we then iteratively update the database
with new events. Crucially, the streaming database is optimized for such incre-
mental computations and only updates the changed values in the query. This
is a similar approach to the RTLola monitor, which also incrementally and effi-

16 J. Baumeister et al.

(a) Demographic parity. (b) Conditional statistical parity.

Fig. 6: Runtime comparison between monitoring and database implementations.
The bars report the average runtime over ten generated scenarios.

ciently updates its valuation upon encountering new events. We have generated
seminar application scenarios with a varying number of applicants and report
the average runtime of the three approaches in Figure 6. We stopped at 500 ap-
plicants in the case of conditional statistical parity because the SQLite approach
already took more than 100 seconds. The results show that RTLola is faster
than the database approaches in our scenarios. As a side result, we also see that
the streaming database RisingWave outperforms the SQLite implementation on
all but the smallest inputs, which is even more pronounced for conditional sta-
tistical parity. Monitoring with RTLola still significantly outperforms even the
advanced streaming database approach. This runtime advantage gets particu-
larly important for systems meant to be deployed at a large scale, such as the
COMPAS recidivism risk assessment tool.

5.2 Monitoring Fairness of the COMPAS Tool

We revisit the motivating example from Section 1.1 to study the utility of our
approach on real-world data from the recidivism risk prediction tool COMPAS.
We use the same data set of COMPAS screenings between 2013 and 2014 in
Broward County, Florida, which was also used by ProPublica [5] in their original
investigation. We converted their original data into streams that are temporally
ordered to simulate online monitoring of the COMPAS tool. We then executed
our RTLola monitor with the equalized-odds specification as outlined in Section 4
for every combination of social groups. We used a confidence κ of 100, prior
γ(ω) = 0.5 and a threshold ϵ = 0.1. In Figure 7, we illustrate the probability
estimates and corresponding differences for African-American and European-
American defendants. Note that the first two years are not shown, as a false
positive result can only be definitely inferred after two years without recidivism,
since this is the prediction horizon of the COMPAS tool as outlined in the
COMPAS user guide [37]. As we can see, once the first two years have passed and
the first definite outcomes can be inferred, unfairness can be established after less
than a month, since the false positive rates of the groups quickly diverge. Since

Stream-Based Monitoring of Algorithmic Fairness 17

Fig. 7: True positive rates (TP) and false positive rates (FP) of African-
American and European-American defendants while monitoring equalized odds
on the COMPAS data set [5]. The dashed red line shows threshold ϵ.

such tools are deployed over a long time-horizon, these initial two years without
verdict bear comparatively little weight. Moreover, the judgment is robust and
stays far above the threshold afterward. This experiment with data from the
COMPAS tool shows that stream-based monitoring can be a viable method to
detect unfairness of prediction systems early, and hence reduce the number of
unfair decisions and predictions.

6 Conclusion

We have studied the monitoring of algorithmic fairness with the stream-based
specification language RTLola. This language not only allows us to encode the
estimation of conditional probabilities inherent to algorithmic-fairness specifica-
tions but also the timing requirements common to real-world applications where
these specifications are crucial. We have demonstrated this exemplarily with the
COMPAS tool that is used to predict the recidivism risk of defendants. Moreover,
we have contributed a benchmark generator for constructing synthetic scenar-
ios related to job application and university admission scenarios and have used
these scenarios for an extensive evaluation of our approach, which shows that it
is able to detect the ground truth reliably and efficiently. In the future, we plan
on leveraging RTLola’s innate capabilities for reasoning about data and time to
express even more complex algorithmic-fairness specifications dealing with, e.g.,
expected values of credit scores or response times.

Acknowledgments. This work was partially supported by the DFG in project
389792660 (TRR 248 – CPEC) and by the ERC Grant HYPER (No. 101055412).
Funded by the European Union. Views and opinions expressed are however those
of the authors only and do not necessarily reflect those of the European Union or
the European Research Council Executive Agency. Neither the European Union
nor the granting authority can be held responsible for them.

18 J. Baumeister et al.

References

1. Agarwal, A., Beygelzimer, A., Dudík, M., Langford, J., Wallach, H.M.: A reduc-
tions approach to fair classification. In: Dy, J.G., Krause, A. (eds.) Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine Learn-
ing Research, vol. 80, pp. 60–69. PMLR (2018), http://proceedings.mlr.press/
v80/agarwal18a.html

2. Albarghouthi, A., D’Antoni, L., Drews, S.: Repairing decision-making programs
under uncertainty. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Veri-
fication - 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10426,
pp. 181–200. Springer (2017). https://doi.org/10.1007/978-3-319-63387-9_9,
https://doi.org/10.1007/978-3-319-63387-9_9

3. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.V.: Fairsquare: probabilistic ver-
ification of program fairness. Proc. ACM Program. Lang. 1(OOPSLA), 80:1–80:30
(2017). https://doi.org/10.1145/3133904, https://doi.org/10.1145/3133904

4. Albarghouthi, A., Vinitsky, S.: Fairness-aware programming. In: danah boyd,
Morgenstern, J.H. (eds.) Proceedings of the Conference on Fairness, Account-
ability, and Transparency, FAT* 2019, Atlanta, GA, USA, January 29-31, 2019.
pp. 211–219. ACM (2019). https://doi.org/10.1145/3287560.3287588, https:
//doi.org/10.1145/3287560.3287588

5. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias. there’s soft-
ware used across the country to predict future criminals. and it’s bi-
ased against blacks. ProPublica (2016), https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing

6. Artificial intelligence act (regulation (EU) 2024/1689), official journal ver-
sion of 13 june 2024, http://data.europa.eu/eli/reg/2024/1689/oj (Accessed:
28.01.2024)

7. Bastani, O., Zhang, X., Solar-Lezama, A.: Probabilistic verification of fairness prop-
erties via concentration. Proc. ACM Program. Lang. 3(OOPSLA), 118:1–118:27
(2019). https://doi.org/10.1145/3360544, https://doi.org/10.1145/3360544

8. Baum, K., Biewer, S., Hermanns, H., Hetmank, S., Langer, M., Lauber-Rönsberg,
A., Sterz, S.: Taming the AI monster: Monitoring of individual fairness for effec-
tive human oversight. In: Neele, T., Wijs, A. (eds.) Model Checking Software -
30th International Symposium, SPIN 2024, Luxembourg City, Luxembourg, April
8-9, 2024, Proceedings. Lecture Notes in Computer Science, vol. 14624, pp. 3–
25. Springer (2024). https://doi.org/10.1007/978-3-031-66149-5_1, https:
//doi.org/10.1007/978-3-031-66149-5_1

9. Baumeister, J., Finkbeiner, B., Kohn, F., Scheerer, F.: A tutorial on stream-based
monitoring. In: Platzer, A., Rozier, K.Y., Pradella, M., Rossi, M. (eds.) Formal
Methods - 26th International Symposium, FM 2024, Milan, Italy, September 9-13,
2024, Proceedings, Part II. Lecture Notes in Computer Science, vol. 14934, pp. 624–
648. Springer (2024). https://doi.org/10.1007/978-3-031-71177-0_33, https:
//doi.org/10.1007/978-3-031-71177-0_33

10. Baumeister, J., Finkbeiner, B., Kohn, F., Schirmer, S., Torens, C., Löhr, F., Man-
fredi, G.: Monitoring unmanned aircraft: Specification, integration, and lessons-
learned. In: Computer Aided Verification - 36th International Conference, CAV
2024, Montreal, Canada, July 22-27, 2024 (2024)

http://proceedings.mlr.press/v80/agarwal18a.html
http://proceedings.mlr.press/v80/agarwal18a.html
https://doi.org/10.1007/978-3-319-63387-9_9
https://doi.org/10.1007/978-3-319-63387-9_9
https://doi.org/10.1007/978-3-319-63387-9_9
https://doi.org/10.1145/3133904
https://doi.org/10.1145/3133904
https://doi.org/10.1145/3133904
https://doi.org/10.1145/3287560.3287588
https://doi.org/10.1145/3287560.3287588
https://doi.org/10.1145/3287560.3287588
https://doi.org/10.1145/3287560.3287588
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://data.europa.eu/eli/reg/2024/1689/oj
https://doi.org/10.1145/3360544
https://doi.org/10.1145/3360544
https://doi.org/10.1145/3360544
https://doi.org/10.1007/978-3-031-66149-5_1
https://doi.org/10.1007/978-3-031-66149-5_1
https://doi.org/10.1007/978-3-031-66149-5_1
https://doi.org/10.1007/978-3-031-66149-5_1
https://doi.org/10.1007/978-3-031-71177-0_33
https://doi.org/10.1007/978-3-031-71177-0_33
https://doi.org/10.1007/978-3-031-71177-0_33
https://doi.org/10.1007/978-3-031-71177-0_33

Stream-Based Monitoring of Algorithmic Fairness 19

11. Baumeister, J., Finkbeiner, B., Schirmer, S., Schwenger, M., Torens, C.: Rtlola
cleared for take-off: Monitoring autonomous aircraft. In: Lahiri, S.K., Wang, C.
(eds.) Computer Aided Verification - 32nd International Conference, CAV 2020,
Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 12225, pp. 28–39. Springer (2020). https://doi.org/10.
1007/978-3-030-53291-8_3, https://doi.org/10.1007/978-3-030-53291-8_3

12. Blyth, C.R.: On simpson’s paradox and the sure-thing principle. Journal of the
American Statistical Association 67(338), 364–366 (1972). https://doi.org/10.
1080/01621459.1972.10482387

13. Bostrom, N., Yudkowsky, E.: The ethics of artificial intelligence, p. 316–334. Cam-
bridge University Press (2014)

14. Cano, F., Henzinger, T.A., Könighofer, B., Kueffner, K., Mallik, K.: Fairness
shields: Safeguarding against biased decision makers. CoRR abs/2412.11994
(2024). https://doi.org/10.48550/ARXIV.2412.11994, https://doi.org/10.
48550/arXiv.2412.11994

15. Colorado senate bill 24-205, https://leg.colorado.gov/sites/default/files/
2024a_205_signed.pdf (Accessed: 28.01.2024)

16. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
Tessla: Temporal stream-based specification language. In: Massoni, T., Mousavi,
M.R. (eds.) Formal Methods: Foundations and Applications - 21st Brazilian
Symposium, SBMF 2018, Salvador, Brazil, November 26-30, 2018, Proceedings.
Lecture Notes in Computer Science, vol. 11254, pp. 144–162. Springer (2018).
https://doi.org/10.1007/978-3-030-03044-5_10, https://doi.org/10.1007/
978-3-030-03044-5_10

17. Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., Huq, A.: Algorithmic deci-
sion making and the cost of fairness. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Halifax, NS,
Canada, August 13 - 17, 2017. pp. 797–806. ACM (2017). https://doi.org/10.
1145/3097983.3098095, https://doi.org/10.1145/3097983.3098095

18. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: 12th International Symposium on Temporal Representation and Rea-
soning (TIME 2005), 23-25 June 2005, Burlington, Vermont, USA. pp. 166–
174. IEEE Computer Society (2005). https://doi.org/10.1109/TIME.2005.26,
https://doi.org/10.1109/TIME.2005.26

19. Dastin, J.: Amazon scraps secret ai recruiting tool that showed bias against
women (2018), https://www.reuters.com/article/idUSKCN1MK0AG/ (Accessed:
19.04.2024)

20. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness
through awareness. In: Goldwasser, S. (ed.) Innovations in Theoretical Com-
puter Science 2012, Cambridge, MA, USA, January 8-10, 2012. pp. 214–226.
ACM (2012). https://doi.org/10.1145/2090236.2090255, https://doi.org/
10.1145/2090236.2090255

21. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based specifica-
tion language for network monitoring. In: Falcone, Y., Sánchez, C. (eds.) Runtime
Verification - 16th International Conference, RV 2016, Madrid, Spain, September
23-30, 2016, Proceedings. Lecture Notes in Computer Science, vol. 10012, pp. 152–
168. Springer (2016). https://doi.org/10.1007/978-3-319-46982-9_10, https:
//doi.org/10.1007/978-3-319-46982-9_10

https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1080/01621459.1972.10482387
https://doi.org/10.1080/01621459.1972.10482387
https://doi.org/10.1080/01621459.1972.10482387
https://doi.org/10.1080/01621459.1972.10482387
https://doi.org/10.48550/ARXIV.2412.11994
https://doi.org/10.48550/ARXIV.2412.11994
https://doi.org/10.48550/arXiv.2412.11994
https://doi.org/10.48550/arXiv.2412.11994
https://leg.colorado.gov/sites/default/files/2024a_205_signed.pdf
https://leg.colorado.gov/sites/default/files/2024a_205_signed.pdf
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1145/3097983.3098095
https://doi.org/10.1145/3097983.3098095
https://doi.org/10.1145/3097983.3098095
https://doi.org/10.1145/3097983.3098095
https://doi.org/10.1145/3097983.3098095
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://www.reuters.com/article/idUSKCN1MK0AG/
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10

20 J. Baumeister et al.

22. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.:
Certifying and removing disparate impact. In: Cao, L., Zhang, C., Joachims, T.,
Webb, G.I., Margineantu, D.D., Williams, G. (eds.) Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Syd-
ney, NSW, Australia, August 10-13, 2015. pp. 259–268. ACM (2015). https://doi.
org/10.1145/2783258.2783311, https://doi.org/10.1145/2783258.2783311

23. Finkbeiner, B., Kohn, F., Schledjewski, M.: Leveraging static analysis: An IDE for
rtlola. In: André, É., Sun, J. (eds.) Automated Technology for Verification and
Analysis - 21st International Symposium, ATVA 2023, Singapore, October 24-27,
2023, Proceedings, Part II. Lecture Notes in Computer Science, vol. 14216, pp. 251–
262. Springer (2023). https://doi.org/10.1007/978-3-031-45332-8_13, https:
//doi.org/10.1007/978-3-031-45332-8_13

24. Fragkoulis, M., Carbone, P., Kalavri, V., Katsifodimos, A.: A survey on
the evolution of stream processing systems. VLDB J. 33(2), 507–541
(2024). https://doi.org/10.1007/S00778-023-00819-8, https://doi.org/10.
1007/s00778-023-00819-8

25. Gorostiaga, F., Sánchez, C.: Striver: Stream runtime verification for real-time
event-streams. In: Colombo, C., Leucker, M. (eds.) Runtime Verification -
18th International Conference, RV 2018, Limassol, Cyprus, November 10-13,
2018, Proceedings. Lecture Notes in Computer Science, vol. 11237, pp. 282–
298. Springer (2018). https://doi.org/10.1007/978-3-030-03769-7_16, https:
//doi.org/10.1007/978-3-030-03769-7_16

26. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning.
In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain. pp. 3315–3323 (2016), https://proceedings.neurips.cc/paper/2016/
hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html

27. Henzinger, T.A., Karimi, M., Kueffner, K., Mallik, K.: Monitoring algorithmic
fairness. In: Enea, C., Lal, A. (eds.) Computer Aided Verification - 35th Interna-
tional Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13965, pp. 358–382. Springer (2023).
https://doi.org/10.1007/978-3-031-37703-7_17, https://doi.org/10.1007/
978-3-031-37703-7_17

28. Henzinger, T.A., Karimi, M., Kueffner, K., Mallik, K.: Runtime monitoring of
dynamic fairness properties. In: Proceedings of the 2023 ACM Conference on Fair-
ness, Accountability, and Transparency, FAccT 2023, Chicago, IL, USA, June 12-
15, 2023. pp. 604–614. ACM (2023). https://doi.org/10.1145/3593013.3594028,
https://doi.org/10.1145/3593013.3594028

29. Henzinger, T.A., Kueffner, K., Mallik, K.: Monitoring algorithmic fairness un-
der partial observations. In: Katsaros, P., Nenzi, L. (eds.) Runtime Verifica-
tion - 23rd International Conference, RV 2023, Thessaloniki, Greece, October 3-
6, 2023, Proceedings. Lecture Notes in Computer Science, vol. 14245, pp. 291–
311. Springer (2023). https://doi.org/10.1007/978-3-031-44267-4_15, https:
//doi.org/10.1007/978-3-031-44267-4_15

30. Kamiran, F., Calders, T.: Data preprocessing techniques for classification without
discrimination. Knowl. Inf. Syst. 33(1), 1–33 (2011). https://doi.org/10.1007/
S10115-011-0463-8, https://doi.org/10.1007/s10115-011-0463-8

31. Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Fairness-aware classifier with
prejudice remover regularizer. In: Flach, P.A., Bie, T.D., Cristianini, N. (eds.)

https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1007/978-3-031-45332-8_13
https://doi.org/10.1007/978-3-031-45332-8_13
https://doi.org/10.1007/978-3-031-45332-8_13
https://doi.org/10.1007/978-3-031-45332-8_13
https://doi.org/10.1007/S00778-023-00819-8
https://doi.org/10.1007/S00778-023-00819-8
https://doi.org/10.1007/s00778-023-00819-8
https://doi.org/10.1007/s00778-023-00819-8
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-03769-7_16
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://doi.org/10.1007/978-3-031-37703-7_17
https://doi.org/10.1007/978-3-031-37703-7_17
https://doi.org/10.1007/978-3-031-37703-7_17
https://doi.org/10.1007/978-3-031-37703-7_17
https://doi.org/10.1145/3593013.3594028
https://doi.org/10.1145/3593013.3594028
https://doi.org/10.1145/3593013.3594028
https://doi.org/10.1007/978-3-031-44267-4_15
https://doi.org/10.1007/978-3-031-44267-4_15
https://doi.org/10.1007/978-3-031-44267-4_15
https://doi.org/10.1007/978-3-031-44267-4_15
https://doi.org/10.1007/S10115-011-0463-8
https://doi.org/10.1007/S10115-011-0463-8
https://doi.org/10.1007/S10115-011-0463-8
https://doi.org/10.1007/S10115-011-0463-8
https://doi.org/10.1007/s10115-011-0463-8

Stream-Based Monitoring of Algorithmic Fairness 21

Machine Learning and Knowledge Discovery in Databases - European Confer-
ence, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings,
Part II. Lecture Notes in Computer Science, vol. 7524, pp. 35–50. Springer
(2012). https://doi.org/10.1007/978-3-642-33486-3_3, https://doi.org/10.
1007/978-3-642-33486-3_3

32. Kusner, M.J., Loftus, J.R., Russell, C., Silva, R.: Counterfactual fair-
ness. In: Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fer-
gus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances in Neural In-
formation Processing Systems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA.
pp. 4066–4076 (2017), https://proceedings.neurips.cc/paper/2017/hash/
a486cd07e4ac3d270571622f4f316ec5-Abstract.html

33. Lin, Z., Jung, J., Goel, S., Skeem, J.: The limits of human predictions of recidivism.
Science Advances 6(7) (2020). https://doi.org/10.1126/sciadv.aaz0652

34. Matthias, A.: The responsibility gap: Ascribing responsibility for the ac-
tions of learning automata. Ethics and Information Technology 6(3), 175–
183 (2004). https://doi.org/10.1007/s10676-004-3422-1, https://doi.org/
10.1007/s10676-004-3422-1

35. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
bias and fairness in machine learning. ACM Comput. Surv. 54(6), 115:1–115:35
(2022). https://doi.org/10.1145/3457607, https://doi.org/10.1145/3457607

36. Mitchell, T.M.: Machine learning, International Edition. McGraw-Hill Series
in Computer Science, McGraw-Hill (1997), https://www.worldcat.org/oclc/
61321007

37. Northpoint Inc. d/b/a equivant: Practitioner’s guide to compas core,
https://archive.epic.org/algorithmic-transparency/crim-justice/
EPIC-16-06-23-WI-FOIA-201600805-COMPASPractionerGuide.pdf (Accessed:
11.10.2024)

38. Pessach, D., Shmueli, E.: Algorithmic Fairness, pp. 867–886. Springer Interna-
tional Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-24628-9_
37, https://doi.org/10.1007/978-3-031-24628-9_37

39. Ruoss, A., Balunovic, M., Fischer, M., Vechev, M.T.: Learning certified individu-
ally fair representations. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.,
Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual (2020), https://proceedings.neurips.cc/paper/2020/hash/
55d491cf951b1b920900684d71419282-Abstract.html

40. Teuber, S., Beckert, B.: An information-flow perspective on algorithmic fairness.
In: Wooldridge, M.J., Dy, J.G., Natarajan, S. (eds.) Thirty-Eighth AAAI Confer-
ence on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024,
Vancouver, Canada. pp. 15337–15345. AAAI Press (2024). https://doi.org/10.
1609/AAAI.V38I14.29458, https://doi.org/10.1609/aaai.v38i14.29458

41. Thomas, D., Ravi, K.: The potential for artificial intelligence in healthcare. Future
Healthc Journal 6 (2019). https://doi.org/10.7861/futurehosp.6-2-94

42. Tramèr, F., Atlidakis, V., Geambasu, R., Hsu, D.J., Hubaux, J., Humbert, M.,
Juels, A., Lin, H.: Fairtest: Discovering unwarranted associations in data-driven
applications. In: 2017 IEEE European Symposium on Security and Privacy, Eu-
roS&P 2017, Paris, France, April 26-28, 2017. pp. 401–416. IEEE (2017). https://
doi.org/10.1109/EuroSP.2017.29, https://doi.org/10.1109/EuroSP.2017.29

https://doi.org/10.1007/978-3-642-33486-3_3
https://doi.org/10.1007/978-3-642-33486-3_3
https://doi.org/10.1007/978-3-642-33486-3_3
https://doi.org/10.1007/978-3-642-33486-3_3
https://proceedings.neurips.cc/paper/2017/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html
https://doi.org/10.1126/sciadv.aaz0652
https://doi.org/10.1126/sciadv.aaz0652
https://doi.org/10.1007/s10676-004-3422-1
https://doi.org/10.1007/s10676-004-3422-1
https://doi.org/10.1007/s10676-004-3422-1
https://doi.org/10.1007/s10676-004-3422-1
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://www.worldcat.org/oclc/61321007
https://www.worldcat.org/oclc/61321007
https://archive.epic.org/algorithmic-transparency/crim-justice/EPIC-16-06-23-WI-FOIA-201600805-COMPASPractionerGuide.pdf
https://archive.epic.org/algorithmic-transparency/crim-justice/EPIC-16-06-23-WI-FOIA-201600805-COMPASPractionerGuide.pdf
https://doi.org/10.1007/978-3-031-24628-9_37
https://doi.org/10.1007/978-3-031-24628-9_37
https://doi.org/10.1007/978-3-031-24628-9_37
https://doi.org/10.1007/978-3-031-24628-9_37
https://doi.org/10.1007/978-3-031-24628-9_37
https://proceedings.neurips.cc/paper/2020/hash/55d491cf951b1b920900684d71419282-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/55d491cf951b1b920900684d71419282-Abstract.html
https://doi.org/10.1609/AAAI.V38I14.29458
https://doi.org/10.1609/AAAI.V38I14.29458
https://doi.org/10.1609/AAAI.V38I14.29458
https://doi.org/10.1609/AAAI.V38I14.29458
https://doi.org/10.1609/aaai.v38i14.29458
https://doi.org/10.7861/futurehosp.6-2-94
https://doi.org/10.7861/futurehosp.6-2-94
https://doi.org/10.1109/EuroSP.2017.29
https://doi.org/10.1109/EuroSP.2017.29
https://doi.org/10.1109/EuroSP.2017.29
https://doi.org/10.1109/EuroSP.2017.29
https://doi.org/10.1109/EuroSP.2017.29

22 J. Baumeister et al.

43. Udeshi, S., Arora, P., Chattopadhyay, S.: Automated directed fairness testing. In:
Huchard, M., Kästner, C., Fraser, G. (eds.) Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, Mont-
pellier, France, September 3-7, 2018. pp. 98–108. ACM (2018). https://doi.org/
10.1145/3238147.3238165, https://doi.org/10.1145/3238147.3238165

44. Wang, Y., Liu, Z.: A sneak peek at risingwave: a cloud-native streaming
database. In: Zhou, Y., Chrysanthis, P.K., Gulisano, V., Zacharatou, E.T.
(eds.) 16th ACM International Conference on Distributed and Event-based Sys-
tems, DEBS 2022, Copenhagen, Denmark, June 27 - 30, 2022. pp. 190–193.
ACM (2022). https://doi.org/10.1145/3524860.3543284, https://doi.org/
10.1145/3524860.3543284

https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1145/3524860.3543284
https://doi.org/10.1145/3524860.3543284
https://doi.org/10.1145/3524860.3543284
https://doi.org/10.1145/3524860.3543284

	Stream-Based Monitoring of Algorithmic Fairness

