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Abstract. We study the problem of automatically repairing infinite-
state software programs w.r.t. temporal hyperproperties. As a first step,
we present a repair approach for the temporal logic HyperLTL based on
symbolic execution, constraint generation, and syntax-guided synthesis
of repair expression (SyGuS). To improve the repair quality, we introduce
the notation of a transparent repair that aims to find a patch that is as
close as possible to the original program. As a practical realization, we
develop an iterative repair approach. Here, we search for a sequence of
repairs that are closer and closer to the original program’s behavior.
We implement our method in a prototype and report on encouraging
experimental results using off-the-shelf SyGuS solvers.

1 Introduction

Hyperproperties and program repair are two popular topics within the formal
methods community. Hyperproperties [14] relate multiple executions of a system
and occur, e.g., in information-flow control [56], robustness [12], and concurrent
data structures [10]. Traditionally, automated program repair (APR) [25,28]
attempts to repair the functional behavior of a program. In this paper, we, for
the first time, tackle the challenging combination of APR and hyperproperties:
given an (infinite-state) software program P and a violated hyperproperty ϕ,
repair P such that ϕ is satisfied.

As a motivating example, consider the data leak in the EDAS conference
manager [1] (simplified in Fig. 1). The function display is given the current
phase of the review process (phase), paper title (title), session (session), and
acceptance decision (decision), and computes a string (print) that will be
displayed to the author(s). As usual in a conference management system, the
displayed string should not leak information other than the title, unless the
review process has been concluded. We can specify this non-interference policy
as a hyperproperty in HyperLTL [13] as follows:

∀π1.∀π2.
(
phaseπ1

�= "Done" ∧ phaseπ2
�= "Done" ∧

titleπ1 = titleπ2

)
→

(
printπ1

= printπ2

)
.

(ϕedas)
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Fig. 1. Information leak in EDAS confer-
ence management system.

That is, for any two execution
traces π1, π2 of display that, initially
(i.e., at the first observe statement in
line 3), have not reached the "Done"
phase (i.e., phase �= "Done") and
agree on the title, should, at the sec-
ond observe in line 10, agree on the
value of print. It is straightforward
to observe that function display vio-
lates ϕedas. The code implicitly leaks
the acceptance decision by printing the
session iff the paper is accepted. A nat-
ural question to ask is whether it is possible to automatically repair the display
function such that ϕedas is satisfied.

Constraint-Based Repair for Hyperproperties. As a first contribution, we propose
a constraint-based APR approach for HyperLTL. Similar to existing constraint-
based APR methods for functional properties [46], we rely on fault localization
to identify potential repair locations (e.g., line 4 of our example in Fig. 1). We
then replace the repair locations with a fresh function symbol; use symbolic exe-
cution to explore symbolic paths of the program; and generate repair constraints
on the inserted function symbols. We show that we can use the syntax-guided
synthesis (SyGuS) framework [2] to express (and solve) the repair constraints
for HyperLTL properties with an arbitrary quantifier prefix.

Many Solutions. The main challenge in APR for hyperproperties lies in the
large number of possible repair patches; a problem that already exists when
repairing against functional properties [50] but is even more amplified when tar-
geting hyperproperties. Different from functional specification, hyperproperties
do not reason about the concrete functional (trace-level) behavior of a program,
and rather express abstract relations between multiple computation traces. For
example, information-flow policies such as observational determinism [56] can be
checked and applied to arbitrary programs, regardless of their functional behav-
ior. In contrast to functional trace properties, we thus cannot partition the set
of all program executions into “correct” executions (i.e., executions that already
satisfy the trace property and should be preserved in the repair) and “incor-
rect” executions. Instead, we need to alter the set of all program executions such
that the executions together satisfy the hyperproperty, leading to an even larger
space of potential repairs. Moreover, within this large space, many repairs triv-
ially satisfy the hyperproperty by severely changing the functional behavior of
the program, which is usually not desirable.

In our concrete example, the ϕedas property implicitly reasons about the
(in)dependence between phase, title, and print but does not impose how
the (in)dependence is realized functionally. If we apply our basic SyGuS-based
repair approach, i.e., search for some repair of line 4 that satisfies ϕedas, it will
immediately return a trivial repair patch: decision ="Reject". This repair
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Fig. 2. Repair candidates discovered by our iterative repair.

simply sets the decision to some string not equal to "Accept" (we use "Reject"
here for easier presentation). While this certainly satisfies our information-flow
requirement, it does not yield a desirable implementation of display because
the session is never displayed.

Transparent Repair. To tackle this issue, we strengthen our repair constraints
using the concept of transparency (borrowed from the runtime enforcement lit-
erature [45]). Intuitively, we search for a repair that not only satisfies the hyper-
property but preserves as much functional behavior of the original program as
possible. We show that we can integrate this within our SyGuS-based repair
constraints. In the extreme, full transparency states that a repair is only allowed
to deviate from the original program’s behavior if absolutely necessary, i.e., only
when the original behavior is part of a violation of the hyperproperty.

Iterative Repair. In the setting of hyperproperties, full transparency is often not
particularly useful. It strictly dictates what traces can be changed by a repair,
potentially resulting in the absence of a repair (within a given search space).
In other instances (including the EDAS example), many paths (in the EDAS
example, all paths) take part in some violation of the hyperproperty, allowing
the repair to intervene arbitrarily. We introduce a more practical repair method-
ology that follows the same objective as (full) transparency (i.e., preserve as
much original program behavior as possible). Our method, which we call iterative
repair, approximates the global search for an optimal repair by a step-wise search
for repairs of increasing quality. Concretely, starting from some initial repair, we
iteratively try to find repair patches that preserve more original program behav-
ior than our previous repair candidate. We show that we can effectively encode
this into SyGuS constraints, and existing off-the-shelf SyGuS solvers can handle
the resulting queries in many challenging instances. Notably, while some APR
approaches (for functional properties) also try to find repairs that are close to
the original program, they often do so heuristically. In contrast, our iterative
repair constraints guarantee that the repair candidates strictly improve in each
iteration. See Sect. 7 for more discussion.

Iterative Repair in Action. Coming back to our initial EDAS example, we can
use iterative repair to improve upon the naïve repair decision = "Reject".
When using our iterative encoding, we find the improved repair solution in
Fig. 2a that (probably) best mirrors the intuition of a programmer (cf. [47]):
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This repair patch only overwrites the decision in cases where the phase does
not equal "Done". In particular, note how our iterative repair finds the explicit
dependence of decision on phase (in the form of a conditional) even though
this is only specified implicitly in ϕedas. In a third iteration, we can find an even
closer repair, displayed in Fig. 2b: This repair only changes the decision if the
review process is not completed and the decision equals "Accept".

Implementation. We implement our repair approach in a prototype named HyRep
and evaluate HyRep on a set of repair instances, including k-safety properties from
the literature and challenging information-flow requirements.

Structure. Section 2 presents basic preliminaries, including our simple program-
ming language and the formal specification language for hyperproperties targeted
by our repair. Section 3 introduces our basic SyGuS-based repair approach, and
we discuss our transparent and iterative extensions in Sects. 4 and 5, respec-
tively. We present our experimental evaluation in Sect. 6 and discuss related
work in Sect. 7.

2 Preliminaries

Given a set Y , we write Y ∗ for the set of finite sequences over Y , Y ω for the
set of infinite sequences, and Y � := Y ∗ ∪ Y ω for the set of finite and infinite
sequences. For t ∈ Y �, we define |t| ∈ N ∪ {∞} as the length of t.

Programs. Let X be a fixed set of program variables. We write EZ and EB for the
set of all arithmetic (integer-valued) and Boolean expressions over X, respec-
tively. We consider a simple (integer-valued) programming language

P,Q := skip | x= e | if(b,P,Q) | while(b,P) | P �Q | observe

where x ∈ X, e ∈ EZ, and b ∈ EB. Most statements behave as expected.
Notably, our language includes a dedicated observe statement, which we will use
to express asynchronous (hyper)properties [5,11,29]. Intuitively, each observe
statement causes an observation in our temporal formula, and we skip over un-
observed (intermediate) computation steps (see also [7]).

Semantics. Programs manipulate (integer-valued) stores σ : X → Z, and we
define Stores := {σ | σ : X → Z} as the set of all stores. Our (small-step)
semantics operates on configurations C = 〈P, σ〉, where P is a program and
σ ∈ Stores. Reduction steps have the form C

μ−→ C ′, where μ ∈ Stores ∪ {ε}.
Most program steps have the form C

ε−→ C ′ and model a transition with-
out observation. Every execution of an observe statement induces a transition
C

σ−→ C ′, modeling a transition in which we observe the current store σ. Figure 3
depicts a selection of reduction rules. For a program P and store σ, there exists
a unique maximal execution 〈P, σ〉 μ1−→ 〈P1, σ1〉

μ2−→ 〈P2, σ2〉
μ3−→ · · · , where
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Fig. 3. Selection of small-step reduction rules. We write �e�σ ∈ Z and �b�σ ∈ B for the
value of expression e and b in store σ, respectively.

μ1, μ2, μ3, . . . ∈ Stores ∪ {ε}. Note that this execution can be finite or infinite.
We define obs(P, σ) := μ1μ2μ3 · · · ∈ Stores� as the (finite or infinite) obser-
vation sequence along this execution (obtained by removing all εs). We write
Traces(P) := {obs(P, σ) | σ ∈ Stores} ⊆ Stores� for the set of all traces gener-
ated by P. We say a program P is terminating, if all its executions are finite.

Syntax-Guided Synthesis. A Syntax-Guided Synthesis (SyGuS) problem is a
triple Ξ = ({f̃1, . . . , f̃n}, �, {G1, . . . , Gn}), where f̃1, . . . , f̃n are function symbols,
� is an SMT constraint over the function symbols f̃1, . . . , f̃n, and G1, . . . , Gn are
grammars [2]. A solution for Ξ is a vector of terms e = (e1, . . . , en) such that each
ei is generated by grammar Gi, and �[f̃1/e1, . . . , f̃n/en] holds (i.e., we replace
each function symbol f̃i with expression ei).

Example 1. Consider the SyGuS problem Ξ = ({f̃}, �, {G}), where

� := ∀x, y. f̃(x, y) ≥ x ∧ f̃(x, y) ≥ y ∧ (f̃(x, y) = x ∨ f̃(x, y) = y)

G :=

{
I → x | y | 0 | 1 | I + I | I − I | ite(B, I, I)
B → B ∧ B | B ∨ B | ¬B | I = I | I ≤ I | I ≥ I.

This SyGuS problem constrains f̃ to be the function that returns the maximum
of its arguments, and the grammar admits arbitrary piece-wise linear functions.
A possible solution to Ξ would be f̃(x, y) := ite(x ≤ y, y, x). �

HyperLTL. As the basic specification language for hyperproperties, we use
HyperLTL, an extension of LTL with explicit quantification over execution traces
[13]. Let V = {π1, . . . , πn} be a set of trace variables. For a trace variable πj ∈ V,
we define Xπj

:= {xπj
| x ∈ X} as a set of indexed program variables and

X := Xπ1 ∪· · ·∪Xπn
. We include predicates from an arbitrary first-order theory

T to reason about the infinite variable domains in programs (cf. [7]), and denote
satisfaction in T with |=T. We write FX for the set of first-order predicates over
variables X. HyperLTL formulas are generated by the following grammar:

ϕ := ∀π. ϕ | ∃π. ϕ | ψ

ψ := θ | ψ ∧ ψ | ψ ∨ ψ | ψ | ψ W ψ

where π ∈ V, θ ∈ FX , and and W are the next and weak-until operator,
respectively. W.l.o.g., we assume that all variables in V occur in the prefix exactly
once. We use the usual derived constants and connectives true, false,→, and ↔.
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Remark 1. We only allow negation within the atomic predicates, effectively
ensuring that the LTL-like body denotes a safety property [38]. The reason for
this is simple: In our program semantics, we specifically allow for both infinite
and finite executions. Our repair approach is thus applicable to reactive sys-
tems but also handles (classical) programs that terminate. By requiring that the
body denotes a safety property, we can easily handle arbitrary combinations of
finite and infinite executions. Note that our logic supports arbitrary quantifier
alternations, so we can still express hyperliveness properties such as GNI. �

Let T ⊆ Stores� be a set of traces. For t ∈ T and i < |t|, we write t(i) for
the ith store in t. A trace assignment is a partial mapping Π : V ⇀ T from
trace variables to traces. We write Π(i) for the assignment X → Z given by
Π(i)(xπ) := Π(π)(i)(x), i.e., the value of xπ, is the value of x in the ith step on
the trace bound to π. We define the semantics inductively as:

Π, i |=T ψ if ∃π ∈ V. |Π(π)| ≤ i

Π, i |=T θ if Π(i) |=T θ

Π, i |=T ψ1 ∧ ψ2 if Π, i |=T ψ1 and Π, i |=T ψ2

Π, i |=T ψ1 ∨ ψ2 if Π, i |=T ψ1 or Π, i |=T ψ2

Π, i |=T ψ if Π, i + 1 |=T ψ

Π, i |=T ψ1 W ψ2 if
(
∃j ≥ i. Π, j |=T ψ2 and ∀i ≤ k < j. Π, k |=T ψ1

)
or

(
∀j ≥ i. Π, j |=T ψ1

)

Π, i |=T ∃π. ϕ if ∃t ∈ T . Π[π 	→ t], i |=T ϕ

Π, i |=T ∀π. ϕ if ∀t ∈ T . Π[π 	→ t], i |=T ϕ

As we deal with safety formulas (cf. Remark 1), we let Π, i satisfy any formula
ψ as soon as we have moved past the length of the shortest trace in Π (i.e.,
∃π ∈ V. |Π(π)| ≤ i). A program P satisfies ϕ, written P |= ϕ, if ∅, 0 |=Traces(P) ϕ,
where ∅ denotes the trace assignment with an empty domain.

NSA. A nondeterministic safety automaton (NSA) over alphabet Σ is a tuple
A = (Q,Q0, δ), where Q is a finite set of states, Q0 ⊆ Q is a set of initial states,
and δ ⊆ Q × Σ × Q is a transition relation. A run of A on a word u ∈ Σ� is a
sequence q0q1 · · · ∈ Q� such that q0 ∈ Q0 and for every i < |u|, (qi, u(i), qi+1) ∈ δ.
We write L(A) ⊆ Σ� for the set of words on which A has some run.

3 Program Repair by Symbolic Execution

In our repair setting, we are given a pair (P, ϕ) such that P �|= ϕ, and try to
construct a repaired program Q with Q |= ϕ. In particular, we repair w.r.t. a
formal specification instead of a set of input-output examples. The reason for
this lies within the nature of the properties we want to repair against: When
repairing against trace properties (i.e., functional specifications), it is often intu-
itive to write input-output examples that test a program’s functional behavior.
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Fig. 4. Small-step reduction rules for symbolic execution.

In contrast, hyperproperties do not directly reason about concrete functional
behavior but rather about the abstract relation between multiple computations.
For example, information-flow properties such as non-interference can be applied
to arbitrary programs; independent of the program’s functional behavior. Per-
haps counter-intuitively, in our hyper-setting, formal specifications are thus often
easier to construct than input-output examples.

3.1 Symbolic Execution

The first step in our repair pipeline is the computation of a mathematical sum-
mary of (parts of) the program’s executions using symbolic execution (SE) [37].
In SE, we execute the program using symbolic placeholders instead of concrete
values for variables, and explore all symbolic paths of a program (recording
conditions that a concrete store needs to satisfy to take any given branch). A
symbolic store is a function ν : X → EZ that maps each variable to an expres-
sion, and we write SymStores := {ν | ν : X → EZ} for the set of all symbolic
stores. A symbolic configuration is then a tuple 〈P, ν, α, β〉, where P is a pro-
gram, ν ∈ SymStores is a symbolic store, α ∈ FX is a first-order formula over
X that records which conditions the current path should satisfy (called the
path condition), and β ∈ SymStores∗ is a sequence of symbolic stores record-
ing the observations. For e ∈ EZ and ν ∈ SymStores, we write �e�ν for the
expression obtained by replacing each variable x in e with ν(x). For example,
if ν = [x �→ x − 1, y �→ z ∗ y], we have �x + y�ν = (x − 1) + (z ∗ y). We give
the symbolic execution relation sym−−→ in Fig. 4. We start the symbolic execution
in symbolic store ν0 :=

[
x �→ x

]
x∈X

that maps each variable to itself, path con-
dition α0 := true, and an empty observation sequence β0 := ε. Given a program
P, a symbolic execution is a finite sequence of symbolic configurations

ρ = 〈P, ν0, α0, β0〉 sym−−→ 〈P1, ν1, α1, β1〉 sym−−→ · · · sym−−→ 〈Pm, νm, αm, βm〉 (1)

We say execution ρ is maximal if Pm = skip, i.e., we cannot perform any
more execution steps. Given a symbolic execution ρ, we are interested in the
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Fig. 5. Encoding for acceptance of ψ.

path condition αm (to ensure that we follow an actual program path), and the
observation sequence βm (to evaluate the HyperLTL property). We define a
symbolic path as a pair in FX × SymStores∗, recording the path condition and
symbolic observation sequence. Each execution ρ of the form in (1), yields a
symbolic path (αm, βm). We call the symbolic path (αm, βm) maximal if ρ is
maximal, and satisfiable if αm is satisfiable (i.e., some actual program execution
can take a path summarized by ρ). We write SymPaths(P) ⊆ FX × SymStores∗

for the set of all satisfiable symbolic paths of P and SymPathsmax (P) ⊆ FX ×
SymStores∗ for the set of all satisfiable maximal symbolic paths.

Remark 2. An interesting class of programs are those that are terminating and
where SymPathsmax (P) is finite. This is either the case when the program is
loop-free or has some upper bound on the number of loop executions (and thus
control paths). Crucially, if SymPathsmax (P) is finite, it provides a precise and
complete mathematical summary of the program’s executions. �

3.2 Symbolic Paths and Safety Automata

We can use symbolic paths to approximate the HyperLTL semantics by explicitly
considering path combinations. Let ϕ = Q1π1 . . .Qnπn. ψ be a fixed HyperLTL
formula, where Q1, . . . ,Qn ∈ {∀,∃} are quantifiers, and ψ is the LTL body of
ϕ. Further, let F ⊆ FX be the finite set of predicates used in ψ. Due to our
syntactic safety restriction on LTL formulas, we can construct an NSA Aψ =
(Qψ, Q0,ψ, δψ) over alphabet 2F accepting exactly the words that satisfy ψ [38].

Assume Δ : {π1, . . . , πn} → SymStores∗ is a function that assigns each path
variable π1, . . . , πn a symbolic observation sequence. We design a formula accψ

Δ,
which encodes that the symbolic observation sequences in Δ have an accepting
prefix in Aψ, given in Fig. 5. The intermediate formula accq,i

Δ encodes that the
observations in Δ have some run from state q in the ith step. For all steps i,
longer than the shortest trace in Δ, we accept (i.e., accq,i

Δ := true, similar to our
HyperLTL semantics). Otherwise, we require some transition (q, ι, q′) ∈ δψ such
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Fig. 6. Encoding of the HyperLTL semantics on symbolic paths P.

that accq′,i+1
Δ holds, and the label ι ∈ 2F holds in step i. To encode the latter,

we use the symbolic observation sequences in Δ: For every predicate θ ∈ F , we
require that θ ∈ ι iff θ

[
xπj

/(
Δ(πj)(i)(x)[y/yπj

]
)]

. That is, we replace variable
xπj

with the expression Δ(πj)(i)(x)[y/yπj
], i.e., we look up the expression bound

to variable x in the ith step on Δ(πj), and – within this expression – index all
variables with πj (i.e., replace each variable y ∈ X with yπj

∈ Xπj
).

3.3 Encoding for HyperLTL

Let P ⊆ FX × SymStores∗ be a finite set of symbolic paths and consider
the formula encϕ

P in Fig. 6. Intuitively, the formula encodes the satisfaction
of ϕ on the symbolic paths in P. For this, we maintain a partial mapping
Δ : {π1, . . . , πn} ⇀ SymStores∗, and for each subformula ϕ′ we define an inter-
mediate formula encϕ′

P,Δ. If we reach the LTL body ψ, we define encψ
P,Δ := accψ

Δ,
stating that the symbolic observation sequences in Δ satisfy ψ (cf. Fig. 5). Each
trace quantifier is then resolved on the symbolic paths in P. Concretely, for a
subformula ∃πj . ϕ

′, we existentially quantify over variables Xπj
and disjunctively

pick a symbolic path (α, β) ∈ P. We require that path condition α holds (after
replacing each variable x with xπj

), and that the remaining formula ϕ′ is satisfied
if we bind observation sequence β to πj (i.e., encϕ′

P,Δ[πj �→β]).

Proposition 1. If Q is a terminating program and SymPathsmax (Q) is finite,
then Q |= ϕ if and only if encϕ

SymPathsmax (Q).

The above proposition essentially states that we can use SE to verify a
program (with finitely-many symbolic paths) against HyperLTL formulas with
arbitrary quantifier alternations. This is in sharp contrast to existing SE-based
approaches, which only apply to k-safety properties (i.e., ∀∗ HyperLTL for-
mulas) [17,18,22,51,52]. To the best of our knowledge, ours is the first app-
roach that can check properties containing arbitrary alternations on fragments
of infinite-state software programs. Previous methods either focus on finite-
state systems [6,8,16,24,31,32] or only consider restricted quantifier structures
[7,23,34,49,53].
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Alternation-Free Formulas. In many situations, we cannot explore all symbolic
paths of a program Q (i.e., SymPathsmax (Q) is infinite). However, even by just
exploring a subset of paths, our encoding still allows us to draw conclusions
about the full program as long as the formula is alternation-free.

Proposition 2. Assume ϕ is a ∃∗ formula and P ⊆ SymPathsmax (Q) is a finite
set of maximal symbolic paths. If encϕ

P , thenQ |= ϕ.

Proposition 3. Assume ϕ is a ∀∗ formula and P ⊆ SymPaths(Q) is a finite
set of (not necessarily maximal) symbolic paths. If ¬encϕ

P , then Q �|= ϕ.

In particular, we can use Proposition 3 for our repair approach for ∀∗ prop-
erties (which captures many properties of interest, such as non-interference,
cf. ϕedas). If we symbolically execute a program to some fixed depth (and thus
capture a subset of the symbolic paths), any possible repair must satisfy the
bounded property described in encϕ

P (cf. Sect. 3.4). Note that this does not ensure
that the repair patch that fulfills encϕ

P is correct on the entire program; encϕ
P

merely describes a necessary condition any possible repair needs to satisfy. In our
experiments (cf. Sect. 6), we (empirically) found that the repair for the bounded
version also serves as a repair for the full program in many instances.

3.4 Program Repair Using SyGuS

Using SE and our encoding, we can now outline our basic SyGuS-based repair
approach. Assume P �|= ϕ is the program that should be repaired. As in
other semantic-analysis-based repair frameworks [44,46], we begin our repair
by predicting fault locations [54] within the program, i.e., locations that are
likely to be responsible for the violation of ϕ. In our later experiments, we
assume that these locations are provided by the user. After we have identi-
fied a set of n repair locations, we instrument P by replacing the expressions in
all repair locations with fresh function symbols. That is, if we want to repair
statement x= e, if(b,P1,P2), or while(b,P), we replace the statement with
x= f̃(x1, . . . , xm), if(f̃(x1, . . . , xm),P1,P2), or while(f̃(x1, . . . , xm),P), respec-
tively, for some fresh function symbol f̃ and program variables x1, . . . , xm ∈ X
(inferred using a lightweight dependency analysis). Let Q be the resulting pro-
gram, which contains function symbols, f̃1, . . . , f̃n. We symbolically execute Q,
leading to a set of symbolic paths P containing f̃1, . . . , f̃n, and define the SyGuS
problem ΞP := ({f̃1, . . . , f̃n}, encϕ

P , {G1, . . . , Gn}). Here, we fix a grammar Gi

for each function symbol f̃i, based on the type and context of each repair loca-
tion. Note that encϕ

P now constitutes an SMT constraint over f̃1, . . . , f̃n. Any
solution for ΞP thus defines concrete expressions for f̃1, . . . , f̃n such that the
symbolic paths in P satisfy ϕ. Concretely, let e = (e1, . . . , en) be a solution to
ΞP . Define Q[e] := Q[f̃1/e1, . . . , f̃n/en], i.e., we replace each function symbol f̃i

by expression ei. As e is a solution to ΞP , we directly obtain that Q[e] satis-
fies ϕ; at least restricted to the executions captured by the symbolic paths in P.
Afterward, we can verify that Q[e] indeed satisfies ϕ (even on paths not explored
in P), using existing hyperproperty verification techniques [7,23,34,49,53].
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Example 2. Consider the EDAS program P in Fig. 1, and let Q be the mod-
ified program where the assignment in line 4 is replaced with a fresh func-
tion symbol f̃ . Define X := {phase, title, session, decision}. If we per-
form SE on Q, we get two symbolic paths PQ = {(α1, β1), (α2, β2)}, where
α1 = (f̃(X) = "Accept"), α2 = (f̃(X) �= "Accept"), β1 =

[
[. . .], [print �→

title + session, decision �→ f̃(X), . . .]
]
, and β2 =

[
[. . .], [print �→ title,

decision �→ f̃(X), . . .]
]
. For illustration, we consider the simple trace property

ϕtrace = ∀π. (printπ = titleπ). If we construct encϕtrace

PQ
, we get

∀
xπ∈Xπ

xπ.
(
f̃(Xπ) = "Accept" → titleπ + sessionπ = titleπ

)
∧

(
f̃(Xπ) �= "Accept" → titleπ = titleπ

)
,

allowing the simple SyGuS solution f̃(Xπ) := "Reject". �

4 Transparent Repair

As argued in Sect. 1, searching for any repair (as in Sect. 3) often returns a patch
that severely changes the functional behavior of the program. In this paper,
we study a principled constraint-based approach on how to guide the search
towards a useful repair without requiring extensive additional specifications. Our
method is based on the simple idea that the repair should be somewhat close
to the original program. Crucially, we define “closeness” via rigorous systems
of (SyGuS) constraints, guiding our constraint-based repair towards minimal
patches, with guaranteed quality. In this section, we introduce the concept of
a (fully) transparent repair. In Sect. 5, we adapt this idea and present a more
practical adaption in the form of iterative repair.

4.1 Transparency

Our transparent repair approach is motivated by ideas from the enforcement
literature [45]. In enforcement, we do not repair the program (i.e., we do not
manipulate its source code) but rather let an enforcer run alongside the pro-
gram and intervene on unsafe behavior (by, e.g., overwriting the output). The
obvious enforcement strategy would thus always intervene, effectively overwrit-
ing all program behaviors with some dummy (but safe) behavior. To avoid such
trivial enforcement, researchers have developed the notion of transparency (also
called precision [45]). Transparency states that the enforcer should not intervene
unless an intervention is absolutely necessary to satisfy the safety specification,
i.e., a safe prefix of the program execution should never trigger the enforcer.

Transparent Repair. The original transparency definition is specific to program
enforcement and refers to the time step in which the enforcer intervenes. We
propose an adoption to the repair setting based on the idea of preserving as
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Fig. 7. Encoding for (fully) transparent repair.

much input-output behavior of the original program as possible. Let Xout ⊆ X
be a set of program variables defining the output. For two stores σ, σ′ ∈ Stores,
we write σ �=Xout

σ′ if σ(x) �= σ′(x) for some x ∈ Xout , and extend �=Xout

position-wise to sequences of stores.

Definition 1 (Fully Transparent Repair). Assume ϕ = ∀π1 . . . ∀πn. ψ is
a ∀∗ HyperLTL formula and P,Q are programs. We say Q is a fully trans-
parent repair of (P, ϕ), if (1) Q |= ϕ, and (2) for every store σ ∈ Stores
where obs(P, σ) �=Xout

obs(Q, σ), there exist stores σ1, . . . , σn ∈ Stores such that[
πj �→ obs(P, σj)

]n

j=1
, 0 �|= ψ, and σ = σj for some 1 ≤ j ≤ n.

Our definition reasons about inputs σ on which the output behavior of Q

differs from the original program P. Any such input σ must take part in a
violation of ϕ on the original program P. Phrased differently, the repair may only
change P’s behavior on executions that take part in a combination of n traces that
violate ϕ. Note that, similar to enforcement approaches [15,45], our transparency
definition only applies to ∀∗ formulas. As soon as the property includes existential
quantification, we can no longer formalize when some execution is “part of a
violation of ϕ”. We will extend the central idea underpinning transparency to
arbitrary HyperLTL formulas in Sect. 5.

4.2 Encoding for Transparent Repair

Given two finite sets of symbolic paths PP,PQ ⊆ FX × SymStores∗, we define
formula transϕ

PP,PQ
in Fig. 7. The premise states that X defines some input on

which P and Q differ in their output. That is, for some symbolic paths (αP, βP) ∈
PP and (αQ, βQ) ∈ PQ, the path conditions αP and αQ hold, but the symbolic
observation sequences yield some different values for some x ∈ Xout . In this case,
we require that there exist n symbolic paths (απ1 , βπ1), . . . , (απn

, βπn
) ∈ PP and

concrete inputs Xπ1 , . . . , Xπn
, such that (1) the path conditions απ1 , . . . , απn
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hold; (2) the assignment to some Xπj
equals X; and (3) the symbolic observation

sequences βπ1 , . . . , βπn
violate ψ (cf. Fig. 5).

Proposition 4. If P, Q are terminating and SymPathsmax (P),SymPathsmax (Q)
are finite, thenQ is a fully transparent repair of (P, ϕ) if and only if

encϕ
SymPathsmax (Q)

∧ transϕ
SymPathsmax (P),SymPathsmax (Q)

.

Example 3. We illustrate transparent repairs using Example 2. If we set Xout :=
{decision}, and compute transϕtrace

PP,PQ
, we get

∀
x∈X

x.
(
decision �= f̃(X)

)
→

((
decision = "Accept" ∧

title + session �= title
)

∨
(
decision �= "Accept" ∧ title �= title

))
.

For simplicity, we directly resolved the existentially quantified variables Xπ
with X and summarized all path constraints in the premise. The naïve solution
f̃(X) := "Reject" from Example 2 no longer satisfies transϕtrace

PP,PQ
. Instead, a

possible SyGuS solution for encϕtrace

PQ
∧ transϕtrace

PP,PQ
is

f̃(X) := ite
(
decision = "Accept" ∧ session �= "","Reject",decision

)
.

This solution only changes the decision if the decision is "Accept" and the
session does not equal the empty string, i.e., it changes the program’s decision
on exactly those traces that violate ϕtrace = ∀π. (printπ = titleπ). �

5 Iterative Repair

Our full transparency definition only applies to ∀∗ properties, and, even on ∀∗

formulas, might yield undesirable results: In some instances, Definition 1 limits
which traces may be changed by a repair, potentially resulting in the absence
of any repair. In other instances (including the EDAS example), many paths (in
the EDAS example, all paths) take part in some violation of the hyperproperty,
so full transparency does not impose any additional constraints. In the EDAS
example, this would again allow the naïve repair decision = "Reject". To
alleviate this, we introduce an iterative repair approach that follows the same
philosophical principle as (full) transparency (i.e., search for repairs that are
close to the original program), but allows for the iterative discovery of better
and better repair patches.

Definition 2. Assume ϕ is a HyperLTL formula and P, Q, and S are programs.
We say repair Q is a better repair than S w.r.t. (P, ϕ) if (1) Q |= ϕ, (2) for
every σ ∈ Stores, where obs(P, σ) �=Xout

obs(Q, σ), we have obs(P, σ) �=Xout

obs(S, σ), and (3) for some σ ∈ Stores, we have obs(P, σ) �=Xout
obs(S, σ) but

obs(P, σ) =Xout
obs(Q, σ).

Intuitively, Q is better than S if it preserves at least all those behaviors of P
already preserved by S, i.e., Q is only allowed to deviate from P on inputs where
S already deviates. Moreover, it must be strictly better than S, i.e., preserve at
least one additional behavior.
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Fig. 8. Encoding for iterative repair.

5.1 Encoding for Iterative Repair

As before, we show that we can encode Definition 2 via a repair constraint. Let
PP, PS,PQ ⊆ FX × SymStores∗ be finite sets of symbolic paths, and define
iterPP,PS,PQ

as in Fig. 8.

Proposition 5. If P, Q, and S are terminating programs and SymPathsmax (P),
SymPathsmax (S), and SymPathsmax (Q) are finite, then Q is a better repair than
S, w.r.t., (P, ϕ) if and only if

encϕ
SymPathsmax (Q) ∧ iterSymPathsmax (P),SymPathsmax (S),SymPathsmax (Q).

5.2 Iterative Repair Loop

We sketch our iterative repair algorithm in Algorithm1. In line 2, we infer the
locations that we want to repair from user annotations. We leave the exploration
of automated fault localization techniques specific for hyperproperties as future
work, and, in our experiments, assume that the user marks potential repair
locations. In line 3, we instrument P by replacing all repair locations in locs with
fresh function symbols. At the same time, we record the original expression at all
those locations as a vector eP. Subsequently, we perform symbolic execution on
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the skeleton program Q (i.e., the program that contains fresh function symbols),
yielding a set of symbolic paths P containing function symbols (line 4). Initially,
we now search for some repair of ϕ by using the SyGuS constraint encϕ

P , giving us
an initial repair patch in the form of some expression vector e (line 5). Afterward,
we try to iteratively improve upon the repair solution e found previously. For
this, we consider the SyGuS constraint encϕ

P ∧ iterP[eP],P[e],P where we replaced
each function symbol in P with eP to get the symbolic paths of the original
program (denoted P[eP]), and with e to get the symbolic paths of the previous
repair (denoted P[e]) (line 7). If this SyGuS constraint admits a solution e′,
we set e to e′ and repeat with a further improvement iteration (line 11). If the
SyGuS constraint is unsatisfiable (or, e.g., a timeout is reached, or the number
of iterations is bounded) (written e′ = ⊥), we return the last solution we found,
i.e., the program Q[e] (line 9). By using a single set of symbolic paths P of the
skeleton program Q, we can optimize our query construction. For example, in
iterP[eP],P[e],P , we consider all 3 tuples of symbolic paths leading to a potentially
large SyGuS query. As we use a common set of paths P we can prune many path
combinations. For example, on fragments preceding a repair location, we never
have to combine contradicting branch conditions.

6 Implementation and Evaluation

Algorithm 1. Iterative repair algorithm
1 def iterativeRepair(P,ϕ):
2 locs := faultLocalization(P,ϕ)
3 Q,eP := instrument(P,locs)
4 P := symbolicExecution(Q)
5 e := SyGuS(encϕ

P)
6 repeat:
7 e′ := SyGuS(encϕ

P ∧ iterP[eP],P[e ],P)
8 if (e′ = ⊥) then
9 return Q[e]

10 else
11 e := e′

We have implemented our repair
techniques from Sects. 3 to 5 in
a proof-of-concept prototype called
HyRep, which takes as input a
HyperLTL formula and a program
in a minimalist C-like language
featuring Booleans, integers, and
strings. We use spot [20] to trans-
late LTL formulas to NSAs. HyRep
can use any solver supporting the
SyGuS input format [2]; we use
cvc5 (version 1.0.8) [4] as the
default solver in all experiments. In
HyRep, the user can determine what SyGuS grammar to use, guiding the solver
towards a particular (potentially domain-specific) solution. By default, HyRep
repairs integer and Boolean expressions using piece-wise linear functions (simi-
lar to Example 1), and string-valued expressions by a grammar allowing selected
string constants and concatenation of string variables. All results in this paper
were obtained using a Docker container of HyRep running on an Apple M1 Pro
CPU and 32 GB of memory.

Scalability Limitations. As we repair for hyperproperties, we necessarily need to
reason about the combination of paths, requiring us to analyze multiple paths
simultaneously. Unsurprisingly, this limits the scalability of our repair. Con-
sequently, we cannot tackle programs with hundreds of LoC, where existing
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Fig. 9. A CSRF attack and repair candidates by HyRep.

(functional) APR approaches collect a small summary that only depends on the
number of input-output examples (see, e.g., angelic forests [44]). However, our
experiments with HyRep attest that – while we can only handle small programs
– our approach can find complex repair solutions that go beyond previous repair
approaches for hyperproperties (cf. Sect. 7).

6.1 Iterative Repair for Hyperproperties

Table 1. We depict the number of improve-
ment iterations, the number repair loca-
tions, and the repair time (in seconds).

Instance #Iter #Locations t

edas 2 1 2.5

csrf 2 1 17.9

log 1 1 0.9
log′ 1 1 1.0
log′′ 1 1 7.4

atm 3 2 4.2

reviews 3 2 18.5
reviews′ 3 2 151.6

We first focus on HyRep’s ability to
find, often non-trivial, repair solu-
tions using its iterative repair app-
roach. Table 1 depicts an overview of
the 5 benchmark families we consider
(explained in the following). For some
of the benchmarks, we also consider
small variants by adding additional
complexity to the program.

EDAS. As already discussed in
Sect. 1, HyRep is able to repair (a sim-
plified integer-based version of) the
EDAS example in Fig. 1 and derive
the repairs in Fig. 2.

CSRF. Cross Site Request Forgery (CSRF) [35] attacks target web session
integrity. As an abstract example, consider the simple login program as shown
in Fig. 9(left), where we leave out intermediate instructions that are not nec-
essary to understand the subsequent repair. If the user attempts to log in and
enters the correct password, we either set request = 1 (modeling a login on
the original page), or request = 2 (modeling an attack, i.e., a login request



Syntax-Guided Automated Program Repair for Hyperproperties 19

Fig. 10. Privacy leakage by logging and repair candidates by HyRep.

at some untrusted website). We specify that the request should only depend
on the (correctness of the) password. When repairing line 11, HyRep first dis-
coverers the trivial repair that always overwrites request with a fixed constant
(Fig. 9a). However, in the second improvement iteration, HyRep finds a better
repair (Fig. 9b), where the request is only overwritten after a successful login.
The potential attack request (request = 2) is thus deterministically overwrit-
ten.

Fig. 11. An ATM that leaks
the balance to ErrorLog and
TransactionLog.

LOG. We investigate privacy leaks
induced by logging of credentials. We
depict a simplified code snipped in Fig. 10.
Crucially, in case of a successful login, the
secret password flows into the public LOG
(via credentials and info). We specify
that the LOG may only depend on pub-
lic information (i.e., everything except the
password) and use HyRep to overwrite the
final value of LOG (i.e., to repair line 12).
As shown in Fig. 10a, HyRep first finds
a trivial repair that does not log any-
thing. In the first improvement iteration,
HyRep automatically finds the more accu-
rate repair in Fig. 10b. That is, it automatically infers that LOG can contain the
date and username (as in the original program) but not the password.

ATM. Many cases require repairing multiple lines of code simultaneously. We
use cases derived from open-source security benchmarks [26,30,41] and mark
multiple repair locations in the input programs. For example, consider the ATM
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Fig. 12. A review system that leaks the reviewer ids via the review order and repair
candidates by HyRep.

program in Fig. 11. Depending on whether the withdraw amount is greater than
balance (secret), different messages will be logged (public). To repair it, we need
to repair both ErrorLog and TransactionLog under different conditions (i.e.,
do not update ErrorLog in the if-clause and do not update TransactionLog in
the else-clause). By indicating lines 8 and 9 as two repair locations, HyRep is able
to synthesize the correct multiline repair.

REVIEWS. We also investigate the review system depicted in Fig. 12(left). Here
the id of each reviewer determines in which order the reviews are displayed to
the author. We assume that the PC chair always has the fixed ID 1 (so if he/she
submits a review, it will always be displayed first). We want to avoid that the
author can infer which review was potentially written by the PC chair. When
asked to repair line 9, HyRep produces the repair patches displayed in Figs. 12a
and b. In particular, the last repair infers that if reviewerAid < 2 (i.e., reviewer
A is the PC chair), we can leave the order; otherwise, we use some fixed constant.

6.2 Scalability in Solution Size

Most modern SyGuS solvers rely on a (heavily optimized) enumeration of solu-
tion candidates [3,19,33,48]. The synthesis time, therefore, naturally scales in the
size of the smallest solutions. Our above experiments empirically show that most
repairs can be achieved by small patches. Nevertheless, to test the scalability in
the solution size, we have designed a benchmark family that only admits large
solutions. Concretely, we consider a program that computes the conjunction of
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Table 2. In Table 2a, we evaluate HyRep’s scalability in the SyGuS solution size. The
timeout (denoted “’-”) is 120 s. In Table 2b, we repair a selection of k-safety instances
from [7,23,49,53]. In Table 2c, we evaluate on a selection of functional repair instances
from [27,44]. All times are given in seconds.

(a)
n #Iter t Size

0 0 0.8 1
1 0 0.8 1
2 1 1.1 3
3 2 1.4 5
4 3 1.8 7
5 4 5.1 9
6 5 89.8 11
7 - - -

(b)
Instance t

CollItemSym 1.4
CounterDet 4.9
DoubleSquareNiFF 4.2
DoubleSquareNi 2.9
Exp1x3 1.1
Fig2 2.4
Fig3 1.1
MultEquiv 2.0

(c)
Instance t

Assignment 0.7
Deletion 0.7
Guard 0.6
Long-Output 0.7
Multiline 0.8
Not-Equal 0.6
SimpleExample 1.0
OffByOne 2.1

n Boolean inputs i1, . . . , in. We repair against a simple ∀2 HyperLTL property
which states that the output may not depend on the last input, guiding the
repair towards the optimal solution i1 ∧ · · · ∧ in−1. We display the number of
improvement iterations, the run time, and the solution size (measured in terms
of AST nodes) in Table 2a. We note that one of the main features of SyGuS is the
flexibility in the input grammar. When using a less permissive (domain-specific)
grammar, HyRep scales to even larger repair solutions.

6.3 Evaluation on k-Safety Instances

To demonstrate that HyRep can tackle the repair problem in the size-range sup-
ported by current verification approaches for hyperproperties, we collected a
small set of k-safety verification instances from [7,23,49,53]. We modify each
program such that the k-safety property is violated and use HyRep’s plain (non-
iterative) SyGuS constraints to find a repair. The results in Table 2b demonstrate
that (1) existing off-the-shelf SyGuS solver can repair programs of the complex-
ity studied in the context of k-safety verification, and (2) even in the presence
of loops (which are included in all instances in Table 2b), finite unrolling often
suffices to generate repair constraints that yield repair patches that work for the
full program.

6.4 Evaluation on Functional Properties

While we cannot handle the large programs supported by existing APR
approaches for functional properties, we can evaluate HyRep on (very) small
test cases. We sample instances from Angelix [44] and GenProg [27], and apply
HyRep’s direct (non-iterative) repair. We report the run times in Table 2c.
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7 Related Work

APR. Existing APR approaches for functional properties can be grouped into
search-based and constraint-based [25,28]. Approaches in the former category
use a heuristic to explore a set of possible patch candidates. Examples include
GenProg [27] and PAR [36], SPR [42], TBar [40], or machine-learning-based
approaches [21,57]. These approaches typically scale to large code bases, but
might fail to find a solution (due to the large solution space). Our approach falls
within the latter (constraint-based) category. This approach was pioneered by
SemFix [46] and later refined by DirectFix [43], Angelix [44], and S3 [39]. To
the best of our knowledge, we are the first to employ the (more general) SyGuS
framework for APR, which leaves the exact search to an external solver. Most
APR approaches rely on a finite set of input-output examples. To avoid over-
fitting [50] these approaches either use heuristics (to, e.g., infer variables that a
repair should depend on [55]) or employ richer (e.g., MaxSMT-based) constraints
[44]. Crucially, these approaches are local, whereas our repair constraints reason
about the entire (global) program execution by utilizing the entire symbolic
path. Any repair sequence generated by our iterative repair is thus guaranteed
to increase in quality, i.e., preserve more behavior of the original program.

APR for Hyperproperties. Coenen et al. [15] study enforcement of alternation-
free hyperproperties. Different from our approach, enforcement does not provide
guarantees on the functional behavior of the enforced system. Bonakdarpour
and Finkbeiner [9] study the repair-complexity of hyperproperties in finite-state
transition systems. In their setting, a repair consists of a substructure, i.e., a
system obtained by removing some of the transitions of the system, so the repair
problem is trivially decidable. Polikarpova et al. [47] present Lifty, and encoding
of information-flow properties using refinement types. Lifty can automatically
patch a program to satisfy an information-flow requirement by assigning all pri-
vate variables some public dummy default constant. In contrast, our approach
can repair against complex temporal hyperproperties (possibly involving quan-
tifier alternations), and our repair often goes beyond insertion of constants.

8 Conclusion

We have studied the problem of automatically repairing an (infinite-state) soft-
ware program against a temporal hyperproperty, using SyGuS-based constraint
generation. To enhance our basic SyGuS-based approach, we have introduced
an iterative repair approach inspired by the notion of transparency. Our app-
roach interprets “closeness” rigorously, encodes it within our constraint system
for APR, and can consequently derive non-trivial repair patches.
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