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Abstract

We study termination of higher-order probabilistic func-
tional programs with recursion, stochastic conditioning and
sampling from continuous distributions.

Reasoning about the termination probability of programs
with continuous distributions is hard, because the enumer-
ation of terminating executions cannot provide any non-
trivial bounds.We present a new operational semantics based
on traces of intervals, which is sound and complete with re-
spect to the standard sampling-based semantics, in which
(countable) enumeration can provide arbitrarily tight lower
bounds. Consequently we obtain the first proof that deciding
almost-sure termination (AST) for programs with continu-
ous distributions is Π0

2-complete (for CbN). We also provide
a compositional representation of our semantics in terms of
an intersection type system.

In the second part, we present amethod of proving AST for
non-affine programs, i.e., recursive programs that can, during
the evaluation of the recursive body, makemultiple recursive
calls (of a first-order function) from distinct call sites. Unlike
in a deterministic language, the number of recursion call sites
has direct consequences on the termination probability. Our
framework supports a proof system that can verify AST for
programs that are well beyond the scope of existing methods.
We have constructed prototype implementations of our

methods for computing lower bounds on the termination
probability, and AST verification.

CCS Concepts: · Theory of computation→ Operational

semantics; Program analysis; Program verification.

Keywords: almost-sure termination, probabilistic programs,
sampling-style operational semantics, intersection types, ran-
dom walk
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1 Introduction

Probabilistic (or randomised) programs have long been recog-
nised as essential to the efficient solution of many algo-
rithmic problems [46, 48, 52]. Recently, in probabilistic pro-
gramming [26, 53, 58], probabilistic programs, augmented
with stochastic conditioning constructs, have been used as
a means of expressing generative models whose posterior
probability can be computed by general-purpose inference
engines. Though sampling from discrete distributions (such
as binary probabilistic branching) can be considered algo-
rithmically adequate1 for probabilistic computation, the gen-
eration of real-world dataÐa basic capability expected of
generative modelsÐrequires expressivity of the whole gamut
of continuous distributions. For this reason, sampling from
continuous distributions is an essential feature of probabilis-
tic programming languages. (See e.g. Church [25], Stan [12],
Anglican [56], Gen [18], Pyro [5], Edward [57] and Turing
[24].)
In this work we study a central property of probabilistic

programs: termination. In non-probabilistic (possibly non-
deterministic) computation, termination is a purely quali-
tative, boolean property. However, with randomness in the
control flow, termination is characterised by a scalar quan-
tity: the probability of termination. We say that a program
is almost-surely terminating (AST) if a run of it terminates
with probability 1.

Guarantees and bounds on the probability of termination
are important both when viewing probabilistic programs
as algorithmic solutions but also in the emerging field of
probabilistic programming. When a probabilistic program
implements a solution to an algorithmic problem, one nat-
urally requires the computation to terminate with a high
(lower bounded) probability, usually 1. In probabilistic pro-
gramming, lower bounds and guarantees of AST are equally

1in the sense that they are enough to make any Turing complete program-

ming language universal for probabilistic Turing machine [37, 55]
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important. Indeed, it is standard for designers and implemen-
tors of probabilistic programming systems to regard non-AST
programs as defining invalid models, and hence inadmissi-
ble (see e.g. [53, ğ4.3.2] and [25]). Moreover [41] have re-
cently shown that AST programs have density (a.k.a. weight)
functions that are differentiable almost everywhere. This
is significant, because the latter property is a precondition
for the correctness of some of the most scalable inference
algorithms, such as Hamiltonian Monte Carlo [49, 59] and
reparameterised gradient variational inference [39]. AST is
thus a precondition for the correctness of inference algo-
rithms and important both in theory and practice.
In this paper we tackle two key questions: computation

of lower bounds on the probability of termination, and AST
verification. While there has been much progress in the ter-
mination analysis of probabilistic programs with discrete
distributions [8, 29, 33], programs with continuous distri-
butions have received comparatively little attention. Many
methods and proofs hinge on the countable nature inher-
ent to discrete distributions [9, 30, 33, 36, 43, 44, 50]. It is
not at all obvious if they can be extended to systems with
continuous distributions.
Using an idealised functional language with continuous

samples and stochastic conditioning, we provide partial an-
swers to these questions. On the one hand, we give a de-
finitive answer to the lower bound problem, and precisely
determine the complexity of various termination problems
in the arithmetic hierarchy. On the other hand, we provide a
sound (but incomplete) proof method for AST which can be
seen as orthogonal to [36].

1.1 High Level Overview

Lower Bound Computation. In languages with discrete
distributions, evaluation can be seen as a step-indexed proba-
bility mass on terms [21, 33, 36]. By enumerating terminating
executions, we can iteratively compute arbitrarily tight lower
bounds on the probability of termination. As a direct conse-
quence, AST is a decision problem inΠ0

2 [29], the second level

of the arithmetic hierarchy [32]2. In languages that admit
continuous distributions, we cannot assign probability mass
to terms directly. Rather, by viewing a probabilistic program
as a deterministic program parameterised by an execution

trace (or simply, trace) (i.e. the sequence of random draws
made during the execution), we can organise such traces
into a measure space [6, 34]. The probability of termination
can then be defined as the measure of all traces on which the

2The class Π
0
𝑛 in the arithmetic hierarchy contains a language L iff

there exists a decidable relation 𝑅 (𝑥, 𝑦1, · · · , 𝑦𝑛) such that 𝑥 ∈ L ⇔
∀𝑦1 .∃𝑦2 .∀𝑦3 · · · .𝑅 (𝑥, 𝑦1, · · · , 𝑦𝑛) . Σ0𝑛 is defined analogously starting

with an existential instead of universal quantifier. Σ01 is thus the class of

recursive enumerable languages. Almost-sure termination means that for all

(rational) termination probability 𝛿 strictly smaller than 1, there exists some

finite set of terminating execution𝑇 whose weight is at least 𝛿 , making it a

problem contained in Π
0
2.

program terminates [41]. However, in general, a single ter-
minating execution (or even a countable set thereof) cannot
be assigned any positive probability measure. This leaves
open problems such as sound computation of lower bounds,
and the exact complexity of deciding AST.
We approach these problems by introducing a novel op-

erational semantics based on interval traces, which are a
summarisation of the relevant traces. We show soundness
and completeness w.r.t. the sampling-style semantics [6]. In-
stead of analysing a program using uncountably many traces,
we work with interval traces, where only countably many
such traces suffice. This yields an effective procedure to com-
pute lower bounds on termination probability, enabling the
first proof that deciding AST in the presence of continuous
distributions is Π0

2-complete (under mild assumptions on the
primitive functions). Further, we show that positive almost
sure termination (PAST) (i.e., finite expected time to termi-
nation) is Σ0

2-complete, assuming the program is AST. For
general PAST, we can only infer a (possibly non-tight) upper
bound of Δ0

3. This does not match the Σ0
2 bounds known for

discrete distributions as a proof of this bound hinges on a
countable set of executions [29]. See Sec. 3.
In addition we give an alternative presentation of our se-

mantics as an intersection type system in Sec. 4. Our system
extends [9] and [21] to languages with continuous distri-
butions; moreover, both the probability of termination and

the expected time to termination can be obtained as the
least upper bound of all derivations. This gives a type-based,
compositional method for lower bound computation.

ASTVerification. While our computation of lower bounds
gives a Π0

2 decision procedure for AST, it is not really effec-
tive for AST verification. Many of the recent advances in the
development of AST verification methods [1, 13, 14, 16, 17,
23, 27, 28, 44, 50] are concerned with loop-based programs.
We can view such loops as tail-recursive programs that, in
particular, are affine recursive, i.e., in each evaluation (or run)
of the body of the recursion, recursive calls are made from at
most one call site [36, ğ4.1]. By contrast, many probabilistic
programming languages allow for richer recursive structures
[25, 42, 56]. We propose a new verification method for prob-
abilistic programs that are defined by non-affine recursion,
i.e., in the evaluation of the body of the recursion, multiple
recursive calls can be made from distinct call sites. (Note that
whether a program is affine recursive cannot be checked by
just counting textual occurrences of variables.)

Example 1.1 (Running Example). Consider an unreliable
3d printing company. Unfortunately, for every printing, the
outcome is acceptable with only probability 𝑝; if it is unac-
ceptable, reprinting must take place on the following day,
and thus, the process is repeated. We can model this scenario,
starting with a single job, as the following program

(

𝜇
𝜑
𝑥 .if sample ≤ 𝑝 then𝑥 else𝜑 (𝑥 + 1)

)

1 (1)
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where 𝜇
𝜑
𝑥 .(·) is a fixpoint constructor (that binds the variable

𝜑 to the fixpoint), and sample evaluates to a random draw
from the uniform distribution on [0, 1]. The value returned
by the program is the number of days needed to complete
the job. Luckily, as the program is AST for all success proba-
bilities 𝑝 ∈ (0, 1], the company can assure its customers that
it will finish the job eventually. However, in a bid to drum
up business, a new quality policy is introduced. The man-
ager advises their customers: łEach day our print attempt
fails, we will print an additional copy for you.ž We model the
situation as follows:

(

𝜇
𝜑
𝑥 .if sample ≤ 𝑝 then𝑥 else𝜑

(

𝜑 (𝑥 + 1)
)

)

1 (2)

Soon after implementing the new policy, it was noticed that
some of the print jobs could never be completed. Phrased
differently: Program (2) is no longer AST for every 𝑝 ∈ (0, 1].
This example illustrates that non-affine recursion, as ex-

hibited in program (2), can complicate the analysis of termi-
nation. While the affine program (1) is clearly AST for every
𝑝 > 0, program (2) is not. It turns out that (2) is AST if and
only if 𝑝 ≥ 1

2 ; and in case 𝑝 = 1
2 , while the process is AST,

the expected time to termination is infinite. It is unsurprising
that termination depends on the number of recursive calls,
as termination itself is a quantitative property.

Termination analysis of non-affine recursive probabilistic
programs does not seem to have received much attention.
Methods such as those presented in [36] explicitly restrict
to affine programs and are unsound otherwise. Our method
for the analysis of non-affine recursive programs can be
viewed as orthogonal to [36]: while they restrict to affine
programs and investigate the recursive function argument
for size information, we accept the function argument with-
out examination, and admit non-affine programs. We call our
methods counting-based, as we over-approximate the recur-
sive behaviour by counting recursive calls from distinct call
sites, thus reducing AST analysis to the analysis of a random
walk for which we show linear decidability. See Sec. 5. Our
method is the basis of an AST proof system that can verify
programs (including the simple example above) well beyond
the reach of existing methods (Sec. 6). As a simple corollary,
we obtain a functional generalisation of the zero-one law for
termination of while-programs [43, ğ2.6]3

Contributions. Our main contributions are as follows:

• We propose a new sound and complete interval-based
semantics that enables lower bound computation. We
obtain a first proof that the (CbN) AST (resp. PAST)
decision problem is, under mild assumptions on primi-
tive functions, Π0

2-complete (resp. Σ0
2-complete) even

in the presence of continuous distributions.
• We give a local representation of our semantics as an
intersection type system where both the probability

3The zero-one law states that a while-loop is almost-surely terminating if

there is a positive lower bound on the probability of exiting it.

of termination and expected time to termination are
characterised as the least upper bound over all deriva-
tions.

• We provide a new proof method for AST verification
of non-affine recursive programs. We show how our
proof system can be automated.

Our theoretical results give rise to practical algorithms.
We provide prototype implementations for both lower bound
computation and AST verification based on our novel seman-
tics and proof system respectively (Sec. 7). Missing proofs
and further discussions can be found in [4].

2 Statistical PCF (SPCF)

We begin by introducing some basics of probability theory
and presenting our language of study.

2.1 Basic Probability Theory

A 𝜎-algebra on a set Ω, typically written ΣΩ , is a collection of
subsets of Ω such that Ω ∈ ΣΩ , and ΣΩ is closed under com-
plementation and countable unions (and hence countable
intersections). A measurable space is a pair (Ω, ΣΩ) where
Ω is a set (of outcomes) and ΣΩ is a 𝜎-algebra on Ω. A func-
tion 𝑓 : Ω1 → Ω2 between measurable spaces, (Ω1, ΣΩ1 )
and (Ω2, ΣΩ2 ), is called measurable if for every 𝐴 ∈ ΣΩ2 ,
𝑓 −1 (𝐴) ∈ ΣΩ1 . A measure on (Ω, ΣΩ) is a function 𝜇 : ΣΩ →
R+ that satisfies 𝜇 (∅) = 0 and is 𝜎-additive: if {𝐴𝑖 }𝑖∈N is
a countable family of pairwise disjoint sets from ΣΩ then
𝜇 (∪𝑖𝐴𝑖 ) =

∑

𝑖 𝜇 (𝐴𝑖 ). If 𝜇 (Ω) ≤ 1 we call 𝜇 a subprobability
measure and if 𝜇 (Ω) = 1 we call it a probability measure (or
distribution). For the 𝑛-dimensional Euclidean space R𝑛 we
write ΣR𝑛 for the Borel 𝜎-algebra over R𝑛 , which is the small-
est 𝜎-algebra that contains all open and closed𝑛-dimensional
boxes. In the special case of 𝑛 = 1, this is the set generated by
all open (and closed) intervals. The 𝑛-dimensional Lebesgue
measure, denoted 𝜆𝑛 , is the unique measure on (R𝑛, ΣR𝑛 )
that satisfies 𝜆𝑛 ([𝑎1, 𝑏1] × · · · × [𝑎𝑛, 𝑏𝑛]) =

∏𝑛
𝑖=1 (𝑏𝑖 − 𝑎𝑖 ).

Discrete Sample Space. In case Ω is countable, we often
work with the powerset 2Ω as the trivial 𝜎-algebra. Every
probability measure is then uniquely determined by a prob-
ability mass function (pmf), a function 𝑝 : Ω → R[0,1] with
∑

𝑥 ∈Ω 𝑝 (𝑥) = 1. Every pmf 𝑝 gives rise to a probability mea-
sure by defining 𝜇 (𝐴) ≔ ∑

𝑥 ∈𝐴 𝑝 (𝑥); conversely, for every
probability measure 𝜇 on the powerset we can recover a gen-
erating pmf by defining 𝑝 (𝑥) ≔ 𝜇 ({𝑥}). A subprobability
mass function is defined analogously.

2.2 SPCF

Statistical PCF (SPCF) is an extension of PCF [51] with sup-
port to sample4 from the uniform distribution on [0, 1] and
condition executions (see [26]). Terms in SPCF are implicitly

4Sampling from other real-valued distributions can be obtained from sample

by applying the inverse of the distribution’s cumulative distribution func-

tion; see e.g. [54, ğ2.3.1].
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Γ ⊢ sample : R
Γ ⊢ 𝑀 : R

Γ ⊢ score(𝑀) : R
Γ, 𝜑 : 𝛼 → 𝛽, 𝑥 : 𝛼 ⊢ 𝑀 : 𝛽

Γ ⊢ 𝜇
𝜑
𝑥 .𝑀 : 𝛼 → 𝛽

{Γ ⊢ 𝑀𝑖 : R} |𝑓 |𝑖=1

Γ ⊢ 𝑓 (𝑀1, · · · , 𝑀 |𝑓 |) : R

Figure 1. Selection of SPCF typing rules

parametrised over a set F of measurable functions 𝑓 : R𝑛 →
R that model primitive operations. Each function 𝑓 ∈ F has
an arity |𝑓 | ≥ 0. The sets of terms and values are defined by
the following grammar where 𝑥 and 𝜑 are distinct variables
(from a fixed denumerable set of symbols), 𝑟 ∈ R and 𝑓 ∈ F:

𝑉 ≔ 𝑥 | 𝑟 | 𝜆𝑥 .𝑀 | 𝜇𝜑𝑥 .𝑀
𝑀, 𝑁, 𝑃 ≔ 𝑉 | 𝑀𝑁 | if(𝑀, 𝑁, 𝑃) | 𝑓 (𝑀1, · · · , 𝑀 |𝑓 |)

| sample | score(𝑀)

As usual, we identify terms modulo 𝛼-conversion. The fix-
point constructor, 𝜇

𝜑
𝑥 .(·), binds the recursively defined func-

tion 𝜑 and its argument 𝑥 . We abbreviate5

𝑀 ⊕𝑃 𝑁 ≔ if (sample − 𝑃,𝑀, 𝑁 )

in the style of [43] and write 𝑀 ⊕ 𝑁 for 𝑀 ⊕.5 𝑁 . We type
terms using a standard simple type systemwith types defined
by 𝛼, 𝛽 ≔ R | 𝛼 → 𝛽 . A selection of typing rules is given in
Fig. 1 (see [4] for a full system) . We denote the set of typable
SPCF terms by Λ and its subset of closed terms by Λ0.
In this paper we consider both call-by-name (CbN) and

call-by-value (CbV) evaluation strategies. We use CbN for
the first part of this paper, as the results (especially those
about intersection types) are cleaner this way [9, 21, 33].
(Our CbN SPCF can express CbV computation at base types,
giving it a suitable algorithmic expressiveness; c.f. [20].) We
switch to CbV SPCF when presenting our AST proof sys-
tem, thereby enabling a more straightforward comparison
to related approaches such as [36].

2.3 Operational Semantics

We give a sampling-style operational semantics for SPCF.
The idea (going back to Kozen [34]) is to evaluate a term𝑀

together with a sequence of (fixed) probabilistic outcomes
for each sample statement [6, 41]. We then generate a prob-
abilistic interpretation of programs by endowing the set of
traces with a measure.

CbN SPCF. We define the set of traces S as all finite se-
quences of real numbers from R[0,1] := {𝑟 ∈ R | 0 ≤ 𝑟 ≤ 1}),
i.e., S ≔ R∗[0,1] =

⋃

𝑛∈N R
𝑛
[0,1] . We let 𝒔 range over elements

in S, denote the empty trace with 𝜖 ; for 𝑟 ∈ R[0,1] write 𝑟 for
the one element trace; and 𝒔1, 𝒔2 for concatenation. The set

5Our conditional statement, if(𝑃,𝑀, 𝑁 ) , branches on whether 𝑃 ≤ 0.

of CbN redexes and evaluation contexts is defined by:

𝑅 ≔ (𝜆𝑥.𝑀)𝑁 | (𝜇𝜑𝑥 .𝑀)𝑁 | if(𝑟, 𝑁 , 𝑃)
| 𝑓 (𝑟1, · · · , 𝑟 |𝑓 |) | sample | score(𝑟 )

𝐸 ≔ [·] | 𝐸𝑀 | if(𝐸, 𝑁, 𝑃) | score(𝐸)
| 𝑓 (𝑟1, · · · , 𝑟𝑘−1, 𝐸, 𝑀𝑘+1, · · · , 𝑀 |𝑓 |)

Given a context 𝐸 and a term 𝑀 the (capture-permitting)
substitution 𝐸 [𝑀] is defined in the obvious way. An easy
induction establishes that every𝑀 ∈ Λ0 is either a value or
there are unique 𝐸 and 𝑅, s.t., 𝑀 = 𝐸 [𝑅] (see e.g. [6]). The
small-step reduction relation has the from ⟨𝑀, 𝒔⟩ → ⟨𝑀 ′, 𝒔 ′⟩
where𝑀,𝑀 ′ are terms and 𝒔, 𝒔 ′ are traces. It is defined induc-
tively by the rules given in Fig. 2 where𝑀 [𝑁𝑖/𝑥𝑖 ]𝑖 denotes
standard capture-avoiding substitution [3]. Note that our
reduction does not enjoy progress, as e.g. redex score(𝑟 )
cannot reduce if 𝑟 < 0.
The score constructs is used to stochastic condition of

executions (see e.g. [26]) by weighting each execution [6].
As this work is a study of termination properties, we elide
the weight parameter used for stochastic conditioning as
the weight of a execution is irrelevant for the termination
behaviour6.

AMeasure onTraces. To interpret probabilistic programs
using traces, we first need to endow the set of traces with
a measure. We cannot assign probability mass to individual
traces directly, as there are uncountably many traces. Instead
we define a suitable measurable space of program traces
following [6]. Let ΣR𝑛[0,1] be the Borel 𝜎-algebra on R

𝑛
[0,1] (We

set ΣR0[0,1]
≔

{

∅, {𝜖}
}

). We can then define a 𝜎-algebra on

traces (ΣS) and a measure (𝜇S) by:

ΣS ≔ {⊎𝑛∈N 𝐵𝑛 | 𝐵𝑛 ∈ ΣR𝑛[0,1]
}

𝜇S
(
⊎

𝑛∈N 𝐵𝑛
)

≔

∑

𝑛∈N 𝜆𝑛 (𝐵𝑛)
As shown in [6, Lem. 7 & 8], (S, ΣS) is a measurable space
and 𝜇S a (𝜎-finite) measure on (S, ΣS).

2.4 Probabilistic Termination

With →𝑛 we denote the 𝑛-fold self-composition, and with
→∗ the reflexive-transitive closure, of →. We define

T𝑀,term ≔
{

𝒔 ∈ S | ∃𝑉 : ⟨𝑀, 𝒔⟩ →∗ ⟨𝑉 , 𝜖⟩
}

as the set of traces on which a term𝑀 terminates, which is
measurable (similar to [6, Lem. 9]). As shown in [41, Lem. 7],
𝜇S

(

T𝑀,term

)

≤ 1; we are therefore justified in calling the

interpretation 𝜇S
(

T𝑀,term

)

a łprobabilityž.

6The weight function can be seen as a function mapping terminating traces

to weights (i.e.,R). The denotation of a program is then the Lebesgue integral

of this weight functions over the set of terminating traces ([6, ğ3.4]). To get

e.g., the almost-everywhere differentiability of the weight function (needed

for correct inference), it is sufficient to show that the measure of the set of

termination traces is 1 (irrespective of the weight on these traces) [41, ğ4.3].

The score-construct has, nevertheless, a subtle effect on termination as we

require the conditioned value to be positive.

1315



On Probabilistic Termination of Functional Programs with Continuous Distributions PLDI ’21, June 20ś25, 2021, Virtual, Canada

⟨(𝜆𝑥 .𝑀)𝑁, 𝒔⟩ → ⟨𝑀 [𝑁 /𝑥], 𝒔⟩ ⟨(𝜇𝜑𝑥 .𝑀)𝑁, 𝒔⟩ → ⟨𝑀 [𝑁 /𝑥, (𝜇𝜑𝑥 .𝑀)/𝜑], 𝒔⟩ ⟨sample, 𝑟 𝒔⟩ → ⟨𝑟, 𝒔⟩
𝑟 ≤ 0

⟨if(𝑟, 𝑁 , 𝑃), 𝒔⟩ → ⟨𝑁, 𝒔⟩
𝑟 > 0

⟨if(𝑟, 𝑁 , 𝑃), 𝒔⟩ → ⟨𝑃, 𝒔⟩
𝑟 ≥ 0

⟨score(𝑟 ), 𝒔⟩ → ⟨𝑟, 𝒔⟩

⟨𝑓 (𝑟1, · · · , 𝑟 |𝑓 |), 𝒔⟩ → ⟨𝑓 (𝑟1, · · · , 𝑟 |𝑓 |), 𝒔⟩
⟨𝑅, 𝒔⟩ → ⟨𝑀, 𝒔 ′⟩

⟨𝐸 [𝑅], 𝒔⟩ → ⟨𝐸 [𝑀], 𝒔 ′⟩

Figure 2. Call-by-name small-step reduction for SPCF

Definition 2.1. The probability of termination of 𝑀 ∈ Λ0

is defined by Pterm (𝑀) ≔ 𝜇S (T𝑀,term). 𝑀 is called almost-

surely terminating (AST) if Pterm (𝑀) = 1.

Positive Almost-Sure Termination. An even stronger
property than AST is finiteness of the expected time to ter-
mination. For any trace 𝒔 ∈ T𝑀,term we define #𝒔↓(𝑀) ∈ N as

the unique number 𝑛 such that ⟨𝑀, 𝒔⟩ →𝑛 ⟨𝑉 , 𝜖⟩ for some
value 𝑉 . For any 𝑛 ∈ N we define

T≤𝑛𝑀,term ≔
{

𝒔 ∈ T𝑀,term | #𝒔↓(𝑀) ≤ 𝑛
}

as the set of traces on which termination occurs within 𝑛

steps, which is measurable. We define T𝑛
𝑀,term analogously.

Definition 2.2. For𝑀 ∈ Λ0 we define the expected time to

termination, Eterm (𝑀) ∈ R+, by

Eterm (𝑀) ≔ ∑∞
𝑛=0

(

1 − 𝜇S
(

T≤𝑛
𝑀,term

)

)

𝑀 is positive almost-surely terminating if Eterm (𝑀) < ∞.

It is easy to see that any program that is PAST is also AST.
Following [29], Eterm (𝑀) can be phrased as

∑∞
𝑛=0 P

(

ł𝑀 runs

for more than 𝑛 stepsž
)

=
∑∞

𝑛=0

(

1− P(ł𝑀 terminates within

𝑛 stepsž)
)

, with the latter expressed in Def. 2.2. We can show
that, provided 𝑀 is AST, the expected time to termination
is the expected value of the random variable that gives the
number of reduction steps:

Lemma 2.3. If𝑀 is AST, Eterm (𝑀) =
∞
∑

𝑛=0
𝜇S

(

T𝑛
𝑀,term

)

· 𝑛

CbV SPCF. Our CbV SPCF is essentially the system of [41],
except that we use a simpler CbV fixpoint reduction rule.

3 Interval-Based Semantics

It is impractical to use the standard trace-based (or sampling-
style) semantics to reason about termination properties of
SPCF programs, because the trace measure 𝜇S is continu-
ous. Suppose we are interested in the decidability of the
lower bound question: does a term terminate with probability
strictly greater than 𝑝? For discrete distributions, this prob-
lem is r.e. (in Σ

0
1) as we can enumerate terminating paths

until the sum of the weight of those paths exceeds 𝑝 [29, 33].
In the presence of continuous distributions, this is no longer
possible. A well-known property of the Lebesgue measure
on R𝑛[0,1] (inherited by the trace measure 𝜇S) is that every

countable set of elements is a null set. So even if we can iden-
tify a countably infinite set of traces 𝐴 ⊆ T𝑀,term, we cannot
obtain any non-trivial lower bound on Pterm (𝑀). Thus the
semantics itself cannot be used to settle such complexity
questions as whether the lower bound problem for SPCF is
in Σ

0
1, or whether the AST problem is in Π

0
2, or whether the

PAST problem in Σ
0
2. In this section, we introduce a novel

operational semantics for SPCF by executing terms param-
eterised by a trace of intervals. We demonstrate that this
semantics, which is complete w.r.t. the trace-based seman-
tics, is well-suited to the derivation of lower bounds. The
completeness hinges on the observation that, under mild
restrictions on primitive functions, interval-based reasoning
can effectively abstract actual traces. This is the basis of our
positive answer to the questions above.

Syntax of Interval Terms. We adjust the syntax of terms
slightly and treat intervals as constant symbols of typeR. We
define interval values and interval terms as follows where
𝑎 ≤ 𝑏 ∈ R.

V ≔ 𝑥 | [𝑎, 𝑏] | 𝜆𝑥 .M | 𝜇𝜑𝑥 .M
M,N ,P ≔ V | MN | if(M,N ,P) | 𝑓 (M1, · · · ,M |𝑓 |)

| sample | score(M)
Our simple type system extends naturally. We denote the
set of (closed, bounded) intervals by ℑ, and write ℑ0,1 ≔

{[𝑎, 𝑏] | 𝑎, 𝑏 ∈ R, 0 ≤ 𝑎 ≤ 𝑏 ≤ 1} as the set of intervals with
endpoints between 0 and 1. With ℑQ and ℑQ0,1 we denote the

sets ℑ and ℑ0,1 respectively, restricted to rational endpoints.

Definition 3.1. We call 𝑓 : R𝑛 → R interval preserving

(resp. Q-interval preserving) if there is a function 𝑓 : R2𝑛 →
ℑ (resp. 𝑓 : Q2𝑛 → ℑQ) such that for every sequence of
intervals [𝑎1, 𝑏1], · · · , [𝑎𝑛, 𝑏𝑛] ∈ ℑ (resp. ∈ ℑQ) we have

𝑓
(

[𝑎1, 𝑏1] × · · · × [𝑎𝑛, 𝑏𝑛]
)

= 𝑓 (𝑎1, 𝑏1, · · · , 𝑎𝑛, 𝑏𝑛), i.e., the
image of every 𝑛-dimensional box (resp. with rational end-
points) is an interval (resp. with rational endpoints).

We restrict the primitive functions to those that are inter-
val preserving to ensure that interval-based reasoning is com-
patible with primitive operations. As the following shows,
most interesting functions (including e.g. +, ·,−, exp, | · |, · · · )
are interval preserving.

Lemma 3.2. If 𝑓 : R𝑛 → R is continuous then 𝑓 is interval

preserving.
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𝑏 ≤ 0

⟨if([𝑎,𝑏],N, P),℘⟩ { ⟨N,℘⟩
𝑎 > 0

⟨if([𝑎,𝑏],N, P),℘⟩ { ⟨P,℘⟩

⟨sample, [𝑎,𝑏] :: ℘⟩ { ⟨[𝑎,𝑏],℘⟩
0 ≤ 𝑎

⟨score([𝑎,𝑏]),℘⟩ { ⟨[𝑎,𝑏],℘⟩

⟨𝑓
(

[𝑎1, 𝑏1], · · · , [𝑎 |𝑓 |, 𝑏 |𝑓 |]
)

,℘⟩ { ⟨𝑓 (𝑎1, 𝑏1, · · · , 𝑎 |𝑓 |, 𝑏 |𝑓 |),℘⟩

Figure 3. Selection of interval-based reduction rules

3.1 Interval-Based Semantics

We define the set of interval traces by Sℑ ≔
⋃

𝑛∈N ℑ
𝑛
0,1, i.e.,

finite sequences of intervals with endpoints between 0 and
1 (inclusive). We let ℘ range over elements in Sℑ. To avoid
confusion, we shall refer to elements of Sℑ as interval traces,
and elements of S as standard traces.
Redexes and evaluation contexts of interval terms are

defined as expected. As we only replace real-valued numer-
als with interval-valued, our standard small-step semantics
(Fig. 2) mostly extends to interval terms. The specific reduc-
tion rules concerning the control flow and primitive func-
tions are given in Fig. 3. As a useful intuition, it is helpful to
view an interval numeral [𝑎, 𝑏] as an unknown value within

that interval. As in the standard semantics, we are interested
in the interval traces that lead to a normal form.

TℑM,term ≔ {℘ ∈ Sℑ | ∃V : ⟨M, ℘⟩ {∗ ⟨V, 𝜖⟩}

For any ℘ ∈ TℑM,term
, we define #

℘

↓ (M) as the number of

reduction steps to termination.

Embedding Into Intervals. While we want to analyse
the termination probability of standard terms, our interval-
based semantics builds on interval terms. We define a natural
embedding (·)2ℑ that maps every standard term 𝑀 to the
interval term𝑀2ℑ obtained by replacing every numeral 𝑟 by
the interval numeral [𝑟, 𝑟 ]. Our soundness and completeness

results are now based on the operational behavior of 𝑀2ℑ

(in the interval semantics), and they allow us to draw conclu-
sions about the behavior of𝑀 (in the standard semantics).

3.2 Soundness

We now show that the interval-based semantics gives lower
bounds on the probability of termination in the standard se-
mantics. We define the weight of an interval trace ℘, denoted
by 𝜔 (℘), in the obvious way:

𝜔 ([𝑎1, 𝑏1], · · · , [𝑎𝑛, 𝑏𝑛]) ≔
∏𝑛

𝑖=1 (𝑏𝑖 − 𝑎𝑖 )

To combine the weight of multiple terminating interval
traces we need to ensure that the interval traces are disjoint,
i.e., we do not account twice for the same standard trace.

Definition 3.3. Two interval traces ℘ = [𝑎1, 𝑏1], · · · , [𝑎𝑛, 𝑏𝑛]
and ℘′ = [𝑎′1, 𝑏

′
1], · · · , [𝑎′𝑚, 𝑏 ′𝑚] are compatible if 𝑛 ≠ 𝑚 or

there exists 𝑖 such that 𝑏𝑖 ≤ 𝑎′𝑖 or 𝑏
′
𝑖 ≤ 𝑎𝑖 .

For example, the four interval traces, [0, 1][0, 13 ], [0, 1][
1
3 ,

1
2 ],

[0, 1][ 34 , 1] and [0, 1], are pairwise compatible. For a count-
able set of interval traces𝐴we define𝜔 (𝐴) ≔ ∑

℘∈𝐴 𝜔 (℘); if
𝐴 ⊆ TℑM,term

we also define the expected value of𝐴, denoted

E(M, 𝐴), by
E(M, 𝐴) ≔ ∑

℘∈𝐴 𝜔 (℘) · #℘↓ (M)

We can now state soundness as follows:

Theorem3.4. For every countable set of pairwise compatible

traces 𝐴 ⊆ Tℑ
𝑀2ℑ,term

the following holds:

𝜔 (𝐴) ≤ Pterm (𝑀)• E(𝑀2ℑ, 𝐴) ≤ Eterm (𝑀)•

This (perhaps unsurprising) soundness result is the basis
of an effective tool to verify lower bounds on Pterm (𝑀) and
Eterm (𝑀). The real force of the interval-based semantics lies
in its completeness.

3.3 Completeness

We show that, under mild assumptions on the primitive
functions, a countable number of traces for𝑀2ℑ already gives
the exact probability of termination Pterm (𝑀). Consequently,
by an incremental search of terminating interval-traces, we
can compute arbitrarily tight lower bounds on Pterm (𝑀).

Example 3.5. Consider the term

𝑀 =
(

𝜇
𝜑
𝑥 .if sample + sample − 1 else𝑥 else𝜑 𝑥

)

0.

For the moment we focus on the set of traces on which
this term terminates without making a single recursive call
which is 𝑇 = {𝑟1 𝑟2 ∈ R2[0,1] | 𝑟1 + 𝑟2 ≤ 1}. This set cannot
be described by a countable union of interval traces, i.e.,
there are no interval traces {℘𝑖 }𝑖∈N such that 𝒔 ∈ 𝑇 ⇔ ∃𝑖 ∈
N : 𝒔 ⊳ ℘𝑖 , where 𝒔 ⊳ ℘𝑖 means that 𝒔 refines ℘𝑖 (see [4]).
Nevertheless, as 𝑀 is AST, our completeness result states
that we can find a countable family of (pairwise compatible)

interval traces, 𝐴 ⊆ Tℑ
𝑀2ℑ,term

, whose cumulative weight

(i.e. 𝜔 (A)) equals Pterm (𝑀) = 1.

To achieve completeness we need the concept of interval
separable primitive functions. For measurable 𝐴, 𝐵 ⊆ R𝑛 we
write 𝐴 ⋐ 𝐵 if 𝐴 ⊆ 𝐵 and 𝜆𝑛 (𝐵 \𝐴) = 0, i.e., 𝐴 is contained
in, and, up to a null set, equal to, 𝐵. Interval separability now
states that the preimage of every interval can be written, up
to a null set, as a countable union of boxes. Precisely:

Definition 3.6. A function 𝑓 : R𝑛 → R is called interval

separable if for every interval [𝑎, 𝑏] ∈ ℑ, there exists a family
of boxes {𝐵𝑖 }𝑖∈N with 𝐵𝑖 ⊆ R𝑛 such that ∪𝑖𝐵𝑖 ⋐ 𝑓 −1 ( [𝑎, 𝑏]).

Most interesting functions such as +, ·, exp, etc. are inter-
val separable.

Lemma 3.7. If 𝑓 : R𝑛 → R is continuous, and for all 𝑦 ∈ R,
𝑓 −1 ({𝑦}) is a Lebesgue null set, then 𝑓 is interval separable.
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Theorem 3.8. If every 𝑓 ∈ F is interval separable, then for ev-
ery𝑀 ∈ Λ0 there exists a countable set of pairwise-compatible

interval traces 𝐴 ⊆ Tℑ
𝑀2ℑ,term

such that 𝜔 (𝐴) = Pterm (𝑀); and
if𝑀 is AST then E(𝑀2ℑ, 𝐴) = Eterm (𝑀).
Proof Sketch. Wefirst partitionT𝑀,term according to the branch-
ing behaviour, i.e., sequences in {0, 1}∗ indicating if the left
or the right branch of conditionals was taken. We then fix
a branching behaviour (notice that {0, 1}∗ is countable) and
employ stochastic symbolic execution (in the sense of [41])
by executing a term on a trace of variables, while collecting
symbolic constraints along the way. As primitive functions
are interval separable, we show that the corresponding con-
straints can be exhausted via interval traces. □

Incompleteness. While the collection of primitive func-
tions with respect to which our semantics is complete is very
broad (c.f. Lem. 3.7), interval-based reasoning is incomplete
in the presence of arbitrary continuous functions.

Example 3.9. Let 𝐶 ⊆ R be any Smith-Volterra-Cantor set,
i.e., 𝐶 has positive Lebesgue measure but is nowhere dense,
i.e., there are no 𝑎 < 𝑏 with [𝑎, 𝑏] ∈ 𝐶 . Now construct func-
tion 𝑓𝐶 : R→ R by 𝑓𝐶 (𝑥) := 𝑑 (𝑥,𝐶), the distance of 𝑥 to 𝐶 .
As 𝐶 is a closed set, the function is well-defined and obvi-
ously continuous; and the roots of 𝑓𝐶 coincide with 𝐶 . Then
𝑀 ≔ if 𝑓𝑐 (sample) then 0 else 1 is clearly AST. However,
in the interval-based semantics, we can never derive a ter-
mination probability of more than 1 − 𝜆1 (𝐶) < 1 as there is
no non-trivial interval trace taking the left branch.

3.4 AST and PAST in the Arithmetic Hierarchy

If we only consider functions that are Q-interval preserving
we can restrict the previous reasoning to intervals and boxes
with rational endpoints. This has direct recursion-theoretic
consequences.

Theorem 3.10. Assume that every 𝑓 ∈ F is Q-interval pre-
serving and interval separable, and 𝑓 is computable and we

consider CbN evaluation. For any term𝑀 (containing only ra-

tional numerals), deciding AST is in Π
0
2. If𝑀 is AST, deciding

PAST is in Σ
0
2. In general, deciding PAST is in Δ

0
3.

Proof. Thanks to Thm. 3.4 and Thm. 3.8 we can express ł𝑀
is ASTž by the following ∀∃-formula:

∀𝜖 > 0 ∈ Q. ∃𝐴. 𝐴 ⊆ Tℑ
𝑀2ℑ,term

∧ 𝜔 (𝐴) ≥ 1 − 𝜖

where 𝐴 ranges over (encodings of) finite, pairwise compati-
ble sets of interval traces with rational endpoints. If𝑀 is AST
we can express PAST (i.e. Eterm (𝑀) < ∞) as this ∃∀-formula:

∃𝑐 ∈ Q. ∀𝐴. 𝐴 ⊆ Tℑ
𝑀2ℑ,term

⇒ E(𝑀2ℑ, 𝐴) ≤ 𝑐

In general,𝑀-is-PAST⇔𝑀-is-AST ∧ Eterm (𝑀) < ∞, so the
general PAST decision problem is in Δ

0
3. □

If addition is definable, thenÐthanks to the hardness re-
sults in [29]Ðdeciding AST in the presence of continuous dis-
tributions (and suitable primitive functions) is Π0

2-complete;

and deciding PAST (assuming AST) is Σ0
2-complete.7 We re-

mark that the Δ0
3 upper bound for the general PAST problem

does not match the corresponding bound for discrete distri-
butions [29]. The approach in [29] uses the fact that there are
finitelymany traces of a given length; this property obviously
does not hold in the presence of continuous distributions.

4 Intersection Type System

Intersection types have long been studied in termination
analysis as they can give a complete characterisation of ter-
mination: A 𝜆-term is typable in a (suitable) intersection
type system iff it is strongly normalising. A first study of
the quantitative notion of AST, and whether the intrigu-
ing completeness of intersection types can be extended to
a probabilistic language, was conducted in [9]. Owing to
the intrinsic Π0

2-hardness of AST [29], we cannot hope for a
semi-decidable type system in which a term is typable iff it
is AST. Instead [9] presented two approaches to termination
analysis, where the probability of termination is either a sum
over all (countably many) typing derivation (called the ora-
cle system) or the least upper bound (lub) thereof. We show
that completeness of intersection types w.r.t. termination can
also be established for a language with continuous samples
(where a program admits uncountably many distinct runs),
thereby giving a local representation of our interval-based
semantics. In our system the lub over countably many deriva-
tions gives the probability of termination and the expected
number of computation steps. Thus we obtain a complete,
compositional and recursion-theoretically optimal method
for computing lower bounds on both the probability of ter-
mination and the expected time to termination.

Intersection Type System for SPCF. Our system concep-
tually lies between the two approaches of [9] (alluded to
above): we reason about the lub, and at the same type explic-
itly enumerate terminating (interval) traces as in the oracle
system of [9]. The system in [9] relies on the countable na-
ture of the execution tree and can exhibit subject reduction
by taking the weighted (finite) sum over the reduction rela-
tion. This approach does not work for SPCF because of the
uncountable nature of the latter. Instead, our proofs hinge
on the soundness and completeness of the interval-based
semantics (Sec. 3).

Set Types. We define set types by the following grammar:

𝛼 ≔[𝑎, 𝑏] | 𝜎 → A 𝜎 ≔
{

A1, · · · ,A𝑛

}

A ≔
{

(𝛼1, ℘1, 𝜏1), · · · , (𝛼𝑚, ℘𝑚, 𝜏𝑚)
}

where each ℘𝑖 is an interval trace, and 𝜏𝑖 a natural number.
We refer to elements 𝜎 as intersections and A as set types.

7The reduction from the complement of the of the universal halting problem

used to establish Σ
0
2-hardness of deciding PAST [29, Thm. 8] always yields

programs that are AST. It is therefore Σ02-hard to decide PAST even if the

program in question is already assumed AST.

1318



PLDI ’21, June 20ś25, 2021, Virtual, Canada Raven Beutner and Luke Ong

A ∈ 𝜎
(var)

Γ, 𝑥 : 𝜎 ⊢ 𝑥 : A
(num)

Γ ⊢ [𝑎, 𝑏] :
{

([𝑎, 𝑏], 𝜖, 0)
}

{[𝑎𝑖 , 𝑏𝑖 ]}𝑖∈[𝑛] are almost disjoint
(sample)

Γ ⊢ sample :
{

([𝑎𝑖 , 𝑏𝑖 ], [𝑎𝑖 , 𝑏𝑖 ], 1) | 𝑖 ∈ [𝑛]
}

Γ, 𝑥 : 𝜎, 𝜑 : 𝛾 ⊢ M : A
{

Γ ⊢ 𝜇
𝜑
𝑥 .M : B | ∀B ∈ 𝛾

}

(fix)

Γ ⊢ 𝜇
𝜑
𝑥 .M :

{

(𝜎 → A, 𝜖, 0)
}

Γ ⊢ M : A {Γ ⊢ N : C | (𝜎 → B, ℘, 𝜏) ∈ A, C ∈ 𝜎}
(app)

Γ ⊢ MN :
⋃

(𝜎→B,℘,𝜏) ∈A
B (↑℘,𝜏+1)

(⦃⦄)
Γ ⊢ M :

{}

Γ, 𝑥 : 𝜎 ⊢ M : A
(abs)

Γ ⊢ 𝜆𝑥 .M :
{

(𝜎 → A, 𝜖, 0)
}

Γ ⊢ M : A
(score)

Γ ⊢ score(M) :
{

([𝑎, 𝑏], ℘, 𝜏 + 1) | ([𝑎, 𝑏], ℘, 𝜏) ∈ A, 𝑎 ≥ 0
}

Γ ⊢ M : A {Γ ⊢ N : B([𝑎,𝑏],℘,𝜏) | ([𝑎, 𝑏], ℘, 𝜏) ∈ A, 𝑏 ≤ 0} {Γ ⊢ P : C([𝑎,𝑏],℘,𝜏) | ([𝑎, 𝑏], ℘, 𝜏) ∈ A, 𝑎 > 0}
(if)

Γ ⊢ if(M,N ,P) : ⋃

([𝑎,𝑏],℘,𝜏) ∈A |𝑏≤0
B (↑℘,𝜏+1)
([𝑎,𝑏],℘,𝜏) ∪

⋃

([𝑎,𝑏],℘,𝜏) ∈A |𝑎>0
C (↑℘,𝜏+1)
([𝑎,𝑏],℘,𝜏)

Γ ⊢ M : A {Γ ⊢ N : B([𝑎,𝑏],℘,𝜏) | ([𝑎, 𝑏], ℘, 𝜏) ∈ A}
(𝑓2)

Γ ⊢ 𝑓 (M,N) : ⋃

([𝑎,𝑏],℘,𝜏) ∈A

⋃

([𝑐,𝑑],℘′,𝜏 ′) ∈B([𝑎,𝑏],℘,𝜏 )

{

(𝑓 (𝑎, 𝑏, 𝑐, 𝑑), ℘℘′, 𝜏 + 𝜏 ′ + 1)
}

Figure 4. Intersection type system for SPCF

To effectively type conditionals we need to integrate first-
order data, in our case intervals, in the types themselves.
This is similar to the type system in [21]. For a set type A =
{

(𝛼𝑖 , ℘𝑖 , 𝜏𝑖 )
}

𝑖
we writeA (↑℘,𝜏) for the set type

{

(𝛼𝑖 , ℘℘𝑖 , 𝜏𝑖 +
𝜏)
}

𝑖
, i.e., the set obtained by prepending ℘ to every trace and

adding 𝜏 to every count. We call two interval almost disjoint

if their intersection contains at most one element.

Type System. Typing judgments are of the form Γ ⊢ M :
A. Valid judgments are defined by induction over the rules
in Fig. 4. Intuitively, if ⊢ M :

{

(𝛼𝑖 , ℘𝑖 , 𝜏𝑖 )
}

𝑖
then ℘𝑖 are all

terminating traces for𝑀 on which exactly 𝜏𝑖 steps are made
until a value is reached. We advise the reader to compare
this system with the monadic system given in [9, ğ6.1]. Note,
in particular, that the type of an application is determined
by the left argument, matching the CbN 𝛽-reduction where
arguments are passed unevaluated. While the (if) -rule looks
complicated at first sight, the subscript ([𝑎, 𝑏], ℘, 𝜏) for each
set type is merely used as an index, i.e., if Γ ⊢ M : A we
can combine a different type derivation for every element
in A. Although we restrict primitive functions to have arity
2, the rules can easily be extended to handle higher arities.
We omitted the general rule as it gets chaotic. For set type
A =

{

(𝛼𝑖 , ℘𝑖 , 𝜏𝑖 ) | 𝑖 ∈ [𝑛]
}

we define 𝜔 (A) := ∑

𝑖∈[𝑛] 𝜔 (℘𝑖 )
and E(A) := ∑

𝑖∈[𝑛] 𝜔 (℘𝑖 ) ·𝜏𝑖 . We can then show correctness.

Theorem 4.1. For every term𝑀 ∈ Λ0,

1.
∨

⊢𝑀2ℑ :A
𝜔 (A) = Pterm (𝑀), and

2. If𝑀 is AST,
∨

⊢𝑀2ℑ :A
E(A) = Eterm (𝑀)

This gives a recursion-theoretically optimal characterisa-
tion of AST that is purely based on the type system (c.f. [9,
ğ5.3]). Thus we can computationally analyse termination,
not just by evaluation (c.f. Sec. 3), but also via a local typing

system. By incrementally searching for typing derivations,
we can compute arbitrarily tight bounds. Compared to [9], a
novel feature of our work lies in the fact that we can explic-
itly reason about execution time, thus enabling a type-based
characterisation of PAST (for terms that are AST). While
our system as a whole may look a little intimidating, each
rule is actually simple by itself, requiring no complex opera-
tions. The idea of annotating types by a step count is also
applicable to the setting of [9], giving a strict generalisation
of their system. Our system can also be easily generalised
to the untyped 𝜆-calculus considered in [6]. Lastly, while
our correctness proof hinges on the completeness of the
interval-based semantics, we can present the system with-
out referring to interval traces directly, and instead consider
probability mass functions on types (as done in e.g. [9]).

5 Counting-based Recursion Analysis

We now turn our attention to devising a method that, unlike
the preceding approach, can prove AST efficiently. We focus
on programs that can make multiple recursive calls from
distinct call sites (during evaluation of the recursive body);
we call such recursion non-affine. As evident from Ex. 1.1,
non-affine recursion complicates AST analysis considerably.
Intuitive results such as the zero-one law of termination3 [43]
are only valid for affine recursion.
Our framework builds on the idea of counting. We show

that analysis of the resulting distributions on natural num-
bers suffices for proving AST of the program. As a corollary
we obtain a functional generalisation of the zero-one law,
which specialises to the original law in case the recursion
is affine. Our approach to proving non-affine recursion can
be viewed as orthogonal to [36] (which is restricted to affine
recursion): rather than using the size-related information
of the recursive function argument, we count the number
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of recursive calls from distinct call sites in the evaluation
of the body of the recursion. Moreover, compared to [36],
our approach supports continuous distributions, and it is not
restricted to binary probabilistic choice. Compared to tech-
niques based on ranking functions ś a dominant approach to
AST verification [1, 13, 16, 17, 23, 31, 43, 44], our method is
fully automatic and easy to implement, as we show in Sec. 6.

Example 5.1. Let’s revisit the 3d printing company (Ex. 1.1).
The new situation is that the staff gets tired over time and
prints an incorrect number of copies. In case the print is
faulty, there is a probability sig(𝑥) of the operator becoming
tired and making mistakes, where sig is the sigmoid function.
(Thus with increasing time (𝑥), the probability of making
mistakes approaches 1.) The operator’s mistake takes the
form of printing 3 instead of the intended 2 copies with
probability .5. We model this scenario by the following term:

𝜇
𝜑
𝑥 .𝑥 ⊕𝑝

(

(

𝜑3 (𝑥 + 1) ⊕ 𝜑2 (𝑥 + 1)
)

⊕sig (𝑥) 𝜑
2 (𝑥 + 1)

)

.

The question now becomes: for which 𝑝 is this term AST?

We keep track of the number of calls by extracting a count-
ing distribution, a (sub) pmf onN, that models the distribution
on new calls made. To account for the fact that a recursive
function that is called 𝑛 times (inclusive of the original call)
contributes 𝑛 − 1 to the total number of pending calls8, we
shift the counting pattern by −1, obtaining a (sub) pmf on
Z. The counting distribution is analysed via a random walk
whose current value can be seen as the number of pending
calls. In this section, we first introduce the necessary tools to
analyse a random walk (Sec. 5.1), then present the extraction
of the counting distribution from programs (Sec. 5.2), and the
soundness theorem that relates termination behavior of the
shifted random walk with that of the non-affine recursive
program in question (Sec. 5.3).

5.1 Random Walk on N

Assume a countable state space 𝑋 . A stochastic matrix on 𝑋

is a function𝔓 : 𝑋 ×𝑋 → R[0,1] such that
∑

𝑦∈𝑋 𝔓(𝑥,𝑦) = 1
for every 𝑥 ∈ 𝑋 (see e.g. [2, ğ10.1] or [45]). 𝔓(𝑥,𝑦) gives
the probability of transitioning from 𝑥 to 𝑦. Given stochastic
matrices𝔓 and𝔓′, we write𝔓𝔓′ for their product, which
is a stochastic matrix; and𝔓𝑛 for the 𝑛-fold product of𝔓.
We consider Markov chains whose step behaviour is de-

finable in terms of relative change, independently of the
current state. The relative change in each step is given by a
step distribution which is a (sub)probability mass function
𝑠 : Z → R[0,1] . We call 𝑠 finite if it has finite support. We
interpret the łmissing probabilityž, 1 −∑

𝑖∈Z 𝑠 (𝑖), as failure.

Definition 5.2. Given a step distribution 𝑠 : Z→ R[0,1] we
define a stochastic matrix𝔓𝑠 on N⊥ ≔ N ∪ {⊥} by:
8equivalently, the maximum number of stack frames on the function’s call

stack

⊥ 0 𝑚 > 0

⊥ 1 0 0

0 0 1 0

𝑛 > 0 1 −∑

𝑖∈Z 𝑠 (𝑖)
∑

𝑖≤−𝑛 𝑠 (𝑖) 𝑠 (𝑚 − 𝑛)
Note that 𝑠 gives the relative change in each step, the walk

is truncated (trapped) at 0, and the probability mass deficit
in 𝑠 (if any) is balanced by the probability of transitioning
(from a good state) to the failure state ⊥. We call 𝑠 AST if the
associated walk reaches state 0 a.s.

Definition 5.3. A step distribution 𝑠 is called AST if for
every𝑚 ∈ N, lim

𝑛→∞
𝔓𝑛
𝑠 (𝑚, 0) = 1.

Note that the limit in the definition above always exists
(and lies between 0 and 1) as the sequence (𝔓𝑛

𝑠 (𝑚, 0))𝑛 is
monotone increasing and bounded. A step distribution can be
shown AST by reduction to a one-counter Markov decision
process (MDP) (following [36]), for which a.s. termination
can be decided in polynomial time [7]. We present a new
proof that avoids the detour to MDPs, giving a tighter (in
fact optimal) complexity upper bound than that in [36]. The
crux lies in a simple, and decidableÐif 𝑠 is finite and rational
valuedÐcharacterisation of AST which directly gives linear-
time decidability.

Theorem 5.4. A finite step distribution 𝑠 is AST if and only

if all of the following hold
∑

𝑖∈Z
𝑠 (𝑖) = 1a) 𝑠 ≠ 𝛿0b)

∑

𝑖∈Z
𝑖 · 𝑠 (𝑖) ≤ 0c)

Uniform AST. We also model the case where in each time
step, a different distribution can be chosen from an available
set of step distributions, similar to a MDP [2].

Definition 5.5. A family of step distributions {𝑠𝑖 }𝑖∈I is
uniform AST if for every𝑚 ∈ N

lim
𝑛→∞

(

inf
𝑖1, · · · ,𝑖𝑛

𝔓𝑠𝑖1
· · ·𝔓𝑠𝑖𝑛

(𝑚, 0)
)

= 1

Informally it reads that as step count 𝑛 tends to ∞, no
matter which step distribution from {𝑠𝑖 }𝑖∈I is chosen at each
step, the walk eventually reaches 0 almost surely. Obviously,
uniform AST implies AST for each of the 𝑠𝑖 but, in general,
not conversely. However we can show:

Lemma 5.6. If {𝑠𝑖 }𝑖∈I is a finite family of step distributions

and each 𝑠𝑖 is AST then {𝑠𝑖 }𝑖∈I is uniform AST.

5.2 Counting-Based Extraction of RandomWalks

Let’s fix a 1st-order program 𝜇
𝜑
𝑥 .𝑀 with no nested recursion.

To extract the counting pattern of 𝜇
𝜑
𝑥 .𝑀 , we instrument a

counting-based reduction relation
★→, and use it to analyse

a related term body𝜇𝜑𝑥 .𝑀 (𝑟 ) ≔ 𝑀 [𝑟/𝑥, 𝜇 /𝜑], i.e., the body
of the program 𝜇

𝜑
𝑥 .𝑀 , with 𝑥 instantiated to a fixed actual

argument 𝑟 , and a special symbol 𝜇 in place of all recursive

calls. The counting-based reduction relation
★→ is presented

in Fig. 5 and acts on configuration of the form ⟨𝑁, 𝒔, 𝑛⟩ where
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⟨(𝜆𝑥.𝑀)𝑉 , 𝒔, 𝑛⟩ ★→ ⟨𝑀 [𝑉 /𝑥], 𝒔, 𝑛⟩ ⟨ 𝜇 𝑉 , 𝒔, 𝑛⟩ ★→ ⟨★, 𝒔, 𝑛 + 1⟩ ⟨sample, 𝑟 :: 𝒔, 𝑛⟩ ★→ ⟨𝑟, 𝒔, 𝑛⟩
𝑟 ≤ 0

⟨if(𝑟, 𝑁 , 𝑃), 𝒔, 𝑛⟩ ★→ ⟨𝑁, 𝒔, 𝑛⟩
𝑟 > 0

⟨if(𝑟, 𝑁 , 𝑃), 𝒔, 𝑛⟩ ★→ ⟨𝑃, 𝒔, 𝑛⟩ ⟨𝑓 (𝑟1, · · · , 𝑟 |𝑓 |), 𝒔, 𝑛⟩ ★→ ⟨𝑓 (𝑟1, · · · , 𝑟 |𝑓 |), 𝒔, 𝑛⟩

⟨𝑓 (𝑉1, · · · ,★, · · · ,𝑉|𝑓 |), 𝒔, 𝑛⟩ ★→ ⟨★, 𝒔, 𝑛⟩
𝑟 ≥ 0

⟨score(𝑟 ), 𝒔, 𝑛⟩ ★→ ⟨𝑟, 𝒔, 𝑛⟩
⟨𝑅, 𝒔, 𝑛⟩ ★→ ⟨𝑀, 𝒔 ′, 𝑛′⟩

⟨𝐸 [𝑅], 𝒔, 𝑛⟩ ★→ ⟨𝐸 [𝑀], 𝒔 ′, 𝑛′⟩

Figure 5. Small-step reduction rules for
★→

𝑛 ∈ N counts recursive calls. The main idea is to replace
outcomes of recursive calls by a distinguished value ★ of
type R which stands for an unknown numeral. Note that the
unknown numeral★ can end up in the guard of a conditional
if recursive outcomes affect the control flow of the program.
This is, however, unavoidable if we want to count recursive
calls (without reference to the program denotation) as the
number of function call sites can depend on the (probabilistic)
outcome of a prior call. We define

T★𝑁 ;𝑛 ≔ {𝒔 ∈ S | ∃𝑉 : ⟨𝑁, 𝒔, 0⟩ ★→∗ ⟨𝑉 , 𝜖, 𝑛⟩}
the set of traces on which recursive calls from exactly 𝑛

distinct call sites are made. As the reduction relation is deter-
ministic we get that {T★

𝑁 ;𝑛}𝑛∈N are pairwise disjoint. Using

similar arguments in [6], it is easy to see that T★
𝑁 ;𝑛 is a mea-

surable set of traces.

Definition 5.7. Given a term 𝜇
𝜑
𝑥 .𝑀 we define the 𝑟 -indexed

family {8𝜇𝜑𝑥 .𝑀 | 𝑟8 : N → R[0,1]}𝑟 ∈R, called the counting

pattern of 𝜇
𝜑
𝑥 .𝑀 , whereby

8𝜇
𝜑
𝑥 .𝑀 | 𝑟 8 (𝑛) ≔ 𝜇S

(

T★body
𝜇
𝜑
𝑥 .𝑀

(𝑟 ) ;𝑛
)

In words, 8𝜇
𝜑
𝑥 .𝑀 | 𝑟 8 (𝑛) gives the probability of a run of

𝜇
𝜑
𝑥 .𝑀 , on the actual argument 𝑟 , making recursive calls from

𝑛 distinct call sites. It is straightforward to see that for every
𝑟 we have

∑

𝑛 8𝜇
𝜑
𝑥 .𝑀 | 𝑟 8 (𝑛) ≤ 1, by the same argument as

in [41, Lem. 7].

Example 5.8. Consider the term 𝜇
𝜑
𝑥 .𝑀 from Ex. 5.1. We get

8𝜇
𝜑
𝑥 .𝑀 | 𝑟 8 (0) = 𝑝 , 8𝜇

𝜑
𝑥 .𝑀 | 𝑟 8 (1) = 0, 8𝜇

𝜑
𝑥 .𝑀 | 𝑟 8 (2) =

(1− 𝑝) · 12 · (2− sig(𝑟 )), 8𝜇𝜑𝑥 .𝑀 | 𝑟 8 (3) = (1− 𝑝) · 12 · sig(𝑟 )
and 8𝜇

𝜑
𝑥 .𝑀 | 𝑟 8 (𝑛) = 0 for all other 𝑛.

5.3 Termination via Counting Patterns

Ourmain result of this section is that we can use the counting
pattern of a program to soundly reason about its termination
property. For any counting distribution, i.e., (sub) pmf 𝑠 : N→
R[0,1] , we define the shifted step distribution 𝑠 : Z→ R[0,1]
by 𝑠 (𝑧) = 𝑠 (𝑧 + 1) for 𝑧 ≥ −1 and 𝑠 (𝑧) = 0 otherwise 9 .

9The shifting of the distribution accounts for the fact that resolving a

recursive call by making 𝑛 recursive calls changes the number of pending

calls by 𝑛 − 1. In the extreme case, making no recursive call, decreases the

number of pending calls by 1.

Theorem 5.9. If {8𝜇𝜑𝑥 .𝑀 | 𝑟8}𝑟 ∈R (qua family of step distri-

butions) is uniform AST then 𝜇
𝜑
𝑥 .𝑀 is AST on every actual

argument.

Proof Sketch. We decompose the set of terminating traces on
a fixed argument according to the arguments of recursive
calls arranged in a tree. We can lower bound the probability

of each partition in terms of {8𝜇𝜑𝑥 .𝑀 | 𝑟8}𝑟 ∈R and show that
uniform AST implies that the cumulative weight over every
decomposed part equals 1, i.e., the program is AST. □

A Partial Order for Counting Distributions. We can
equip the set of counting distributions (i.e. (sub)pmfs 𝑠, 𝑡 :
N→ R[0,1] ) with a partial order that is compatible with the
termination behavior. We define

𝑠 ⊑ 𝑡 ⇔ ∀𝑛 ∈ N. ∑𝑚≤𝑛 𝑠 (𝑚) ≤ ∑

𝑚≤𝑛 𝑡 (𝑚)
i.e., 𝑠 ⊑ 𝑡 if the cumulative weight of 𝑠 is no greater than that
of 𝑡 at any point. It is easy to see that ⊑ is a partial order.
Furthermore, we can show compatibility w.r.t. AST (using
Thm. 5.4):

Lemma 5.10. If 𝑠 , {𝑡𝑖 }𝑖∈I are counting distributions and for

all 𝑖 ∈ I, 𝑠 ⊑ 𝑡𝑖 and 𝑠 is AST then {𝑡𝑖 }𝑖∈I is uniform AST.

Example 5.11. The counting pattern presented in Ex. 5.8 for
the term from Ex. 5.1 satisfies the preconditions of Lem. 5.10
for 𝑠 ≔ 𝑝𝛿0 + (1 − 𝑝) 12𝛿2 + (1 − 𝑝) 12𝛿3 (where 𝛿𝑖 denotes
the Dirac-distribution). For 𝑝 ≥ 3

5 , we can deduce that the
counting pattern is uniform AST (via Lem. 5.10 and Thm. 5.4)
and thus the example is AST on every input (via Thm. 5.9).

5.4 𝜖-Recursion Avoiding Fixpoint Terms

An interesting quantity that arises from analysing Thm. 5.9
is 8𝜇

𝜑
𝑥 .𝑀 | 𝑟 8 (0), i.e., the probability of a run of 𝜇

𝜑
𝑥 .𝑀 (on

argument 𝑟 ) making no further recursive calls. Let’s consider
programs where this probability has a positive lower bound.

Definition 5.12. A recursive program 𝜇
𝜑
𝑥 .𝑀 is 𝜖-recursion

avoiding (𝜖-RA) if for all 𝑟 ∈ R, 8𝜇𝜑𝑥 .𝑀 | 𝑟 8 (0) ≥ 𝜖 .

Lets assume
∑

𝑛 8𝜇
𝜑
𝑥 .𝑀 | 𝑟 8 (𝑛) = 1, i.e., the

★→-reduction
is never stuck. In [4] we show how this can be statically
ensured via a type system. Note that a program may be 𝜖-RA
for a positive 𝜖 , and yet not AST (as evident from Ex. 1.1). To
ensure AST, the positive probability 𝜖 must be łlarge enoughž,
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in relation to the number of recursive calls. We define the
recursive rank of 𝜇

𝜑
𝑥 .𝑀 to be the minimal 𝑚 such that for

all 𝑛 > 𝑚, and 𝑟 , 8𝜇
𝜑
𝑥 .𝑀 | 𝑟 8 (𝑛) = 0 (or, equivalently, the

maximal number of call sites from which recursive calls are
made in a run of (𝜇𝜑𝑥 .𝑀) 𝑟 , for any 𝑟 ). (In [4], we show that
the recursive rank can be upper bounded via a decidable non-
idempotent intersection type system.) Now, using Thm. 5.4
combined with Thm. 5.9, we can get an easy corollary:

Corollary 5.13. If 𝜇
𝜑
𝑥 .𝑀 has recursive rank𝑚 and is 𝜖-RA

for some 𝜖 > 0 that satisfies𝑚(1 − 𝜖) ≤ 1 then 𝜇
𝜑
𝑥 .𝑀 is AST

on every argument.

Example 5.14. The program (2) in Ex. 1.1 has recursive
rank 2, and is 𝑝-RA. So Cor. 5.13 is applicable whenever
2(1 − 𝑝) ≤ 1 ⇔ 𝑝 ≥ 1

2 . Note that Cor. 5.13 is weaker than
Thm. 5.9; for example, Cor. 5.13 on Ex. 5.1 is only applicable
for 𝑝 ≥ 2

3 whereas Thm. 5.9 is applicable for 𝑝 ≥ 3
5 (Ex. 5.11).

Example 5.15. As a further example, consider yet another
variation to our 3d-printing program from Ex. 5.1:

𝜇
𝜑
𝑥 .let 𝑒 = sample in if 𝑒 ≤ 𝑝 then𝑥 else

(

(

𝜑3 (𝑥 + 1) ⊕𝑒 𝜑
2 (𝑥 + 1)

)

⊕sig (𝑥) 𝜑
2 (𝑥 + 1)

)

We sample the error value 𝑒 (the higher 𝑒 is, the more dam-
aged the print) and accept the print whenever 𝑒 ≤ 𝑝 . If
the print is unacceptable, we replace the binary choice in
Ex. 5.1 with one that depends on the sampled value of 𝑒 .
In the extended version [4] we show how Thm. 5.9 and
Lem. 5.10 can be used to prove this program AST when-

ever 𝑝 ≥
√
7 − 2 ≈ 0.646. As this example illustrates well,

termination analysis of terms that use continuous random
samples as first-class values can become very intricate. Such
examples are not expressible in PHORS [33] or with binary
probabilistic choice [30, 36, 50]. Our framework can analyse
such examples efficiently, even automatically.

Special Case: Affine Recursion. Every affine-recursive
program [36, ğ4.1] has recursive rank atmost 1, so byCor. 5.13,
𝜖-RA for any 𝜖 > 0 implies AST. This can be seen as the func-
tional equivalent of the zero-one-law for termination (c.f. [43,
Sec. 2.6]). However, the real novelty of our result lies in the
fact that sophisticatedmethods are necessary to deal with the
case of non-affine recursion. Our proof rules (Thm. 5.9 and
Cor. 5.13) give a powerful tool to verify AST for non-affine
programs where the standard zero-one law fails. Similarly
to the language studied e.g. in [40], we can use this to de-
sign languages that are AST-by-construction. In particular,
in any probabilistic programming system we can (safely) add
a special fixpoint operator that comes with the guarantee
of 𝜖-RA for a sufficiently large 𝜖 , whose size can be deter-
mined statically via the recursive rank. This corresponds to a
generalization of the stochastic while-loop in [40]. As demon-
strated in [40], probabilistic programming languages with
this seemingly severe restriction can still describe complex

𝛼1 − 𝑝

𝜇

𝜇

𝛼3 − 1
2

𝜇

𝜇

𝜇

𝜇

𝜇

(a)

𝛼1 − 𝑝

𝛼3 − 1
2

𝜇

𝜇

𝜇

𝜇

𝜇

𝛼1 − 𝑝

𝜇

𝜇

(b)

Figure 6. Symbolic execution trees for Ex. 5.1 (a) and all
possible strategies (b)

models with arbitrary precision and convergence guarantee,
supporting correct inference of (AST) programs.

6 A Proof System For Non-affine Recursion

The framework of Sec. 5 (Thm. 5.9) relies on the counting pat-
tern, {8𝜇𝜑𝑥 .𝑀 | 𝑟8}𝑟 ∈R, of the program 𝜇

𝜑
𝑥 .𝑀 . This family can

contain uncountably many different counting distributions,
making it impractical for analysis. As we saw in Ex. 5.8, for
the counting pattern {8𝜇𝜑𝑥 .𝑀 | 𝑟8}𝑟 ∈R of Ex. 5.1, we have
8𝜇

𝜑
𝑥 .𝑀 | 𝑟8 ≠ 8𝜇

𝜑
𝑥 .𝑀 | 𝑟 ′8 for every 𝑟 ≠ 𝑟 ′. So how can we

automate analysis so that Thm. 5.9 can be applied without
explicitly computing the counting pattern? In this section
we use a simple game-playing perspective to solve the prob-
lem. We show that we can replace probabilistic branching
that depends on the actual argument, by nondeterministic
branching and thus obtain a sound method to apply Thm. 5.9.
As a rule of thumb, our system can verify all programs that
exhibit an AST counting pattern which is independent of
the (exact values of the) actual arguments (of the recursive
function in question). In this section we give an overview
of our approach, and direct readers to [4] for a full account,
including more complex examples.

6.1 Stochastic Symbolic Execution

The first idea we use for our system is stochastic symbolic

execution. Instead of executing a program on a fixed trace

(as done in
★→, Fig. 5) we evaluate on a trace of sample vari-

ables (𝛼0, 𝛼1, · · · ) whose values can be instantiated later. We
organise execution in the form a binary tree where each
branching represents a conditional which is annotated with
the value on which control flow branches. We also record
score-statements as well as recursive calls. We now replace
the actual argument with an unknown value ⊛ (correspond-
ing to the analysis of body𝜇𝜑𝑥 .𝑀 (⊛) in Sec. 5.2). In Fig. 6a

the execution tree that corresponds to the running example,
Ex. 5.1, is depicted, we have coloured each branching that
relies on the concrete argument ⊛ in red.
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6.2 Strategies on Trees

As some of the branching (coloured red) depends on the
actual argument, we cannot analyse it probabilistically. This
can be overcome by an intuitive 2-player game reading of the
execution tree: for every such node the Environment (player)
can resolve its branching by an explicit strategy that indicates
a left/right choice for each coloured node. For example, all
possible strategies for the tree in Fig. 6a are depicted in
Fig. 6b. As a strategy no longer relies on branching at nodes
that contain ⊛, we can recover a probabilistic interpretation
of paths, which is just the Lebesgue-measure of the possible
assignment to the sample variables 𝛼0, 𝛼1, · · · , such that a
path is indeed followed. Given a strategy𝔖, we denote with
P(𝔖, 𝑛) the probability of taking a path such that at most 𝑛
recursive calls are made (i.e., a fixpoint node is traversed at
most 𝑛 times). Depending on the set of primitive functions,
this value can be computed effectively. We now define the
counting distribution Papprox by (where 𝑛 > 0)

Papprox (0) ≔ min
𝔖∈Strat (𝔗)

P(𝔖, 0)

Papprox (𝑛) ≔
(

min
𝔖∈Strat (𝔗)

P(𝔖, 𝑛)
)

−
(

min
𝔖∈Strat (𝔗)

P(𝔖, 𝑛 − 1)
)

We can understand Papprox (𝑛) as the least probability that 𝑛
calls are made even if the Environment chooses in the worst
(meaning maximal no. of recursive calls) possible way.

Example 6.1. Consider all strategies for the running ex-
ample listed in Fig. 6b. We can compute Papprox (0) = 𝑝;

Papprox (2) = Papprox (3) = (1 − 𝑝) · 1
2 ; and Papprox (𝑛) = 0

for all other 𝑛.

We can show that replacing probabilistic branching with
nondeterministic one gives a lower bound (w.r.t. to the order
⊑) on the counting pattern.

Theorem 6.2. For every 𝑟 ∈ R, Papprox ⊑ 8𝜇
𝜑
𝑥 .𝑀 | 𝑟8

Thus, if Papprox is AST (which is checkable via Thm. 5.4) we

get that {8𝜇𝜑𝑥 .𝑀 | 𝑟8}𝑟 ∈R is uniform AST; and via Thm. 5.9
𝜇
𝜑
𝑥 .𝑀 is AST on every actual argument. Thm. 6.2 and the

values computed in Ex. 6.1 allow us to deduce (automatically)
that Ex. 5.1 is AST on every argument if 𝑝 ≥ 3

5 . Similarly, our

tool can verify AST of Ex. 5.15 if 𝑝 ≥
√
7 − 2. For a formal

description of our algorithm, correctness proof and further
examples see [4].

7 Implementation

We provide prototype implementations for computing lower
bound of the termination probability, and for AST verifica-
tion, building on Sec. 3 and Sec. 6 respectively. This is the
first prototype to compute lower bounds in the presence of
continous distributions and one of the first that can auto-
matically proof AST for non-affine recursive programs. In
this section we present the results of our experiments. In
the full version [4] we give a more detailed description of
the algorithm and example terms. The experimental results

Table 1. Experimental results for lower bound computations.
We give the actual probability of termination (if known),
the lower bound computed (LB), the depth (𝑑) at which we
stopped the exploration and the time (𝑡 ) in milliseconds.
geo𝑝 describes a geometric distribution with parameter 𝑝 ,

1dRW 𝑝,𝑠 a 1-dimensional 𝑝-biased random walk starting at 𝑠
[44], gr a term analysed in [50] terminatingwith a probability
given as the inverse golden ratio, 3print𝑝 the natural exten-

sion of Ex. 1.1 (2) to 3 recursive calls, bin𝑝,𝑠 a 1-dimensional
random walk in one direction [44] and pedestrian a stochas-
tic program modelling a pedestrian inspired by [41]. See [4]
for a detailed description of the example terms.

Term𝑀 Pterm (𝑀) LB d t

geo 1
2

1 0.9999990463 100 78

geo 1
5

1 0.9995620416 200 192

1dRW 1
2 ,1

1 0.8036193847 200 28223

1dRW 7
10 ,1

1 0.9720964250 150 10224

gr
√
5−1
2 0.6112594604 80 4389

Ex. 1.1, 𝑝 = 1
2 1 0.8318119049 90 15749

Ex. 1.1, 𝑝 = 1
4 ?(< 1) 0.3328795089 90 15749

3print 3
4

1 0.9606655982 80 4622

bin 1
2 ,2

1 0.9998493194 100 2265

pedestrian 1 0.6002376673 40 4493

Table 2. Experimental results for AST verification. For each
term (all of which our tool can verify to be AST) we give the
counting distribution Papprox computed by our tool (which is
analysed via Thm. 5.4) and the total time 𝑡 in milliseconds.

Term𝑀 Papprox 𝑡

Ex. 1.1, (1), 𝑝 = 1
2

1
2𝛿0 + 1

2𝛿1 239

Ex. 1.1, (2), 𝑝 = 1
2

1
2𝛿0 + 1

2𝛿2 237

3print 2
3

2
3𝛿0 + 1

3𝛿3 297

Ex. 5.1, 𝑝 = 0.6 0.6𝛿0 + 0.2𝛿2 + 0.2𝛿3 396

Ex. 5.15, 𝑝 = 0.65 0.65𝛿0 + 0.06125𝛿2 + 0.28875𝛿3 373

were obtained on a Intel(R) Core i5-6200U process with 8GB
of memory.

7.1 Lower Bounds of Termination Probability

Our prototype for lower bound computation exploits the
completeness of the interval-traces semantics. Our tool com-
bines the symbolic exploration of terms with a simple sweep
algorithm to search for terminating interval traces. In the
stochastic symbolic execution, we execute terms while sub-
stituting sample-variable for random outcomes. Each trace
leading to a symbolic value is then analysed by iteratively
searching for terminating interval traces by splitting the
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unit box [0, 1]𝑚 (where𝑚 is the number of sample-variables
along a path). As lower bound computation is an intrinsically
non-terminating process the user must specify a target depth
(or timeout) at which the computation is stopped. Even in
its current, unoptimized, form our tool is able to compute
meaningful lower bounds in a reasonable time. We evaluate
our tool on various examples taken from [33, 44, 50] and
[41] (possibly modified to match the CbN evaluation). The
computed lower bounds can be found in table 1. Our tool
computes rational lower-bounds to avoid rounding errors.
For presentation we only gave the first 10 digits of the deci-
mal representation.

7.2 AST Verification

The challenge in implementing the ideas from Sec. 6 lies
in the computation of branching probabilities, i.e., given a
fixed strategy for the environment what is the probability of
traversing at most 𝑛 fixpoint nodes. We adopt a geometric
interpretation of probability and make use of various results
and implementation techniques for volume computation.
For simplicity we restrict primitive operations to addition,
and multiplication by a constant (and thus subtraction), as
the probability of branching can be seen as the volume of
a convex polytope [19] (a subset of R𝑑 of the from {®𝑥 |
𝐴®𝑥 ≤ 𝑏}). We make use of the analytic formula for this
volume in [38] and its subsequent implementation in [10],
and appeal to Thm. 5.4. Our implementation then performs
the basic-tree operations outlined in Sec. 6 (see [4] for a
fuller account) and uses [10] as a volume-computation oracle.
Our prototype implementation can verify many examples,
including those from Sec. 1.1, Sec. 5, and Sec. 6 (see table
1), thereby illustrating that our approach is well-suited to
implementation. All of those terms can be verified to be AST
in less than a second.

8 Related Work and Conclusion

Our interval-traces approach can be seen as a probabilistic
interpretation of interval analysis, a standard approach to
infer bounds on program variables [11, 47]. The attractive
feature of intervals in our work is its completeness w.r.t. the
Lebesgue measure for a broad range of primitive operations.
The only comparable lower bound computation we are

aware of is presented in [33]. Kobayashi et al. show that the
termination probability of CbN order-𝑛 probabilistic recur-
sion schemes (𝑛-PHORS) can be obtained as the least fixpoint
of suitable order-(𝑛 − 1) fixpoint equations, which can be
solved using standard Kleene fixpoint iteration. By contrast,
our approach works on programs directly, and can handle
continuous distributions. It is worth noting that (order-𝑛)
PHORS is readily encodable as (order-𝑛) CbN SPCF, but the
former is strictly less expressive (because the underlying
recursion schemes are not Turing complete). Some inter-
esting SPCF terms such as Ex. 5.15 cannot be expressed as

PHORS. Since recursive Markov chains [22] (equivalently,
probabilistic pushdown automata [8]) are essentially equiv-
alent to 1-PHORS [33], it follows that order-1 SPCF (which
contains the term in Ex. 5.15) is strictly more expressive than
recursive Markov chains.
Our intersection type system is inspired by, and builds

upon, the ideas of [9, 21]. However, unlike [9], we cannot
prove correctness directly (because of continuous samples),
rather we need to appeal to the completeness of our interval-
based semantics. The step annotation of types enables us to
reason about expected termination time.We conjecture these
ideas to also be applicable to the system of [9]. Independent
of us, [35] designed an intersection type system that is also
able to reason about the expected time to termination. Their
approach is, however restricted to a language with discrete
samples and it is not obvious whether the approach extends
to continuous samples.
Our AST verification method is closely related to [50],

in that they also study recursive programs and allow for
non-affine behaviour. Our work differs nonetheless in sev-
eral key aspects: While they study an imperative language
with discrete distributions, we work with a purely functional
language with continuous distributions. Though their pro-
posed rules can produce lower bounds on the probability
of termination, they seem cumbersome to use. Their rule
informally reads: if, for all 𝑛, we assume that each recursive
call terminates with probability 𝑙𝑛 after 𝑛 fixpoint unfoldings,
and we can prove that it terminates with probability at least
𝑙𝑛+1 after 𝑛 + 1 unfoldings, then the program terminates with
probability at least sup𝑛 𝑙𝑛 (c.f. [50, Thm. 4.2]). In order to
apply this rule, the user must manually find an explicit (and
often non-trivial) sequence (𝑙𝑛)𝑛∈N. By contrast, our system
provides a sound reduction to a random walk which can be
analysed efficiently in linear time.

As already mentioned, our method can be seen as orthog-
onal to that in [36]. It is not at all obvious if their techniques
can be extended to our setting with sampling from the uni-
form distribution. An interesting future direction is to de-
velop a unified framework that analyses both the size-related
information of the recursive function argument and the num-
ber of recursion call sites.

Conclusion. Recent advances in probabilistic program-
ming systems and allied areas (such as [41]) provide strong
impetus for the study of AST of programs with continuous
distribution. We have presented a first comprehensive study
of the lower bound problem, and ascertained the recursion-
theoretic complexity of several termination problems. We
have introduced a novel proof system for AST verification of
non-affine programs which is easily implementable. While
some of the existing AST proof methods support continuous
distributions [15, 17, 23] the majority do not. It would be
interesting to investigate if they [29, 30, 33, 36, 43, 50] can
be so extended.
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