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Abstract

Reactive synthesis is one approach to get correct programs from a formal specification,
e.g. given in linear-time temporal logic (LTL). This approach constructs correct-by-
design implementations directly from those specifications and frees the programmer
from writing an implementation. To cope with the drawback of the high complexity,
bounded synthesis was introduced by Finkbeiner and Schewe in 2012 [12]. This ap-
proach bounds the size of the implementation, for example in the number of states. The
original implementation constructs an SMT query that is satisfiable iff a realizing imple-
mentation of that size exists. Later Faymonville et al. [8] proposed different encodings
to (quantified) propositional logics.

In this thesis we explain the bounded synthesis approach for single process and dis-
tributed synthesis. Based on the encodings introduced by Faymonville et al. [8] we de-
fine three new encodings to solve the distributed bounded synthesis problem and proof
their functional correctness. We conclude by comparing the different encodings in an
experimental evaluation section.





Acknowledgement

I am deeply grateful to Prof. Finkbeiner for offering me this interesting thesis topic. I
would like to thank my advisor Leander Tentrup. He gave me constructive answers to all my
questions and helped me to complete this thesis. Another grateful thank to Prof. Finkbeiner
and Prof. Hermanns for reviewing this thesis. Last but not least I would like to thank my
family and friends for their ongoing support.





Contents

1 Introduction 1

2 Preliminary 5
2.1 LTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Transition System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Run Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Quantified Boolean Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Dependency Quantified Boolean Formulas . . . . . . . . . . . . . . . . . . . . 15

3 Single Process Synthesis 17
3.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Bounded Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Translating LTL to Universal co-Büchi Automata . . . . . . . . . . . . . . . . 18
3.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Encodings for Single Processes 21
4.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 SAT Propositional Encoding: Explicit Encoding . . . . . . . . . . . . . . . . . 22
4.3 QBF Encoding: Input-symbolic Encoding . . . . . . . . . . . . . . . . . . . . . 25

5 Distributed Synthesis 29
5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Distributed Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Composition of Transition Systems . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Challenges with Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . 32

6 Encodings for Distributed Synthesis 35
6.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 SAT Propositional Encoding: Explicit Encoding . . . . . . . . . . . . . . . . . 36
6.3 QBF Encoding: Input-symbolic Encoding . . . . . . . . . . . . . . . . . . . . . 41
6.4 DQBF Encoding: Input-symbolic Encoding . . . . . . . . . . . . . . . . . . . 47

7 Implementation & Results 53
7.1 BoSy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 Related Work 61



9 Conclusion & Future Work 63
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 65

10 Appendix 69
10.1 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.2 Example for the SAT Propositional Constraint System . . . . . . . . . . . . . 75
10.3 Example for the QBF Constraint System . . . . . . . . . . . . . . . . . . . . . 76
10.4 Example for the DQBF Constraint System . . . . . . . . . . . . . . . . . . . . 77



List of Figures

1.1 Abstract Idea of Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 A Virtual Representation of the Temporal Operators of LTL . . . . . . . . . . . . 6
2.2 Example of a Moore and Mealy Transition System . . . . . . . . . . . . . . . . . . 9
2.3 Example of a Universal co-Büchi Automaton . . . . . . . . . . . . . . . . . . . . . 10
2.4 Example of a Run Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Two BDT Representing the Skolem Functions for the Respective QBFs below . . 14
2.6 Two BDT Representing the Skolem Functions for the Respective DQBFs below . 16

3.1 General Concept to Solve Bounded Synthesis . . . . . . . . . . . . . . . . . . . . 18
3.2 Example of a Run Graph with a Valid Annotation Function . . . . . . . . . . . . 20

4.1 General Concept of the Encoding Used for the Verification . . . . . . . . . . . . . 22
4.2 Structure of the Input-Symbolic Encoding . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Three Examples for Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Composition of two Transition Systems . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1 Example to Show the Need of the Composition Constraint . . . . . . . . . . . . . 37
6.2 Three Examples for Architectures with a Total Order . . . . . . . . . . . . . . . . 46

7.1 Test Results on Architectures where the QBF Encoding is Applicable . . . . . . . 58
7.2 Test Results on Architectures where the QBF Encoding is not Applicable . . . . 58

8.1 Representation of the Constraints Introduced by Guthoff . . . . . . . . . . . . . 62

List of Tables

7.1 Results of the Evaluation in seconds . . . . . . . . . . . . . . . . . . . . . . . . . . 60





1Introduction

In computer science, there are essentially two ways to relate the formal specification of a
program to an actual model or implementation. The first one is verification which gets as
input a logical specification, like formulas in linear-time temporal logic (LTL) and a model of
an implementation, for example transition systems. We verify if the given implementation
satisfies the specification. The drawback of this method is that an implementation has to
be written. Therefore Church introduced in 1957 the synthesis problem [5] which describes
the second way to relate a specification to an implementation. It gets as input only the speci-
fication and produces a model of an implementation, which satisfies the given specification.
This frees the programmer from writing programs. As Finkbeiner [10] pointed out, the re-
active synthesis problem is one of the most intriguing challenges in the theory of reactive
systems. Reactive synthesis is based on reactive systems, which continuously interact with
the environment representing for example the inputs of a human. At first, this problem was
only a theoretical problem. However, the development of faster algorithms in recent years
made practical applications possible, like in hardware, device drivers and robotics.

The synthesis problem can be seen as a game between the system, trying to fulfill the spec-
ification and the environment, trying to produce an error. If there is a winning strategy
for the system, this strategy defines the implementation of the system to fulfill the speci-
fication. These games are played on a finite game area, that can be expressed in different
finite formulas and the players are represented as the infinite input. Historically the de-
velopment to solve the synthesis problem happened in three waves. The first wave started
after Church introduced the problem in 1957. The first basic algorithms were developed,
solving a system specification given by a formula in monadic second order logic (MSO) and
had a nonelementary complexity. The second wave started with the introduction of tem-
poral logic. As the translation from LTL to deterministic automata is double exponential
and LTL based model checking is PSPACE, LTL specification become an industrial tech-
nique in the hardware industry. Therefore the second wave started with the development
of algorithms for the common linear-time and branching-time temporal logics. The third
wave was motivated by the advances in the performance of automatic verification during
the 1980s and 1990s. The goal of this wave was to develop practical algorithms, for exam-
ple by reducing the complexity of the synthesis problem with synthesis-friendly logics like
generalized reactivity (GR) or practical restrictions of the classical synthesis problem, like
bounded synthesis.

In the synthesis problem, find an implementation for a simple architecture, with one pro-
cess and a given input and output set. Therefore this is also called single process synthesis.
The distributed synthesis problem deals with distributed architectures, which consists of
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more than one process, where each process could have different information. Information
is in this sense the different input and output set, where an input variable can be the out-
put variable of the environment or of a system process. Therefore the distributed synthesis
find a set of transition systems, or another model of an implementation, one for each pro-
cess, such that the composition of this set satisfies the given specification. In general the
distributed synthesis problem is undecidable, even for simple architectures like two in-
dependent processes. This was proven by Pnueli and Rosner [22], where the distributed
synthesis problem was introduced. Distributed synthesis becomes more important with the
development of hardware, which uses distributed architectures.

Finkbeiner and Schewe [12] introduce bounded synthesis. The bounded synthesis approach
restricts the transition system that satisfies the given specification, by bounding the size of
the transition system. If no solution can be found the state space is increased. This approach
improves the performance of the synthesis problem because the smallest solution can be
found. The restriction can be translated to the distributed synthesis. This approach can be
transferred to the distributed synthesis, the distributed bounded synthesis. Finkbeiner and
Schewe [12] construct a SMT query that is satisfiable if and only if a realizing implemen-
tation of that size exists. This original implementation employed a SMT-solver for single
process and distributed synthesis.

Faymonville et al. [8] introduce new encodings as propositional formulas for the single pro-
cess synthesis. The basic encoding is the SAT propositional encoding, the encoding into
boolean formulas. It is also called the explicit encoding, because each transition from one
state with a given input to another state, each output from a state, . . . becomes a variable
that is true if for example the transition from one state to another with a given input. The
second encoding is represented with quantified boolean formulas (QBF) and is called the
input-symbolic encoding. In this encoding the input is represented symbolically by a uni-
versal quantifier. The variables are bounded by an input and do not have written explicit in
the index. The state- and input-symbolic encoding is realized with dependency quantified
boolean formulas (DQBF). In this encoding inputs and states of the the transition system are
symbolical represented by a universal quantifier and afterwards the states of the automaton
too. The experimental evaluation of the paper shows that the SAT propositional and QBF
encoding are faster than the original SMT encoding.

The goal of this Bachelor thesis is to translate the explicit and input-symbolic encoding to
distributed synthesis. Afterwards there is a experimental evaluation, that is compared with
the SMT encoding described in the bachelor thesis by Guthoff [17].

Therefore this thesis first explains the single process synthesis, Figure 1.1a gives an overview
about the problem. The specification is the input of this problem and the output is the tran-
sition system satisfying the specification if such a solution exists. The input is described as
an LTL formula and will be translated into a universal co-Büchi automaton, for reasons of
simplicity. These two specification languages are part of chapter 2, where the preliminaries
are explained. The output, the transition system, is also part of this chapter. In chapter 3
the single process synthesis is introduced formally, based on the models we explained in
chapter 2. In the next chapter 4, the different encodings to solve the single process synthe-
sis, based on the concept in chapter 3 and the logics explained in chapter 2, are introduced.
With this chapter the explanation of single process synthesis ends and the distributed syn-
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Specification

Synthesis

not realizablerealizable with TS

(a) A Representation of the Single Process
Synthesis Problem

Specification Architecture

Distributed Synthesis

not realizable
realizable with

T S = (T S1 × . . . × T Sn)

(b) A Representation of the Distributed Synthesis
Problem

Figure 1.1: This figure gives an overview about the definition of the single process synthesis
problems and the distributed synthesis problem to explain the structure of this thesis and
how we solve the problems.

thesis starts. In figure 1.1b, we see that this problem gets as input an architecture, describ-
ing the distributed system, and produces as output the set of transition systems satisfying
together the specification if such a solution exists. Chapter 5 introduces the distributed syn-
thesis problem formally. It also introduces the model of an architecture and the composition
of transition systems. In chapter 6 the new encodings to solve the distributed synthesis are
introduced, based on the encodings in chapter 4. In chapter 7, we describe the implemen-
tation and present the results of the evaluation.





2Preliminary

In this chapter the basic models like transition systems and languages like LTL formulas
are introduced. We recap the definitions of section 2.1, 2.2 and 2.3 by Finkbeiner and
Schewe [12].

2.1 LTL

In this thesis, the specification is always described as an linear-time temporal logic (LTL)
formula. Therefore we introduce this language in the following.

Syntax

Definition 2.1 (Syntax of LTL).
Let Π be a set of atomic propositions. The following grammar defines the syntax of LTL
over a finite set Π of atomic propositions:

ϕ ::= p | ¬ϕ |ϕ ∨ϕ |# ϕ |ϕ U ϕ ,

where p ∈Π is an atomic proposition.

The operators are defined as follows:

• ¬ is an unary operator, called negation

• ∨ is a binary operator, called disjunction

• # is an unary operator, called next

• U is a binary operator, called until

Based on these basic operators, the same standard abbreviations as known from boolean
formulas are introduced.

• ϕ ∧ψ := ¬(¬ϕ ∨¬ψ) is a binary operator, called conjunction

• ϕ→ ψ := ¬ϕ ∨ψ is a binary operator, called implication

• ϕ↔ ϕ := (ϕ→ ψ)∧ (ψ→ ϕ) is a binary operator, called equivalence
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a

# a

a U b

� a

� a

. . .

. . .

. . .

. . .

. . .

Figure 2.1: A virtual representation of the temporal operators [2]: The first column consists
of the LTL formula, the second gives a graphical representation of an infinite word, that is
accepted by the LTL formula in the same row. If a circle is labeled with a color, the atomic
proposition, represented with this color, has to hold on this position. If the circle is not
labeled, there is no information about this position.

The next and until operators are the basic temporal operators. They are extended by the
following abbreviations:

• � ϕ := trueU ϕ is an unary operator, called eventually

• � ϕ := ¬( � ¬ϕ) is an unary operator, called globally

Semantics

The semantics of LTL formulas is defined over infinite words. An infinite word is accepted
if its word trace is accepted by the LTL formula. As in the syntax definition shown above
LTL formulas have different kinds of operators: the operators we know from boolean for-
mulas and the temporal operators. Figure 2.1 shows the intuitive semantics of the temporal
operators, we look at in detail. The first LTL formula consists of the atomic proposition a.
If a holds on the first position in an infinite word σ , σ is accepted by the LTL formula a.
The second row, represents the LTL formula # a. In the graphic shown the second circle
is labeled blue, meaning the LTL formula accepts all infinite words where a hold on the
second position. In the third row, the first and the second circle are labeled blue, the atomic
proposition a holds on these positions, and the third circle is labeled red, the atomic propo-
sition b holds on the third position. The LTL formula a U b accepts an infinite word σ , if
there is a position i, where the atomic proposition b holds, and in each position 0 ≤ i′ < i,
the atomic proposition a holds. The next LTL formula � a contains the eventually operator.
As already described this operator is an abbreviation and we can translate the LTL formula

� a to true U a. So all infinite words are accepted if there is a position, where the atomic
proposition a holds. The last formula � a accepts all infinite words, where a holds on every
position.

The formal definition of the semantics is shown in the following part. We use the satisfaction
relation σ, i |= ϕ where ϕ is the LTL formula and σ is the word beginning at position i. It
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is possible that more than one atomic proposition holds in a position i, so a position can be
seen as a set of atomic propositions.

Definition 2.2 (Semantics of LTL).
For an infinite word σ ∈ ω → 2Π and a natural number i ∈ ω, the semantics of an LTL
formula is defined as follows:

• σ, i |= p :⇔ p ∈ σ (i)
for atomic propositions p ∈Π. p has to hold on the word σ at position i

• σ, i |= ¬ϕ :⇔ σ, i 6|= ϕ
for the boolean negation, where ϕ is an LTL formula. ϕ is not allowed to hold on the
word σ at position i.

• σ, i |= ϕ ∨ψ :⇔ σ, i |= ϕ or σ, i |= ψ
for the boolean disjunction, where ϕ and ψ are LTL formulas. Either ϕ or ψ have to
hold on the word σ at position i.

• σ, i |= # ϕ :⇔ σ, i + 1 |= ϕ
for the temporal path operator next, where ϕ is an LTL formula. ϕ has to hold on the
word σ at position i + 1.

• σ, i |= ϕ U ψ :⇔∃n ≥ i. σ ,n |= ψ and ∀m ∈ {i, . . .n− 1}. o,m |= ϕ
for the temporal path operator until, where ϕ and ψ are LTL formulas. There exists a
position n in the word σ , such that ψ holds at position n and at all positions between
i and n− 1 ϕ holds on the word σ .

A sequence σ ∈ω→ 2Π is a model of an LTL formula ϕ denoted by σ |= ϕ, iff σ,0 |= ϕ

Example 2.1.
During this thesis most examples will be based on the following LTL formula.

ϕ = �(r1→# � g1)∧�(r2→# � g3)∧�¬(g1 ∧ g2)

This formula ϕ accepts all infinite words, where each occurrence of r1 is followed by a g1

in the future, each occurrence of r2 is followed by a g2 in the future and g1 and g2 does not
hold on the same time. The idea of this specification is that each request, that is the input,
has to be answered by the grant, that has to be the output of the system.

2.2 Transition System

As described in the introduction, the reactive synthesis algorithm we explain in this thesis
finds a transition system for a given specification, if there is one. These transition systems
represent the implementations. This section introduces the different kinds of transition sys-
tems. In general, transition systems can be formally defined as follows:
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Definition 2.3 (Transition System).
A transition system T with input set I and output set O is a tuple 〈T ,t0, τ〉, where

• T is the set of states

• t0 ∈ T is the initial state

• τ : T × 2I → 2O × T is the transition relation, with 2I being the set of possible inputs
and 2O the set of possible outputs.

A transition system T is finite, iff T is finite. The transition function maps one state t with
a given input i to an output o and a next state t′. We call the output o the label of the
transition. We differentiate between state-labeled and transition-labeled transition systems.

Moore Transition System

A transition system T is called a state-labeled transition system or Moore transition system
if the labelling produced by τ(t, i) is independent of i. Formally: Given a state t ∈ T and any
input i , i′ ∈ 2I with τ(t, i) = (o,_) and τ(t, i′) = (o′ ,_) it holds that o = o′.

Example 2.2 (Moore Transition System).
An example of a Moore transition system is represented in figure 2.2a. This example starts
at t0 which is the initial state. Independent of the input, the output g1 is produced and the
system ends up in t1. t1 ends up in the initial state independent of the input and produces
the output g2.

Mealy Transition System

A transition system T is called Mealy transition system if it is transition-labeled.

Example 2.3 (Mealy Transition System).
This Mealy transition system in figure 2.2b has the same behavior like the Moore transition
system in figure 2.2a .

Definition 2.4 (Traces).
A trace σ in a transition system T is a sequence:

t0
τ1−−→ t1

τ2−−→ t2
τ3−−→ . . . ,

where t0 is the initial state and ti
τi−→ ti+1 is in τ .

To see the difference between Mealy and Moore transition systems, we look at the different
traces with the input {r1, r2}ω on the examples 2.2a and 2.2b.

• t0 : g2
r1−→ t1 : g1

r1−→ t0 : g2
r1−→ t1 : g1

r1−→ . . .

• t0
r1/g1−−−−→ t1

r2/g2−−−−→ t0
r1/g1−−−−→ t1

r2/g2−−−−→ . . .
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t0 : g2 t1 : g1

>

>

(a) Moore Representation

t0 t1

>/g1

>/g2

(b) Mealy Representation

Figure 2.2: A virtual representation of the transition systems 〈T ,t0, τ〉 with input set {r1, r2}
and output set {g1, g2}, with: T = {t0, t1} and τ = {(t0,>, {g1}, t1), (t1,>, {g2}, t0)}, where > ac-
cepts every input.

The first trace represents the Moore transition system. We see the state t0 : g2 goes with
input r1 to the state t1 : g1 and so on. The output is part of the state. The second trace
represents the Mealy transition system. t0 goes with the transition r1/g1 to the state t1. The
output is now part of the transition.

2.3 Automata

To solve the bounded synthesis approach, the LTL specification ϕ is translated into a uni-
versal co-Büchi automaton Aϕ with L(ϕ) = L(Aϕ). Because we use Büchi automata in the
translation, in this section Büchi automata and co-Büchi automata are introduced.

Non-deterministic Büchi Automata

Definition 2.5 (Non-deterministic Büchi Automata).
A non-deterministic Büchi automatonA over a finite alphabet Σ is a tuple 〈Q,q0,δ,F〉, where

• Q is the set of states

• q0 is the initial state

• δ :Q ×Σ×Q is the transition relation.

• F ⊆Q is the set of accepting states

The semantics, defining the acceptance, is defined over infinite words

σ = σ1σ2 . . .σi . . . ∈ (2Σ)ω,

where σi is the letter at position i in the word σ .

Definition 2.6 (Run).
A run of an infinite word σ on a non-deterministic Büchi automaton A is a sequence

q0
σ0−−→ q1

σ1−−→ q2
σ2−−→ . . . ,
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q0 >

qe

g1 g2

>

q2

r2

ḡ2

q1

r1

ḡ1

Figure 2.3: Visual Representation of the non-deterministic Büchi Automaton in Exam-
ple 2.4 and the universal co-Büchi Automaton in Example 2.5

where q0 is the initial state and (qi ,σi ,qi+1) ∈ δ.

A run is accepted by A iff qi ∈ F holds for infinitely many i.

Definition 2.7 (Acceptance Büchi Automaton).
An infinite word σ is accepted by a non-deterministic Büchi automaton, iff there exists an
accepted run.

Intuitively, an infinite word σ is accepted if there are infinitely many occurrences of accept-
ing states in a run of A on σ .

Example 2.4 (Büchi Automaton).
An example of a Büchi automaton is shown in figure 2.3. It can be formally written as
A = 〈Q,q0,δ,F〉, where

• Q = {q0, q1, q2, qe}

• δ = {(q0, r1,q1), (q1, ḡ1,q1), (q0, g1 g2,qe), (qe,>,qe), (q0, r2,q2), (q1, ḡ2,q1)}

• F = {q1, q2, qe}

With x̄ is mentioned: x is not part of the input. This Büchi automaton accepts all words that
do not satisfy the LTL formula

ϕ = �(r1→# � g1)∧�(r2→# � g3)∧�¬(g1 ∧ g2)

in example 2.1. Here an example: The infinite word r1(g2r1)ω is accepted, because of the
accepting run

q0
r1−→ q1

g2−−→ q1
r1−→ q1

g2−−→ . . . ,

that only stays in q1.
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Universal co-Büchi Automata

Definition 2.8 (Universal co-Büchi Automata).
A universal co-Büchi automaton A over a finite alphabet Σ is a tuple 〈Q,q0,δ,F〉, where

• Q is the set of states

• q0 is the initial state

• δ :Q ×Σ×Q is the transition relation

• F is the set of rejecting states

As we can see, the universal co-Büchi automaton has the same definition as the non-deterministic
Büchi automaton, with one difference. F is called the set of rejecting states, whereas in a
Büchi automaton, F is called the set of accepting states.

Non-deterministic Büchi automaton and a universal co-Büchi automaton differ in the ac-
cepting and branching conditions.

Definition 2.9 (Run).
A run of an infinite word σ on a universal co-Büchi automaton A is a sequence

q0
σ0−−→ q1

σ1−−→ q2
σ2−−→ . . . ,

where q0 is the initial state and (qi ,σi ,qi+1) ∈ δ.

A run is accepted by A iff qi ∈ F holds for finitely many i.

Definition 2.10 (Acceptance co-Büchi Automaton).
An infinite word σ is accepted by a universal co-Büchi automaton, iff all possible runs are
accepted.

Intuitively, an infinite word σ is accepted if there are only finitely many occurrences of
rejecting states in all runs of A on σ .

Example 2.5 (Universal co-Büchi Automaton).
The example given in figure 2.3 can also be interpreted as a universal co-Büchi automaton
A having the same language as the LTL formula defined in example 2.1. An example of a
word which is not accepted is r1(g2r2)ω. The run that stays always in q0 is accepted, but the
run leading to q1 and staying there is not, because the rejecting state q1 is visited infinitely
often. This run does therefore not fulfill the accepting condition of the universal co-Büchi
automaton. An example of a word which is accepted is (r1g1)ω as the only possible run stays
in q0 and never leaves this state which is accepted by the universal co-Büchi automaton.
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t0,q0 t1,q0 t0,qe

t1,q1 t1,q2 t0,q1 t0,q2 t1,qe

Figure 2.4: This figure represent the reachable fragment of the run graph between the tran-
sition system in figure 2.2b and the universal co-Büchi automaton in figure 2.3.

2.4 Run Graph

To verify, if a transition system holds on a universal co-Büchi automaton, we have to simu-
late all runs of the transition system on the universal co-Büchi automaton. These runs are
represented by a run graph. We recap the definition by Faymonville et al. [8].

Definition 2.11 (Run Graph).
The product of a transition system T = 〈T , t0, τ〉 and the universal co-Büchi automaton
A = 〈Q, q0, δ, F〉 is a run graph G = 〈V , E〉, where

• V = T ×Q is the set of vertices

• E ⊆ V ×V is the edge relation with
((t, q), (t′ , q′)) ∈ E⇔∃i ∈ 2I . ∃o ∈ 2O. τ(t, i) = (o, t′)∧ (q, i ∪ o,q′) ∈ δ

The intuition of the edge-relation is, that there is an edge from (t, q) to (t′ , q′), iff an edge
from t to t′ with input i and output o exists in the transition system T and there is an edge
from q to q′ with i and o as input in the universal co-Büchi automaton A.

Example 2.6 (Run Graph).
The transition system represented in figure 2.2b and the universal co-Büchi automaton rep-
resented in figure 2.3 can be combined to a run graph. The fragment reachable from the
initial state is represented in figure 2.4.

2.5 Quantified Boolean Formulas

As already mentioned, this thesis introduces different encodings for the reactive synthesis.
One of these encodings is represented as a quantified boolean formula (QBF). A QBF is a
SAT propositional formula, where variables can be bounded by quantifiers. We recap the
definitions by Rabe and Tentrup [23].



2.5. QUANTIFIED BOOLEAN FORMULAS 13

Syntax

Definition 2.12 (Syntax of QBF).
The following grammar defines the syntax of a QBF over a finite set X of variables with
domain B = {0,1} :

ϕ ::= x | ¬ϕ |ϕ ∨ϕ | ∃x. ϕ | ∀x. ϕ ,

where x ∈ X.

The same standard abbreviations for boolean formulas, defined in section 2.1, are used. For
readability we later lift the quantifier over variables to a quantifier over a set of variables
so ∀x1. ∀x2. . . .∀xn. ϕ becomes ∀X.ϕ with X = {x1,x2, . . . ,xn}. The same holds for the ∃-
quantifier.

Semantics

We now want to define the semantics of QBF. Therefore we introduce additional notation.

An assignment of X is a function α : X → B, that maps each variable x ∈ X to true (repre-
sented by the value 1) or false (represented by the variable 0). For readability, an assignment
can also be described by a set ~x ⊆ X including all variables that are assigned to true. A(X)
represents the set of assignments over the set of variables X.

A variable x is called bounded by a quantifier Q ∈ {∀,∃} in the scope of ψ in a QBF ϕ, iff
Qx. ψ is part of the QBF ϕ. All variables that are not bounded are called free variables. A
formula without free variables is called closed. We use the semantics relation ~x |= ϕ, where
ϕ is a QBF and ~x ⊆ X is an assignment to the set of free variables of ϕ.

Definition 2.13 (Satisfiability of QBF).
For an assignment ~x with ~x ⊆ X, the semantics of a QBF is defined as follows:

• ~x |= x :⇔ x ∈ ~x
for free variables x ∈ X.

• ~x |= ¬ϕ :⇔ ~x 6|= ϕ
for boolean negation, where ϕ is a QBF formula.

• ~x |= ϕ ∨ψ :⇔ ~x |= ϕ or ~x |= ψ
for boolean conjunction, where ϕ and ψ are QBF formulas.

• ~x |= ∃x. ϕ :⇔ ~x |= ϕ or ~x∪ {x} |= ϕ
for the existential quantifier, where ϕ is a QBF formula.

• ~x |= ∀x. ϕ :⇔ ~x |= ϕ and ~x∪ {x} |= ϕ
for the universal quantifier, where ϕ is a QBF formula.

A closed QBF ϕ can be checked for satisfiability by ∅ |= ϕ.
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a = 1

b = 0

c = 0

b = 1

c = 1

(a) ∃a. ∀b. ∃c. a∧ (b↔ c)

a = 1

b = 1

c = 1

b = 0

c = ?

(b) ∃a. ∀b. ∃c. c∧ (b↔ a)

Figure 2.5: Two BDT that represent the Skolem functions for the respective QBFs below.

Skolem Functions

A variable y depends on a variable x if the existential quantifier that binds y is in the scope
of the universal quantifier that binds x. For example in the QBF ∀x. ∃y. x↔ y the variable
y depends on the variable x. We call the dependency set of an existential quantifier variable
y as dep(y). With this dependency we can build a Skolem function fy : A(dep(y))→ B that
maps an assignment of all variables depending on the existential bounded variable y to true
or false. The satisfiability of a QBF is equivalent to the existence of a set of Skolem functions
for the existentially bounded variables Y such that {y ∈ Y |fy(~x∩dep(y))} |= ϕ holds for every
assignment ~x of the universally quantified variables X.

A representation of Skolem functions are binary decision trees (BDT). In BDT the assign-
ments of the dependent variables are represented with branching and labels. The following
two examples give an intuition for QBF formulas.

Example 2.7.
At first we take a look at the formula ∃a. ∀b. ∃c. a ∧ (b ↔ c). If we want to proof that
this formula is satisfiable we have to find a valid Skolem function for the variables a and c.
Figure 2.5a shows a BDT representing the Skolem functions. Because a has no dependencies
and a stands alone on the left side of the conjunction, a has to be assigned always to 1 (true).
The variable c however depends on the variable b. If b is assigned to 0, c is set to 0 and if b
is assigned to 1 c is set to 1.

Example 2.8.
The second example introduces an unsatisfiable formula: ∃a.∀b.∃c. c∧ (b↔ a). To prove the
unsatisfiability, we have to show that all possible Skolem functions are not valid. Figure 2.5b
gives an example. The first Skolem function assigns a (which has no dependencies) to a
value. In example 2.5a, only one assignment was possible and we could choose this. Now
both assignments are possible so we guess and choose a to be 1. The second function assigns
c to a value, depending on the value of b. If b is assigned to 1, c can be assigned to 1 and the
formula gets true. If b is assigned to 0, we can find no assignment for c such that the formula
gets true. The Skolem function that assigns a to 1 is wrong so we change the assignment to
0. If we would assign c to its value, we get the same effect. These are the possibilities to
assign the Skolem functions which together proof that this QBF is unsatisfiable.
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2.6 Dependency Quantified Boolean Formulas

In chapter 6 we express one of the encodings with dependency quantified boolean formulas
(DQBF). A DQBF is a SAT propositional formula, where the variables can be bounded by
quantifiers, similar to QBF. We recap the definition by Finkbeiner and Tentrup [13] and
Fröhlich et al. [14] .

Syntax

Definition 2.14 (Syntax of DQBF).
A DQBF ϕ can always be described in the following structure:

ϕ =Q.ψ = ∀x1.∀x2.∀x3. . . .∃y1(H1).∃y2(H2).∃y3(H3). . . . .ψ,

where Q is the quantifier prefix and ψ is a SAT propositional formula over the variables
V = X ∪Y = {x1,x2,x3, . . . } ∪ {y1, y2, y3, . . . } and Hi ⊆ X for all i.

A DQBF $ = Q.ψ consists of two parts. At first the variables v ∈ V are bounded with
universal and existential quantifiers. For the existentially quantified variables, we specify
the dependencies explicitely with the set Hi ⊆ X. This is the difference to QBF, where the
dependencies are specified by the order of the quantifiers. The second part is the SAT propo-
sitional formula ψ over the variables V . ψ consists of atomic propositions v ∈ V , the binary
operators ∨ and the unary operator ¬. But the same standard abbreviations for boolean
formulas, defined in section 2.1, can be used.

Semantics

Before we can define the satisfiability of a DQBF formula we need more notation.

We call the function α : V → B an assignment over the variables V . The existentially quan-
tified variables y are represented with the Skolem functions fy : (Hy → B)→ ({y} → B). So
an existential quantified variable is mapped to an assignment, under the assignment of its
depending variables h ∈Hy .

Definition 2.15 (Satisfiability of DQBF).
A DQBF ϕ = Q.ψ is satisfiable, iff for all possible assignments of the universally quantified
variables x ∈ X, there is a Skolem function fy for all existentially quantified variables y ∈ Y
such that ψ is satisfiable.

The Skolem functions can be represented as BDT like the Skolem functions in QBF. To get
an intuition consider the following two examples.

Example 2.9.
At first we take a look at the formula ∀b. ∃a. ∃c(b). a∧ (b ↔ c). To prove the satisfiability
of this DQBF we have to find a valid Skolem function for the variables a and c. Figure 2.6a
represents these two functions as BDTs. The first variable a has no dependencies. Because
the atomic proposition is on the left side of the conjunct, we build the Skolem function,
that maps a to the assignment 1. The second Skolem function gets as input the assignment
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b = 1

c = 1

b = 0

c = 0

a = 1

(a) ∀b. ∃a. ∃c(b). a∧ (b↔ c)

b = 1

y = ?

b = 0

y = ?

a = 1

x = 0

a = 0

x = 1

(b) ∀a. ∀b. ∃x(a). ∃y(b). (a∨ b)↔ (x↔ y)

Figure 2.6: Two BDT that represent the Skolem functions for the respective DQBFs below.

of b. Because the right side of the conjunct is an equivalence between b and c, the Skolem
function maps the variable c to the assignment of b.

Example 2.10.
The second example introduces an unsatisfiable DQBF: ∀a. ∀b. ∃x(a). ∃y(b). (a∨b)↔ (x↔ y).
To prove the unsatisfiability, we have to prove that all possible Skolem functions are not
valid. Figure 2.6b represents a possible Skolem function. We have to find a function for
the variable x dependent on the variable a. Because we cannot define a unique assignment
for x, dependent on the assignment of a, we have to guess an assignment. We have to find
a Skolem function for the variable y, too. This function gets as input the assignment of
b. If b is assigned to 0, y must have the same value like x, iff a is assigned to 1. But y
is independent of the assignment of a and we cannot fund a valid SKolem function. This
independency between y and a, respectively x and b holds for all possible Skolem functions.



3Single Process Synthesis

This chapter introduces the reactive synthesis problem followed by the bounded synthesis
approach. At first both problems are defined formally and afterwards the general concept
how to solve the bounded synthesis is explained. We recap the definitions by Finkbeiner
and Schewe [12].

3.1 Synthesis

Definition 3.1 (Reactive Realizability from LTL Specification).
Given a specification as an LTL formula ϕ over a set of variables, partitioned into inputs
and outputs. The realizability problem is to decide, whether there is a transition system T
that satisfies ϕ.

The realizability problem decides if there is a solution or not. The reactive synthesis returns
a transition system that satisfies the given specification if there is such a transition system
or return none if it is not possible to find one. The returned transition system describes
the model for the implementation of the process and the programmer is free from writing
programs.

Synthesis has a high complexity. For single processes with an LTL specification it is 2EXPTIME-
complete [12]. Another disadvantage of synthesis can be the size of the returned transition
system, because synthesis finds one, but not necessarily the smallest solution.

3.2 Bounded Synthesis

The bounded synthesis approach was introduced by Finkbeiner and Schewe to cope with
this problem. Bounded synthesis is a restriction of the synthesis problem that bounds the
size of the transition system, for example in the number of states. If no solution can be
found with this size, the state space is increased.

The general concept how to solve bounded synthesis is represented in figure 3.1. On the
one hand the LTL formula ϕ has to be translated into a universal co-Büchi automaton A,
such that L(ϕ) = L(A). On the other hand a transition system T with bounded size b and
an annotation function λ is guessed. Afterwards it is verified that the transition system
holds on the universal co-Büchi automaton by building the run graph and checking if the
annotation function is valid.
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LTL formula ϕ

Universal co-
Büchi automaton A

Bound b

guess bounded TS T with
annotation function λ

Verification

satisfiable with T not satisfiable with T

Figure 3.1: General Concept to Solve Bounded Synthesis

3.3 Translating LTL to Universal co-Büchi Automata

The following steps describe a possibility to translate an LTL formula ϕ to an equivalent
universal co-Büchi automaton A:

1. Negating the LTL formula ¬ϕ

2. Building a non-deterministic Büchi automaton A¬ϕ for ¬ϕ

3. Building a universal co-Büchi automaton Aϕ from A¬ϕ

In this section the examples are based on the formula

ϕ = �(r1→# � g1)∧�(r2→# � g3)∧�¬(g1 ∧ g2)

(compare example 2.1).

1. Negating the LTL formula

At first the LTL formula ϕ has to be negated.

Example 3.1 (Negating ϕ).
¬ϕ = ¬(�(r1→# � g1)∧�(r2→# � g3)∧�¬(g1 ∧ g2))

2. Building the non-deterministic automaton

With the negated LTL formula, we can now build a non-deterministic automatonA¬ϕ, such
that L(A¬ϕ) = L(¬ϕ). The size of the resulting automaton is exponential in the size of the
formula [16].

Example 3.2 (Non-deterministic Büchi Automaton).
The resulting automaton has been shown in example 2.4.
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3. Building the universal co-Büchi automaton

Let A¬ϕ be the non-deterministic Büchi automaton. We obtain the non-deterministic Büchi
automaton Aϕ by duplicating A¬ϕ and changing the branching and accepting condition.
The branching condition changes in a way that all possible runs have to be accepted instead
of one possible run. A word is now accepted if it leads to a finite number of occurrences
of rejecting states instead of an infinite number of occurrences of accepting states (compare
subsection 2.3).

Example 3.3 (Universal co-Büchi Automaton).
The example to this formula is explained in example 2.5.

3.4 Verification

As described in the concept in figure 3.1, we solve the bounded synthesis with the help
of verification. We verify if a transition system holds on a universal co-Büchi automaton
with the run graph by checking the validity of the given annotation function. We recap the
definitions by Faymonville et al. [8].

Definition 3.2 (Annotation Function).
Given a transition system T = 〈T , t0, τ〉 and a universal co-Büchi automatonA = 〈Q, q0, δ, F〉.
The annotation function λ : T ×Q→ {⊥} ∪N is a function that maps each state of the run
graph to ⊥ or a natural number.

We can verify that the transition system T holds on the co-Büchi automatonAwith the help
of the annotation function λ. Using this function it can be checked if the rejecting states are
only visited finitely often. If this condition holds we call the annotation function λ valid.
This can be checked by two conditions. First, the initial state of the run graph has not to
be ⊥, otherwise the annotation function that maps the first state to not reachable would be
valid. Second, all reachable states in the run graph are labeled with greater numbers than
their predecessors if they are rejecting states or with greater or equal number otherwise.
The formal definition is given below.

Definition 3.3 (Validity of Annotation Functions).
Given a transition system T = 〈T , t0, τ〉 and a universal co-Büchi automatonA = 〈Q, q0, δ, F〉.
The annotation function λ : T ×Q→ {⊥}∪N is valid if it satisfies the following conditions:

• λ(t0, q0) ,⊥

• ∀t ∈ T ,q ∈Q. λ(t, q) = k ,⊥→∀i ∈ 2I . τ(t, i) = (o, t′)∧ (q, i ∪ o, q′) ∈ δ→ λ(t′ ,q′) .q′ k,

with .q′ :=

> if q′ ∈ F
≥ if q′ < F

Theorem 3.1 (Acceptance Transition System in Universal co-Büchi Automaton [12] ).
Given a transition system T and a universal co-Büchi automatonA. T holds onA, iff a valid
(|T | · |A|)-bounded annotation function can be found.
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t0,q0

0
t1,q0

0
t0,qe

⊥

t1,q1

1
t1,q2

2
t0,q1

2
t0,q2

1
t1,qe

⊥

Figure 3.2: Run Graph from Figure 2.4 with a Valid Annotation Function

(|T | · |A|) gives the maximal label of the run graph. The proof is the same like the proof by
Finkbeiner and Schewe[12], with the different definitions of the transition system T and the
universal co-Büchi Automaton A.

Example 3.4 (Verification).
In figure 3.2, the run graph from figure 2.4 is represented with an annotation function. The
annotation function is represented as the orange labels. You can see that the states (t0,qe)
and (t1,qe) are unreachable, so they are labeled with ⊥. The initial state (t0,q0) and the
state (t1,q0) are labeled with 0, because the only input edge is the loop between these two
states and they do not contain a rejecting state so they can be equal. (t1,q2) is labeled with
2, because (t1,q1) has to be strictly greater than (t0,q0) because of the incoming edge from
(t0,q0) and q1 is a rejecting state. Similar to (t0,q1), (t1,q2) has to be strictly greater than
(t1,q1) and (t0,q0), because of the incoming edges and q2 is a rejecting state. So we found a
valid annotation function and can verify that the transition system T holds on the universal
co-Büchi automaton A.



4Encodings for Single Processes

In this chapter we introduce two of the four new encoding by Faymonville et al. [8] to solve
the bounded synthesis approach for single processes. The encodings are written as a SAT
propositional, QBF and DQBF formula. As mentioned in the last chapter, we have to verify
if a transition system holds on a universal co-Büchi automaton. Therefore we start to express
the verification as a SAT propositional formula.

4.1 Verification

In the last chapter the concept of verification using annotation functions was introduced. As
an input we receive the run graph, between the transition system and the universal co-Büchi
automaton, and the annotation function. As explained in theorem 3.1, we have to verify if
the given annotation function is valid. In figure 4.1 the general concept of this formula is
represented. It is checked if for all reachable states in the run graph, the annotation for all
successors is valid. This concept is now encoded in a SAT propositional formula. Therefore
we use the following propositional representation of the input:

• λ: the annotation function λ is split into two functions:

– λB : T ×Q→B

– λ# : T ×Q→N

Both functions get as input a state in the run graph. The first function returns true
of false, reachable or not reachable, the second returns the label as a natural number.
With these two functions the variables λBt,q and λ#

t,q are built for all t ∈ T and q ∈ Q,
where the index can be seen as the input for the functions.

• T = 〈T ,t0, τ〉: In the SAT propositional formula, the transition relation τ is represented
as variables, like the annotation function. Therefore τ : T × 2I → 2O × T is expressed
as:

– τt,i,t′ ↔ τ(t, i) = (_, t′)

– ot,i = o if τ(t, i) = (o,_)

The variable τt,i,t′ signals if there is a transition from t with input i to t′. The variable
ot,i produces the output.

• A = 〈Q,q0,δ,F〉: We have to represent the transition function δ as a variable. The
variable is indexed with two states in the universal co-Büchi automaton q and q′, the
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input: T = 〈T ,t0, τ〉 A = 〈Q,q0,δ,F〉 λ

∀ reach-
able states

∀ successors
annotation

is valid

Figure 4.1: General Concept of the Encoding Used for the Verification

input i and the state of the transition system, because the input of the universal co-
Büchi automaton is the input and output of the transition system. Formally δ : Q ×
2I∪O→Q is represented by the variables: δt,q,i,q′ ↔ δ(q, i ∪ ot,i) = q′

With these different variables, the verification formulas can now be build.

∧
q∈Q

∧
t∈T

 λBt,q→ ∧
q′∈Q

∧
i∈2I

(
δt,q,i,q′ →

∧
t′∈T

(
τt,i,t′ → λBt′ ,q′ ∧λ

#
t′ ,q′ Bq′ λ

#
t,q

) ) 
As you can see, the SAT propositional formula has the same structure like the pattern in
figure 4.1. The formula starts with ∀ reachable states, that is represented by the annotation
function part λBt,q. This variable is true, if the state (t,q) is reachable in the run graph. The
right side of the implication starts with δt,q,i,q′ → τt,i,t′ . These two variables together build
the successor (t′ ,q′) in the run graph, because q′ is a successor in the universal co-Büchi
automaton (denoted by δt,q,i,q′ ) and t′ is a successor in the transition system, because of
τt,i,t′ . After that it has to be checked if (t′ ,q′) is reachable in the annotation function and if
λ#
t′ ,q′ Bq′ λ

#
t,q, i.e. the annotation is valid for this transition.

With this verification formula, the different synthesis formulas can be built.

4.2 SAT Propositional Encoding: Explicit Encoding

In the last section the verification part of the SAT propositional formula was introduced.
Like in figure 3.1 shown, we get as input only the specification as a universal co-Büchi
automaton and we have to guess an annotation function and a transition system, so that we
can verify.

Constraints

Before we guess we have to add two constraints:

• λBt0,q0
. This constraint asserts that the initial state is reachable.

•
∧
t∈T

∧
i∈2I

∨
t′∈T τt,i,t′ . This constraint asserts that each state in the transition system

has at least one outgoing edge, for each input.

Without the first constraint for every transition system and universal co-Büchi automaton,
the annotation function that maps each state to ⊥ would be accepted by the formula. This
result is possible because the premise is always false. But it is obvious that this annotation
function is not valid as it violates definition 3.3.
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The second constraint prevents that τt,i,t′ is not always false. It assures that for example
the transition system that has no outgoing edge in the initial state is not accepted. This
transition system produces no output and so it follows not the idea of synthesis.

Building the Formula

The guess is done with the existential quantifier.

∃{λBt,q,λ#
t,q | t ∈ T ,q ∈Q}

∃{τt,i,t′ | (t, t′) ∈ T × T , i ∈ 2I }
∃{ot,i | o ∈O,t ∈ T , i ∈ 2I }

where the first line guesses all variables that describe together the annotation function and
the second and third line the transition system.

The following formula describes now the SAT propositional encoding, for the synthesis:

∃{λBt,q,λ#
t,q | t ∈ T ,q ∈Q}

∃{τt,i,t′ | (t, t′) ∈ T × T , i ∈ 2I }
∃{ot,i | o ∈O,t ∈ T , i ∈ 2I }

λBt0,q0
∧

∧
t∈T

∧
i∈2I

∨
t′∈T

τt,i,t′

∧
q∈Q

∧
t∈T

 λBt,q→ ∧
q′∈Q

∧
i∈2I

(
δt,q,i,q′ →

∧
t′∈T

(
τt,i,t′ → λBt′ ,q′ ∧λ

#
t′ ,q′ Bq′ λ

#
t,q

) ) 
The size of the formula is represented in the following theorem.

Theorem 4.1 (Size of the Explicit Encoding [8] ).
The size of the constraint system is in O(nm2 · 2|I | · (|δq,q′ | + n log(nm))) and the number of
variables is in O(n(m log(nm) + 2|I | · (|O|+n))), where n = |T | and m = |Q|.

In this formula only existential quantifiers over propositional variables are used, so this
formula can be solved by a SAT solver.

Building the Transition System

Like in the verification part in section 4.1, where we transform the transition system and
the annotation function into variables, we can do the other way round and transform the
variables into a transition system.

Example 4.1.
We want to find a transition system that is accepted by the universal co-Büchi automaton
in example 3.3. If we bound the transition system to a state size of two, the formula in
appendix 10.2 is produced. The result of the formula is a variable assignment. We only want
to look at the variables of the transition system, that was produced. We list the variables that
are assigned to true in groups, so we can produce the resulting edges. But first in general:
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τt,i,t′ is set to true, so in the transition system, there is an edge from t, with input i, to t’.
The output that was produced is described by the variable ot,i . ot,i is assigned to true, iff the
state t produces the output with input i the output o. We also listed the variables, that are
assigned to true.

Variables Meaning
τt0,(r̄1,r̄2),t1 , τt0,(r1,r̄2),t1 , τt0,(r̄1,r2),t1 , τt0,(r1,r2),t1 There is an edge from t0 to t1, with input (r̄1, r̄2), one

edge with input (r̄1, r2), one with input (r1, r̄2) and
one with (r1, r2), so we can put them together to the

edge from t0 to t1, with input >.
g1t0,(r̄1,r̄2), g1t0,(r1,r̄2), g1t0,(r̄1,r2), g1t0,(r1,r2) The output, of the state t0 is for all inputs the same: g1.

τt1,(r̄1,r̄2),t0 , τt1,(r1,r̄2),t0 , τt1,(r̄1,r2),t0 , τt1,(r1,r2),t0 There is an edge from t1 to t0, with input >,
because for all inputs i the variable τt1,i,t0 is set to true.

g2t1,(r̄1,r̄2), g2t1,(r1,r̄2), g2t1,(r̄1,r2), g2t1,(r1,r2) The output of the state t1 is for all inputs the same: g2

A graphical representation of this formula is shown in figure 2.2b.

Functional Correctness

Theorem 4.2 (Correctness).
Let I/O be the input/output propositions of an LTL formula ϕ and b ∈N some bound. The
transition system T generated by the SAT propositional encoding satisfies ϕ.

Proof.
We proof that the resulting transition system is accepted by the given universal co-Büchi
automaton, with the resulting annotation function λ:

λ(t,q) =

⊥ if λBt,q = 0

n if λBt,q = 1∧λ#
t,q = n

From the definition of a valid annotation function λ, we know the following conditions have
to hold:

1. λ(t0,q0) ,⊥

2. ∀t ∈ T ,q ∈Q. λ(t, q) = k ,⊥→∀i ∈ 2I . τ(t, i) = (o, t′)∧ (q, i ∪ o, q′) ∈ δ→ λ(t′ ,q′) .q′ k

We proof the conditions one by one:

1. λ(t0,q0) ,⊥ is valid, because of λBt0,q0
= 1

2. Be (t,q) any valid reachable state in the run graph, λ(t,q) ,⊥. For all successors (t′ ,q′)
of (t,q) it has to hold: λ(t′ ,q′) .q′ λ(t,q). We proof the universal condition, by an arbi-
trary choose of (t′ ,q′). The same holds for the arbitrary choose of (t,q).

We have to proof:
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outer existential
quantification

universal
quantification

inner existential
quantification formula

Figure 4.2: Structure of the Input-Symbolic Encoding

∀i ∈ 2I . τ(t, i) = (o, t′)∧ (q, i ∪ o, q′) ∈ δ→ λ(t′ ,q′) .q′ λ(t,q)

If we get an arbitrary input i ∈ 2I . The premise holds, because of the definitions of the
variables:

• τt,i,t′ = 1, because of τ(t, i) = (o, t′)

• ot,i = o, because of τ(t, i) = (o, t′)

• δt,q,i,q′ = 1, because of δt,q,i,q′ ↔ (q, i ∪ ot,i ,q′) ∈ δ↔ (q, i ∪ o,q′) ∈ δ

If we now look at the formula, we see:

λBt,q (= 1)→ δt,q,i,q′ (= 1)→ τt,i,t′ ( = 1)→ λBt′ ,q′ ∧λ
#
t′ ,q′ .q′ λ

#
t,q

We see: λBt′ ,q′∧λ
#
t′ ,q′ .q′λ

#
t,q holds and after the definition of λBt,q, λ

#
t′ ,q′ and λ#

t′ ,q′ λ(t′ ,q′).q′
λ(t,q), what has to be proven.

4.3 QBF Encoding: Input-symbolic Encoding

The last section introduces the explicit encoding, that can be solved by a SAT-solver. In this
formula every information is contained in the indices, meaning we build a new variable.
One example is the explicit handling of inputs: For every possible input i ∈ 2I , we build
own transition and output variables. The drawback of this explicit handling is the size of
the constraint system and the number of variables in the constraint system, that become
exponential in the number of inputs.

Building the Formula

This section avoids the problem of the exponential blow up by using quantified boolean for-
mulas (QBF). The input variables are represented symbolically with universal quantifiers.
Figure 4.2 defines the general structure of this encoding. We quantify existentially over the
λ-annotation variables before the universal quantification. These variables are independent
of the input variables. The inner existential quantification over the transition τ and out-
put o variables are dependent on the input variables, so we can omit the indices from these
variables.

The semantics of QBF defines the inner existential quantifier variables as boolean functions
with the universal quantifier variables as input. For example the variable τt,t′ , representing
a transition from state t to state t′ is a function τt,t′ : 2I → B, getting as input a set of input

variables i and becomes true, if there is a transition t
i−→ t′ and false if not. We can also
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use another representation of δ : (Q × 2I∪O ×Q) with the propositional formula δt,q,q′ over
the inputs I and output variables ot, that depend on I. An assignment i ∪ o satisfies δt,q,q′ iff
(q, i ∪ ot ,q′) ∈ δ.

The following formula represents the input-symbolic encoding. We emphasize the main
changes to the explicit encoding with the blue color.

∃{λBt,q,λ#
t,q | t ∈ T ,q ∈Q}

∀I
∃{τt,t′ | (t, t′) ∈ T × T }
∃{ot | o ∈O,t ∈ T }

λBt0,q0
∧

∧
t∈T

∨
t′∈T

τt,t′

∧
q∈Q

∧
t∈T

λBt,q→ ∧
q′∈Q

(
δt,q,q′ →

∧
t′∈T

(
τt,t′ → λBt′ ,q′ ∧λ

#
t′ ,q′ Bq′ λ

#
t,q

))
Theorem 4.3 (Size of the Input-Symbolic Encoding [8] ).
Let n = |T | and m = |Q|. The size of the input-symbolic constraint system is in O(nm2(|δq,q′ |+
n log(nm))). The number of existential and universal variables is in O(n(m log(nm)+ |O|+n))
and O(|I |), respectively.

This constraint system has different advantages besides the smaller size. In comparison
to the explicit encoding the input-symbolic encoding does not separate the dependency
between the input I and the transition function τ . With this help we can easily summarize
all input assignments for one transition from state t to state t′. Another advantage of this
encoding is the order of the quantifiers. If we fix the λ-annotation variables we get all
possible transition systems satisfying the specification with the fixed annotation function,
using the resulting 2QBF query.

Building the Transition System

To build the transition system for a formula, we use several steps:

1. At first we solve the complete formula and if the formula is satisfiable we extract the
assignments for the λ-annotation variables.

2. In the next step we instantiate the λ-annotation variables and simplify the resulting
formula.

3. In the last step we solve the simplified formula again with a certifying solver, which
generates us the boolean functions for τt,t′ and ot, which we can translate to a transi-
tion system similar to section 4.2.

Example 4.2.
We want to solve the same problem like in example 4.1 with the input-symbolic encoding.
Therefore we go through each step in detail.
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• The complete formula can be found in appendix 10.3. If we extract the variables λBt,q
and λ#

t,q, we get the following assignment:

variables assignment
λBt0,q0

,λBt1,q0
⊥

λBt0,q0
,λBt1,q0

,λBt0,q1
,λBt1,q1

,λBt0,q2
,λBt1,q2

>
λ#
t0,q0

,λ#
t1,q0

,λ#
t0,qe

,λ#
t1,qe

0
λ#
t0,q2

,λ#
t1,q1

1
λ#
t1,q2

,λ#
t0,q1

2

• The instantiation is represented in appendix 10.4.

• We solve this formula and get as result the functions:

functions value
τt0,t0 , τt1,t1 , g1t1

, g2t0
assign each input to ⊥

τt0,t1 , τt1,t0 , g1t0
, g2t1

assign each input to >

With these functions we build the transition system. There are transitions from state
t0 to t1 and from t1 to t0 with every input. The output of state t0 is g1 for every possible
input, the output of t1 is g2. A graphical representation is shown in figure 2.2b.

Functional Correctness

To prove the functional correctness of the QBF constraint system, we use the correctness of
the SAT propositional constraint system and claim:

Theorem 4.4 (Correctness).
Let I , O be the input/output propositions of an LTL formula and b ∈ N some bound. The
SAT propositional and QBF encoding of bounded synthesis are equisatisfiable.

Proof.
⇒
Let T be the transition system generated by the SAT propositional constraint system. To
prove that this transition system can also be generated by the QBF constraint system we
prove that this system holds on the QBF constraint system with the variable assignment:

• λBt,q,λ
#
t,q has the same assignment like in the SAT propositional constraint system

• τt,t′ is the function, with τt,t′ (i) = 1, iff τt,i,t′ = 1

• ot is the function, with ot(i) = 1, iff ot,i = 1

• δt,q,q′ is the function, with δt,q,q′ (i) = 1, iff δt,q,i,q′ = 1

We have to prove three conditions:

1. λBt0,q0
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2.
∧
t∈T

∨
t′∈T τt,t′

3.
∧
q∈Q

∧
t∈T

λBt,q→∧
q′∈Q

(
δt,q,q′ →

∧
t′∈T

(
τt,t′ → λBt′ ,q′ ∧λ

#
t′ ,q′ Bq′ λ

#
t,q

))
The first condition becomes true because λBt0,q0

becomes true in the SAT propositional con-
straint system.

The second and the third condition become true because of the definition of the functions
and the corresponding constraints in the SAT propositional constraint system.

⇐
This prove is similar to⇒, with the change that we define the variables in such a way that
the functions become true.



5Distributed Synthesis

As described in the introduction we translate the different encodings in chapter 4 to the
distributed bounded synthesis approach to solve the distributed synthesis problem. There-
fore this chapter introduces the distributed synthesis problem. We recap the definitions by
Finkbeiner and Schewe [12].

5.1 Architecture

To solve the distributed synthesis problem, we have to define the structure of distributed
systems. Distributed systems consist of different processes with different information, mean-
ing a different input and output for each process. For example the variable x could be the
output of process 1 and the input of process 2. The architecture describes the distributed
system formally.

Definition 5.1 (Architecture).
An architecture A is a tuple (P ,env,V , I,O) where:

• P is the set of system processes and the designated environment process

• env is the designated environment process

• V is the set of boolean system variables, with V =
⋃
p∈P Op

• I = {Ip ⊆ V | p ∈ P } assigns a set Ip of input variables to each system process

• O = {Ip ⊆ V | p ∈ P } assigns a set Ip of input variables to each system process

The set of system processes is defined as P − = P \ {env}.

To indicate broadcasting, it is allowed that the same variable v ∈ V occurs in multiple input
sets Ip. The output sets Op however are assumed to be pairwise disjoint.

An architecture is called fully informed, if Oenv ⊆ Ip for every system process p ∈ P −.

The following examples introdue different architectures. The graphical representations are
represented in figure 5.1.

Example 5.1 (Independent Processes).
The architecture in figure 5.1a describes two independent processes. Process p1 gets as input
only the variable r1, that is an environment output, and produces the output g1. Process p2
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env

p1

r1

p2

r2

g1 g2

(a) Independent Processes

env

p1

r1

p2

r2

g1

g2

(b) Communicating Processes

env p1
r1 p2

g1 g2

(c) Pipeline

Figure 5.1: Virtual representation of three architectures described in the examples 5.1,5.2
and 5.3

gets as input the environment output r2 and produces the output g2. There is no interaction
between these two processes.

Formally the architecture A is described by the tuple (P ,env,V , I,O), where

• P = {env,p1,p2}

• V = {r1, r2, g1, g2}

• I = {p1→ {r1},p2→ {r2}}

• O = {p1→ {g1},p2→ {g2}}

Example 5.2 (Communicating Processes).
The architecture in figure 5.1b describes two communicating processes. Each process gets
as input one environment output and the output of the other system process.

Formally the architecture A is described by the tuple (P ,env,V , I,O), where

• P = {env,p1,p2}

• V = {r1, r2, g1, g2}

• I = {p1→ {r1, g2},p2→ {r2, g1}}

• O = {p1→ {g1},p2→ {g2}}

Example 5.3 (Pipeline).
The architecture in figure 5.1c describes a pipeline. The first process p1 gets as input the
environment process and produces the output g1, that is the input for the next process p2.
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Formally the architecture A is described by the tuple (P ,env,V , I,O), where

• P = {env,p1,p2}

• V = {r1, g1, g2}

• I = {p1→ {r1},p2→ {g1}}

• O = {p1→ {g1},p2→ {g2}}

5.2 Distributed Synthesis

Definition 5.2 (Reactive Realizability from LTL specification).
Given an architecture A and a specification as an LTL formula ϕ over a set of variables,
partitioned into inputs and outputs. The distributed synthesis problem is to decide, whether
there is a set of transition systems T = {T1, . . . ,Tn}, one for each process in A, such that the
composition T1 × · · · × Tn realizes ϕ.

Like in chapter 3 the realizability problem is a decision problem. The distributed synthesis
returns a set of transition system, if there is a set that realizes the specification. The tran-
sition system T1, . . . ,Tn has the input and output sets, as defined in the architecture A. We
specify the composition in the next section in detail.

Synthesis of distributed system is in general undecidable [22], even for simple architec-
tures like two communicating processes (compare figure 5.1b). But there are architectures,
so that the distributed synthesis is decidable, like the pipeline architecture (compare fig-
ure 5.1c) [11] but it has still a non-elementary complexity.

5.3 Composition of Transition Systems

The composition of transition systems T1, . . . ,Tn is also a transition system T .

Definition 5.3 (Transition System of a Distributed Architecture).
Given an architecture A = (P ,env,V , I,O) with a set of processes describes by transition
systems {T1, . . . ,Tn}. The composition of {T1, . . . ,Tn} is the transition system T = 〈T ,to, τ〉with
input I =Oenv and output O = V , where:

• T = T1 × · · · × Tn is the set of states

• t0 = (t10
, . . . , tn0

) is the initial state

• τ : T × 2I → T × 2O is the transition relation, where

τ((t1, . . . , tn), i) = ((t′1, . . . , t
′
n), o),

iff τk(tk , i ∩ Ipk) = (t′k , ok) for every k ∈ P − and o = o1 ∪ · · · ∪ on
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t0P1

g2/

t1P1

ḡ2/g1
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(a) Transition System 1

t0P2
t1P2
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(b) Transition System 2

(t0P1
, t0P 2) (t1P1

, t1P2
)

>/g1

>/g2

(c) Composition

Figure 5.2: This figure gives two transition systems and the composition between them.

Example 5.4 (Composition of two Transition systems).
We want to build the composition of the transition systems in figure 5.2a and figure 5.2b.
The first transition system, with the input set {r1, g2} and output set {g1}, describes the be-
havior of the first process. The second transition system, with input set {r2, g1} and output
set {g2}, describes the second process in architecture 5.2. To check if a specification holds
on these processes, we build the composition, which is a transition system with input set
{r1, r2} and output set {g1, g2}. There is a transition from state t in the composition, if in each
transition system a transition can be gone. The composition of these two transition systems
is the transition system T = 〈T ,t0, τ〉, where:

• T = {(t0p1
, t0p2

), (t1p1
, t1p2

)}

• t0 = (t0p1
, t0p2

)

• τ = {
((t0p1

, t0p2
), (r1, r2), (g1, ḡ2), (t1p1

, t1p2
)), ((t0p1

, t0p2
), (r1, r̄2), (g1, ḡ2), (t1p1

, t1p2
)),

((t0p1
, t0p2

), (r̄1, r2), (g1, ḡ2), (t1p1
, t1p2

)), ((t0p1
, t0p2

), (r̄1, r̄2), (g1, ḡ2), (t1p1
, t1p2

)),
((t1p1

, t1p2
), (r1, r2), (ḡ1, g2), (t0p1

, t0p2
)), ((t1p1

, t1p2
), (r1, r̄2), (ḡ1, g2), (t0p1

, t0p2
)),

((t1p1
, t1p2

), (r̄1, r2), (ḡ1, g2), (t0p1
, t0p2

)), ((t1p1
, t1p2

), (r̄1, r̄2), (ḡ1, g2), (t0p1
, t0p2

))},

if we only look at the reachable part.

A graphical representation can be found in figure 5.2c.

5.4 Challenges with Distributed Systems

By building the transition systems for each process, we have to guarantee that each process
can only decide its behavior by the information specified in the architecture. Let us look
for example on the architecture in figure 5.1a. The transition system for process p1 gets as
input the variable r1. The different variable assignments for the variable r2 have no effect.
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There are different ways to solve this problem, Guthoff [17] for example describes two ways
to add different constraints to the bounded synthesis formula. In this formula the states
of the transition system T that represent the composition of T1, . . . ,Tn are first built and
checked and afterwards the transition system Tp for each process p is built from T . In this
thesis the problem is solved in another way. The single transition systems T1, . . . ,Tn are built
and then the composition is checked.





6Encodings for Distributed Synthesis

In this chapter, we introduce the new encodings for the distributed synthesis problem, based
on chapter 4. Like in chapter 4, we start with the verification formula, define new notation
and introduce the different encodings.

6.1 Verification

The structure of the verification formula is described in figure 4.1, similar to the single pro-
cess synthesis. We iterate over all reachable states of the run graph between the composition
of the transition systems T and the states in the universal co-Büchi automaton A and check
if the annotation function λ is valid for all successors in the run graph. The difference to the
verification formula in chapter 4 is the transition system, that represents the composition
of the different transition systems T1, . . . ,Tn, one for each process. Therefore we need new
notation:

• For the variables λBt,q,λ
#
t,q and δq,t,~i,q′ , there is no change to chapter 4, where t ∈ T in

the composition of the transition system, q,q′ ∈Q in the universal co-Büchi automaton
and ~i ∈ 2I .

• As mentioned in chapter 5, we build the transition system for each process first and
check, if the composition satisfies the specification. Therefore in the verification for-
mula we have to check if the transition and output variables for each transition system
are assigned to true. There are no transition or output variables for the composition
of the transition systems. However we iterate over the states of the composition of
the transition systems, to check the satisfiability of the composition. We define three
functions, to get the information defined in the architecture for only one process:

– d : P − × T → T P
−
: This function maps each state t in the composition of the

transition systems and a system process p in the given architecture to the specific
state t′ in process p.

– d : P − × 2I → 2I : Simultaneous to the function above, this functions maps the
input set to the input set for the system process p, specified in the architecture.

– p : I → P : In the distributed synthesis problem, we have to cope with the prob-
lem, that an input variable of one process can be the output of another process.
This function maps an input variable to its producing process.
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With these functions we define the variables:

– τ
p

dp(t),dp(~i),dp(t′)
: These variables represent the transitions from state dp(t) with in-

put dp(~i) to state dp(t′) in process p

– oidpi (t),dpi (~i)
: These variables represent the output i of one state dpi (t) with input

dpi (~i) in process pi .

These two sets of variables are nearly simultaneous to chapter 4. The difference is the
use of the functions defined above. The variables δt,q,~i,q′ do not change compared to
chapter 4.

With these variables we define the verification formula, based on figure 4.1.

∧
q∈Q

∧
t∈T

 λBt,q→ ∧
q′∈Q

∧
~i∈2I

( ( ∧
i∈~i∧i<Oenv

i ∈~i↔ oidpi (t),dpi (~i)

)
→ δt,q,~i,q′

→
∧
t′∈T

( ( ∧
p∈P −

τ
p

dp(t),dp(~i),dp(t′)

)
→ λBt′ ,q′ ∧λ

#
t′ ,q′ Bq′ λ

#
t,q

) ) 
In comparison to chapter 4, in this formula we added two constraints that are highlighted
blue in the formula above:

•
∧
p∈P −

(
τ
p

dp(t),dp(~i),dp(t′)

)
•

∧
i∈~i∧i<Oenv

(
i ∈~i↔ oidpi (t),dpi (~i)

)
With the first constraint we check in each process if there is a transition. Only if we can
go the transition in each process, λBt′ ,q′ has to be reachable. With the second constraint
we solve the problem, if an input variable is an output of a system process and not of the
environment, we have to take sure that the output variable is set to true, if we consider an
input, where this input variable is true and false otherwise. To illustrate this constraint, we
look at the architecture 5.1b. Assume, we get as input~i = {r1, g2} and t1 is the state in process
1 and t2 in process 2. The constraint is translated to:

¬g1,t1,{r1,g2} ∧ g2,t2,{r̄2,ḡ2}

In the following, we use the abbreviation valid(t,~i), for the second constraint.

6.2 SAT Propositional Encoding: Explicit Encoding

Like in chapter 4, the verification formula is the base of the synthesis formula.
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(a) Transition System 1
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¬b/a
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(b) Transition System 2

(tp1
, tp2

)

(c) Composition

Figure 6.1: This figure gives two transition systems satisfying the constraint, that in each
transition system there has to be at least one outgoing transition for every input and their
composition.

Constraints

To solve the distributed synthesis with the verification formula above, we have to translate
the constraints in chapter 4 to constraints for distributed systems and to expand them.

• λBt0,q0
: In distributed synthesis we have to assert that the initial state is reachable too.

We use the same constraint like in chapter 4, where t0 is the composition of the initial
states.

•
∧
t∈T

∧
i∈2I

∨
t′∈T τt,i,t′ : To assert that each state has at least one outgoing transition for

each valid input i the constraint has to be translated to the composition of the different
transition systems: ∧

t∈T

∧
~i∈2I

valid(t,~i)→
∨
t′∈T

( ∧
p∈P −

τ
p

dp(t),dp(~i),dp(t′)

)

• With the second constraint, we have to assert that the premise valid(t,~i) does not be-
come always false and preventing, that there are no transitions in the composition of
the transition systems: ∧

t∈T

∧
i∈2Oenv

∨
~i∈2I∧i⊆~i

valid(t,~i)

In this constraint, we claim that in every state for every assignment of the environ-
ment output, at least one combination of the system output assignments (that are
again inputs) becomes true. Without this constraint it would be possible in cyclic ar-
chitectures, like in figure 5.1b, to choose the output in such a way that the function
valid becomes always false.

It is not sufficient to check if in the transition systems for each process, there are in each state
at least one outgoing transition for every input. Figure 6.1 gives an counterexample. Both
transition systems 6.1a and 6.1b satisfy:

∧
t∈T

∧
i∈2I

∨
t′∈T : τt,i,t′ . But the composition of

these transition systems has no outgoing transition and we do not prevent the problem that
a transition system without transitions satisfies every specification, compare section 4.2.
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Building the Formula

Like in chapter 5 explained, we have to guess a set of transition systems and an annotation
function. This is done like in chapter 4 with an existential quantifier:

∃{λBt,q,λ#
t,q | t ∈ T ,q ∈Q}

∃{τp
dp(t),dp(~i),dp(t′)

| (t, t′) ∈ T × T ,~i ∈ 2I ,p ∈ P −}

∃{oi,dpi (t),dpi (~i)
| oi ∈O\Oenv , t ∈ T ,~i ∈ 2I }

The SAT propositional encoding for the distributed synthesis problem can be defined by the
following formula:

∃{λBt,q,λ#
t,q | t ∈ T ,q ∈Q}

∃{τp
dp(t),dp(~i),dp(t′)

| (t, t′) ∈ T × T ,~i ∈ 2I ,p ∈ P −}

∃{oi,dpi (t),dpi (~i)
| oi ∈O\Oenv , t ∈ T ,~i ∈ 2I }

λBt0,q0

∧
∧
t∈T

∧
i∈2Oenv

∨
~i∈2I∧i⊆~i

valid(t,~i)

∧
∧
t∈T

∧
~i∈2I

valid(t,~i)→
∨
t′∈T

( ∧
p∈P −

τ
p

dp(t),dp(~i),dp(t′)

)
∧

∧
q∈Q

∧
t∈T

 λBt,q→ ∧
q′∈Q

∧
~i∈2I

(
valid(t,~i)→ δt,q,~i,q′ →

∧
t′∈T

( ( ∧
p∈P −

τ
p

dp(t),dp(~i),dp(t′)

)
→ λBt′ ,q′ ∧λ

#
t′ ,q′ Bq′ λ

#
t,q

) ) 
Theorem 6.1 (Size of the Explicit Encoding).
The size of the explicit constraint system is in O(nm2 ·2|I | · (|I\Oenv |+ |δq,q′ |+n · |P −| · log(nm)))
and the number of variables is in O(nm log(nm) + np · |P −| · 2|I

p | · (|Op| + np)), where n = |T |,
m = |Q|, Ip the greatest input set, Op the greatest output set and np the greatest size of
T1,T2, . . . .

Example 6.1 (Examples of Different Architectures with SAT Propositional Formulas).

In this example, we show the SAT propositional formulas of the three architectures, given
in figure 5.1. With t1 and t′1 we define the states in p1 and with t2 and t′2 the states in p2.
The states in the composition between the two processes are t = (t1, t2) and t′ = (t′1, t

′
2):

• Two independent processes 5.1a: The valid(t,~i) evaluates always to true, because there
is no i ∈~i in this architecture. Process p1 gets as input r1, dp1

(~i) ⊆ 2{r1} and process p2
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gets as input r2, dp2
(~i) ⊆ 2{r2}:

∃{λBt,q,λ#
t,q | t ∈ T ,q ∈Q}

∃{τp1

t1,dp1 (~i),t′1
, τ
p2

t2,dp2 (~i),t′2
| (t, t′) ∈ T × T ,~i ∈ 2I }

∃{g1t1,dp1 (~i), g2t2,dp2 (~i) | t ∈ T ,~i ∈ 2I }

λBt0,q0

∧
∧
t∈T

∧
~i∈2I

∨
t′∈T

(
τ
p1

t1,dp1 (~i),t′1
∧ τp2

t2,dp2 (~i),t′2

)
∧

∧
q∈Q

∧
t∈T

 λBt,q→ ∧
q′∈Q

∧
~i∈2I

(
δt,q,~i,q′ →

∧
t′∈T

( (
τ
p1

t1,dp1 (~i),t′1
, τ
p2

t2,dp2 (~i),t′2

)
→ λBt′ ,q′ ∧λ

#
t′ ,q′ Bq′ λ

#
t,q

) ) 

• Pipeline 5.1c: Process p2 gets as input g1, which is the output of process p1. In this
case the function valid(t,~i) changes to g1 ↔ g1t1,dp1 (~i). In addition dp1

(~i) ⊆ 2{r1} and

dp2
(~i) ⊆ 2{g1}:

∃{λBt,q,λ#
t,q | t ∈ T ,q ∈Q}

∃{τp1

t1,dp1 (~i),t′1
, τ
p2

t2,dp2 (~i),t′2
| (t, t′) ∈ T × T ,~i ∈ 2I }

∃{g1t1,dp1 (~i), g2t2,dp2 (~i) | t ∈ T ,~i ∈ 2I }

λBt0,q0

∧
∧
t∈T

∧
~i∈2I

(g1↔ g1t1,dp1 (~i))→
∨
t′∈T

(
τ
p1

t1,dp1 (~i),t′1
∧ τp2

t2,dp2 (~i),t′2

)
∧

∧
q∈Q

∧
t∈T

 λBt,q→ ∧
q′∈Q

∧
~i∈2I

(
(g1↔ g1t1,dp1 (~i))→ δt,q,~i,q′ →

∧
t′∈T

( (
τ
p1

t1,dp1 (~i),t′1
, τ
p2

t2,dp2 (~i),t′2

)
→ λBt′ ,q′ ∧λ

#
t′ ,q′ Bq′ λ

#
t,q

) ) 

• two communicating processes 5.1b: In this architecture the two processes communi-
cate together with their output variables. Therefore valid(t,~i) = g1↔ g1t1,dp1 (~i) ∧ g2↔



40 CHAPTER 6. ENCODINGS FOR DISTRIBUTED SYNTHESIS

g2t2,dp2 (~i). We define dp1
(~i) ⊆ 2{r1,g2} and dp2

(~i) ⊆ 2{r2,g1}:

∃{λBt,q,λ#
t,q | t ∈ T ,q ∈Q}

∃{τp1

t1,dp1 (~i),t′1
, τ
p2

t2,dp2 (~i),t′2
| (t, t′) ∈ T × T ,~i ∈ 2I }

∃{g1t1,dp1 (~i), g2t2,dp2 (~i) | t ∈ T ,~i ∈ 2I }

λBt0,q0

∧
∧
t∈T

∧
~i∈2I

(g1↔ g1t1,dp1 (~i) ∧ g2↔ g2t2,dp2 (~i))→
∨
t′∈T

(
τ
p1

t1,dp1 (~i),t′1
∧ τp2

t2,dp2 (~i),t′2

)
∧

∧
q∈Q

∧
t∈T

 λBt,q→ ∧
q′∈Q

∧
~i∈2I

(
(g1↔ g1t1,dp1 (~i) ∧ g2↔ g2t2,dp2 (~i))→ δt,q,~i,q′

→
∧
t′∈T

( (
τ
p1

t1,dp1 (~i),t′1
, τ
p2

t2,dp2 (~i),t′2

)
→ λBt′ ,q′ ∧λ

#
t′ ,q′ Bq′ λ

#
t,q

) ) 
Building the Transition Systems

We build the transition systems T1, . . . ,Tn synchronous to chapter 4. The indexes of the
variables, define the states, input and outputs. The difference to the single process synthesis,
is the new index p, to indicate which transition / output is part of one process.

Correctness of Information

We have to prove, that each transition system only depends on the variables specified in the
architecture. In this constraint system we define the functions:

• d : P − × I → Ip

• d : P − × T → T p

• p : I → P

to map the information.

Functional Correctness

Theorem 6.2 (Correctness).
Let A be an architecture, I/O be the input/output propositions of an LTL formula ϕ and b ∈
N some bound. The set of transition systems {T1, . . . ,Tn} generated by the SAT propositional
encoding satisfies ϕ.

Proof.
The functional correctness proof is similar to the functional correctness proof in section 4.2.
The difference is we consider a set of transition systems and prove that the composition
of this set of transition systems holds on the given universal co-Büchi automaton with the
annotation function λ. We have to prove two conditions:
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1. λ(t0,q0) ,⊥

2. ∀t ∈ T ,q ∈Q. λ(t, q) = k ,⊥→∀i ∈ 20env . τ(t, i) = (o, t′)∧(q, i∪o, q′) ∈ δ→ λ(t′ ,q′).q′ k

with τ(t, i) = (o, t′) and t = (t1, . . . , tn), t′ = (t′1, . . . , t
′
n), o = o1∪· · ·∪on, iff τp1(t1, i1) = (o1, t

′
1), . . . , τpn(tn, in) =

(on, t′n), where i ⊆ i1 ∪ · · · ∪ i2.

The first condition is part of the constraint system, because the constraint λBt0,q0
has to be-

come true. To prove that the second condition holds, we have to prove that

∀i ∈ 20env . τ(t, i) = (o, t′)∧ (q, i ∪ o, q′) ∈ δ→ λ(t′ ,q′) .q′ λ(t,q)

From the constraint system we know, that there is at least one ~i ∈ 2I , with i ⊆~i. Let i ∈ 20env

and ~i, with valid(t,~i) be an arbitrary input and the premise holds. The variable assignment
is:

• τ
p1
t1,i1,t

′
1

= · · · = τpnt1,i1,t′1 = 1, because of τ(t,~i) = (o, t′)

• ot,i = 1, because of τ(t, i) = (o, t′)

• δt,q,i,q′ = 1, because of (q, i ∪ o[t, i]) ∈ δ

From the constraint system we know

λBt,q (= 1)→ valid(t,~i) (= 1)→ δt,q,~i,q′ (= 1)→ τ
p1
t1,i1,t

′
1

( = 1)∧ · · · ∧ τpntn,in,t′n ( = 1)

→ λBt′ ,q′ ∧λ
#
t′ ,q′ .q′ λ

#
t,q

We see: λBt′ ,q′∧λ
#
t′ ,q′.q′λ

#
t,q holds and after the definition of λBt,q, λ

#
t′ ,q′ and λ#

t′ ,q′ λ(t′ ,q′).q′λ(t,q),
what has to be proven.

6.3 QBF Encoding: Input-symbolic Encoding

The constraint system in the previous section has the drawback that the size of the constraint
system and the number of variables become exponential in the number of inputs (compare
chapter 4). Therefore we want to build an input-symbolic encoding for distributed systems
with QBF. In QBF the dependencies of the variables are defined by the order of the quan-
tification, compare section 2.5. In distributed systems, we have different processes with
different informations, in comparison to single processes. This section examines different
architectures regarding their compatibility with QBF and their dependencies.

Correctness of Information

To express the input symbolically in the single process synthesis, we quantify universally
over the input variables and quantify existentially over the transition and output variables
(compare section 4.3). In communicating architectures we have the problem that an input
variable of one process can be the output variable of another process. For example in the
pipeline architecture, represented in figure 5.1c, the variable g1 is the output of process 1
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and the input for process 2. To express the input symbolically in communicating architec-
tures becomes a challenge. To solve the problem for the pipeline architecture we look at
different possibilities:

• We look at the case that g1 is existentially quantified: In this case the Skolem function
for the variable g2 does not get g1 as input and it does not describe the architecture.

• We look at the case that g1 is universally quantified: In this case g1 is not described by
a Skolem function and we cannot describe that g1 is dependent on r1.

The solution for this problem is to quantify the variable existentially and universally. There-
fore we introduce a new variable ig1

which is universally quantified to describe g1 as an input
variable. The variable g1 is existentially quantified to describe g1 as an output variable like
in the single process synthesis. If we now change the valid(t,~i) from section 6.2, to

valid(t) =
∧

o∈~i∧o<Oenv

(
io↔ oodpi (t)

)
we require that the assignment of these variables is equal. Without this constraint we could
get a wrong result. For example in the pipeline architecture if ig1

= 0 and g1,t = 1, the
constraint system makes for the variable g2,t′ the decision with the input g1 = 0, and not
with the correct input g1 = 1.

We compare two processes pi and pk , we call pi less or equal pk (pi ≤ pk), if and only if
dp1

(I) ⊆ dp2
(I). In the next step we examine architectures, where we cannot define a total

order on the processes. An example of such an architecture are two independent processes
(compare figure 5.1a).

Theorem 6.3 (Correctness of Information).
Let A be an architecture. If and only if there is a total order on the set of processes in A and
we introduce new variables for input variables that are system outputs in A, the order for
the existentially quantified variables is linear.

Proof.
⇒
If we cannot define a total order on the set of processes, there are at least two processes p1

with at least one input variable r1 and an output variable g1 and p2 with at least one input
variable r2 and an output variable g2 such that the output g1 is independent of the input r2
and the output g2 is independent of the input r1. We look at all permutations:

• ∀r1 stands in the quantifier prefix not before ∃g1 or ∀r2 stands not before ∃g2: In these
cases g1 is independent of r1 respectively g2 is independent on r2 and this doesn’t fulfill
the claim.

• both universal quantifier are before the existential quantifier: In these cases g1 is de-
pendent on r1 and r2 and doesn’t fulfill the claim.

• all permutations of the form ∀r1∃g1∀r2∃g2 respectively ∀r2∃g2∀r1∃g1: In these cases
g2 is dependent on r1 and r2 respectively g1 is dependent on r1 and r2 and so doesn’t
fulfill the claim.
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⇐
We assume the order p1 ≤ p2 ≤ pn. If we define the input and output variables in the given
order we get the following quantifier prefix:

∀Ip1∃op1∀(Ip2\Ip1)∃op2 . . .

In this case op1 only depends on Ip1 and op2 depends on Ip2 , because (Ip1 ⊆ Ip2) and the
universal quantification stands before the existential. In general: opk depends on Ipk . This
was the claim.

The same holds for the correct information for the variables τpdp(t),dp(t).

In cyclic architectures there is no total order on the set of processes. Therefore we can omit
the constraint

∧
t∈T

∧
i∈2Oenv

∨
~i∈2I∧i⊆~i valid(t,~i) for the explicit encoding. This constraint

prevented that the valid function do not assign each input to fasle, that was only possible in
cyclic architectures.

Like in chapter 4, we change the variable δt,q,~i,q′ to δt,q,q′ , τ
p

t,~i,t′
to τpt,t′ and oi,dpi (t),dpi (~i)

to

oi,dpi (t) by removing the input index.

Building the Formula

With this restricted architectures, we get with the order p1 ≤ · · · ≤ pk ≤ · · · ≤ pn the following
formula:

∃{λBt,q,λ#
t,q | t ∈ T ,q ∈Q}

∀Ip1

∃{τp1
dp(t),dp(t′) | (t, t

′) ∈ T × T }

∃{oi,dpi (t)} | oi ∈O
p1 , t ∈ T }

. . .

∀Ipk\(Ip1 ∪· · ·∪ Ipk−1)

∃{τpkdp(t),dp(t′) | (t, t
′) ∈ T × T }

∃{oi,dpi (t)} | oi ∈O
pk , t ∈ T }

. . .

∀Ipn\(Ip1 ∪· · ·∪ Ipn−1)

∃{τpndp(t),dp(t′) | (t, t
′) ∈ T × T }

∃{oi,dpi (t)} | oi ∈O
pn , t ∈ T }

λBt0,q0

∧
∧
t∈T

valid(t)→
∨
t′∈T

( ∧
p∈P −

τ
p
dp(t),dp(t′)

)
∧

∧
q∈Q

∧
t∈T

 λBt,q→ ∧
q′∈Q

(
valid(t)→ δt,q,q′ →

∧
t′∈T

( ( ∧
p∈P −

τ
p
dp(t),dp(t′)

)
→ λBt′ ,q′ ∧λ

#
t′ ,q′ Bq′ λ

#
t,q

) ) 
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Theorem 6.4 (Size of the Input-Symbolic Encoding with QBF).
Let n = |T |, m = |Q|, Op the greatest output set and np the greatest size of T1,T2, . . . . The
size of the input-symbolic constraint system with QBF is in O(nm2 · (|I\Oenv | + |δq,q′ | + n ·
|P −| · log(nm))), the number of existential variables is in O(nm log(nm) +np · |P −| · (|Op|+np))
and the number of universal variables is in O(|I |).

Example 6.2 (Examples of different architectures with QBF).
In this example, we show the QBF-formulas of the three architectures, given in figure 6.2,
compare example 6.1:

• Two independent processes, with ascending information 6.2a: Because there is no
communication in this architecture valid(t) is always true and we can omit it:

∃{λB(t1,t2),q,λ
#
(t1,t2),q | ((t1, t2) ∈ T ,q ∈Q}

∀r1
∃{τp1

t1,t
′
1
| ((t1, t2), (t′1, t

′
2)) ∈ T × T }

∃{g1t1
| (t1, t2) ∈ T }

∀r2
∃{τp2

t2,t
′
2
| ((t1, t2), (t′1, t

′
2)) ∈ T × T }

∃{g2t2
| (t1, t2) ∈ T }

λB(t1,t2)0,q0

∧
∧

(t1,t2)∈T

∨
(t′1,t

′
2)∈T

(
τ
p1
t1,t
′
1
∧ τp2

t2,t
′
2

)
∧

∧
q∈Q

∧
(t1,t2)∈T

 λB(t1,t2),q→
∧
q′∈Q

(
δ(t1,t2),q,q′ →

∧
(t′1,t

′
2)∈T

( (
τ
p1
t1,t
′
1
∧ τp2

t2,t
′
2

)
→ λB(t′1,t′2),q′ ∧λ

#
(t′1,t

′
2),q′ Bq′ λ

#
(t1,t2),q

) ) 

• Two independent processes, with the same information 6.2b: Because there is no com-
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munication in this architecture valid(t) is always true and we can omit it:

∃{λB(t1,t2),q,λ
#
(t1,t2),q | ((t1, t2) ∈ T ,q ∈Q}

∀r1, r2
∃{τp1

t1,t
′
1
| ((t1, t2), (t′1, t

′
2)) ∈ T × T }

∃{g1t1
| (t1, t2) ∈ T }

∃{τp2
t2,t
′
2
| ((t1, t2), (t′1, t

′
2)) ∈ T × T }

∃{g2t2
| (t1, t2) ∈ T }

λB(t1,t2)0,q0

∧
∧

(t1,t2)∈T

∨
(t′1,t

′
2)∈T

(
τ
p1
t1,t
′
1
∧ τp2

t2,t
′
2

)
∧

∧
q∈Q

∧
(t1,t2)∈T

 λB(t1,t2),q→
∧
q′∈Q

(
δ(t1,t2),q,q′ →

∧
(t′1,t

′
2)∈T

( (
τ
p1
t1,t
′
1
∧ τp2

t2,t
′
2

)
→ λB(t′1,t′2),q′ ∧λ

#
(t′1,t

′
2),q′ Bq′ λ

#
(t1,t2),q

) ) 
In the previous example p1 gets only r1 as input, and p2 r1 and r2. The universal
quantification is done after the output and the transition quantification for process
p1. In this example p1 and p2 have the same information and we quantify r1 and r2
together.

• Pipeline 6.2c: Because process p2 gets the output g1 of p1 as input, we use a new
input variable ig1

. The function valid(t) is in this case (ig1
↔ g1t). We highlighted this

function blue in the formula:

∃{λB(t1,t2),q,λ
#
(t1,t2),q | ((t1, t2) ∈ T ,q ∈Q}

∀r1
∃{τp1

t1,t
′
1
| ((t1, t2), (t′1, t

′
2)) ∈ T × T }

∃{g1t1
| (t1, t2) ∈ T }

∀ig1

∃{τp2
t2,t
′
2
| ((t1, t2), (t′1, t

′
2)) ∈ T × T }

∃{g2t2
| (t1, t2) ∈ T }

λB(t1,t2)0,q0

∧
∧

(t1,t2)∈T
(ig1
↔ g1t1

)→
∨

(t′1,t
′
2)∈T

(
τ
p1
t1,t
′
1
∧ τp2

t2,t
′
2

)
∧

∧
q∈Q

∧
(t1,t2)∈T

 λBt,q→ ∧
q′∈Q

(
(ig1
↔ g1t1

)→ δ(t1,t2),q,q′ →
∧
t′∈T

( (
τ
p1
t1,t
′
1
∧ τp2

t2,t
′
2

)
→ λB(t′1,t′2),q′ ∧λ

#
(t′1,t

′
2),q′ Bq′ λ

#
(t1,t2),q

) ) 
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env

p1

r1

p2

r1, r2

g1 g2

(a) Independent Processes, with
Ascending Inputs. Order: p1 ≤ p2

env

p1

r1, r2

p2

r1, r2

g1 g2

(b) Independent Processes, with
the Same Input. Order: p1 = p2

env p1
r1 p2

g1

r1

g2

(c) Pipeline, order: p1 ≤ p2

Figure 6.2: Three Examples for Architectures with a Total Order

Building the transition system

We build the transition systems as explained in 4.3 and in 6.2.

Functional Correctness

Theorem 6.5 (Correctness).
Let A be an architecture with a total order on the processes, I/O be the input/output propo-
sitions of an LTL formula and b ∈N some bound. The SAT propositional and QBF encodings
of distributed bounded synthesis are equisatisfiable.

Proof.
⇐
Let {T1, . . . ,Tn} be the set of transition systems generated by the QBF constraint system. To
prove that this set of transition systems can also be generated by the SAT propositional en-
coding, we prove that this set of transition systems satisfies the SAT propositional constraint
system with the following variable assignment:

• λBt,q,λ
#
t,q has the same assignment like in the QBF constraint system

• τ
p

dp(t),dp(~i),dp(t′)
= 1, iff τpdp(t),dp(t′)(dp(~i)) = 1

• oi,dpi (t),dpi (~i)
= 1, iff oi,dpi (t)(dpi (

~i)) = 1

• δt,q,~i,q′ = 1, iff δt,q,q′ (~i) = 1
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We have to prove 4 conditions:

1. λBt0,q0

2.
∧
t∈T

∧
i∈2Oenv

∨
~i∈2I∧i⊆~i valid(t,~i)

3.
∧
t∈T

∧
~i∈2I valid(t,~i)→

∨
t′∈T

(∧
p∈P − τ

p

dp(t),dp(~i),dp(t′)

)
4.

∧
q∈Q

∧
t∈T

 λBt,q→∧
q′∈Q

∧
~i∈2I

(
valid(t,~i)→ δt,q,~i,q′ →

∧
t′∈T

( ( ∧
p∈P − τ

p

dp(t),dp(~i),dp(t′)

)
→

λBt′ ,q′ ∧λ
#
t′ ,q′ Bq′ λ

#
t,q

) ) 
The first condition becomes true, because λt0,q0

has the same assignment like in the QBF
encoding, where is becomes true.

The second constraint system becomes true, because of the defined architecture. This con-
straint system asserts that valid(t,~i) does not always becomes false. This is only possible in
cyclic architectures, where we cannot define a total order.

The third and the fourth condition become true because of the definition of the variables
and the corresponding constraints in the QBF constraint system.

⇒
This proof is similar to ⇐ with the difference that we define the functions in such a way
that the variables become true. In addition the second condition is omitted in the QBF
encoding.

6.4 DQBF Encoding: Input-symbolic Encoding

The drawback of the input-symbolic encoding with QBF is that we can only solve architec-
tures with a total order. In QBF we use this order to express the different information of the
processes. In DQBF we can define these dependencies explicitly, and do not need this order.
Therefore if we use DQBF we can solve the distributed synthesis problem for all distributed
systems and remain symbolic in the input. To express the dependencies the variables δt,q,q′
change to δt,q,q′ (I), τ

p
dp(t),dp(t′) to τpdp(t),dp(t′)(I

p) and oi,dpi (t) to oi,dpi (t)(I
p).

If we express the input symbolically with DQBF we get the same problems with commu-
nicating architectures like in the input-symbolic encoding with QBF (compare section 6.3).
Therefore we use the same new variables for input variables, that are also system outputs
and use the function valid(t) to check if the variables representing the input and output are
set to the same value.

The input-symbolic encoding with DQBF can solve the distributed synthesis problem for
all architectures, in contrast to the previous section, where no constraint system for cyclic
architectures could be build. Therefore we get the same problem like in the explicit encod-
ing. In cyclic architectures it is possible, that the valid function is always false, if we do not



48 CHAPTER 6. ENCODINGS FOR DISTRIBUTED SYNTHESIS

prevent this. Therefore we have to transform the constraint∧
t∈T

∧
i∈2Oenv

∨
~i∈2I∧i⊆~i

valid(t,~i)

of the explicit encoding (compare section 6.2) to an input-symbolic constraint. To express
the disjunction in the new constraint we have to introduce new variables o′i,t(O

env) which
are existentially quantified for every t ∈ T and every input variable that is a system output.
These variables are the same variables like the output variables with the difference that
they are only dependent on the environment output. With these variables we can build a
constraint to prevent that valid(t) is always false. Therefore the constraint changes to∧

t∈T

(( ∧
i∈I∧i<Oenv

i↔ o′i,t(O
env)

)
→ valid(t)

)
These new variables o′i,t(O

env) are only used for modeling the architecture on the constraint
system and are not translated to build the transition system or the annotation function. This
is a difference to the previous encodings presented in this thesis.

Building the Formula

We use the same constraint system like in section 6.3. The changed variables are highlighted
blue:

∃{λBt,q,λ#
t,q | t ∈ T ,q ∈Q}

∀I
∃{τpdp(t),dp(t′)(I

p) | (t, t′) ∈ T × T ,p ∈ P −}

∃{oi,dpi (t)(I
pi ) | oi ∈Op1 , t ∈ T }

∃{o′i,t(O
env) | oi ∈ (Op1 ∩ I), t ∈ T }

λBt0,q0

∧
∧
t∈T

(( ∧
i∈I∧i<Oenv

i↔ o′i,t(O
env)

)
→ valid(t)

)
∧

∧
t∈T

(
valid(t)→

∨
t′∈T

( ∧
p∈P −

τ
p
dp(t),dp(t′)(I

p)
))

∧
∧
q∈Q

∧
t∈T

 λBt,q→ ∧
q′∈Q

(
valid(t)→ δt,q,q′ (I)→

∧
t′∈T

( ( ∧
p∈P −

τ
p
dp(t),dp(t′)(I

p)
)
→ λBt′ ,q′ ∧λ

#
t′ ,q′ Bq′ λ

#
t,q

) ) 
Theorem 6.6 (Size of the Input-Symbolic Encoding with DQBF).
Let n = |T |, m = |Q|, Op the greatest output set and np the greatest size of T1,T2, . . . . The
size of the input-symbolic constraint system with DQBF is in O(nm2 · (|I\Oenv | + |δq,q′ | + n ·
|P −| · log(nm))), the number of existential variables is in O(nm log(nm) + np · |P −| · 2|I

p | · (2 ·
|Op|+np)) and the number of universal variables is in O(|I |).

Example 6.3 (Examples of different architectures with DQBF).
In this example, we show the DQBF-formulas of the three architectures, given in figure 5.1,
compare example 6.1 and 6.2.
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• Two independent processes 5.1a. Because there is no communication in this architec-
ture valid(t) is always true and we can omit it. In this architecture I ∪O = ∅, so we do
not introduce new variables:

∃{λB(t1,t2),q,λ
#
(t1,t2),q | ((t1, t2) ∈ T ,q ∈Q}

∀r1, r2
∃{τp1

t1,t
′
1
(r1), τp2

t2,t
′
2
(r2) | ((t1, t2), (t′1, t

′
2)) ∈ T × T }

∃{g1t1
(r1), g2t2

(r2) | (t1, t2) ∈ T }

λB(t1,t2)0,q0

∧
∧

(t1,t2)∈T

∨
(t′1,t

′
2)∈T

(
τ
p1
t1,t
′
1
(r1)∧ τp2

t2,t
′
2
(r2)

)
∧

∧
q∈Q

∧
(t1,t2)∈T

 λB(t1,t2),q→
∧
q′∈Q

(
δ(t1,t2),q,q′ (r1, r2)→

∧
(t′1,t

′
2)∈T

( (
τ
p1
t1,t
′
1
(r1)∧ τp2

t2,t
′
2
(r2)

)
→ λB(t′1,t′2),q′ ∧λ

#
(t′1,t

′
2),q′ Bq′ λ

#
(t1,t2),q

) ) 
• Two communicating processes 5.1b. This architecture has two communicating pro-

cesses, meaning there are two variables that are output and input. The function
valid(t) is evaluated to ig1

↔ g1t1
(r1, ig2

) ∧ ig2
↔ g2t2

(r2, ig1
). Because g1 is input of

process 1 and g2 is input of process 2, we have to introduce the variables ig1
, ig2

, g ′1,t
and g ′2,t:

∃{λB(t1,t2),q,λ
#
(t1,t2),q | ((t1, t2) ∈ T ,q ∈Q}

∀r1, r2, ig1
, ig2

∃{τp1
t1,t
′
1
(r1, ig2

), τp2
t2,t
′
2
(r2, i(g1)) | ((t1, t2), (t′1, t

′
2)) ∈ T × T }

∃{g1t1
(r1, ig2

), g2t2
(r2, ig1

) | (t1, t2) ∈ T }

∃{g ′1(t1,t2)(r1, r2), g ′2(t1,t2)(r1, r2) | (t1, t2) ∈ T }

λB(t1,t2)0,q0

∧
∧

(t1,t2)∈T

(
(ig1
↔ g1

′
(t1,t2)(r1, r2)∧ ig2

↔ g2
′
(t1,t2)(r1, r2))→ (ig1

↔ g1t1
(r1, ig2

)∧ ig2
↔ g2t2

(r2, ig1
))
)

∧
∧

(t1,t2)∈T

(
(ig1
↔ g1t1

(r1, ig2
)∧ ig2

↔ g2t2
(r2, ig1

))→
∨

(t′1,t
′
2)∈T

(
τ
p1
t1,t
′
1
(r1, ig2

)∧ τp2
t2,t
′
2
(r2, ig1

)
))

∧
∧
q∈Q

∧
(t1,t2)∈T

 λB(t1,t2),q→
∧
q′∈Q

(
(ig1
↔ g1t1

(r1, ig2
)∧ ig2

↔ g2t2
(r2, ig1

))→ δ(t1,t2),q,q′ (r1, r2, ig1
, ig2

)

→
∧

(t′1,t
′
2)∈T

( (
τ
p1
t1,t
′
1
(r1, ig2

)∧ τp2
t2,t
′
2
(r2, ig1

)
)
→ λB(t′1,t′2),q′ ∧λ

#
(t′1,t

′
2),q′ Bq′ λ

#
(t1,t2),q

) ) 
• Pipeline 5.1c. This architecture has a system output as input so valid(t) is ig1

↔ g1t1
(r1)
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and we introduce the variables ig1
and g1

′
(t1,t2).

∃{λB(t1,t2),q,λ
#
(t1,t2),q | ((t1, t2) ∈ T ,q ∈Q}

∀r1, ig1

∃{τp1
t1,t
′
1
(r1), τp2

t2,t
′
2
(ig1

) | ((t1, t2), (t′1, t
′
2)) ∈ T × T }

∃{g1t1
(r1), g2t2

(ig1
) | (t1, t2) ∈ T }

∃{g1
′
(t1,t2)(r1) | (t1, t2) ∈ T }

λB(t1,t2)0,q0

∧
∧

(t1,t2)∈T

(
(ig1
↔ g1

′
(t1,t2)(r1))→ (ig1

↔ g1t1
(r1))

)
∧

∧
(t1,t2)∈T

(
(ig1
↔ g1t1

(r1))→
∨

(t′1,t
′
2)∈T

(
τ
p1
t1,t
′
1
(r1)∧ τp2

t2,t
′
2
(ig1

)
))

∧
∧
q∈Q

∧
(t1,t2)∈T

 λB(t1,t2),q→
∧
q′∈Q

(
ig1
↔ g1t1

(r1)→ δ(t1,t2),q,q′ (r1, ig1
)

→
∧

(t′1,t
′
2)∈T

( (
τ
p1
t1,t
′
1
(r1)∧ τp2

t2,t
′
2
(ig1

)
)
→ λB(t′1,t′2),q′ ∧λ

#
(t′1,t

′
2),q′ Bq′ λ

#
(t1,t2),q

) ) 
Building the transition system

Building the transition system is in this constraint system, like in the QBF constraint sys-
tem 6.3. With the transition functions τpt,t′ we build the transitions from state t to state t′ in
process p and with oi,t we build the output of the state t.

Correctness of Information

In the DQBF constraint system we can define the dependencies explicitly, so the variables
get only the dependencies, defined in the architecture.

Functional Correctness

Theorem 6.7 (Correctness).
Let A be an architecture, I/O be the input/output propositions of an LTL formula and b ∈N
some bound. The SAT propositional and DQBF encodings of distributed bounded synthesis
are equisatisfiable.

Proof.
⇒
Let {T1, . . . ,Tn} be the set of transition systems generated by the SAT propositional constraint
system. To prove that this set of transition systems can also be generated by the DQBF
encoding, we prove that this set of transition systems satisfies the DQBF constraint system
with the following variable assignment:

• λBt,q,λ
#
t,q has the same assignment like in the QBF constraint system
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• τ
p
dp(t),dp(t′)(dp(~i)) = 1, iff τp

dp(t),dp(~i,dp(t′)
= 1

• oi,dpi (t)(dpi (
~i)) = 1, iff oi,dpi (t),dpi (~i)

= 1

• δt,q,~i,q′ = 1, iff δt,q,q′ (~i) = 1

• o′i,dpi (t),dpi
(i′) = 1, iff

∨
~i∈2I∧i′∈~i oi,dpi (t),dpi (~i)

= 1

We have to proof four conditions:

1. λBt0,q0

2.
∧
t∈T

((∧
i∈I∧i<Oenv i↔ o′i,t(O

env)
)
→ valid(t)

)
3.

∧
t∈T

(
valid(t)→

∨
t′∈T

(∧
p∈P − τ

p
dp(t),dp(t′)(I

p)
))

4. ∧
∧
q∈Q

∧
t∈T

 λBt,q→∧
q′∈Q

(
valid(t)→ δt,q,q′ (I)→

∧
t′∈T

( ( ∧
p∈P − τ

p
dp(t),dp(t′)(I

p)
)

→ λBt′ ,q′ ∧λ
#
t′ ,q′ Bq′ λ

#
t,q

) ) 
The first condition becomes true, because λt0,q0

has the same assignment like in the QBF
encoding, where it becomes true.

The last three constraints become true because of the definition of the functions and the
corresponding constraints in the SAT propositional constraint system.

⇐
This proof is similar to ⇒ with the difference that we define the variables in such a way
that the functions become true. In addition the functions o′i,dpi (t)

are not used in the SAT

propositional encoding.





7Implementation & Results

This chapter consist of two parts. We give a short overview about the implementation for
the formulas in chapter 6. The other part is the evaluation. We have tested our imple-
mentation with different architectures and different specifications. We explain shortly the
specifications and represent the results of our evaluation.

7.1 BoSy

The implementation is based on the reactive synthesis tool BoSy [9]. BoSy is a tool to solve
the bounded synthesis approach [12]. It builds different constraint systems in different logic
languages like the SMT encoding [12] or the SAT propositional encoding [8]. To build these
encodings, at the moment two tools (ltl3ba [1] or spot [6]) are used to translate the LTL spec-
ification to a universal co-Büchi automata. These constraint systems can in the next step be
solved by different solvers in the corresponding logic. We added three new constraint sys-
tems to solve the distributed synthesis, the distributed explicit encoding with SAT propo-
sitional formulas, the distributed input-symbolic encoding with QBF and the distributed
input-symbolic encoding with DQBF. These encodings follow the formulas explained in
chapter 6.

BoSy is implemented in Swift 3.0. Each constraint system has his own struct satisfying the
protocol:

1 protoco l BoSyEncoding {
2

3 mutating func so lve ( forBound bound : Int ) throws −> Bool
4 func e x t r a c t S o l u t i o n ( ) −> Transit ionSystem ?
5

6 }

The solve function gets as input the current bound and returns true, if the specification is
realizable with this bound, and false if not. For each of our three cases at first we call the
function getEncoding(forBound bound: Int), where the constraint system is built. The
return type of this function is the protocol Logic. This protocol is satisfied by the boolean
operators, quantifiers, propositions, literals and function applications (to solve the formulas
for the QBF and the DQBF constraint system). After the getEncoding call the solve func-
tion calls the solve function of the specified solver, which translates the constraint system
into the input format of the solver and solves the formula. If the formula is satisfiable the
solution bound is set to the current bound, the returned assignment of the solver is set and
in the QBF-encoding we set the current formula.
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The function extractSolution builds the transition systems. Its return type is Transi-

tionSystem which can be returned in our case as a .dot output in the command line. The
return type is an optional type, because if the transition system cannot be built, for example
if the solve function in the QBF encoding does not return true yet and the assignment was
not set, the extractSolution function returns nil. We look at the different extractSolu-
tion functions in more detail:

• If we call this function in the SAT propositional encoding we check at first if the as-
signment was set by the solve function. Afterwards we build the transitions and the
outputs with the variables and their assignments. This is done as explained in sec-
tion 6.2.

• In the QBF encoding this function checks at first if the assignment and the instance
(the formula that was satisfiable) was set. Afterward it checks if the current solver
is a QBF solver. After the check, we solve the instance with the given solver. If the
result is satisfiable, the solver returns an assignment for the variables of the type λBt,q
and λ#

t,q. We evaluate the instance with the returned assignment and get a formula of
the type ∀X∃Y .ϕ. This formula can be solved by a certified QBF-solver, which returns
the functions: τpt,t′ and oi,t. These functions can (in the next step) be translated into a
transition system (compare section 6.3 )

• In the DQBF encoding, the extractSolution function is currently not implemented.

Input Format

BoSy takes a .bosy file as input. This file has in general the following structure:

1 {
2 " semantics " : " mealy " | " moore " ,
3 " inputs " : [ " r0 " , " r1 " , . . . ] ,
4 " outputs " : [ " g0 " , " g1 " , . . . ] ,
5 " assumptions " : [ . . . ] ,
6 " guarantees " : [ . . . ]
7 }

With the first element we define the semantics of the transition system, with the other ele-
ments we define the specification. At the moment the constraint system is only implemented
for the mealy semantics. The transition system has to satisfy the specification

(assumption0 ∧ assumption1 ∧ . . . )→ (guarantee0 ∧ guarantee1 ∧ . . . )

over the input set inputs∪ outputs. For the distributed synthesis we expanded the input
format with a new element architecture:

1 " a r c h i t e c t u r e " : {
2 " processes " : [ " p0 " , " p1 " , . . . ] ,
3 " input " : { " p0 " : [ . . . ] , " p1 " : [ . . . ] , . . . } ,
4 " output " : { " env " : [ " r_0 " , " r_1 " , . . . ] , " p0 " : [ . . . ] , " p1 " : [ . . . ] }
5 " bound " : { " p0 " : . . . , " p1 " : . . . , . . . }
6 }
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This input format defines the architecture, as explained theoretically in section 5.1. With
the element processes we define the set of system processes. The environment process
is defined as a constant called env. The elements input and output map each process to
its input / output set. The element bound is optional. We map each process to a natural
number. With this number we define a factor how we increase the size of this process with
the next bound. If this element is not defined the bound of each process is set to 1.

7.2 Evaluation

Setup

We have tested the different encodings with the EDACC framework [3] and the following
configuration:

• Our machine has a 3.6 GHz quad-core Intel Xeon processor with 32 GB memory.

• We limited the evaluation with a timeout of 1 hour and a memout of 8 GB

• We use Spot 2.0 [6] to translate the LTL specification to a universal co-Büchi automa-
ton and the following solver: CryptoMiniSat as SAT solver [25], RAReQS [18] as QBF
solver, QuAbs [26] as certified solver, bloqqer [4] as preprocessor for QBF and iDQ [15]
as DQBF solver.

In addition we compare the different encodings with the tool introduced by Guthoff [17].
This tool is based on an SMT encoding to solve the distributed synthesis problem.

LTL - Specifications

For the evaluation we use three types of specifications.

Simple Arbiter

A simple arbiter is defined over a set of requests {r0, r1, . . . , rn} and a set of grants {g0, g1, . . . , gn}.
In this specification we demand two guarantees and no assumption:

• Every request is answered with his corresponding grant at some point.

• There holds at most one grant at every point in time.

Formally we can describe this specification with the following LTL formula∧
0≤i≤n
�(ri → �gi)∧

∧
0≤i,j≤n∧i,j

� ¬(gi ∧ gj )
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Load Balancer

The second specification, is a load balancer. This specification was introduced by Ehlers [7].
Similar to the simple arbiter this specification is defined over a set of requests {r0, r1, . . . , rn}
and grants {g0, g1, . . . , gn}. idle is added as a supplementary input variable.

On a high level this specification distributes incoming jobs, represented by the idle variable
to different servers 0, . . .n. The variables ri represent the receiving information if the server i
can get a new task and the variables gi symbols the server task. To describe this specification
formally we use a set of assumptions and a set of guarantees.

As assumptions we demand:

• There is always an incoming job.

• If there is an incoming job and in the next step no server is assigned to this job, there
is again an incoming job.

• When Server 0 gets a task, we cannot receive the information if server 0 is sufficiently
under-utilised to get another task and we cannot receive a job until there is an incom-
ing job and no receiving information about server 0. This does not hold for the first
step.

The following LTL formulas describe the assumptions formally:

• � � idle

• �
( (
idle∧#

∧
0≤i≤n(¬gi)

)
→

(
# idle

))
• # �

(
¬g0 ∨

(
(¬r0 ∧¬idle)U (¬r0 ∧ idle)

))
As guarantees we demand:

• At every time, only one server gets the task. This only applies in the second (and
following) steps.

• If a server gets a task in the next step, then the load balancer gets the information
about this server in the current step.

• We can only receive the information about server 0 if every other server got a task.

• If no job is received then in the next step no server gets a task.

• There are again and again positions for each server, such that the information are
received and in the next step the server gets the task

The following LTL-formulas describe the guarantees formally:

• # �
(∧

0≤i,j≤n∧i,j ¬(gi ∧ gj )
)
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•
∧

0≤i≤n
(
�

(
(# gi)→ (ri)

))
•

∧
1≤i≤n

(
� (r0→ gi)

)
• �

(
¬idle→ (#

∧
0≤i≤n(¬gi))

)
•

∧
0≤i≤n

(
� � (¬ri ∨#gi)

)
Request-Answer

To define a priority on the different processes we used the following specification. This
specification is similar to the simple arbiter. We added a priority, by demanding that the
grant to a request has to happen in the following next steps: 2 to the power of the index of
the process producing the grant. Formally: Let id be the index of the process producing the
corresponding grant.∧

0≤i≤n
�(ri → gi ∨

∨
1≤i<2id

(#igi))∧
∧

0≤i,j≤n∧i,j
� ¬(gi ∧ gj )

Architectures

In section 10.1, we represent the architectures for our evaluation. In architectures where
inputs are also system outputs, like the pipeline architecture 5.1c, we changed the specifi-
cation. For all architectures we interpret a variable x, which is an input and an output, also
as a new request. For the load balancer specification each process gets idle as input too. For
the architecturess 1 - 12, we used the simple arbiter and load balancer specification. For ar-
chitectures 13 -15, we used the request answer and load balancer specification. In addition
we increased the bound in this architecture for process 1 by the factor 1 and process 2 by
the factor 2.

Results

The results of our evaluations are represented in the table 7.1. In this section we compare at
first only the encodings introduced in this thesis. Therefore we look at architectures where
we can build the QBF encoding and at architectures where we can not build the QBF encod-
ings. Afterwards we compare the best result with the SMT-based encodings introduced by
Guthoff [17].

Comparison between SAT, QBF and DQBF

Figure 7.1 represents the results of architectures with a total order and two processes (Ar-
chitecture 4-6). On both subfigures we can see that the explicit encoding is faster than the
input-symbolic encoding with DQBF and the input-symbolic encoding with QBF is faster
then the explicit encodings. The results for architectures with 3 processes (Architecture 10-
12) are not represented graphically, because of the large difference. Like in the tabular 7.1
shown, the input-symbolic encoding gets in 5 of 6 cases time or memout and the explicit
encoding gets in 2 cases a memout. We can also see the same results if the constraint system
gets a solution, like in architectures with 2 processes.
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Figure 7.1: Results on Architecture where the QBF encoding is applicable. The blue bar rep-
resents the results of the explicit encoding, the red bar the results of the input-symbolic en-
coding with QBF and the brown bar the results of the input-symbolic encoding with DQBF.
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Figure 7.2: Test Results on Architecture where the QBF encoding is not applicable. The
blue bar represents the results of the explicit encoding and the red bar the results of the
input-symbolic encoding with DQBF.

In architectures without a total order we can see the same results like in the previous part.
Figure 7.2 shows graphically that the input-symbolic encoding with DQBF is slower than
the SAT propositional encoding if we get no time or memout. We can also see the effect that
we get for the input encoding in architectures with 3 processes in 2 of 6 cases a memout
and in 3 of 6 cases a timeout. For the architectures 13-15, where we increased the bound
differently we get the same results.

As a conclusion for this part we can summarize that we get the same results like Faymonville
wt al. [8]. For architectures with a total order where we can build the input-symbolic en-
coding with QBF, this encoding is faster than the explicit encoding. However if there is no
total order on the processes and we have to use DQBF for the input-symbolic encoding, the
explicit encoding is faster. This result might change in the future, if the DQBF solver get
better.
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Comparison with SMT

In the next step we want to compare our encodings with the SMT based encoding introduced
by Guthoff [17]. We only compare the QBF constraint system with the SMT constraint sys-
tem, because we could see in the previous paragraph that the constraint system with QBF
was the fastest one, if it is applicable.

In architectures with 2 processes, we can see the input-symbolic encoding with QBF needs
between 24 ms and 156 ms to find a valid assignment. The encoding based on SMT in com-
parison needs between 168ms and 372ms. We can see that the input-symbolic constraint
system is faster. If we increase the number of processes we see another result. The input-
symbolic encoding needs for the simple arbiter specification between 8.624s and 17.788s
and for the load balancer between 72ms and 591.156s. The encoding with SMT needs less
than 0.5s for the simple arbiter and less than 8s for the load balancer in all architectures.

This big difference especially in the architectures with 2 processes could be explained with
the different search strategies. In the encodings introduced in this thesis, the transition
systems for each process are bounded. For example in an architecture with 3 processes
and bound 2, each transition system is bounded with 3 states and the composition of the
transition systems has 8 states. In the constraint system introduced by Guthoff [17] the
composition of the transition systems is bounded, in our example with 3 states. Due to this
optimized search strategy, the solver has to solve a constraint system with 3 states instead
of 8 states. If we would use this search strategy in the encoding introduced in this thesis
such that the constraint system gets smaller, the results might change. If we look at the only
case where the QBF encoding outperforms the SMT encoding namely the load balancer for
architecture 10, we can see this result. In this case the search strategy has no impact, because
we found for both encodings a solution with bound 1. This allows a direct comparison of
the runtimes leading to the result that QBF is faster than SMT, which underlines the result
seen above for architectures with 2 processes.

This shows that due to the different search strategies the results are difficult to compare.
If we only look at specifications and architectures with a solution bound of 2 or less we
get the comparable results as Faymonville et al. [8] which compared different encodings for
synthesizing single processes. The symbolic encoding is faster than the explicit encoding if
we use QBF and slower if not. In addition the SAT propositional and QBF-encodings are
faster than an SMT based encoding.
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architecture smt explicit input-symbolic-qbf input-symbolic-dqbf
+ specification

A1_simpleArbiter 0.208 0.036 not possible 0.332
A1_loadBalancer 0.212 0.056 not possible 0.62
A2_simpleArbiter 0.172 0.036 not possible 0.128
A2_loadBalancer 0.328 0.336 not possible 10.984
A3_simpleArbiter 0.168 0.14 not possible 3.784
A3_loadBalancer 0.384 1.832 not possible 1392.06

A4_simpleArbiter 0.168 0.04 0.024 0.304
A4_loadBalancer 0.184 0.048 0.032 0.672
A5_simpleArbiter 0.204 0.044 0.024 0.028
A5_loadBalancer 0.372 0.336 0.156 9.828
A6_simpleArbiter 0.18 0.044 0.032 0.284
A6_loadBalancer 0.328 0.32 0.128 13.924

A7_simpleArbiter 0.212 526.612 not possible timeout
A7_loadBalancer 0.236 0.136 not possible memout
A8_simpleArbiter 0.392 531.176 not possible timeout
A8_loadBalancer 5.064 memout not possible memout
A9_simpleArbiter 0.456 5.752 not possible 1893.96
A9_loadBalancer 7.468 155.548 not possible timeout

A10_simpleArbiter 0.216 0.148 17.788 memout
A10_loadBalancer 0.236 627.42 0.072 9.248
A11_simpleArbiter 0.444 514.556 9.144 memout
A11_loadBalancer 2.204 memout 591.156 timeout
A12_simpleArbiter 0.404 1660.68 8.624 memout
A12_loadBalancer 1.844 memout 503.036 timeout

A13_request + answer 0.396 0.476 not possible 3.208
A13_loadBalancer 0.46 0.32 not possible 25.56

A14_request + answer 0.76 14.932 not possible 4.884
A14_loadBalancer 2.264 0.364 not possible memout

A15_request + answer 0.828 1.452 not possible memout
A15_loadBalancer 2.184 timeout not possible memout

Table 7.1: Results of the Evaluation in seconds
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A. Church introduced the synthesis problem [5] in 1957 as a theoretical problem. But in
these days there are tools that solve the original problem as well as more advanced problems
such as the distributed synthesis.

In 1990 Pnueli and Rosner [22] introduced the distributed synthesis problem, that transfers
the synthesis problem [5] to distributed systems. They proved that this problem is in general
undecidable, even for simple architectures like two communicating processes. In took 11
years until Kupfermann and Vardi [20] proved that a pipeline architecture or a ring architec-
ture are decidable and can be synthesized by an automaton based algorithm. Two years later
Walukiewicz and Mohalik [21] presented a game based construction to solve the synthesis
for these architectures. In 2005 Finkbeiner and Schewe [11] divided the distributed systems
in decidable and undecidable. They also introduced an algorithm to solve the synthesis for
all decidable distributed architectures. To find an algorithm that can solve undecidable ar-
chitectures Finkbeiner and Schewe introduced bounded synthesis [12]. Bounded synthesis
is a restriction of the synthesis problem that bounds the size of the implementation and
constructs an SMT query that is satisfiable iff a realizing implementation of that size ex-
ists. If no solution is found, the state space is increased. It was introduced to find small
solutions for single processes and can easily be transferred to synthesizing distributed or
asynchronous systems.

Bohy et al. presented in 2012 Acacia+ [24] , a tool to solve LTL synthesis. In this tool the LTL
formula is translated into a universal K-co-Büchi automaton, where for each word that is
accepted by the LTL formula each rejecting state in the automaton is visited at most K times.
The parameter K satisfying this condition is determined incrementally. Therefore the LTL
formula is at first translated into a universal co-Büchi automaton. The automaton for K + 1
is constructed with the automaton for K using a variant of the subset construction. With a
variant of safety games, the tool checks if the LTL formula is equivalent to the constructed
automaton. Acacia+ uses the bounded synthesis approach to solve the synthesis problem
like the encodings introduced in this thesis. In contrast to the encodings explained in this
thesis Acacia+ bounds the number of visits of the rejecting states in the automaton and not
the size of the transition system. In addition Acacia+ solves the single process synthesis
problem whereas the encodings in this thesis solve the distributed synthesis.

Guthoff [17] introduced an implementation that is realized in Party Plus. Party Plus is based
on Party [19], a to solve LTL synthesis for single processes, with the difference that it sup-
ports different SMT solver. It follows the same approach like the encodings introduced in
this paper. The LTL formula is translated into a universal co-Büchi automaton by the tool
ltl3ba [16]. Afterwards a constraint system is build that can be solved by a SMT solver. The
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Figure 8.1: Representation of the constraints introduced by Guthoff, to solve the challenge
that the transition systems for each process have only the information specified in the archi-
tecture

two constraint systems introduced by Guthoff [17] solve the distributed synthesis problem.
These constraint systems are both based on the bounded synthesis approach and guess a
valid annotation function for the run graph. The difference to the encodings in this thesis is
the approach to solve the challenge that each transition system should only have the infor-
mation specified in the architecture. Both constraint systems are build with the transition
relation of the composition of the transition systems. The difference between the encodings
is the addition of new constraints to solve the challenge. Figure 8.1 gives an overview of
the different solutions. In both solutions the constraints to check if the composition of the
transition systems holds on the specification are checked are based on an already existing
transition system of the composition, whereas this thesis constructs these constraints based
on the single processes.

Faymonville et al. [8] introduced four encodings to solve the LTL synthesis for single pro-
cesses with the bounded synthesis approach. The first encoding is called the explicit en-
coding. This encoding builds a constraint system with propositional formulas and can be
solved by a SAT solver (compare section 4.2). The next encoding is called the input-symbolic
encoding. In comparison to the explicit encoding the input is represented with a universal
quantifier and can be solved by a QBF solver (compare section 4.3). The last two encodings
can be solved by a DQBF solver. The state and input-symbolic encoding represents the states
of the transition system and the input set symbolically and the full encoding represents in
addition the states of the universal co-Büchi automaton symbolically. These encodings are
implemented in BoSy [9] a tool to solve bounded synthesis. BoSy is an experimental frame-
works that builds constraint systems in SMT formulas, SAT propositional formulas, QBF
and DQBF. It compares the different encodings one below the other and the same constraint
system with different solvers. This thesis is based on the encodings introduced by Fay-
monville et al. [8] and the implementation is based on Bosy [9]. The difference is that this
thesis builds encodings to solve the distributed synthesis problem.



9Conclusion & Future Work

The starting point of this thesis was the single process synthesis and the bounded synthe-
sis approach for single processes. We looked at two of the four encodings introduced by
Faymonville et al. [8] to solve this problem in detail. We describte the complexity of the
size of the formula and the number of variables for each of the encodings and proved their
functional correctness. In the next step we looked at the synthesis of distributed systems,
their challenges and how we can formally describe these systems. To solve the distributed
synthesis we constructed an explicit encoding with SAT propositional formulas, an input-
symbolic encoding with QBF and an input-symbolic encoding with DQBF. We proved their
functional correctness and that each variable has only the information that is specified in
the architecture. In addition we described the complexity of the size of the formula and the
number of variables for each encoding. In the end we evaluated and compared the different
encodings one against the other and with the encoding introduced in [17].

We found out that the input-symbolic encoding is faster than the explicit encoding if we
use QBF and slower if we have to use DQBF formulas. This result is similar to the result
for encodings of single process synthesis [8]. The symbolic constraint systems are faster
if we can use QBF and slower if we use DQBF. These results might change in the future
with the development of better DQBF solver. During the evaluation we found a second
result. If we test specifications with architectures consisting of 2 processes, an input set
with 2 requests and an output set with 2 grants, the explicit as well as the input-symbolic
encoding with QBF are faster. If we add a new process with a new request and a new
grant to the architectures, the result changes. For these cases, the SMT constraint system is
much faster than the encodings introduced in this thesis possibly due to the different search
strategies.

For future work we could build a state- and input-symbolic encoding and a full symbolic
encoding for the distributed synthesis. If DQBF solver get faster the results might change
because the size of these constraint systems is smaller than the size of the explicit or the
input-symbolic constraint systems. Assuming that the solvers for the different encodings
are comparably fast the difference in run time between the different encodings might arise
due to the different complexity of the constraint systems (compare chapter 6).

The reason for the huge difference between the encodings introduced in this thesis and
the SMT encoding could be the search strategy, which bounds the composition instead of
bounding the transition system for each process. If we use this search strategy in the encod-
ings introduced in this thesis the results might change.
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In addition the encoding introduced by Guthoff [17] builds another constraint system which
is working on the composition of the transition systems instead of working on each single
transition system. If we build the encodings for the distributed synthesis with this approach
the results might change too.
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10.1 Architectures
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10.2 Example for the SAT Propositional Constraint System

λBt0,q0
\\initial state

∧ (τt0,(r̄1,r̄2),t0 ∨ τt0,(r̄1,r̄2),t1 )∧ (τt0,(r̄1,r2),t0 ∨ τt0,(r̄1,r2),t1 )∧ (τt0,(r1,r̄2),t0 ∨ τt0,(r1,r̄2),t1 )∧ (τt0,(r1,r2),t0 ∨ τt0,(r1,r2),t1 ) \\ t = t0

∧ (τt1,(r̄1,r̄2),t0 ∨ τt1,(r̄1,r̄2),t1 )∧ (τt1,(r̄1,r2),t0 ∨ τt1,(r̄1,r2),t1 )∧ (τt1,(r1,r̄2),t0 ∨ τt1,(r1,r̄2),t1 )∧ (τt1,(r1,r2),t0 ∨ τt1,(r1,r2),t1 ) \\ t = t1

∧ (λBt0,q0
\\ q = q0, t = t0

→ (((δt0,q0,(r̄1,r̄2),q0
→ ((τt0,(r̄1,r̄2),t0 → λBt0,q0

∧λ#
t0,q0
Bq0

λ#
t0,q0

)∧ (τt0,(r̄1,r̄2),t1 → λBt1,q0
∧λ#

t1,q0
Bq0

λ#
t0,q0

))) \\ q′ = q0, i = (r̄1, r̄2)

∧ (δt0,q0,(r̄1,r2),q0
→ ((τt0,(r̄1,r2),t0 → λBt0,q0

∧λ#
t0,q0
Bq0

λ#
t0,q0

)∧ (τt0,(r̄1,r2),t1 → λBt1,q0
∧λ#

t1,q0
Bq0

λ#
t0,q0

))) \\ i = (r̄1, r2)

∧ (δt0,q0,(r1,r̄2),q0
→ ((τt0,(r1,r̄2),t0 → λBt0,q0

∧λ#
t0,q0
Bq0

λ#
t0,q0

)∧ (τt0,(r1,r̄2),t1 → λBt1,q0
∧λ#

t1,q0
Bq0

λ#
t0,q0

))) \\ i = (r1, r̄2)

∧ (δt0,q0,(r1,r2),q0
→ ((τt0,(r1,r2),t0 → λBt0,q0

∧λ#
t0,q0
Bq0

λ#
t0,q0

)∧ (τt0,(r1,r2),t1 → λBt1,q0
∧λ#

t1,q0
Bq1

λ#
t0,q0

)))) \\ i = (r1, r2)

∧ ((δt0,q0,(r̄1,r̄2),q1
→ ((τt0,(r̄1,r̄2),t0 → λBt0,q1

∧λ#
t0,q1
Bq1

λ#
t0,q0

)∧ (τt0,(r̄1,r̄2),t1 → λBt1,q1
∧λ#

t1,q1
Bq1

λ#
t0,q0

))) \\ q′ = q1, i = (r̄1, r̄2)

∧ (δt0,q0,(r̄1,r2),q1
→ ((τt0,(r̄1,r2),t0 → λBt0,q1

∧λ#
t0,q1
Bq1

λ#
t0,q0

)∧ (τt0,(r̄1,r2),t1 → λBt1,q1
∧λ#

t1,q1
Bq1

λ#
t0,q0

))) \\ i = (r̄1, r2)

∧ (δt0,q0,(r1,r̄2),q1
→ ((τt0,(r1,r̄2),t0 → λBt0,q1

∧λ#
t0,q1
Bq1

λ#
t0,q0

)∧ (τt0,(r1,r̄2),t1 → λBt1,q1
∧λ#

t1,q1
Bq1

λ#
t0,q0

))) \\ i = (r1, r̄2)

∧ (δt0,q0,(r1,r2),q1
→ ((τt0,(r1,r2),t0 → λBt0,q1

∧λ#
t0,q1
Bq1

λ#
t0,q0

)∧ (τt0,(r1,r2),t1 → λBt1,q1
∧λ#

t1,q1
Bq1

λ#
t0,q0

)))) \\ i = (r1, r2)

∧ (((δt0,q0,(r̄1,r̄2),qe → ((τt0,(r̄1,r̄2),t0 → λBt0,qe ∧λ
#
t0,qe Bqe λ

#
t0,q0

)∧ (τt0,(r̄1,r̄2),t1 → λBt1,qe ∧λ
#
t1,qe Bqe λ

#
t0,q0

))) \\ q′ = qe, i = (r̄1, r̄2)

∧ (δt0,q0,(r̄1,r2),qe → ((τt0,(r̄1,r2),t0 → λBt0,qe ∧λ
#
t0,qe Bqe λ

#
t0,q0

)∧ (τt0,(r̄1,r2),t1 → λBt1,qe ∧λ
#
t1,qe Bqe λ

#
t0,q0

))) \\ i = (r̄1, r2)

∧ (δt0,q0,(r1,r̄2),qe → ((τt0,(r1,r̄2),t0 → λBt0,qe ∧λ
#
t0,qe Bqe λ

#
t0,q0

)∧ (τt0,(r1,r̄2),t1 → λBt1,qe ∧λ
#
t1,qe Bqe λ

#
t0,q0

))) \\ i = (r1, r̄2)

∧ (δt0,q0,(r1,r2),qe → ((τt0,(r1,r2),t0 → λBt0,qe ∧λ
#
t0,qe Bqe λ

#
t0,q0

)∧ (τt0,(r1,r2),t1 → λBt1,qe ∧λ
#
t1,qe Bqe λ

#
t0,q0

)))) \\ i = (r1, r2)

∧ (((δt0,q0,(r̄1,r̄2),q2
→ ((τt0,(r̄1,r̄2),t0 → λBt0,q2

∧λ#
t0,q2
Bq2

λ#
t0,q0

)∧ (τt0,(r̄1,r̄2),t1 → λBt1,q2
∧λ#

t1,q2
Bq2

λ#
t0,q0

))) \\ q′ = q2, i = (r̄1, r̄2)

∧ (δt0,q0,(r̄1,r2),q2
→ ((τt0,(r̄1,r2),t0 → λBt0,q2

∧λ#
t0,q2
Bq2

λ#
t0,q0

)∧ (τt0,(r̄1,r2),t1 → λBt1,q2
∧λ#

t1,q2
Bq2

λ#
t0,q0

))) \\ i = (r̄1, r2)

∧ (δt0,q0,(r1,r̄2),q2
→ ((τt0,(r1,r̄2),t0 → λBt0,q2

∧λ#
t0,q2
Bq2

λ#
t0,q0

)∧ (τt0,(r1,r̄2),t1 → λBt1,q2
∧λ#

t1,q2
Bq2

λ#
t0,q0

))) \\ i = (r1, r̄2)

∧ (δt0,q0,(r1,r2),q2
→ ((τt0,(r1,r2),t0 → λBt0,q2

∧λ#
t0,q2
Bq2

λ#
t0,q0

)∧ (τt0,(r1,r2),t1 → λBt1,q2
∧λ#

t1,q2
Bq2

λ#
t0,q0

)))))) \\ i = (r1, r2)

∧ (λBt1,q0
\\ q = q0, t = t1

→ (((δt1,q0,(r̄1,r̄2),q0
→ ((τt1,(r̄1,r̄2),t0 → λBt0,q0

∧λ#
t0,q0
Bq0

λ#
t1,q0

)∧ (τt1,(r̄1,r̄2),t1 → λBt1,q0
∧λ#

t1,q0
Bq0

λ#
t1,q0

))) \\ q′ = q0, i = (r̄1, r̄2)

∧ (δt1,q0,(r̄1,r2),q0
→ ((τt1,(r̄1,r2),t0 → λBt0,q0

∧λ#
t0,q0
Bq0

λ#
t1,q0

)∧ (τt1,(r̄1,r2),t1 → λBt1,q0
∧λ#

t1,q0
Bq0

λ#
t1,q0

))) \\ i = (r̄1, r2)

∧ (δt1,q0,(r1,r̄2),q0
→ ((τt1,(r1,r̄2),t0 → λBt0,q0

∧λ#
t0,q0
Bq0

λ#
t1,q0

)∧ (τt1,(r1,r̄2),t1 → λBt1,q0
∧λ#

t1,q0
Bq0

λ#
t1,q0

))) \\ i = (r1, r̄2)

∧ (δt1,q0,(r1,r2),q0
→ ((τt1,(r1,r2),t0 → λBt0,q0

∧λ#
t0,q0
Bq0

λ#
t1,q0

)∧ (τt1,(r1,r2),t1 → λBt1,q0
∧λ#

t1,q0
Bq1

λ#
t1,q0

)))) \\ i = (r1, r2)

∧ (((δt1,q0,(r̄1,r̄2),q1
→ ((τt1,(r̄1,r̄2),t0 → λBt0,q1

∧λ#
t0,q1
Bq1

λ#
t1,q0

)∧ (τt1,(r̄1,r̄2),t1 → λBt1,q1
∧λ#

t1,q1
Bq1

λ#
t1,q0

))) \\ q′ = q1, i = (r̄1, r̄2)

∧ (δt1,q0,(r̄1,r2),q1
→ ((τt1,(r̄1,r2),t0 → λBt0,q1

∧λ#
t0,q1
Bq1

λ#
t1,q0

)∧ (τt1,(r̄1,r2),t1 → λBt1,q1
∧λ#

t1,q1
Bq1

λ#
t1,q0

))) \\ i = (r̄1, r2)

∧ (δt1,q0,(r1,r̄2),q1
→ ((τt1,(r1,r̄2),t0 → λBt0,q1

∧λ#
t0,q1
Bq1

λ#
t1,q0

)∧ (τt1,(r1,r̄2),t1 → λBt1,q1
∧λ#

t1,q1
Bq1

λ#
t1,q0

))) \\ i = (r1, r̄2)

∧ (δt1,q0,(r1,r2),q1
→ ((τt1,(r1,r2),t0 → λBt0,q1

∧λ#
t0,q1
Bq1

λ#
t1,q0

)∧ (τt1,(r1,r2),t1 → λBt1,q1
∧λ#

t1,q1
Bq1

λ#
t1,q0

)))) \\ i = (r1, r2)

∧ (((δt1,q0,(r̄1,r̄2),qe → ((τt1,(r̄1,r̄2),t0 → λBt0,qe ∧λ
#
t0,qe Bqe λ

#
t1,q0

)∧ (τt1,(r̄1,r̄2),t1 → λBt1,qe ∧λ
#
t1,qe Bqe λ

#
t1,q0

))) \\ q′ = qe, i = (r̄1, r̄2)

∧ (δt1,q0,(r̄1,r2),qe → ((τt1,(r̄1,r2),t0 → λBt0,qe ∧λ
#
t0,qe Bqe λ

#
t1,q0

)∧ (τt1,(r̄1,r2),t1 → λBt1,qe ∧λ
#
t1,qe Bqe λ

#
t1,q0

))) \\ i = (r̄1, r2)

∧ (δt1,q0,(r1,r̄2),qe → ((τt1,(r1,r̄2),t0 → λBt0,qe ∧λ
#
t0,qe Bqe λ

#
t1,q0

)∧ (τt1,(r1,r̄2),t1 → λBt1,qe ∧λ
#
t1,qe Bqe λ

#
t1,q0

))) \\ i = (r1, r̄2)

∧ (δt1,q0,(r1,r2),qe → ((τt1,(r1,r2),t0 → λBt0,qe ∧λ
#
t0,qe Bqe λ

#
t1,q0

)∧ (τt1,(r1,r2),t1 → λBt1,qe ∧λ
#
t1,qe Bqe λ

#
t1,q0

)))) \\ i = (r1, r2)

∧ (((δt1,q0,(r̄1,r̄2),q2
→ ((τt1,(r̄1,r̄2),t0 → λBt0,q2

∧λ#
t0,q2
Bq2

λ#
t1,q0

)∧ (τt1,(r̄1,r̄2),t1 → λBt1,q2
∧λ#

t1,q2
Bq2

λ#
t1,q0

))) \\ q′ = q2, i = (r̄1, r̄2)

∧ (δt1,q0,(r̄1,r2),q2
→ ((τt1,(r̄1,r2),t0 → λBt0,q2

∧λ#
t0,q2
Bq2

λ#
t1,q0

)∧ (τt1,(r̄1,r2),t1 → λBt1,q2
∧λ#

t1,q2
Bq2

λ#
t1,q0

))) \\ i = (r̄1, r2)

∧ (δt1,q0,(r1,r̄2),q2
→ ((τt1,(r1,r̄2),t0 → λBt0,q2

∧λ#
t0,q2
Bq2

λ#
t1,q0

)∧ (τt1,(r1,r̄2),t1 → λBt1,q2
∧λ#

t1,q2
Bq2

λ#
t1,q0

))) \\ i = (r1, r̄2)

∧ (δt1,q0,(r1,r2),q2
→ ((τt1,(r1,r2),t0 → λBt0,q2

∧λ#
t0,q2
Bq2

λ#
t1,q0

)∧ (τt1,(r1,r2),t1 → λBt1,q2
∧λ#

t1,q2
Bq2

λ#
t1,q0

)))))) \\ i = (r1, r2)

∧ (λBt0,q1
→ . . . )∧ (λBt1,q1

→ . . . )∧ (λBt0,qe → . . . )∧ (λBt1,qe → . . . )∧ (λBt0,q2
→ . . . )∧ (λBt1,q2

→ . . . )
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10.3 Example for the QBF Constraint System

∃λBt0,q0
,λBt1,q0

,λBt0,q1
,λBt1,q1

,λBt0,q2
,λBt1,q2

,λBt0,qe ,λ
B
t1,qe ,λ

#
t0,q0

,λ#
t1,q0

,λ#
t0,q1

,λ#
t1,q1

,λ#
t0,q2

,λ#
t1,q2

,λ#
t0,qe ,λ

#
t1,qe \\ λ-annotation

∀r1, r2 \\ inputs

∃τt0,t0 , τt0,t1 , τt1,t0 , τt1,t1 \\ transitions

∃ot0 , ot1 \\ outputs

λBt0,q0
\\initial state

∧ (τt0,t0 ∨ τt0,t1 )∧ (τt1,t0 ∨ τt1,t1 )

∧ (λBt0,q0
\\ q = q0, t = t0

→ ((δt0,q0,q0
→ ((τt0,t0 → λBt0,q0

∧λ#
t0,q0
Bq0

λ#
t0,q0

)∧ (τt0,t1 → λBt1,q0
∧λ#

t1,q0
Bq0

λ#
t0,q0

))) \\ q′ = q0

∧ (δt0,q0,q1
→ ((τt0,t0 → λBt0,q1

∧λ#
t0,q1
Bq1

λ#
t0,q0

)∧ (τt0,t1 → λBt1,q1
∧λ#

t1,q1
Bq1

λ#
t0,q0

))) \\ q′ = q1

∧ (δt0,q0,qe → ((τt0,t0 → λBt0,qe ∧λ
#
t0,qe Bqe λ

#
t0,q0

)∧ (τt0,t1 → λBt1,qe ∧λ
#
t1,qe Bqe λ

#
t0,q0

))) \\ q′ = qe

∧ (δt0,q0,q2
→ ((τt0,t0 → λBt0,q2

∧λ#
t0,q2
Bq2

λ#
t0,q0

)∧ (τt0,t1 → λBt1,q2
∧λ#

t1,q2
Bq2

λ#
t0,q0

))))) \\ q′ = q2

∧ (λBt1,q0
\\ q = q0, t = t1

→ (((δt1,q0,q0
→ ((τt1,t0 → λBt0,q0

∧λ#
t0,q0
Bq0

λ#
t1,q0

)∧ (τt1,t1 → λBt1,q0
∧λ#

t1,q0
Bq0

λ#
t1,q0

))) \\ q′ = q0

∧ (δt1,q0,q1
→ ((τt1,t0 → λBt0,q1

∧λ#
t0,q1
Bq1

λ#
t1,q0

)∧ (τt1,t1 → λBt1,q1
∧λ#

t1,q1
Bq1

λ#
t1,q0

))) \\ q′ = q1

∧ (δt1,q0,qe → ((τt1,t0 → λBt0,qe ∧λ
#
t0,qe Bqe λ

#
t1,q0

)∧ (τt1,t1 → λBt1,qe ∧λ
#
t1,qe Bqe λ

#
t1,q0

))) \\ q′ = qe

∧ (δt1,q0,q2
→ ((τt1,t0 → λBt0,q2

∧λ#
t0,q2
Bq2

λ#
t1,q0

)∧ (τt1,t1 → λBt1,q2
∧λ#

t1,q2
Bq2

λ#
t1,q0

))))) \\ q′ = q2

∧ (λBt0,q1
→ . . . )∧ (λBt1,q1

→ . . . )∧ (λBt0,qe → . . . )∧ (λBt1,qe → . . . )∧ (λBt0,q2
→ . . . )∧ (λBt1,q2

→ . . . )
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10.4 Example for the DQBF Constraint System

∀r1, r2 \\ inputs

∃τt0,t0 , τt0,t1 , τt1,t0 , τt1,t1 \\ transitions

∃ot0 , ot1 \\ outputs

λBt0,q0
\\initial state

∧ (τt0,t0 ∨ τt0,t1 )∧ (τt1,t0 ∨ τt1,t1 )

∧ (λBt0,q0
\\ q = q0, t = t0

→ ((δt0,q0,qe → (¬τt0,t0 ∧¬τt0,t1 )))) \\ q′ = qe

∧ (λBt1,q0
\\ q = q0, t = t1

→ ((δt1,q0,qe → (¬τt1,t0 ∧¬τt1,t1 )))) \\ q′ = qe

∧ (λBt0,q1
\\ q = q1, t = t0

→ ((δt0,q1,q0
→ (¬τt0,t0 ∧¬τt0,t1 )) \\ q′ = q0

∧ ((δt0,q1,q1
→ (¬τt0,t0 ∧¬τt0,t1 )) \\ q′ = q1

∧ ((δt0,q1,qe → (¬τt0,t0 ∧¬τt0,t1 )) \\ q′ = qe

∧ ((δt0,q1,q2
→ (¬τt0,t0 ∧¬τt0,t1 ))) \\ q′ = q2

∧ (λBt1,q1
\\ q = q1, t = t1

→ ((δt1,q1,q0
→ (¬τt1,t0 ∧¬τt1,t1 )) \\ q′ = q0

∧ ((δt1,q1,q1
→ (¬τt1,t1 )) \\ q′ = q1

∧ ((δt1,q1,qe → (¬τt1,t0 ∧¬τt1,t1 )) \\ q′ = qe

∧ ((δt1,q1,q2
→ (¬τt1,t0 ))) \\ q′ = q2

∧ (λBt0,q2
\\ q = q2, t = t0

→ ((δt0,q2,q0
→ (¬τt0,t0 ∧¬τt0,t1 )) \\ q′ = q0

∧ ((δt0,q2,q1
→ (¬τt0,t1 )) \\ q′ = q1

∧ ((δt0,q2,qe → (¬τt0,t0 ∧¬τt0,t1 )) \\ q′ = qe

∧ ((δt0,q2,q2
→ (¬τt0,t0 ))) \\ q′ = q2

∧ (λBt0,q2
\\ q = q2, t = t0

→ ((δt1,q2,q0
→ (¬τt1,t0 ∧¬τt1,t1 )) \\ q′ = q0

∧ ((δt1,q2,q1
→ (¬τt1,t0 ∧¬τt1,t1 )) \\ q′ = q1

∧ ((δt1,q2,qe → (¬τt1,t0 ∧¬τt1,t1 )) \\ q′ = qe

∧ ((δt1,q2,q2
→ (¬τt1,t0 ∧¬τt1,t1 ))) \\ q′ = q2
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