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Abstract

The established approach to check the correctness of a cyber-physical system is to verify
all possible executions statically. With their increasing autonomy, verifying all traces
develops into a harder problem. To handle the increased complexity, runtime monitoring
verifies the system dynamically.

RTLoLa is a stream-based specification language to express complex real-time con-
straints that provides different static analyses as the determination of an upper bound
on the required memory. The underlying monitoring framework, STREAMLAB, uses these
analyses and interprets the given RTLola specification. However, to find an industrial
application for aerial vehicles, a certification by the Federal Aviation Administration
(FAA) or the European Union Aviation Safety Agency (EASA) is needed. Part of this
certification process is to show that the product is traceable, i.e., describing the relation-
ship between the specification language and the software. One advantage of a traceable
implementation is the identification and documentation of each code fragment and
reason for their existence. For an interpreted monitor, like the STReamMLAB framework, it
is unfeasible to show this property.

Recent work introduces a hardware-based approach, compiling VHDL code out of an
RTLoLa specification. This VHDL code can then be synthesized into an FPGA implemen-
tation. This thesis presents a prototype implementation of this compilation concerning
a traceable result. It additionally describes the integration of a synthesized monitor into
the unmanned aerial vehicle superARTIS by the German Aerospace Center (DLR).
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Chapter

Introduction

There are several ideas to use unmanned aircraft vehicles (UAV) for industrial applica-
tions, e.g., transport and reconnaissance, where these systems should fly autonomously.
Due to the safety-critical aspect of aircraft, unexpected behavior of the autonomous
system such as changing the computed flight path can result in a catastrophe. Therefore
aviation companies have to ensure that their autonomous systems do not violate any
critical constraints.

One approach to check the correctness of cyber-physical systems, i.e., systems that
interact with the environment, is testing. Testing does not cover every possible behavior
of the system, such that the absence of bad behavior cannot be guaranteed. Thus in
safety-critical areas, stronger methods are needed. This goal can be reached with static
verification methods like model checking. Model checking requires a model of the
system and analyzes all possible runs in this model against a defined property afterward.
If every path satisfies the specification, the absence of bad behavior, covered by the model
and the specification, during the execution of the system is also verified. However, with
increasing autonomy, the complexity of these systems increases dramatically. Therefore
the size of the model also increases, such that these approaches might not be applicable.

In this thesis, we solve this issue with runtime monitoring [1, 2, 3| 4], a dynamic
verification technique. In runtime monitoring, the behavior of the system is specified
similar to model checking, but only the current run is analyzed, which reduces the com-
plexity of the verification process. The idea of runtime monitoring is not to prevent bad
behavior but to detect it and trigger an alarm to initiate countermeasures. This method
can be applied either online or offline. In online monitoring, a separate monitoring
component runs during the execution of the monitored system and analyses incoming
data. In offline monitoring, the system produces a log file, which the monitor analyzes
afterward.

To obtain formal guarantees on the behavior of the system, we need a formal spec-
ification language, e.g. temporal logic (5,6} 7, 8]. A temporal logic consists of atomic
propositions to express the current system state in an abstract way as well as boolean
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and temporal connectives. Another type of specification languages are stream-based
specification languages [9,10, 11]]. In comparison to temporal logics, such specifications
are written data orientated like programming languages instead of logic orientated. In
this thesis, we use the stream-based specification language RTLora [12]], which is capa-
ble of expressing complex real-time constraints. Additionally, the monitor also provides
formal guarantees and analyses, e.g. an upper bound on the memory consumption, as
opposed to programming languages.

Incoming sensor data is defined as input streams in RTLora. This input data can then
be combined into output streams to get statistical information. The specification lan-
guage differentiates between event-driven output streams and periodic output streams,
which differ in the so-called activation condition, i.e. the mechanism that initiates the
update of a stream. As an example, to compute the average velocity during a complete
run of an aircraft, the specifier defines an event-driven output stream that updates its
value when the monitor receives a new velocity value. However, to compute the average
velocity every 10s, a periodic-stream is needed. This stream evaluates its value with a
frequency of 0.1Hz independent of the number of received new values. To express a
violation, RTLoLa uses triggers that consist of a boolean expression and a message that
raises the alarm when appropriate. The underlying framework StreamLAB [13] receives
an RTLota specification, analyses it and interprets the received input values based on
the specification.

The current implementation of STReaMLAB is not applicable to safety-critical domains
in the industry. As an example, we again consider aviation. To integrate hardware or
software into aircraft, a certification process has to be passed. Part of this certification
process is to connect the abstract specification with the concrete realization. For this
connection, code fragments in the realization have to be annotated to relate them
with their corresponding parts in the specification. However, the current STREaAMLAB
backend is an interpreter and not a compiler. In an interpreter, the input specification
is encoded as data. Such data fragments are generated dynamically and cannot be
annotated statically, which is demanded by the certification process. To solve this issue,
we have to consider the specification as arbitrary, but fix in the annotation process.
However, connecting the specification and the realization with such a representation
is not as distinct as considering a specific specification. This challenges the annotation
process and would be too costly in practice. In comparison, a compilation takes as input
solely a specification and compiles a realization that can only monitor the incoming
specification. This compiled monitor contains for each stream code fragments instead of
data fragments. With these input specific code fragments, the relationship between a
concrete specification and its corresponding code fragments can now be described.

Recent work [14] introduces a compilation from an RTLotra specification to the Very
High-Speed Integrated Circuit Hardware Description Language (VHDL) [15]], which
can then be synthesized into a Field Programmable Gate Array (FPGA). One advantage
of a hardware-based solution is the parallel computation of different stream values
without producing an overhead in comparison to a software-based solution. Another



important criterion for using hardware is the reduced power consumption that is limited
in embedded systems.

This thesis describes a prototype implementation based on the theory for a hardware-
based monitor, compiling an RTLotra specification to VHDL code. Additionally, the
compilation identifies and documents the code fragments concerning the specification,
moving forward in the certification process. To test the real-world application of
the monitor, we integrate our prototype into the Autonomous Rotorcraft Testbed for
Intelligent Systems (ARTISﬂto monitor UAVs. This system is used for the development
and evaluation of components for an autonomous flight system from the German
Aerospace Center (DLR). It consists of a software framework to simulate the flight of
a UAV as well as a fleet of unmanned aircraft. First, we integrated the monitor in the
hardware-in-the-loop flight simulation that replays a flight based on log files. Next, we
integrate the monitor on the superARTIS UAV to monitor the system during an actual
flight. This integration results in a case study of monitoring UAVs with the specification
language RTLora using FPGAs.

1https ://www.dlr.de/ft/en/desktopdefault.aspx/tabid-1387/1915_read-15851/
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Related Work

To use formal runtime verification, we need a formal specification language. One
approach is temporal logic [5}|6] consisting of atomic propositions, boolean arithmetic,
and temporal operators. The constructed monitoring tools reach from inline methods to
outline methods. The first approach adds assertions in the monitored system based on
the specification. The second one constructs the monitor as a separate component out of
the specification. One of these approaches is P2V [16|| that compiles assertions written in
the specification language sPSL [17] to synthesizable Verilog code. Another construction
for a hardware-based monitor with temporal logic is introduced by Finkbeiner and
Kuhtz [18], to monitor LTL specifications that can have unbounded future constraints
with an FPGA implementation. The development of real-time temporal logics such
as metric temporal logic (MTL) [7] and signal temporal logic (STL) [8] affected the
engineering of new monitoring tools, e.g. Jaksic et al. [8] introduce an FPGA monitor
that can express real-time constraints with STL. These new logics have the advantage
of expressing timing behavior with real-time values instead of discrete ones. However,
one drawback when monitoring systems with temporal logics is their expressiveness.
With temporal logics, it is only possible to express the satisfaction or the validation of a
property which is often not sufficient when monitoring cyber-physical systems, e.g. the
time of the invalidation may not be the time of the system failure. To cover this problem,
Moosbrugger et al. [19,|20] introduced the monitoring tool R2U2, which uses not only
MTL to detect a validation of a property but also Bayesian networks to reason about the
failure.

Another approach to increase the expressiveness but still have formal guarantees are
stream-based specification languages. In stream-based specification languages, the user
declares input streams, representing the input data, and output streams that contain
calculations like arithmetic expressions but also future or past offsets to access future
and past values. Because stream-based specification languages like Lora [10], Lustre [9,
21]] or Copilot [11]] were initially developed to monitor digital circuits, they assume
that all input data is received synchronously, i.e., each input stream receives a new



2. ReLATED WoORK

value at the time, which is the case in circuits. However, this assumption does not hold
when monitoring cyber-physical systems in general and restricts the expressiveness of
the described properties. New approaches like RTLota [[12], based on Lotra, covers
this problem by receiving input events with a non-fix rate, e.g. inputs are received
without a fixed frequency. RTLora also introduces real-time features to Lora, like
adding a frequency to output streams, describing the period when the value of an
output stream should be computed, or the aggregation of streams over a specified
period. Another extension of LorLa to handle asynchronous event streams and to describe
real-time properties is TeSSLa [[22]. TeSSLa is a monitoring tool that reconstructs the
program flow of a C program by receiving events from the embedded trace unit of
the microprocessor and monitors this reconstruction. In comparison to RTLora, this
requires information about the program flow of the monitored software when writing
the specification. Besides, TeSSLa cannot aggregate over a stream for a specified period.
A further extension of Lora is Striver [23|]. Striver handles asynchronicity of streams
by annotations, describing the period when a value is updated. In comparison to
RTLota, they do not provide a mechanism to access a value from a fixed-rate stream
in streams that have a variable-rate. RTLora realizes this by sliding windows and the
sample-and-hold operator.

Adolf et al. [24] integrated Lora into an unmanned aerial vehicle (UAV) similarly
to our approach. They described real-time constraints with discrete time stamps and
the current system time, e.g. the property that the frequency of the incoming data
is in the given bound. The main difference to our approach is the new specification
language RTLora. RTLora enables us to express more complex real-time properties and
to express the current ones in a more elegant way. Another difference is the resulting
monitor, which is, in our case, hardware-based and not software-based. An integration
of a hardware-based runtime monitor in a UAV is described by Moosbrugger et al. [19].
They integrated their runtime monitoring tool R2U2 synthesized onto an FPGA in the
NASA DragonEye. As specifications, they introduce monitors to check the integrity
of the system but also specifications to recognize hacking attacks at the UAV. The
main difference to our approach is that the R2U2 tool uses temporal logic instead of a
stream-based specification language.
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Background

This chapter describes the general structure of the specification language RTLoLa, its
hardware-based realization, and introduces the hardware description language VHDL.

3.1. The specification language RTLoLA

In this thesis, we use RTLora [12] to describe properties in a formal way. RTLora
introduces asynchronous monitoring and real-time constraints to the stream-based
specification language Lora [10]]. The following section first describes the concrete
syntax of "vanilla" RTLotLa, the specification RTLora without any syntactical sugar such
as infix notation for arithmetical operators. Then, we describe the transformation from
the concrete syntax to an abstract syntax tree (AST). From this AST, we perform static
analysis, i.e. a type checking analyzes. Afterward, we take a closer look at the semantics
of the specification language.
All definitions, lemmas, and propositions are introduced and proven by Schwenger [25].

3.1.1. Concrete Syntax & Abstract Syntax Tree

The formal semantics of RTLovra is defined on the abstract representation of specification.
For this reason, the function AST transforms the concrete syntax of a specification to an
abstract syntax tree (AST), with s}, + s}, + s}, children. Note that from this point on, we
uses marker to indicate the category of a stream. Input streams are symbolized with a
down arrow (s;), output streams with an up arrow (s!), and trigger with an exclamation
mark (s;). To indicate that a stream can be either an input stream or output stream, we
use a vertical line (s;). The following paragraphs describe the concrete and abstract
syntax for input streams, output streams, and triggers.

The i*" input stream s; is defined by:

‘ input a: T
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The output of the AST function for input streams is sj = (a,AST(T)). The name a of the
stream is irrelevant for the formal semantics, but needed in the realization. However,
the type T needs to be transformed into an AST object. For readability, we define
sf.name :=a and TZ.l = AST(T).

The j* output stream s} is defined by
‘ output a: T @nHz := expr

This syntax is similar to input streams, but introduces two more components: the
evaluation frequency @nHz and the expression expr. The AST representation for output
streams is s} = (a, AST(T),n,AST(expr)), and respectively s}.name = a, T].T = AST(T),
5}.ext :=n, and 5}.expr := AST(e). We restrict the frequency to a positive natural number
n with unit Hertz. The resulting monitor and the specification language is theoretically
capable of working with other positive rational numbers and other time units. However,
for simplicity reasons in the semantics, we perform theses restrictions.

The specified frequency in output streams is an optional value. The following concrete
syntax for an output stream with the AST representation s = (a, AST(T), L,AST(e)) is
also possible:

‘ output a: T := expr

The k" trigger s, is defined by:

n "

‘ trigger a "msg

Trigger contain a stream name a and a message msg. The AST transforms the name
to the corresponding stream reference if the name is specified and to 1 otherwise.
This transformation results in the following AST representation, with s;.tar := s and
§}-Msg = Msg:

, (ST.,msg) if sh.name =a
sp=(s,msg)=4q J
(1L,msg) otherwise

Expressions

RTLora supports different computation rules for output streams. For each expression,
we define the concrete syntax and the abstract representation as output of the AST
function, starting with different accesses:

Synchronous Lookup: The expression s accesses the current stream value of s and
bounds the timing of the accessor stream to the schedule of the accessed stream.
The abstract representation for this expression stores a reference to the accessed
stream:

Sync(s;) if st.name=s
AST(s) = ync(s;) ifs;
Sync(L) otherwise
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Sample & Hold Lookup: The concrete syntax for the sample & hold lookups is defined
by: s.hold(). Sample & hold lookups access the current stream value of s as
synchronous lookups. However, these lookups are considered asynchronous, i.e.
the timing of the accessor stream is not bounded to the schedule of the accessed
stream. The abstract representation for this expression also stores a reference to
the accessed stream, resulting in:

Hold(s;) if s;.name =s
AST(s.hold()) =
Hold(1) otherwise

Offset Lookup: Offset expressions e.offset(by: -n) correspond to synchronous
lookup accessing not the current, but the n*" previous value. Like synchronous
lookups, the timing of the accessor stream is also bounded to the schedule of the
accessed stream. This expression results in the following abstract representation
storing the offset number n besides the stream reference and the access category:

Offset(s;,n) if s;.name =s
AST(s.offset(by:-n)) := ffset(s;.n) !

Offset(1,n) otherwise

Sliding Window Lookup: Sliding windows s.aggregate(over: os, using: ) aggre-
gate over all values inside a real-time duration 6 with an aggregation function y.
These timed accesses are asynchronous and do not influence the timing behavior
of the accessor stream, as Sample & Hold lookups. The abstract representation
contains therefore the stream reference, the time duration and the aggregation
function:

Window(s;,06,y) if s;.name =s
AST(s.aggregate(over:0s, using:y)):=

Window(1,0,y) otherwise

Default Expression: Because some lookups can fail, the return type of sample & hold,
offset, and sliding window lookups are optional types. RTLora uses default
expressions e.defaults(to: e) returning the default value in case of a lookup
fail. This results in the abstract interpretation:

AST(e.defaults(to: d)):= Default(AST(d),AST(e))

Function Expression: Function expressions f(el, ...,en) are used to refine the received
input data. RTLora supports the usual operators with the infix notation, such as
constants, arithmetic operations, or conditionals encoded as n-ary functions. Note
that, because we encode the common condition if cond then cons else altasa
ternary function, we evaluate this expression without side effects. Additionally,
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RTLora implements the functions for the absolute value or the square root. The
abstract representation is given by:

AST(f(el,...,en)):=Func(f,AST(el),...,AST(en))

Note that for sliding windows as well as for streams, we assign each sliding window
to a unique identifier. Therefore, the I*" sliding window in the specification is identified
by wj.

The first constraint for a valid RTLora specification is the syntactical validity:

Definition 1 (Syntactic Validity [25])

Def. Syntactic An RTLota specification is syntactically valid iff
Validity

* all stream and trigger definitions conform to the concrete syntax stated above.

* AST(s) can be computed without violating a condition. This especially includes

that all stream names can be resolved, such that no 1 value is contained in the
AST.

* all names of streams are unique, i.e., Vi, j: s;.name = s]‘-.name = i=].

Before we start with the constraints for semantical validity, we introduce some further
notation. We denote n' as the number of input streams, n' the number of output streams,
n' the number of trigger, and n" the number of sliding windows. Additionally, we
call the set of all input streams in a specification Stream', the set of all output streams
Stream', the set of all triggers Stream', and the set of all streams Stream. The set W
defines the set with all sliding windows. These sets are defined with:

L qdb i< pl
Stream' = {s; | i < n'}
Stream' = {s} |i < n'}
Stream’' = {s; | i < n'}
Stream = Stream* U Stream' U Stream'
W={w;|i<n"}

In this chapter, we refer from this point in time to the AST instead of the concrete syntax.

3.1.2. Dependency Graph

The previous section defined the syntactical validity of a specification. Before we can
build a monitor out of the specification, we need to define the semantical validity.
Section introduced different stream accesses occurring in the stream expression.
RTLotra uses the definition of a dependency graph (DG) to describe the dependencies

10
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between streams. Then, the DG is used for semantic checks like the type analysis or
the existence of an evaluation model. Additionally, we determine from the DG a static
memory upper bound for each stream. These upper bounds are used from the compiler
to determine the number of registers in the monitor realization.

RTLotra builds the DG from the AST by iteration over it. We describe a dependency
as a triple consisting of the source stream, the weight, and the target stream. The weight
of a dependency is either the offset which value needs to be addressed, or a pair with the
duration and aggregation function for sliding windows. The dependencies for an output
stream s] is computed recursively from the stream expression. With these dependencies,

RTLora builds the dependency graph.

Definition 2 (Dependency Graph [25]))

The dependency graph of a specification is a directed multi-graph DG = (V,E) with
weighted edges. Its vertices are streams and the edges reflect dependencies between
streams:

V = Stream
U depsl_T(slT.expr U {(s},0,s;.tar)}
1<i<n! 1<i<n!

The function dep ; is defined as:
depS?(Oﬁset(s]T, n)) := {(SIT, n, s]T)}

dep 1 (Default(e, e’)) = dep(e) Udep(e’)

depsj(Punc(f,al,...,an)) = U dep(a;)

depsir(Sync(s]‘-)) = {(SIT, 0,s;)}
depsir (Hold(s]’-)) = {(s;, 0, s]T)}

dep s (Window(s;, 8, 7)) = {(s;,(6,7),5;)}

11

Def. Dependency
Graph



Evaluation Model

3. BACKGROUND

Figure 3.1.: Dependency Graph for the specification in Example

Example 3.1.1. Figure3.1|represents the dependency graph for the following specifica-
tion:

input a : Float32

input b : Float32

input c : Int64

output d : Float32 := a.offset(by: -3).defaults(to: 0.0) + b
output e : Bool :=d < 40.5

output f : Int64 @IHz := c.aggregate(over: 4s, using: ))
output g : Int64 := c * h.offset(by: -1).defaults(to: -4)
output h : Int64 := f.hold().defaults(to: 50) - g

trigger e "e is smaller than 40.5"

Input streams do not access other stream and are always sink nodes. Whereas trigger are
always leaves nodes, because they cannot be accessed by other streams. The dependen-
cies of output streams is defined by their lookups in the stream expression. The output
stream d for example has an offset lookup to the input stream a and a synchronous
lookup to the input stream b. Therefore, the dependency graph has a 3-weighted edge
from s] to s;, and a 0-weighted edge from s] to s,. A

Evaluation Models

With the DG, we start with the first semantical analysis for a RTLora specification
without knowing the concrete semantics. RTLora uses an evaluation model to describe
the relation between input and output streams in the semantics. Because the formal
definition of an evaluation model is not needed to check the semantical validity, we
just give an intuitive definition: An evaluation model of a specification is a set of infinite
sequences, one for each stream. To get an intuition for an evaluation model, consider
the following specification:

12
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input a : Int8
output b : Int8 := a + 1

The specification evaluates the output stream b to the value from input a plus 1. Intu-
itively, the unique evaluation model for this specification follows the specification and
adds one to the input value. Formally, this is described by:

{(sk, x), (si,y) |x,9,2€ NV Ax; = (z; mod 128) Ay; = (z; + 1 mod 128)}

However, there are specifications which have more than one valid evaluation model
like:

‘ output a : Int8 := a

This specification consists only of one output stream, which assigns the output stream
a to the value of a. This specification is syntactically valid, but we can find different
evaluation models. One possible model is similar to the first part of the previous
example. The model assigns a to each value inside the modulo class. Another model,
which assigns a to a constant value ¢, is also possible. Formally, we can describe these
models as:

o {(sh,x)|x,z2€ N® A x; = (z; mod 128)}
o {(sh,x)|xeIN“ Ace NAx; =c)
Another possibility for a syntactically valid specification is the absence of an evalua-
tion model. Consider the following specification:
output a : Int8 := b
output b : Int8 :=

In this example, the value of a is assigned to the value of b, and b to a plus 1. Because
of the circular dependency, we cannot find two sequences fulfilling the specification.
To guarantee that the monitor provides exactly one evaluation model such that for the
same input sequences the monitor computes the same output sequences, the definition
of well-definedness was introduced for Lora.

Definition 3 (Well-definedness [[10])
A specification is said to be well-defined if a unique model exists.

To check the existence of a unique evaluation model for a specification, Lora checks
the specification for well-formedness:

Definition 4 (Well-formedness [10]))
A Lota specification is well-formed if there is no 0-weighted cycle in the dependency
graph.

The proof of the following theorem confirms that well-formedness is a sufficient but
no necessary criterium.
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Theorem 1 (Unique Evaluation Model [10]). A specification has a unique evaluation model
if the specification is well-formed. The inverse direction does not hold.

The intuitive explanation for the correctness of this theorem results from an order of
the stream, which can be determined with the absence of a 0-cycle. This order describes
the schedule of the stream evaluation and is described in the next section more detailed.
An example for the inverse is presented by the following stream:

‘ output a : Bool := a Vv -a

The unique evaluation model for this stream is a sequence which always returns true.
However, the dependency graph has a 0-edge from the stream a to itself, resulting in a
0-weighted cycle.

To adapt this theorem to RTLora, we need to consider the asynchronous lookups
sample & hold and sliding window. In both cases, the expression requires access to
the target stream. We first look at their representations in the DG. Sample & hold
lookups are represented as synchronous accesses, with a 0-weight edge. The difference
between these lookups is the timing of their evaluation. However, this is irrelevant
for the dependency description, so they are treated in the same way. Sliding windows
are represented by the duration of the window and the aggregation function. The
computation of the sliding window requires an iterative lookup on the current value of
the target stream. For the evaluation model, the number of accesses is irrelevant as long
as only the current value is accessed. So we treat sliding window lookups as 0-weight
edges. With these adaptions, RTLora uses the same definitions for well-formedness.
The proof for this adaption and the resulting theorem is presented by Schwenger [25].

Example 3.1.2 (Well-formedness). Consider again the dependency graph from Fig-
ure This graph contains only one cycle between s} and si, which a weight of one. So
the dependency graph has no 0-weighted cycle, and the specification is well-formed. A

Evaluation Order

To prove the existence of a unique evaluation model, RTLora computes an evaluation
order from the DG. This order describes the schedule of the stream evaluations. To
motivate the defined evaluation order and to get an intuition, we discuss at first two
examples.

Example 3.1.3. The following specification declares one input stream a and two output
streams b and c. During the evaluation b adds up the constant number 3 to the input
value. The output stream c then adds up the current value of b to the previous one.

input a : Int8

output b : Int8 :=a + 3

output ¢ : Int8 := b + b.offset(by:-1).defaults(to: @)
The input stream a is synchronously accessed by the output stream b, such that a
needs to be evaluated before b. The output stream c accesses the current value and the
previous one of b synchronously. For this reason, the output stream c evaluates the
stream expression after b. These accesses result intuitively in the order a<b < c. A
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Example 3.1.4. Consider the following specification:

input a : Int8
output b : Int8 := a + c.offset(by:-1).defaults(to: @)
output ¢ : Int8 := b + b.offset(by:-1).defaults(to: @)

Compared to the previous example, the specification adapted the stream expression
of output stream b to add up a with the previous value of c. Using the same approach
as in the previous example results in the following problem. Because b accesses c
and c is accessed by b, we cannot define a total order in the same way. Because b
accesses the previous value, which is already available without a computation of ¢, b
can theoretically compute the stream expression before c. However, if we evaluate b
before c a new problem arises. Since c was not updated yet, the stream offset lookup in
b accesses the second last value and not the previous one as intended. A

This issue is solved with a new evaluation phase — called pseudo evaluation phase.

This phase assigns the current value of each output stream, which will be evaluated, to
a pseudo value. With this assignment, we shift the offset values to their correct position
such that the stream expressions using the offset values can compute their stream
expressions. In our example, with this shift, we can evaluate b after the synchronous
direct access stream a was evaluated, and c after b. RTLora replaces the pseudo value
with the correct one, when the stream is evaluated based on the evaluation order.

RTLoLa uses the dependency graph to receive the evaluation order for a specification.

Because the pseudo evaluation phase covers the offset lookups such that offset values
are at their intended position, the computation only considers 0-weight edges and

sliding windows. Intuitively, if a stream slT has a direct access to stream s]‘., it needs to be

evaluated before s!. This intuition results in the following definition:

Definition 5 (Evaluation Order [25])

The evaluation order < is a partial order on streams, reflecting the structure of the
dependency graph DG = (V,E). The evaluation order is the transitive closure of a
relation satisfying the following rules:

Caogh ol
1. Vz,].si<s]-

2. (slT,x,s]’-)EE/\(x:0Vx:(6,y))/\slT¢s]T = s]’-<slT

Intuitively, the first rule restricts the evaluation of input streams before the evaluation
of output streams. This is in general not necessary but simplifies the evaluation. The
last rule covers the previously mentioned dependencies between two streams.

Remark 3.1.1. The definition from Schwenger [25|] contains three rules. In the previous
definition, the rules correspond to the first and the third rule. In this thesis, we omit the
second rule, covering the transitivity of the order. Because the definition already claims that
the evaluation order is a partial order, this implicitly includes the constraints reflexivity,
transitivity, and antisymmetry, such that the second rule is already covered.
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The order between two streams, which are incomparable in the evaluation order, can
be evaluated independently of each other, i.e. the order between those streams does not
have an influence on the stream evaluation. These streams either do not depend on each
other or all needed values are already accessible. Because trigger values are not accessed
by output streams, triggers are not part of the evaluation order and are computed after
all output streams.

The following proposition and the corresponding proof guarantees the existence of an
evaluation order for well-formed specifications.

Proposition 2 (Existence of Evaluation Order [25])). Every well-formed specification has
an evaluation order.

The proof first constructs a relation out of the dependency graph with the constraints
from Definition [5|and then proves that the reflexive transitive closure is a partial order.
For readability, we introduce a new representation for the evaluation order.

Definition 6 (Evaluation Layer [25])
The evaluation layer is an equivalent representation of <. If Layer(s;) = k then there is
a strictly decreasing sequence of k streams w.r.t. < starting in s;.

For readability, A""** describe the maximum layer of a specification, formally defined
as:

/\max

= max{]| Hs]’.: A= Layer(s]’-)}

Example 3.1.5 (Evaluation Layer). The specification from Example results in the
following evaluation layers:

Layer(si) =0 Layer(s;) =2
Layer(s%) =0 Layer(sg) =1
Layer(s;) = 0 Layer(s}) = 1
Layer(s{) =1 Layer(s;) =2

Input streams are always in layer zero. The output streams d and f are on the first layer,
because they depend only on the input streams. The output stream e has a synchronous
lookup to the output stream d. For this reason, its layer is after the layer of e. The
output stream g has a synchronous lookup to the input stream c and an offset lookup to
g, which is irrelevant for the evaluation order. Therefore, its layer is the same layer as
the layer of d and f. The layer of the output stream g is greater than the layer of f and g,
because of the synchronous lookup and the sample & hold lookup. A
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3.1.3. Type System

A type checking analysis is part of the semantical validity, finding inconsistencies in
the stream evaluation. To find these inconsistencies, the concrete syntax demands that
each stream is annotated with the corresponding type. However, most of the output
stream types can be inferred from the stream expression, such that the realization does
not have this restriction.

In RTLota, a type is a pair consisting of the value type and the activation condition.
The value type defines the bit range and its interpretation of the stream values, i.e. the
input and output values of the monitor. Possible representations are booleans, signed
and unsigned integers, as well as floating point numbers. This enumeration results in
the following definition:

Definition 7 (Value Types [25]))
In RTLota, a single value 7 is of one of the following types:

VT := {Bool, Int(x), UInt(x), Float(y) | x € {8,16,32,64},y € {16,32, 64}}

Remark 3.1.2. In the original definition Float(16) is not mentioned. Because a specification
is realized on hardware in this thesis, space is highly limited. Therefore, we introduce an
additional floating type, with a smaller bit representation.

The activation condition of a stream defines the timing behavior, i.e. the condition
when a stream needs to be updated. RTLora separates output streams into two cate-
gories, event-based and periodic, reflected in the activation condition. Periodic streams
are annotated with a frequency, defining fixed time points, the stream is evaluated
on. Event-based streams are streams without a frequency and therefore evaluate at
arbitrary time points. The activation condition for theses streams is inferred from the
stream expression. Therefore, we first collect all synchronous and offset lookups in the
stream expressions. For this set, we then compute recursively all synchronous and offset
lookups until we reach only a set of input streams. This resulting set then describes the
activation condition. An output stream s with activation condition ! is updated iff the
incoming event updates all input streams sf €L

Definition 8 (Activation Condition [25])

In RTLota, an activation condition o is either an element of an event type 1 € ET or of
a periodic type 7 € PT. The set ET is defined as the powerset of all input streams in the
specification, covering all possible input event combinations. The set PT is defined as
the set of all time points where at least one periodic stream is evaluated. These sets are
formally defined as:

ET := 2Streumi

PT = {p lpeNA (gcd(PSp“) | p) A (p | 1cm(PSP“))}
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The set P°P*“ is defined as the set of all periodic output streams:

pspec = U {s}.ext}

siTeStreamT

Remark 3.1.3. The previous definition derivates from the original one. In this thesis, we
define single pacing type instead of defining the event type ET and periodic type PT, which does
not change the intended definition. Additionally, we use a different notation. The activation
condition is defined as a single value of the pacing type, which is the set of activation conditions
of a specification.

Remark 3.1.4 (Periodic Input Streams). In RTLova, the activation condition of an input
stream is always event-based. To show the problem of a periodic input stream, we assume a
specification containing the stream: input a : Int8 @1Hz. To evaluate the input stream a
the monitor demands fixed time steps, exactly every second, for an incoming event updating a.
However, in this case the specification has control of the input streams, which is in practice
not possible. Even if input values are produced with a fixed frequency, the frequency cannot be
guaranteed for the monitor because of internal delays and interferences. Therefore, RTLoLa
excludes periodic input streams.

Remark 3.1.5. To annotate the activation condition 1 of an event-based stream s~ in the
specification, we use the following notation: s= @i Note that 1 is a set of input streams.

To get an intuition for the activation condition, consider the next example.

Example 3.1.6 (Activation Condition). The following specification presents a fragment
of the specification in Example

input a : Float32 @{a}

input b : Float32 @{b}

input ¢ : Int64 @{c}

output d : Float32 @{a,b} := a.offset(by: -3).defaults(to: ©.0) + b
output e : Bool @{a,b} :=d < 40.5

output f : Int64 @IHz := c.aggregate(over: 4s, using: ))

The input streams a, b, and c are event-based. The activation condition of input streams
is always an event-based type with the input stream itself because they depend on no
other streams. The activation condition of the event-based output stream d is bounded to
the input streams a and b, because of the synchronous lookup and the offset lookup. In
this example, the output stream d is updated iff the monitor receives an incoming event
which updates a and b. The event-based output stream e has a synchronous lookup to
the output stream d. Therefore, it recursively depends on the input streams a and b,
resulting in the same activation condition. The periodic stream f is annotated with a
frequency and is, for this reason, updated every second, independent on the number of
received events. A
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From the AST, RTLoLra can assign each stream in the specification to a concrete type.
However, to validate stream expressions we perform a type checking analysis. For this,
we have to assign each expression to its corresponding type. Because expressions, in
comparison to streams, are not annotated with their concrete types we have to infer
them, resulting in a new problem. The following example visualizes this problem,
assigning expressions to concrete types. Consider a constant expression 3, which can
be a subexpression of s; + 3. In case of T; = Int(8), the concrete type of 3 is Int(8).
However, if s; has type Ulnt(8), the concrete type of 3 is UInt(8). For this, the type of
an expression is not a single concrete type, but a candidate set of concrete types. The
resulting candidate set for 3 is {Int(x), Ulnt(x)|x € {8,16,31,64}}. The candidate set of
an expression is defined as the abstract type. Like the concrete type, the abstract type is
defined as a pair, storing the value type and the activation condition.

Definition 9 (Abstract Types [25])) -
A single abstract type (T,0) is defined as an element of VT x (ET U PT), with:

VT := {0, {Bool}}

U| |{Float(v)|{16,32,64} 3y > 2}

1C- 1C-

Ul J{{UInt(v)|{8,16,32,64) 3 v > 2}, {Int(y)|{8,16,32,64} 5 y > 2}}
ET:=ET
PT .= PT

Intuitively, the abstract type is defined as:

* The single abstract value type T denoting the set of all possible values types.

* The single abstract periodic type 7@ denoting the maximal frequency of how the
stream can be evaluated.

* The single abstract event type 7 denoting the minimal set of dependencies of the
expression.

From now on, we use the tilde to differentiate concrete and abstract types. Addition-
ally, T always references to the value type and o the activation condition. Furthermore,
1t denotes a periodic type and 1 an event type.

Type Lattice

RTLota uses a type checker which ignores the details about the underlying type system.
With this approach the type system can be extended or modified without changing the
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model checking algorithm. Nevertheless, to make constraints about the type system, we
use the concept of a meet-semi lattice.

Definition 10 (Meet-semi Lattice)
Def. Meet-semi A meet-semi lattice is a tuple (S,M) consisting of a set S, ordered by a partial order ¥,
Lattice and a binary relation 1, with the following constraints:

* Existence of a greatest lower bound between two elements: Vsy,s, € S.s1Ms; €S
* Associativity of 11
* Commutativity of M

* Reflexivity of M

The underlying meet semi-lattice for the current type system is defined as:

Definition 11 (Type Lattice [25]))
Def. Type System in The type system of RTLora is the meet-semilattice (VT U Opt{VT)UPTUET U{1},1M)
RTLora with the following meet operation:

T Myr T, if7,7,€VT

OpKT Myr &Y if Opi(@') = T A OpH(T@ ') = T

TINT =1 T MNpr if 7;,7, € PT
1Mpr T2 T2
T MeT T2 if 71,7 €ET
1 otherwise

The single meet operators are defined as:
*TMyr =T N7
* T Mpr Ty := ged(T0y, T0)

* NNerh =1Vl

Intuitively, a meet operator usually refines two elements to a more concrete one. For
this, the different meet operators have the following messages.

* An abstract value type contains all possible concrete value types. Therefore, the
refinement of two abstract value types are all concrete types, which are contained
on both sides. If the types are incomparable the meet operator returns 0.
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* An abstract periodic type is the maximal frequency on which the stream or expres-
sion can be evaluated. The result of the meet of two periodic types is the maximal
frequency on which both streams can be evaluated, which is the greatest common
divisor. This result is at least as slow as the input frequencies or even slower.

* An abstract event-based activation condition is a set containing all input streams,
which need to be contained in an incoming event to evaluate the stream. Therefore,
the set of the meet operator consists of all elements which are in one of the
arguments, resulting in the union, with the bottom element Stream'.

Remark 3.1.6 (Optional Types). Some expressions, i.e. offset lookups or sample & hold,
return an optional value, because the monitor cannot guarantee the existence of a value. To
see the need for optional return types in the lattice, we consider the following specification,
assuming that optional values are treated as non-optional ones:

input a : Int8
output b : Int8 := a + b.offset(by:-1)

This specification adds up all values from the input stream a with the output stream b. Without
using optional value types, it is intuitively clear, even without knowing the complete semantics
of RTLova, that the type checker would allow the expression a + b.offset(by:-1), because
a and b have the same value type Int(8). However, in the first iteration the previous value of b
is not defined resulting in an error. Therefore, to represent optional values in the type lattice,
we introduce an additional abstract value type Opt(VT), lifting the value types to optional

types.

Remark 3.1.7 (Meet-semi Lattice Proof). Schwenger [25|] proved that the lattice defined in
Definition[11is a meet-semilattice, by proving associativity, commutativity, and idempotency
for the meet operator M. The proof first shows the properties for each meet operator My, MgT,
and Mpr and then follows that the combination also results in a meet operator.

Type Checking

The overall goal of the type checker is performing an analysis which finds expressions
that are incompatible to each other. This includes expressions with different activation
conditions, e.g. a synchronous lookup to an event-based stream from a periodic-output
stream. But it also includes value type errors, e.g. multiplying a boolean stream with a
number. Before we perform the type checking analysis, we define a relation [ for type
validity. We denote that an abstract type (¢,7) is a model for an expression e, with a
binary relation | by: 6,7 [ e. Based on this relation, the type checker uses inference
rules, which are defined for each stream and expression individually. To apply the
inference rules for expressions, we first need to lift the concrete stream value types to
abstract ones. Therefore, the inference for streams uses the following generalization
function:

21



Def. Generalization
Function

3. BACKGROUND

Definition 12 (Generalization Function [25])
The generalization function lift : VT — VT for a concrete value type 7 is defined as:

{Bool} if 7 =Bool

lift(t) := if 7=X(v),y€e{8,16,32,64},
f {X(2)]{8,16,32,64} >z >y} ' )y el }
X € {Int, Ulnt, Float}

In each inference rule we check for each stream and expression if the abstract value
type and activation satisfies the expression or stream. If the expression or stream is
a non-leaf node in the AST, we additionally check for each child if the abstract type
satisfies the subexpression.

To get a intuition for the inference rules, consider the inference rule for default
expressions:

GLTiFer 03T Fe; 01=0pK5,’) GCo,'NG, TETNT
0,7 | Default(ey, e;)

A default expression returns a default value in case of a lookup fail, resulting in two
subexpressions. For this, the inference rule checks the compatibility of the subex-
pressions: First, it finds the abstract value types and activation conditions for each
subexpression. For these abstract types, the rule defines the following constraints: The
first constraint checks if the abstract value type of the first subexpression is an optional
value. Intuitively, to represent a lookup fail RTLora uses optional types. In case that
the first expression does not return an optional type, i.e. no lookup fail is possible, the
default value would never be taken and therefore the default expression is not needed.
This behavior needs to be detected by the type checker. The second constraint then
checks if the value type of both subexpressions are comparable, and refines the value
type of the default expression. Because the default expression resolves the lookups fails,
this check does not use the optional abstract type of the first sub expression, but the
abstract value type stored in the optional one. The third constraint then compares and
refines the activation condition.
The most restricted inference rule is for sliding window lookups, defined as:

oeN y:T,—-T, tClif(T,) o, 7 ks; 7T Clift(T,)
T,TE Window(slf, 0,7)

In comparison to all other rules, sliding window lookups enforce abstract periodic types
in the relation. Before, we give an intuition, we recap the behavior of sliding windows.
A sliding window aggregates over all values of a stream s; during a specified duration.
For this reason, when reaching a time point, where to evaluate a stream expression
s}, with a sliding window lookup, the window needs to decide which values of s; are
part of the current window. If we restrict the activation condition of sliding windows
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to a periodic type, the time points when evaluating a stream are statically known. As
a consequence, the windows of the sliding window lookup are also statically known,
which simplifies the decision which stream values are part of the window, even if they
arrive in non-fixed time steps. Section discusses the evaluation of sliding windows

more detailed. Another constraint resulting from the sliding windows is the duration.

Similar to the restrictions for the frequency, Schwenger [25] restricts the duration to
a natural number simplifying the correctness proofs. However, in general RTLora is
capable to describe constraints without these restrictions. Another constraint from the
inference rule for sliding window lookups results from the aggregation function. To
evaluate the window, the function uses the stream values from 5. Therefore, the type TZ.T
needs to be compatible with the input type of the function. The same constraint holds
for the return type, which needs to be compatible with the window lookup.

Remark 3.1.8. A list of all inference rules is presented in Appendix We do not discuss all
rules separately. If you are interested in the details, a complete description of all inference rules
is presented by Schwenger [|25|]. Nevertheless, we present in this thesis the general concept,
with the following examples.

With the inference rules and the binary relation, we define the type validity of a
specification.

Definition 13 (Type Validity [25]))
A specification has valid types if and only if for every stream and trigger there is a
non-contradictory value type and activation condition.

Vs;d0,T: 0,TFEs;AC# LAT# L

With type validity, we defined the last constraint for a valid specification, resulting in
the definition:

Definition 14 (Specification Validity [25])
A RTLova specification is valid iff it satisfies the following three criteria on its syntax,
dependency graph, and types:

 Syntactic validity according to Definition
» Well-formedness according to Definition

* Type validity according to Definition

Remark 3.1.9 (Formal Semantics). Schwenger [|25|] defined a formal semantics assuming
infinite memory. Therefore, he first introduces the concept of relevant timestamps, which
compromises all possible timestamps to the timestamps, where at least one activation condition
of all streams is satisfied. Then, he defines the evaluation process with an infinite memory
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model, and afterward, the expression evaluation. The focus of this section is getting an
intuition for the specification language, which provides a tradeoff between expressiveness and
formal guarantees. If you need more details about the formal semantics of RTLoLa, we refer
to [125,[12]].

One essential guarantee for the hardware realization is a finite memory model. Therefore, if
we analyze the dependency graph and restrict the aggregation function to get an upper bound
for each stream entity and sliding window, we can compress the infinite model to a finite one.
This analysis and the restriction on the aggregation functions are intuitively outlined in the
following paragraph.

3.1.4. Finite Memory Monitoring

In the previous section, we defined the conditions for a valid specification. Before we
describe a realization for such specifications, we first define memory upper bounds on
the stream entities to realize the monitor with finite and statically known memory. This
includes the evaluation of the activation type as well as for the expression evaluation.
Additionally, we have to restrict the aggregation function for a finite memory realization.

Handling Time

Section introduces two types of activation conditions, event-based and periodic.
The activation condition of event-based streams is bounded to the incoming event,
e.g. an output stream b with the activation condition {4, b} is evaluated with each event
that updates the input streams a and b. Because the monitor has no control about the
timing of the incoming events, the timing of event-based streams cannot be determined
statically. As a complement, period streams are annotated with a frequency which
bounds the activation condition to fixed-time points, e.g. an output stream b with
activation condition 2Hz is evaluated every 500ms. Due to the fixed time stamps, we can
define statically a global schedule for all periodic streams. The entries of the schedule
then contain a time stamp and a non-empty set of period output stream, with the
following notation:

* We call a time stamp in the schedule a deadline.

* We say a deadline is due if the monitor reaches a timestamp which is part of the
schedule.

To find a finite representation for the schedule, we use the hyper-period. The hyper-
period IT of a specification is the least common multiple of all frequencies in the specifi-
cation:

T =lem({p~" | p € PP*))

Intuitively, the hyper-period describes the duration until the schedule repeats its entries.
With this concept, we define a finite schedule dl, which the monitor repeats every hyper-
period. Beside the deadline array we additionally define an offset array off, which stores
the time difference between two consecutive deadlines.
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Example 3.1.7 (Schedule). Consider the following specification:

input a : Int8

output b : Int8 @4Hz := a.hold().defaults(to: @) + 2
output ¢ : Int8 @Hz := b + 3

output d : Int8 @5Hz := a.aggregate(over: 2s, using: Y )

In this example the output stream b is evaluated every 250ms, the output stream c every
500ms, and the output stream d every 200ms. This results in the hyper-period Il = 1s,
in the schedule dl, and in the offset array off:

dl(0) := (200ms, {d}) off(0) := 50ms
dl(1) := (250ms, {b}) off(1) := 150ms
dl(2) := (400ms, {d}) off(2) := 100ms
dl(3) := (500ms, {b, c}) off(3) := 100ms
dl(4) := (600ms, {d}) off(4) := 150ms
dl(5) := (750ms, {c}) off(5) := 50ms

dl(6) := (800ms, {d}) off(6) := 200ms
dl(7) := (1000ms, {b, ¢, d}) off(7) := 200ms

Finite Memory Handling

Section presents the types of stream expressions, including different lookups and
function calls. The monitor accesses stream values to evaluate the expressions, which
needs to be stored. A naive implementation would store every computed or received
value to guarantee that the expression evaluation has access to the values. This approach
is sane assuming infinite memory. However, in practice this assumption does not hold,
and the size of the input data is necessary to guarantee the absence of buffer overflows.
Otherwise the monitor loses its guarantees which is critical if monitoring is used as the
safety component of a system. Again the assumption of knowing the size of the input
data cannot be applied in practice, such that we need another approach, which identifies
the memory consumption statically based on the specification. To realize an approach
with finite memory, we first assume specifications without sliding window lookups.

The syntax statically encodes which values will be addressed by the stream expression.

Thus, we can analyze for each stream the storage requirement from the specification,
which contains the number of stream values which will be accessed. For illustration,
consider the following example which contains all possible lookups:
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Figure 3.2.: Dependency graph for the specification in Example

Example 3.1.8 (Storage Requirement). Consider the following specification:

input a : Int8

input b : Int8

output ¢ : Bool := a + b.offset(by:-1).defaults(to: @) < 3
output d : Bool @IHz := a.hold().defaults(to:1) < 3
trigger ¢ "c is smaller than 6"

trigger d "a is smaller than 3"

In this specification, a is accessed with a synchronous lookup and a sample & hold
lookup. In both cases, the expression targets the current value of the stream and the
monitor does not need to store any previous values. The input stream b is accessed with
an offset lookup of —1. Therefore, the current stream value and the previous value need
to be stored. The output streams c and d are synchronously accessed by the triggers,
such that the storage requirement for both streams is 1. Triggers cannot be addresses by
stream expressions resulting in no storage requirement. A

The information about the storage requirement per stream is encoded in the depen-
dency graph, resulting in the following definition:

Definition 15 (Storage Requirement [25])

The storage requirement «(s) of stream s is the maximum offset of stream lookups
with target s based on the dependency graph DG = (V, E).

o Tl -
K(s;) = max{wlﬂsj. (s, w,s;)eEAwe N} +1

]
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Example 3.1.9. Figure represents the dependency graph of the specification in
Example It represents that the storage requirement corresponds to the maximal
offset of the incoming edges in the dependency graph:

In the next step, we now include sliding window accesses again, starting with the
following specification:

input a : Int8
output b : Int8 := a.aggregate(over: 1s, using: sum)

The sliding window in the output stream b adds up all input values during the last
second. Once again, a naive implementation would store all incoming events ay,...,a,
and adds up all values, i.e. }_;.;<,a;. This approach is sane and the sliding window
would return the correct value. However, this approach infers two problems. First, with
every new event the function adds up all values, e.g. with a new event a,,,; the windows
computes ) ;.1 4;- However, most of the values are already computed with the
previous event so a better approach would be re-use the old result }_;;, a;, resulting
in ()_1<j<, i)+ a,41. Another problem with storing all incoming values is the memory
consumption. The monitor has no restrictions on how many events can be received
during the window. Therefore, if we store all events we would need infinite memory. To
solve this issue, we restrict the aggregation functions to list homomorphisms. With this
limitation, we re-use computations with a constant runtime and constant memory.

Definition 16 (Homomorphism [26])
A list homomorphism y: A* — B can be split into four components:

* an unary function map,,: A — T lifting a single value into an intermediate repre-
sentation

* a unary finalization function fin,: T — B lowering an intermediate value to a
result

* an associative binary reduction function ®,: TxT — T, i, (a®, b)®, c =
a®, (b®, c)

¢ a neutral element €y € T w.r.t. ®),le.a®, e, =¢,®, a=a foranyaeT.
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Example 3.1.10 (Add List Homomorphism). The list homomorphism for the addition
iteratively adds up all incoming events and is defined as:

* map,,,, : A — Awithmap,,, (x)=x

* fing,,,: A — Awith fin_, (x) =x

o ®gum A2 = A with x; ®g, X0 = X1 + X
* Eum =0
A

With the following theorem, we can iteratively pre-aggregate the intermediate values,
store them, and can re-use the values for following computations. For example, to
compute the n+1-th value v,;; = fin(map(a;) ®,...®, map(a,,1)), we can use the pre-
aggregated values i;_,, = map(a;) ®,...®, map(a,) as input for the finalization function,
resulting in v, =fin(i;_, ®,, map(a,1))-

Theorem 3 (Meertens [26]). The aggregation of vq,...,v,, using a list homomorphism y can
be broken into arbitrary sub-aggregations. Let (I;)i<x = ((x; j)j<1,)i<k for some k € IN be an
ordered partition of the interval [1,...,n].

Y1) = fing (map,, (x1,1)®,, ... @, %1 j1,))®,,...®,, (map,, (xi,1)®,,...®), map., (xi1,|)))

Because we can re-use the results in the intermediate representation, the sliding win-
dow can be pre-computed. For this reason, the evaluation of sliding window expression
is performed with constant memory in the size of the intermediate representation. In
the previous example, the intermediate representation is a single value. However, this is
not true in general shown with the next example:

Example 3.1.11 (Integration List Homomorphism). For the integration function, the
input values are tuples (v,t) € V x T, where v is the current value and t is the corre-
sponding time stamp. To compute the integral, we use the trapezoid construction, a
numerical approach represented in Figure This approach constructs from samples
of the function trapezoids and calculates the area of the trapezoids. With a decreasing
difference between the sample, the trapezoids gets more accurate and the approxi-
mated value corresponds more to the concrete integral. This results in the following list
homomorphism:

. mapf : (A, T)— Optional(A, T,A,T,A) with mapj((x, ) =(xt,x,1,0)

. ﬁnf : Optional(A, T,A, T,A) — Optional(A) with
ﬁnf(J_) =1 and
ﬁnf((xL, th xR R v)) =v
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teR

Figure 3.3.: Illustration of the trapezoid construction for integration. The black line
describes the underlying function with the sample points sy,...,s4 for the
trapezoid. The numeric approach computes the areas between the samples,
represented with the blue lines.

®| : (Optional(A, T, A, T,A))? — Optional(A, T, A, T,A) with

J.@fJ_:J_
(xl,tL xl, Vl @I xl,tl,xl,tR )
J—®f xz,tz,xz,tR 2) = (xz,tz,xz,tR v,) and

R L
(xl’tl’xl’t )@f(xZ,t x2,t2,vz)

L R R
(xl,t xz,z‘z,2 (] +x2) (tz—t1)+v1+v2)

. EJZJ_

In the list homomorphism, each intermediate value represents a certain area of the
trapezoid. Intuitively, an intermediate value stores its start and end values as well as the
current volume. The neutral element is 1, which means that now value is received and
no area is not defined. A

Up to this point, we ignored that a sliding window only aggregates stream values
inside a certain duration. For illustration, consider the example in Figure[3.4] The points
on the black line represent an update of a. When a new event arrives and the output
stream b is evaluates, the window expression adds up all values in the last second. In
the figure, the windows are represented with the blue lines. We see that the window
contains all received values for the first three events. To compute the window, the
aggregation function can pre-aggregate them as described previously. However, with the
arrival of the fourth event at time 2.2s, the first event at 0.75s is not part of the window
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Figure 3.4.: Illustration of sliding windows with event-based and periodic activation
conditions. The black line represents the real-time axis, with incoming
events. The blue lines describe the windows with an event-based activation
condition. The green lines represent the windows with a periodic activation
condition.

anymore and therefore not part of the window evaluation. To decide if an event is part of
a window, a naive approach annotates each event with its timestamp. As a consequence
this approach then stores each event individually and so requires infinite memory. To
solve this issue, we consider the inference rule for sliding windows from Section
This rule restricts the activation condition of sliding window expressions to periodic
types, such that the evaluation is performed at fixed timestamps. In Figure this is
represented with the green line for the following specification:

input a : Int8
output b : Int8 @lIHz := a.aggregate(over: 1s, using: sum)

For the evaluation of the sliding window, the concrete timestamp of a stream value is
irrelevant, e.g. the value, which arrives at 1.25s behaves equivalent to the event at 1.5s.
Both events are assigned to the same window, without knowing the concrete timestamp.
Note that the list homomorphism is not commutative and the order of the events has
still an impact on the window evaluation, and the events behave equivalent with respect
to their arrival time. With this approach, the expression pre-aggregates its value for
each window, e.g. every second separately, and forgets after the evaluation of b its value,
because they are not used for further evaluations. For this, we can realize the window
expression with finite memory.

In the previous example, the duration 6 and period 7! of the frequency is assigned
to 1s. For this reason, an incoming event was only part of one window. Figure[3.5|shows
the difference with the red lines, if we change the specification to:

input a : Int8
output b : Int8 @IHz := a.aggregate(over: 3s, using: sum)

We see that the events at 1.25s and 1.5s are part of three windows: wy, w,, and wjs.
With the previous approach, we assign both event to three windows and each value pre-
aggregates them individually. However, a better approach would be a pre-aggregation of
the values between every second and assign those values to the corresponding windows.
In the figure this is represented with the dotted lines. This approach is called the
bucketing approach proposed by Li et al. [27]. We separate the window in equal size
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Figure 3.5.: Illustration of sliding windows of different sizes. The black line represents
the real-time axis, with incoming events. The green lines describes the
windows with duration of one second. The red lines represent the windows
with a duration of three seconds, separated in three buckets. The different
buckets are illustrated with the dotted lines.

buckets, where each bucket pre-aggregates with the intermediate representation the
incoming events. With the arrival of a deadline, we then combine the corresponding
buckets of the window and finalize the result. The number of buckets can be determined
statically, resulting in finite memory:

Definition 17 (Number of Buckets)

Consider the window w = Window(s]’-, 0,y) for a homomorphism y: A* — B with
mapping map,,: A — T and 7, lift(B) E w for some frequency . The number of buckets
buckc,, and the time of each bucket buckd,, is then:

lem(s, w7 1)

p— buckd,, == ged(5, ")

buckc,, =

To get an intuition for the bucketing approach consider the following example.

Example 3.1.12. Consider the previous specification with a sliding window duration
of 3s. For this specification, the number of buckets is buckc = 3 and the time per
bucket is buckd = 1s. Table [3.6|represents the events illustrated in Figure [3.5|with their
values, the bucket entries for each relevant timestamp, and the value for the output
stream b. The bucket b3 represents the "newest" bucket whereas b; represents the
"oldest" one. At the beginning, all buckets are assigned to the neutral element ¢. In
the list homomorphism for addition the neutral element is 0. With the first event at
timestamp 0.75, the newest bucket gets updated with the binary reduction function
after lifting the incoming event: b3 ®,, mapy(S) =0+ 5 =5. When the deadline at 1s
is due, the window combines the buckets and finalizes the result, which is the value
of b: finy, (by ®, by ®,,b3) =0+ 0+5=5. Because the last bucket is now outdated, we
shift all bucket entries to the left and initialize a new bucket with the neutral element.
At the timestamp 1.25s, the last bucket gets updated: b; ®,, map,,(2) = 2. The same
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Event Time a b; b, b3 b

0.0s € € £

1 0.75s 5 € € 5
1.0s € e 5 5

2 1.25¢ 2 ¢ 5 2

3 155 4 ¢ 5 6
2.0s e 5 6 11

4 22s 10 5 6 10
3.0s 5 6 10 21
4.0s 6 10 ¢ 16
425s 1 10 ¢ 1

Table 3.6.: Detailed computation of a sliding window.

happens with the next event: b3 ®, map,,(4) = 2+ 4 = 6. With the following deadlines,
the aggregation function is finalized. Note that because of the shift, the oldest bucket
gets always evicted and therefore also the outdated events. Additionally, the newest
bucket has always the same position. A

Remark 3.1.10 (Formal Semantics for Finite Memory). With the definition of storage
requirement and the bucket approach for sliding windows, Schwenger [|25] defined a finite
memory model and proved that the memory access function has an equivalent behavior for
the infinite and the finite memory accesses. In this thesis, we use this result to realize a
hardware-based monitor with static memorization bounds.

With the described approach for the offset handling with finite memory and sliding
windows using the bucket approach we define the following theorem:

Theorem 4 (Finite Memory Monitoring [25|]). A valid RTLova specification can be accu-
rately evaluated with finite memory.

Note, from this point we use RTLora with the syntactic suggar proposed by
Schwenger [25].

3.2. Hardware Compilation

Baumeister et al. [14] introduced a hardware-based realization for RTLora specifica-
tions. The approach compiles a specification into an architecture monitoring incoming
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Figure 3.7.: General structure of the hardware-based monitor [[14].

sequences with the semantics of RTLora. In Chapter |4} we implement this approach,
compiling the specification into the hardware description language VHDL. The focus of
this description is the realization of the same timing behavior of a specification with real-
time constraints. For this reason, stream evaluations as well as updating or requesting a
sliding window are represented with the functions eval, map, ®, and fin.

This section has the following structure. At first, we discuss the overall concept of the
realization, which is separated into the High-level Controller and Low-level Controller.
Then we introduce some further notation before we describe the realization of each
component.

3.2.1. General Structure

Figure [3.7represents the general structure of the hardware-based realization. It consists
of two modules that are connected by a First-In-First-Out queue. The separation results
from the difference between the evaluation of a stream and its activation. High-level
controller (HLC) satisfies the realization of this condition, which differentiates between
event-based and periodic streams. To decide if a stream needs to be activated, the HLC
computes the system time for periodic streams and receives the input of the monitor
for event-based streams. The information, which streams needs to be evaluated and the
data from the incoming event, is pushed to the Queue. Therefore, the output of the HLC

Sey is defined as (Z?il(si +1)) + 545 +n!, where:
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* The first ( :il (si + 1)) + 54 + 1! bits encode the incoming event to the monitor. An
incoming event contains for each input stream s;, a bit indicating if the current
event updates s, and s; bits containing the data bits. The number of bits s; and its
representation is encoded in the value type.

* The next s;; denotes the timestamp, where either an event was received or if the
activation condition of a periodic stream is fulfilled. These timestamps are needed
by the sliding window.

* The last 1! bits encode for each output bit if the activation condition is fulfilled in
the pushed evaluation cycle or not.

Then, the second component — called Low-level Controller (LLC) — uses the output
to preform the evaluation process. Because the output encodes the information which
streams are evaluated, the LLC does not differentiate between periodic and event-based
streams anymore. This process includes the update of input streams, sliding windows,
as well as the evaluation of the stream expressions of output streams. As explained in
Section the order of the stream execution is essential. The LLC contains besides
the stream evaluation, a state machine, coordinating the evaluation. The Qutue then
coordinates the communication between activation and evaluation.

Remark 3.2.1 (Clock Frequencies). Because the complexity of deciding if a stream activation
condition is fulfilled is lower than performing the update, the HLC and LLC use different
clocks. To handle incoming bursts for a short amount of time, the HLC, which receives the
incoming events, ticks faster than the LLC. During these bursts, the QUEUE acts like a buffer,
such that the LLC can complete the evaluation with a slower frequency without losing events.
Of course, this approach only works for a sudden burst and not a continuous one.

3.2.2. Notation

In this thesis, we use the following notation:

Definition 18 (Noatation [14]))
Let x be a bit string of size n, then:

* ois defined as a binary operator, which concatenates two bit strings

* x[i] accesses the i bit of x, assuming i < n

b" defines a bit string x, with VO <i <n.x[i]=b

* asubstring x[/...u] is defined as x[I[]ox[I+1]o--- o x[u — 1], excluding x[u] and
assuming [ <nAu<n

* asubstring x[/...] is defined as x[I...n], assuming [ <n

* asubstring x[...u] is defined as x[0...u], assuming u <n
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Figure 3.8.: Representation of the High-level Controller [14].

e £ is defined as the internal clock rate

o Y(s;+1)is used for Y- (s; +1)

In the following sections, we distinguish between registers and signals. Signals are
written in the italic font and describe the virtual wires between the components. There-
fore, signals can be either the input or output of a component. Registers, corresponding
to flip-flops, and update their values in each clock cycles. A component uses a register
to store a value for the next clock cycle. To access the first value, we assign each register
to a default value. To present the complete semantics of the hardware-realization, we
describe the assignment of each output signal and register in each clock cycle t.

3.2.3. High-level Controller

The High-level Controller (HLC) receives the incoming events of the monitor, computes
the system time, and realizes the activation condition of each stream. Independent
of the specification, the HLC always consists of the same components, visualized in
Figure Before we go into detail through the single components, we first discuss the
general concept.
The HLC is designed as a pipeline architecture, which is synchronized by a shared
clock. The activation condition of a stream differentiates between periodic and event-
based stream, introduced in Section This behavior is reflected in the architecture »Sec. 3.1, P.[[7]
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with the two sides, event-based and periodic. Periodic streams, declared with a frequency,
are evaluated at fixed points in time. For this reason, one part of the HLC is finding
these time points, represented with the periodic side. The periodic side consists of
the TIMESELECT, computing the system time out of the frequency, and the SCHEDULER,
finding the fixed time points.

Event-based output streams are evaluated at non-fixed time steps, represented with
the event-based side. The specification bounds their activation condition of an event-
based output stream at the incoming event. For this reason, receiving incoming events
is covered on this side with the ExtINTERFACE. The incoming events and the system time
are forwarded to the EvenTDELAY, which annotates the event with this timestamp. The
HLQINTERFACE receives the output from the EveNTDELAY and the ScHEDULER, decide
which streams need to be activated, and forwards this information to the QUEUE.

Remark 3.2.2. We describe the semantics of each component individually to describe the
behavior of the monitor in general. We define the assignment of each signal and register in
each clock cycle and use the input signals described in the corresponding figures.

Time Select

The TiMeSELECT computes the system time from the input clock frequency. For this
computation, the component uses an internal register reg_its, storing the current system
time, starting with zero. In each clock cycle, the component adds the internal clock rate
£ to the previous value, resulting in the system time. The output wire its contains the
same value as the register, which produces no delay.

Definition 19 (TimeSeLecT [14])
The TiMESELECT component is defined as:

reg_its® = 0°

t+1

reg_its'" = reg_itst +&=(t+1)%¢&

its' = reg_its’

Scheduler

The task of the ScHEDULER is to find the fix points in time when the periodic streams are
evaluated. First, we declare a bit vector with the register did. This bit vector is a unary
encoding, for the current position in the hyper-period. This position is corresponds
to a deadline (Section . In the first clock cycle, we assign the last position to
1, representing the first deadline. If a deadline is due, we perform a cyclic shift by
one position. This shift represents the next deadline in the hyper-period. Because
the hyper-period is probably smaller than the execution time and we need to find all
critical points in time for period streams, we declare the register period. This register
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is initialized with 0. In case that the system time is greater than the hyper-period, we
add the hyper-period to the previous value of period. This creates the invariant that the
difference between this register and the system time its describes the current position in
the hyper-period. To represent the arrival of a deadline, we use the progress signal prog.
This register compares the current position of the hyper-period against the entry in the
static defined deadline array dl. This array contains for each deadline did an entry o044,
such that og;q is the duration until deadline did is due in the hyper-period. With this
approach, we can find all relevant periodic timestamps with finite memory.

Definition 20 (ScHEDULER [14]))
The ScHEDULER is formally defined as:

| rafe=1
1nit =

0 otherwise
did® = 0"

10*d=1 if jnjtt!

did"™! =3 csr(did!) if —init't! A prog'*!

did! otherwise
period? = 0¥
0 if initt*!

period'*! = period’ + T if did! = 0%¥*11 A prog'*!
period’ otherwise
prog'*! = did" = 0% A (its'*! - period') > dl(did")
dl' = its' o did’
valid_dI' = ﬂprogt

In the definition, csr is a function which performs a cyclic shift, and dl is the statically
defined offset array.

Extlnterface

The ExTINTERFACE receives the incoming event to the monitor. To decide if the current
data on data_in is a new event, the monitor and the monitored system use a shared
register avail. If the system assigns the register to 1, the ExrINTERFACE forwards the data
stored in data_in to the EveNTtDELAY. Additionally, the component clears the avail bit,
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indicating that a new input event can be received. To forward an event, the component
assigns the output signal ev to data_in and to zero otherwise. To signalize a valid event,
i.e. a component interprets the values on the wires as an event, we use the signal valid_ev.
This signal is assigned to the avail storing this information.

Definition 21 (ExtINTERFACE [14]))

Def. EXTINTERFACE The ExTINTERFACE is defined as:
ev? = oL
dinf if avail?
eVt+1 —
Lyt )
0™t otherwise
avail’ = 0
_ 1 if external’ A —avail*
avail'™™ =

0 otherwise

valid_ev® =0

1

valid_ev't! = avail®

In the definition, the signal external® is an oracle. It represents the input of the monitored
system if the current data expresses a new event.

EventDelay

The EvenTDELAY annotates the forwarded event with the current system time computed
by the TimeSeLECT. The LLC uses the time annotation to decide which stream values are
part of which window. Therefore, we assign the output signal to the input signals.

Definition 22 (EventDELAY [14]))
Def. EventDELAY The EvenTDELAY is defines as:

tev! = valid_ev' o its' o ev!

HLQInterface

The HLQINTERFACE unions the periodic and the event-based side of the HLC. For this
reason, it receives the ID of the current deadline as well as the annotated event. In both
cases, the input contains the corresponding timestamp. The component then decides
which streams are affected by the current data. Afterward, it pushes this information
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as well as the input data to the queue. The union between the periodic side and the
event-base side results in a problem, because of the possibility that a deadline, as well
as an event, arrives in the same clock cycle of the HLC. The HLQINTERFACE is only
able to push one input value to the Queue in one clock cycle. However, if we unite
the information from the ScHEDULER and the EvENTDELAY, we change the semantics
of the monitor realization. If the component only pushed the information caused by
the deadline, the information about the event is lost in the next clock cycle, which
also changes the semantics. To solve this issue, we change the clock frequency of the
HLQINTERFACE, Which ticks twice as fast as the other components in the HLC. With
this adaption, the HLQINTERFACE pushes the event and the deadline separately, without
losing any information.

The output of the HLQINTERFACE is divided into the data bits and the push bits. To
present the output signal assignment formally, we separate the tasks in event and odd
clock cycles.

In event clock cycles, the HLQINTERFACE interprets the output of the EvENTDELAY.

For this, it pushes the value on the data signal to the queue iff the input is valid_ev
is 1. The first tev bits represent the event from the EventDELAY. The last bits assign
the output streams to their activation condition results. We use for event-based clock
cycles a static array dep of size n', where each element dep(i) is of size n'. These
elements encode the dependencies between output streams and input streams, i.e. the

bit dep(7)(j), is assigned to one, iff the output stream s} has a transitive dependency to sj.

The HLQINTERFACE combines the encoding with the current input, resulting in the bit
representation in which output streams need to be evaluated.

Definition 23 (HLQINTERFACE (Even Clock Cycles) [14])
Even clock cycles of the HLQINTERFACE are defines as:

push’ = valid_ev'

nt i
data' =ev' o /\ (—|dep(i) \Y (evt[ Z(sj +1)- 1])nT)
i=1 j=1

The static array dep is defined as:

1 ifste dep 1
dep(i)(j) = L
0 otherwise

Intuitively, the combination encodes the following constraint: If a stream s}, depends
on input stream sf, then s} is evaluated if sf is contained in the current event. Because

s]T. might depend on several inputs, we need to check if all streams are updated. For
clarification, we show an example:
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Example 3.2.1 (Encoding of the Deadline Array). Consider the following example:

input a : Int8
input b : Int8
output ¢ : Int8
output d : Int8 :

a+3
b + 4
output e : Int8 := e +d

The specification results in the dependency array dep:
* dep(sy) = 101
* dep(s;) =011
With the input updating only a, the realization combines:
(ﬁdep(s%)) V111)A (ﬂdep(si) v 000)
=(010Vv 111) A(100V 000)
=100
A

Remark 3.2.3. In the original encoding, there is a bug in the combination between dep and
ev. In this thesis, this bug is fixed by the previous assignment.

In odd clock cycles the HLQINTERFACE interprets the output of the ScHEDULER. Because
input streams are always event-based, the data bits for the input events are assigned to
zero. The component inherits the timestamps from the ScuepuLer. To decide which
periodic streams the evaluation cycle updates, the realization uses the lookup table
dl_target, which takes as input the current deadline id, and returns an encoding of the
affected streams.

Definition 24 (HLQInTERFACE (Odd Clock Cycles) [14]])
Even clock cycles of the HLQINTERFACE are defined as:

push’ = valid_dI'

data’ = 0L6i*1) o dI'[... 5] o dl_target(dI[ss...])

PreScale

The previous paragraph explains the need for two clocks in the HLC. The PREScALE real-
izes this logic and computes a slower sclk clock out of the hclk. The architecture assigns
the sclk to the ScHEDULER, the ExTINTERFACE, and the EvENTDELAY. The HLQINTERFACE
uses the faster clock hclk. The TIMESELECT component uses the system clock to compute
the system time. Figure [3.8/does not present these wires for better readability.
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Figure 3.9.: Representation of the general structure of the Low-level Controller [[14].

Remark 3.2.4 (Online / Offline Monitoring). Baumeister et al. [14|] describe a hardware
realization, which is capable of offline and online monitoring. Intuitively, the difference
between online and offline monitoring is the used timestamp. Online monitoring is an
analysis during the execution of the monitored system. As timestamps, the monitor uses the
system time and assumes that between two clock cycles of the HLC at most one deadline is
reached. Offline monitoring is a post-run analysis, where the monitored system produces a
log file during its execution. To validate the timing constraint, the monitor used the time
stamps annotated in the log file. Because the monitor does not receive a continuous-time
signal, the previous assumption is not appropriate. As a consequence, the HLC also needs to
handle two consecutive deadlines between two incoming events. This results in a buffering
in the EVENTDELAY component. Because the overall goal is the integration of a hardware
board monitoring a UAV during its execution, we do not introduce the realization of offline
monitoring.

3.2.4. Low-level Controller

The Low-level Controller (LLC) pops the elements from the queue and evaluates the
streams with the current input. Figure represents the general architecture of the
LLC. In general, the LLC consists of the LLOINTERFACE and the EvALCONTROLLER. As the
HLQINTERFACE, the LLQINTERFACE coordinates the communication with the Queue. It
checks if the Queut has available data and raises the pop signal if the EvALCONTROLLER
is ready to receive a new incoming event. The EvarCoNTROLLER then realizes the
underlying stream evaluation and contains a state machine and for each stream and
sliding window a single entity. The state machine enables the stream and sliding window
entities based on their evaluation order. These entities wait on this enable signal and
perform the updates. Output stream entities in comparison to input stream entities
contain two enable signals, one for the pseudo evaluation and one for the expression
evaluation. Similar sliding window entities have three input enable signals: The first
one, the signal evict, enables the check for the affection of the current timestamp on the
bucket approach. The second enable signal upd update the buckets, with the current
input, and the last enable signal request requests the result of the aggregation function.
A more detailed description of the single entities is presented in the next paragraphs.
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Figure 3.10.: Representation of the state machine in the LLQINTERFACE [14].
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Figure 3.11.: Representation of the state machine in the EvALCONTROLLER [14].

LLQInterface

Figure [3.10|represents the realization of the communication between the LLC and the
Queue with a moore machine. Starting with the idle state, the LLQINTERFACE pops the
elements from the QUEUE as soon as they are available. To access the value, it checks the
empty signal and performs the transition to the pop state. In this state the LLQINTERFACE
sets the pop signal to 1 for one clock cycle and goes to the eval state. This state disables
the pop signal and enables the een starting the evaluation cycle of the EvaLuaTor. As
soon as the evaluation cycle finishes, the state machine goes to the idle state if the
Queut is empty and the pop state otherwise. The end of the evaluation cycle is identified
by the een signal. The hardware realization of this state machine is a lookup table
realizing a function that performs the transitions and output values.

42



3.2. HARDWARE COMPILATION

EvalController

The EvarCoNTROLLER implements the evaluation order from Section As the LLQIN-  >Sec.3.1,P.

TERFACE, this component is realized as a Moore state machine, represented in Figure
In comparison to Figure the number of states depends on the specification, more
concrete on A"™?*. The state machine waits on a rising edge of the een, set by the LLQIN-
TERFACE. With this transition, the state machine starts the evaluation cycle of the current
input. Starting with the state 1, each state realizes one layer in the evaluation. Therefore,
the output signals of each state represent the enable signal for the stream and sliding
window entities. The first state 1 corresponds to the input update and pseudo-evaluation
phase. For this, the output enables all input streams, which are part of the current
event, and all output streams satisfying their activation conditions. This information is
encoded in the queue output, as described in Section Additionally, by receiving
the current timestamp, the state machine enables the evict,, signals of all sliding window
entities. Then, the EvALCONTROLLER waits on a rising edge of done; indicating that each
affected entity performed its update. Formally,

Definition 25 (EvaLCoNTROLLER Layer 0)
The first state 1 assigns the output signals upd;, pe;j, and evict,, to:

Vi<nt: upd; = din[Z(sn +1)]

n<i
Vj< nl: pej = din[Z(Si +1)+55+ 7]
VY <n": evict, =1

The signal done, is assigned to:

done; :(A upd, = done,')/\( /\pej = donej)/\ /\ done,

i<nl j<n! n=n’

Remark 3.2.5. Note that the used implication ensures that only the done signals of the enable
entities need to be set. For the disabled streams, this information is irrelevant.

The following states 2.1 to 2. A™** implement the rest of the evaluation order. De-
pending on the current layer x, the state machine starts the evaluation of output streams,
the update of a sliding window, and the request of a sliding window. The update of a

sliding window has to be performed after the update or evaluation of the target stream.
The request signal has to be enabled if the source stream is affected by the current event.

Afterward, it waits on the rising edge of done, before proceeding to the next layer.
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Figure 3.12.: Representation of input stream, output stream, and sliding window com-
ponents [14].

Definition 26 (EvaLCoNTROLLER Layer 1 to A"¥)

Def. The states 2.x assign the output signals eval;, and udp,; to:
EvALCONTROLLER
Layer 1 to A™aX

eval; = j € Layer(x) A din[Z(Si + 1)+ s+ 7]
upd,7 = doutm(,]) [Star(n)]
req, = din[Z(Si + 1)+ s+ Ssrc(q)]

The signal done, is assigned to:

done, ,
:(/\ eval; = donej)/\( /\ udp, = done,])/\( /\ req, = doneﬂ)
j<nl n<n¥ n<n¥

The last transition from 2. A"** to idle ends the evaluation process by disabling een.

Input Stream Entities

The general structure of input stream entities is represented in Figure In these

entities, we store the input values, which are accessed by stream expressions. To store

»Sec. 3.1, P24 all values, we use K(sj) registers, where « is the storage requirement from Section
With the rising edge of the upd signal, the current stream values are shifted, and the
input value is set to the current value. To indicate that an offset value is not yet available,
we use an additional bit in each register. In the beginning, this bit is assigned to zero,
indicating a lookup fail. With each update, this bit is assigned to one. Therefore, with
the shift operations, the unavailable values are deleted.
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Definition 27 (INPUTSTREAMS [14])
With the rising edge of udp; the input streams perform the following assignments:

done' = upd'
RB[ — 05i+1
R/, if upd™! An = x(s;)
R ={ R if —upd*!

dip ' ol if upd™*! An=x(s;)
douto — 0K(i)'(5,»+1)

dyy ! = Rio-o Rfc(si)

Output Streams Entities

The input and output signals of output stream components are represented in Fig-
ure[3.12] An output stream component implements an output stream in the specification.
As input stream components, these entities store the values accessed by other streams.
However, in comparison to input streams, these values need to be computed with the
stream expressions. For this computation, the entity receives for each stream lookup the
current value as well as the addition bit, indicating a lookup fail. Window expressions
are outsourced in separate components. As a consequence, their values are also received
as inputs.

The implementation of output streams is separated into two phases, the pseudo-
evaluation (Section EI), and the evaluation. Both phases are introduced with their
corresponding enable signals. As input streams, the pseudo evaluation shifts the offset
values. The current value is assigned to a default value 1, which will never be accessed
by the output streams, because of the evaluation order (Section .

Definition 28 (OutpurSTREAMS Pseudo Evaluation)
With the rising edge on the pe, output stream entities perform the following assign-
ments:

done' = pe

L if n=x(j)
Rt

n+1

t+1 _
R, = ‘
otherwise

oy = 050 (57+1)
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doutt+1 — Ri O+++0 Rf{(s])

The second phase is introduced with a rising edge from the eval; signal. In this
phase, the stream is evaluated based on the evaluation order such that all dependent
streams and sliding window lookups are updated beforehand. The result from the
stream evaluation replaces the default value | from the pseudo evaluation.

Definition 29 (OurrurStrREAMS Evaluation)
With the rising edge on eval, output stream entities perform the following assign-
ments, where the result of the stream expression is represented with evalexpr(;j):

done' = eval'
evalexpr(j)o1 if eval't! An=«(j)

Rt

n

t+1 _
R, = _
otherwise

doutt+1 - Ri O+++0 R;(S])

Remark 3.2.6. The evaluation of the stream expression can be separated into several clock
cycles to increase the clock frequency. This adaption has an impact on the evaluation order
such that the done needs to be set after completing the evaluation.

Sliding Windows Entities

Sliding window lookups are in this hardware-based approach outsourced to separate
entities. Recap, sliding windows can be realized with finite memory if we restrict the
aggregation function to list homomorphism and use the bucket approach (Section EI)
The input and output signals are represented in Figure The realization of sliding
windows differentiates three phases, introduced by their enable signals.

The first phase starts with the rising edge on the evict signal. In this phase, the
component decides if a bucket is outdated. Therefore, it uses the internal register T,
holding the timestamp when a new bucket has to be created. The single buckets are
represented with the § internal registers R, where f is the number of needed buckets.
If the current timestamp is greater than the value in T, the component creates a new
bucket, which is initialized with the neutral element ¢ and shifts the other buckets.
Thereby, the outdated bucket gets deleted. Additionally, the timestamp is updated by
adding the period p,, the inverse of the extend frequency of the source stream, to the
old value.
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Definition 30 (StipingWinpows Evict)
A sliding window component with § buckets and extension period 7, ! performs with  Def.

a rising edge of the evict signal the following assignments: }S;zli]zltNGWINDOWS

T = Ss

pe | T ifdpls]<T
T' +p, otherwise

done® = 0
done'™ =dj,[...s;] < T*
Rg =¢

€ ifn=BAdp[...51]>T!
R£1+1 — Rt

n+1

if nzpfAdil...55] > T
Rfl lf din[-- 'Sts] < Tt

The second part is introduced if the target stream of the sliding window is updated.
In this case, the bucket pre-aggregations also needs to update its value. The decision,
when updates are performed, is outsourced to the state machine in the EVALCONTROLLER,
which sets the udp,. With a rising edge of this enable signal, the component updates
the last bucket entry with the current input. For this, the input value is lifted to the
bucket representation with the map function and concatenated with the current entry
using the ® reduction.

Definition 31 (SLipingWinpows Update)

A sliding window component with g buckets and extension period 7, ! performs with  Def.

sl : : : . SLIDINGWINDOWS
a rising edge of the upd signal the following assignments: Update
R;;l = R}; ®map(dj,™!)

done' = upd'

The last phase is the request phase starting with the rising edge of req signal. In
this phase, the return value of the aggregation function is computed out of the pre-
aggregated buckets. Therefore, we combine all bucket entries with the binary operator
® and finalize the result afterward to get the return value.
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Figure 3.13.: Representation of the circuit described in Section m

Definition 32 (SLipingWiNDOWs Request)
A sliding window component with  buckets and extension period nﬁl performs with
a rising edge of the req signal the following assignments:

doutH—1 = ﬁn(Ri ®--® R;;)

to_ ot
done, , =rq

3.3. VHDL & FPGA

VHDL or VHSIC-HDL (Very High Speed Integrated Circuit Hardware Description Language)
is a hardware description language to describe logic circuits. For this, the language
describes the abstract behavior of the different digital components and their connections.
VHDL allows the developer to simulate the digital circuit and supports the generation of
a bitstream, which can be executed on a Field Programmable Gate Array (FPGA). This
last process is often called synthesis. Because of the simulation and the execution on
FPGAs, VHDL is extremely popular in the development of digital circuits. It helps to
find bugs in the design before its production, which reduces the cost of its development.
Additionally, the research can also analyze the timing behavior of the circuit.

Chapter describes a prototype implementation which compiles an RTLora specifica-
tion into VHDL code using the architecture from Section Afterward, the VHDL code is
synthesized on an FPGA to monitor a system with a hardware-based realization. This
thesis can not describe the full complexity of VHDL. Nevertheless, we want to give an
intuition about the general structure by describing the implementation of an example.

3.3.1. VHDL Example

Consider the design in Figure This component has three input signals d1, d2, and
d3, and one output signal res. The output signal is computed by combining the first two
input signals with a logical and. Then, we combine the result with the third input signal
using the xor gate. The computation is described mathematically as: res := (d; Ad,) ®ds.
The boolean operand table of the component is presented in Table
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1 entity sig_var is 1 entity sig_var is
2 port( 2 port(
3 dl, d2, d3: in std_logic; 3 dl, d2, d3: in std_logic;
4 res: out std_logic); 4 res: out std_logic);
5 end sig_var; 5 end sig_var;
6 6
7 architecture behv of sig_var is 7 architecture behv of sig_var is
8 8
9 begin 9 signal sig_s1: std_logic <= '0';
10 process(d1,d2,d3) 10 begin
11 variable var_s1: std_logic; 11 process(d1,d2,d3)
12 begin 12 begin
13 var_s1 := d1 and d2; 13 sig_s1 <= d1 and d2;
14 res <= var_s1 xor d3; 14 res <= sig_s1 xor d3;
15 end process; 15 end process;
16 end behv; 16 end behv;
(a) Sequential Execution (b) Parallel Execution

Figure 3.14.: VHDL code fragment for the circuit in Figure m

The realization of this circuit in VHDL is shown in Figure The implementation
starts with the keyword entity declaring the interface of the component (lines 1 -5). In
the first lines, the implementation assigns the component to a unique name comp. With
this name, other components in the digital design call the now defined component. This
allows the developer to split the digital design and the logic into single components,
which can be tested independently of each other. Additionally, the interface defines the
input and output signals of the entity and their corresponding types. In our example, all
signals are of type bool, but VHDL has a static type system, which allows us to assign bit-
vectors to their corresponding representation, e.g. a signed or unsigned interpretation.
During the simulation, type errors are reported helping to find bugs in the design. The
entity declaration is followed by the architecture. An architecture is a description
of the functionality of the model and contains the declaration of internal signals and
processes. Internal signals are usually registers which store their values until the next
assignment. In our example, we do not have internal signals, because the computation
has to be performed in one clock cycle. Processes implement the logic of the entity
by assigning the output signals to their defined values. In our case (lines 13 and 14),
we assign the result from d1 and d2 to a temporary variable and afterward the output
signal to temp xor d3. Variables are declared after the process keyword and can only be
accessed in the current process. In comparison to signal assignments that are assigned
parallelly, variable assignments are executed sequentially. The difference between
signals and variables is also manifested in the syntax of VHDL: The syntax for a signal
assignment is defined as <=, whereas for a variable assignment the syntax is :=.
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dp d, ds | res
0 0 0] O
0 0 1 1
0 1 0] O
0 1 1 1
1 0 0| O
1 0 1 1
1 1 0 1
1 1 1 0

Table 3.15.: Boolean operand table for res := (d| Ad,) ®d5.

do |

do [ LT

dy [ 1 L1 L[
resar | [ || L
ressig_ | L1 L |

Figure 3.16.: Representation of the execution of the entities in Figure A low value of
a signal represents the boolean value zero, whereas a high value represents
the value one. The signals d;, d,, and dj are input signals. The signal res,,,
represents the output signal of the entity in Figure and the signal

ressio represents the output of the entity in Figure
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dy
22 LUT
3

dy L MUX —— out
Flip-

rst
Flop

clk

Configuration Logic Block

Figure 3.17.: Representation of a CLB in an FPGA

To see the difference, we additionally implement the entity with a signal assignment
instead of a variable assignment, shown in Figure Then, we simulate the entities
with the input from the boolean operation table. The results are represented in Fig-
ure We see that the entities differ with the input 110, where the entity with the
variable assignments returns the expected value 1 and the other entity 0. Because signal
assignments are executed in parallel the output assignment uses the previous result of
temp, resulting in temp=1A1=1and out =061 =1.

3.3.2. FPGA

An FPGA is an integrated circuit, which is used to implement the logic of a digital
circuit. The logic of the circuit is described by a hardware description language, e.g.
VHDL or Verilog. In general, an FPGA consists of I/O pins, an interface to communicate
with the environment, configurable logic blocks (CLBs) [28, 29, 30|, the interface to
program the circuit, and interconnects to connect the CLBs. A CLB contains of a 4- or
6- bit lookup-table, a 1-bit flip-flop and a multiplexer, represented in Figure[3.17]The
lookup table contains a boolean operation table, which is the implementation of the
design. The flip flops are used to store specific values. Besides the lookup-table, the
synthesis of the hardware description language also programs the connections between
the CLBs. Based on the model of the FPGA, a CLB has 4 or 6 input bits for the lookup
tables. To implement logics with more than 4 or 6 inputs bits, the implementation uses
more CLBs. In hardware, all computations have to be performed in one clock cycle,
to return the correct result. Therefore, a long depth of a sequential structure slows
down the frequency of the computation. To increase the clock frequency, the synthesizer
tries to parallelize as many computations as possible. However, the first step of a fast
implementation is a parallel design of the hardware circuit.
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Chapter

Prototype

This chapter describes the general idea of our prototype, which compiles an RTLora
specification into synthesizable VHDL code. The implementation is based on the archi-
tecture from Section To get our resulting hardware monitor, we compile a separate
entity out of a template for each element in the hardware description.

The implementation itself is based on the STREaMLAB frameworkﬂ implemented in
the Rust programming languag STREAMLAB is a monitoring framework that inter-
prets incoming data with respect to an RTLora specification. Figure represents the
structure of the framework, including the prototype. STREAMLAB is separated into two
parts, the frontend, and the backends. The frontend first generates an intermediate rep-
resentation (IR) from a given RTLora specification. Part of the IR is the abstract syntax
tree (AST). Additionally, it contains the result of different analyzes on the specification,
e.g. the memory bound (Section . The interpreter, one of the backends, uses this
IR to compute the stream values for the incoming data. Our prototype, the compiler,
implements a new backend in the framework. It takes the IR from the frontend as input
and compiles for each element in the hardware description a separate VHDL file from a
template. These files can be synthesized into an FPGA resulting in a hardware-based
monitor. The monitor receives the input data and evaluates the streams.

One advantage of the new backend is the hardware-based approach. If possible,
hardware parallelizes computations without producing any overhead in comparison to a
software-based solution. Because of the modular structure of RTLora and the design of
the approach from Section most computations can be parallelized[14], e.g. streams
in the same evaluation layer have no execution order allowing for a parallel execution.
For this reason, the realization uses the advantage of hardware. Another difference
between the two backends is the interpretation and the compilation of the input. The
interpreter takes as input the IR and the incoming events and evaluates the stream in
the framework. As a result, the specification is only encoded as data. In comparison,

lstream-1ab.eu
2https://www.rust—lang.org
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Traceability

4. PROTOTYPE

RTLora d Interpreter
Specification Fronten P

FPGA
Monitor

Compiler VHDL Files —>

STREAMLAB Backends

Figure 4.1.: This figure is a representation of the general structure of the STREAMLAB
framework. STREaAMLAB takes an RTLotra specification as input. Then, the
frontend parses the input specification to an intermediate representation (IR)
and forwards this IR to a backend. The interpreter receives the monitored
data besides the IR and interprets them with the IR. The interpreter produces
output values for each stream in the specification. The compiler receives
only the IR from the frontend as input and produces VHDL code. This code
can then be synthesized to a monitor, which receives the monitored data
and produces the stream values.

the compiler takes as input only the IR and outputs VHDL files realizing the incoming
specification. To monitor the incoming events, these files need to be synthesized into an
FPGA, which evaluates the streams. With this approach, the specification is encoded
in code fragments instead of data fragments that can be described with specification-
specific annotations. If the compiler performs these annotations automatically, we call
this process a traceable compilation.

Traceability is part of the requirement-management for system engineering. Intu-
itively, it describes the relationship between the requirements and the realization during
the development phase. Usually, the development starts with defining requirements
for the system. These requirements are refined to requirements for the software and
hardware, which are afterward implemented and tested. To keep track that the system
requirements correspond to the product, we relate each refinement to the previous
generalization and vice versa, i.e. the system requirements with the software and hard-
ware requirements, the software and hardware requirements with the resulting code,
and the code fragments with the test benchmarks. With this approach, we can ensure
that no functionality is missed, but also no dead code or additional functionality is
added. We propose an additional step in which we describe the software and hard-
ware requirements as an RTLora specification. A specification is more abstract than
code, which simplifies the description of the relation between the components. In a
traceable compilations as our prototype, the compiler relates the specification with
the code fragments automatically, which produces no additional step. Concerning a
hardware-based monitoring approach, industrial companies [31] work on a solution
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to solve the certification challenge for FPGA solutions, which includes that up to the
hardware design each step needs to be traceable.

In our traceability compilation, we relate the RTLora specification with the compiled
VHDL code, and vice versa. This process helps to indicate that both encodings have the
same semantics. Intuitively, a specification defines requirements, e.g. the evaluation of
the stream expression or the activation condition. On the one hand, these requirements
need to be realized in the implementation. On the other hand, each code fragment needs
to be reflected in the specification to guarantee the same behavior. Depending on the
component, the relation between the specification and the realization is direct or indirect.
For example, the realization of a stream expression a + b has a direct connection to the
specification, whereas the computation of the system time, which is needed to evaluate
the timing constraints, has no direct connection to the specification.

To describe the connection between specification and realization, the compiler anno-
tates the code fragments with their direct connection to the specification. Consider the
following example:

--x ¢ @{a,b}

c_en <= a_en and b_en;

With this line, the VHDL monitor evaluates the activation condition of the output stream
output c : Int8 @a,b := a + b. In the specification, the corresponding part is described
by @{a,b}. To related these parts, we annotate the previous code line. In our prototype,
each code fragment of the compiled VHDL code is annotated with the corresponding
part in the specification. For specification specific annotation, the comments start with
--%, whereas general comments start with --. With these annotations, we visualize
the relation between the code fragments and their corresponding encoding part in the
specification, and document the code fragments. Additionally, we can understand the
VHDL code based on the annotations without knowing the implementation details.

4.1. Entity Structure

In our prototype, we compile the different entities from templates to realize the spec-
ification with a hardware-based monitor. The different templates contain variables
surrounded by the brackets {{ }}. These variables are placeholders that need to be
filled by the compiler because they depend on the specification. The realization of the
stream expression a + 3 is an example of such a code fragment. At compile time, we
receive the stream expression and build its realization, i.e. the placeholder for the stream
expression realization {{expr}} is replaced by:

--% temp_0 := a

temp_0 := a_o0;

--x temp_1 := b

temp_1 := b_0;

-—% temp_2 := a +b;

temp_2 := temp_0 + temp_T1;
updt := temp_2;
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1 architecture structural of name is
2 -- Component Declaration

3 ...

4 begin

5 -- Component Instantiation

7 end structural;

Figure 4.2.: Representation of the general structure of structural entities. Structural
entities realize the connection between the different elements. Therefore, the
architecture of these entities first declares the elements describing their in-
put and output signals. Afterward, instances of the elements are established
by connecting the input and output signals.

In our compilation, we differentiate between entities with a structural, behavioral, and
mixed architecture. Figure [4.2]represents the general architecture of structural entities.
They combine different elements of the monitor and consist of a component declaration
phase specifying the input and output signals and a component instantiation phase
mapping the input and output signals to concrete signals.

The general construction of a behavioral architectures is illustrated in Figure
Following the declaration, behavioral entities implement a new process to realize the
logic of the monitor. Processes in our implementation start with an if-condition to
separate the reset phase and the logic phase. The reset phase initializes all components to
their initial state, e.g. resetting the monitor time to zero, and assinging the statical arrays
to their statically known values, e.g. the deadline array from Section is assigned
to the global schedule for periodic streams. The logic phase of the behavioral entities is
started by a rising edge of the clock signal to synchronize the parallel execution of the
several entities. This phase realizes the logic for each component from Section e.g.
adding up the clock frequency to compute the system time.

The last kind of entities are mixed architecture entities. These are a combination of
structural and behavioral architectures and contain the declaration and instantiation
of different components as well as a process to implement new functionality for the
monitor.

4.2. Realization of Stream Types

The backend compiles every type to a corresponding numeric VHDL type from the ieee
library. Table presents all supported stream types and their corresponding VHDL
types.

In comparison to the STREaAMLAB interpreter, our prototype uses a fixpoint interpre-
tation instead of a floating point representation. Arithmetic operators with fixpoint
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16

19

architecture behavioral of name is
-- Internal Signal Declarations
signal register; : type;;

signal register, : type,;
begin
process(clk, rst) begin
if rst = '1' then
-- Reset Phase

elsif rising_edge(clk) then
-- Logic Phase
end if;
end process;
output; <= register;;

output,, <= registerj;
end behavioral;

Figure 4.3.: General structure of behavioral entities. Behavioral entities realize the logic

of the monitor by implementing a process. The parameters, which have
to be input signals of the entity, define the condition when to calculate
new values. The prototype separates the process into two phases, the reset
and the logic phase. VHDL uses internal signals to store values over several
cycles. After the process implementation, the specified code always maps
the output signals to internal signals.

Stream Value Type | VHDL Numeric Type

Bool | std_logic
Int8, Int16, Int32, Int64 | signed(u downto @), u €{8,16,32,64}
UInt8, UInt16,UInt32, UInt64 | unsigned(u downto @), u €{8,16,32,64}
Float16, Float32, Float64 | sfixed(u downto I), (u,l)€{(4,-11),(8,-23),(11,-52)}

Table 4.4.: Stream value types and their corresponding VHDL types.
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representations use the same operators as integer types, which are highly optimized.
The fixpoint representation in VHDL requires the bit range as parameter. In comparison
to an integer type, the lower bound of the range is a negative number instead of zero.
This representation uses the bits with a non-negative position for the integer part of the
input. The bits with a negative position define the bit range for the fractional part. To
interpret a bit vector b,,,,,... by as a real number of range n downto -m, we compute

Vb 2"+ ) b2+ ) by 2N

0<i<n 0<j<m
Based on this definition, we interpret the bit vector 011101 with range 2 downto -3 as:
011.101 =—1-(0-2%)+(1-2H+ (1- 29+ (1- 271 +(0-272) + (1-273)
1 1
=2+1+-+-
2 8

=3.625

4.3. High-Level Controller

The realization of the HLC follows the basic structure from Section The implemen-
tation of the HLC differentiates between periodic and event-based streams, utilizing the
same components. The periodic part computes the current system time of the monitor
with the TIMESELECT and passes it to the ScHEDULER. Then, the ScHEDULER decides if a
deadline of a periodic stream arrives, and notifies the HLQINTERFACE. The event-based
side receives the incoming events with the ExTINTERFACE and passes the parsed input
to the EvENTDELAY component. The realization is extended with a new component —
called CHeckNEwINPUT— to decide if the current input is a new incoming event. This
component waits on a rising edge of the new_input signal, such that the HLC pushes the
input values to the Queuk only if new values are received. Therefore, the output of this
component is an input of the EvENTDELAY, which uses this signal as the new incoming
event flag. The EVENTDELAY entity also receives the incoming event from the ExTINTER-
FACE and the system time from the TiMESELECT component. It annotates the input values
with the current timestamp and delays the incoming event. The HLQINTERFACE receives
the time-annotated event at the same clock cycle with the time-annotated deadline from
the ScuepuLer. Then, the HLQINTERFACE decides which streams are affected by the
deadline or the event. Additionally, the entity pushes the enable signals and data values
to the QUEUE.

4.3.1. TimeSelect

The process of the TIMESELECT entity computes the system time of the monitor in nano
seconds based on the system clock. For this computation, we use a behavioral architec-
ture which iteratively increases the time register in the logic phase. This computation
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is independent of the specification, so the compiler does not relate the entity with
the specification directly. For further details, Appendix presents the process
implementation of the TiMESELECT template.

4.3.2. The Scheduler Template

The ScHEDULER, presented in Figure receives the system time from the TiIMESELECT
entity as input signals and determines if a deadline of a periodic stream is due. For this
component, only the periodic streams of the specification are relevant, more concretely
their frequencies. These frequencies are needed to compute the hyper-period and the
offset array, as presented in Section To relate the offset array from the ScHEDULER
with the frequencies in the specification, the implementation starts with an annotation
containing the periodic streams of the specification. Additionally, the annotation vi-
sualizes the resulting hyper-period, and the offset array. To implement the logic, the
entity uses a behavioral architecture. In the reset phase, the implementation initializes
the array of fset_per_deadline realizing the offset array. For these initializations, the
compiler replaces the placeholder {{d1s}} with the VHDL code for these assignments.
To document them, we annotate this code fragment with the offset array which is the
corresponding part in the specification. In the logic phase, we determine the arrival
of a deadline by comparing the current system time against the timestamp of the next
deadline. In case of a deadline, we update the time of the next deadline with the static
offset array, update the ID of the deadline, and notify the HLQINTERFACE. By using the
static offset array, this code fragment is independent of the concrete specification.

In comparison to Section the output of the ScHEDULER does not contain the ID
of the deadline. Therefore, the HLQINTERFACE has to track this information by itself.
This design decision reduces the number of bits sent by the ScHEDULER, but introduces a
new register for the HLQINTERFACE. However, it does not change the semantics of the
realization.

Example 4.3.1 (Scheduler Realization). Consider the following specification:

input a : Int8

input b : Float16

output c : Float16 @2Hz := b.hold().defaults(to: 0.0) + 2.0
output d : Int8 @5Hz := a.aggregate(over: 2s, using: ) )
output e : Int8 := a.offset(by:-1).defaults(to:0) - 3
output f : Int8 :=e + b

To realize the timing schedule, the ScHEDULER uses the frequencies of the periodic
streams c and d. From the frequencies, we build the hyper-period and the offset array,
describing the time difference between the deadlines. To relate the schedule with the
specification, the compiler produces the following annotation on top of the file:

--x Periodic Streams in Specification:
-—% - C @2Hz

--% - d @5Hz

--* Hyper-Period: 1s

--x Offset Array in Seconds:
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1 --x Periodic Streams in Specification: {{periodic_streams}}
2 --% Hyper Period: {{hyper_period}}

3 --% Offset Array in Seconds: {{offset_array}}

4

5 -- Internal Signal Declarations

6 signal time_of_next_deadline : unsigned(63 downto 0);
7 signal offset_per_deadline

8 : unsigned64_array(({{size_dls}}-1) downto 0);

9 signal last_deadline_id : integer;

10

11 begin

12

13 process(clk, rst) begin
14 if (rst = '1') then

15 -- Reset Phase

16 time_of_next_deadline <= to_unsigned({{init_d1}}, 64);
17 last_deadline_id <= 0;

18 time_last_deadline <= (others => '0');

19 hit_deadline <= '0';

20 -- Initialization of the Deadline Offset Array

21 --x Offset Array in Seconds: {{offset_array}}

22 {{d1s}}

23 elsif (rising_edge(clk)) then

24 -- Logic Phase: Decision, if Arrival of a Deadline
25 if (time_in >= time_of_next_deadline) then

26 -- Deadline is reached

27 time_of_next_deadline <= time_of_next_deadline
28 + offset_per_deadline(last_deadline_id);

29 last_deadline_id <= (last_deadline_id + 1) mod {{size_dls}};
30 hit_deadline <= '1"';

31 time_last_deadline <= time_of_next_deadline;

32 else

33 -- No deadline is reached

34 hit_deadline <= '0';

35 end if;

36 end if;

37 end process;

Figure 4.5.: Template for the process in the SCHEDULER entity. The SCHEDULER realizes
the detection of deadlines for periodic streams. For these computations,
the compiler stores the timestamp with the arrival of the next deadline
and compares this value with the current system time. The prototype uses
an offset array compiled out of the input specification to compute these
timestamps.
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| --x |l 0.2 01 ]01]02]02]0e.2]||

In the reset phase, we initialize the array with the offsets computed from the frequen-
cies. To visualize the entries, we annotate the initialization with:

--% Initialization of the Deadline Offset Array

--*% Offset Array in Seconds:

-=x || 0.2 | 0.1 ] 0.1 | 0.2 | 0.2 | 0.2 ||

offset_per_deadline(@) <= to_unsigned(200000000, offset_per_deadline(@)'length);
offset_per_deadline(1) <= to_unsigned(100000000, offset_per_deadline(1)'length);
offset_per_deadline(2) <= to_unsigned(100000000, offset_per_deadline(2)'length);
offset_per_deadline(3) <= to_unsigned(200000000, offset_per_deadline(3)'length);
offset_per_deadline(4) <= to_unsigned(200000000, offset_per_deadline(4)'length);
offset_per_deadline(5) <= to_unsigned(200000000, offset_per_deadline(5)'length);

In the template, the place holder {{offset_array}} is replaced by the annotation and
the {{d1ls}} placeholder by the initialization assignments. The annotation are reflects
the offset array from the frequencies in the specification. We see that the code fragment
and the annotation are represented in the same way except for the time unit. The
RTLota specification uses seconds and the realization nano seconds. A

4.3.3. CheckNewlnput

When handling an incoming event, the monitor has to care about the freshness of the
event and update the stream values only once per incoming event. In the realization,
every signal can exclusively be set by the monitor or the monitored system. Conse-
quently, the ExTINTERFACE entity in the monitor cannot clear the new_input bit, set
by the monitored system from Section To solve this issue, the approach in the
realization requires the monitored system to unset the new_input bit for at least one
clock cycle before sending an event. This check is moved into a new component, the
CHeckNEwINPUT entity, which implements this check in the logic phase. This logic
is independent of the specification, such that the compiler performs no input specific
annotations. For further details, Appendixshows the behavioral architecture of
the template.

4.3.4. Extlnterface

This entity receives from the monitored system the input events as a bit-representation
and parses them to their VHDL numeric types. This information is encoded in the input
stream declaration of the specification. Therefore, the compiler annotates the entity
with these declarations on top of the file and additionally before each type-cast. This
guarantees that the prototype compiles the correct casts by relating the stream value
type with the VHDL numeric type. Figure presents the different conversions from
the bit-vector, received with the s'_in signal, to the corresponding numeric type. Note
that VHDL can infer the bit range for the signed and unsigned integer type. However, for
the fixed-point conversion, we have to define the bit range explicit for determining the

61

>Sec. 3.2, P32

= App. A.2, P[TT7]



> App. A.2, P[TT7]

4. PROTOTYPE

Stream Value Type | VHDL Type Cast

Bool | s'_out <= s'_in
Int8, Int16, Int32, Int64 | s'_out <= signed(s'_in)
UInt8, UInt16, UInt32, UInt64 | s'_out <= unsigned(s'_in)
Float16, Float32,Float64 | s'_out <= sfixed(s'_in, u, I)
(,1) € {(4,~11),(8,-23), (11,-52)}

Figure 4.6.: Stream value types and their corresponding type casts

number of integer bits and fractional bits. Appendix presents the template if you
are interested in the implemtation details.

Example 4.3.2 (ExtInterface Realization). The specification from Example contains
the input streams a and b. To relate the type conversion in the ExTINTERFACE With the
specification, we annotate the entity with the input streams and their corresponding
types. This results in the following annotation:

--%x Input Stream and their Types in the Specification
--x - input a : Int8
--x - input b : Float16

Additionally, we annotate each conversion separately with the corresponding stream
to relate the VHDL numeric type with the stream value type in the specification. For the
specification, the compiler produces the following code fragment for the logic phase:

--x input a : Int8

a_parsed <= signed(a_data_in);
a_push_delayed <= a_push_in;

--x input b : Float16

b_parsed <= sfixed(b_data_in, 4, -11);
b_push_delayed <= b_push_in;

4.3.5. EventDelay

The EvEnTDELAY annotates the events from the ExTINTERFACE with the current system
time and forwards the events to the HLQINTERFACE. To document this logic, we annotate
the entity with all input streams, to check if the implementation covers each input stream.
The implementation assigns in the logic phase the input signals to the corresponding
output signals if the CHeckNEwINPUT identifies a new event.
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process(clk, rst) begin

if (rst = '"1') then
-- Reset Phase
time <= (others => '0');
push <= '0"';
deadline_pos <= 0;
{{en_no_stream}}
clk_cycle_count <= 0;
-- Initialize Deadline Arrays
--* Deadline Array {{deadline_array}}
{{init_dl_arrays}}

elsif (rising_edge(clk)) then
clk_cycle_count <= (clk_cycle_count + 1) mod 4;

if next_deadline = '1' and clk_cycle_count = @ then
-- Deadline Handling
push <= '1';

deadline_pos <= (deadline_pos + 1) mod {{deadline_len}};
time <= time_in_periodic;
{{deadline_handling}}

elsif new_input_in = '1' next_deadline = '1' and clk_cycle_count = 2 then
-- Event Handling
push <= '1"';

time <= time_in_event;
{{event_handling}}

else
-- Enable No Stream
push <= '0';
{{en_no_stream}}

end if;

end if;
end process;

Figure 4.7.: Template for the process in the HLQINTERFACE entity. This component

decides on the one hand, which periodic output stream is affected by the
arrival of a deadline. On the other hand, it also decides which input streams
and event-based output streams are affected by an incoming event. For this
detection, the logic phase is divided into a deadline handling case and an
event handling case. The deadline handling case disables all event-based
streams and uses a deadline array for periodic streams. These arrays are
compiled out of the frequency and the hyper-period. In the event-based case,
the compiler uses the enable input signals to build the activation condition
for the input streams and the event-based output streams. The periodic
streams are disabled.
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4.3.6. HLQInterface

The HLQINTERFACE decides which streams are affected with an incoming event or the
arrival of a deadline. In the specification, the activation condition formulates this
logic. For this reason, the entity starts with the following lines to relate the activation
conditions of the specification with their realizations.

--x Streams and their Activation Conditions:

--%x Input Streams: {{input_streams}}

--x Event-based Output Streams: {{event_output_streams}}
--%x Periodic Output Streams: {{periodic_output_streams}}
--x Deadline Array: {{deadline_array}}

Dependent on the type of the stream, i.e. event-based or periodic, the realization of the
activation condition is different. For this reason, these comments group the streams in
input streams, event-based output streams and periodic output streams. Additionally, it
assigns each stream to its activation condition defined in the specification or inferred
by the StTrReamLaB frontend. The realization to evaluate the activation condition of
periodic streams uses the deadline array from Section which encodes the schedule
for periodic streams. To visualize this schedule, we annotate the component with the
array from the specification. Additionally, the HLQINTERFACE pushes the result of the
activation condition with the timestamp and the event data to the Queue. The LLC
then does not differentiate between periodic and event-based streams or the activation
condition in general.

Figure[4.7|shows the template with the behavioral architecture of the entity. Similar to
the SCHEDULER, the component uses the hyper-period from the different frequencies in
the specification to handle deadlines. The compiler builds for each periodic stream in the
specification an array, which maps each deadline to a boolean value. This boolean value
indicates if the stream has to be evaluated with the arrival of the current deadline. As the
offset array in the SCHEDULER, this array is initialized in the reset phase. To visualize the
entires, this code fragment is additionally annotated with the deadline array from the
specification. The template separates the logic phase into three parts: deadline handling,
event handling, and no stream enabling. These cases realize the different evaluation of the
activation condition by assigning the enable signals of the streams to their activation
conditions. The compiler annotates each assignment with the activation condition
encoded in the specification to document them. In the deadline case, periodic streams
are assigned to the current position in the deadline array, encoding their activation
condition. In this case, the incoming event is not handled and all event-based streams
are disabled. For the event-based part, the enable signal of input streams are mapped
to the corresponding bits in the incoming events, encoding their activation conditions.
For event-based output streams, the compiler inserts an expression, which represents
the conjunction for the evaluation of the activation condition. All periodic streams are
disabled in this case. In the else case, the HLQINTERFACE does not receive an event or a
deadline and disables all streams.

Depending on sending an event or a deadline, the interface uses the time of the
ScHEDULER or the EVENTDELAY as timestamp and pushes the time to the queue. Since
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the HLQINTERFACE has to send an incoming event and a deadline in one cycle of the
HLC, the HLQINTERFACE is assumed to tick four times as fast. In the first cycle, the
HLQInTERFACE handles the arrival of a deadline. In the second cycle, the HLQINTERFACE
has to unset the push signal of the queue. The third cycle then pushes the incoming
event to the queue, and the last one unsets the push signal again. Without disabling the
push signal, the clock cycles would not receive a rising edge of the push signal, that is
needed by the Queut to push the data.

Example 4.3.3 (Scheduler Realization). Consider again the specification in Exam-
ple @ with the input streams a and b, the periodic output streams c and d, as
well as the event-based output streams e and f. Depending on the type of the stream,
i.e. event-based or periodic, the realization of the activation condition is different. For
this reason, the compiler groups the stream and produces the following annotation after
the entity declaration:

--x Streams and their Activation Conditions:
--% Input Streams:

--% - a @{a}

--% - b @{b}

--x Event-based Output Streams:

--%x - e @{a}

--x - f @{a,b}

--x Periodic Output Streams:

--% - C @2Hz

--x - d @5Hz

--x Deadline Array:

——x ||d]cld]cld]cld]c dll

The evaluation of the activation condition for periodic streams is realized with the global
schedule encoded by the deadline array. To document the initialization of this schedule
in the reset phase, the compiler visualizes the deadline array of the specification with an
annotation. This results in the following initialization:

--% Initialization of the Deadline Arrays
--x Deadline Array:

-—=x ||d]d]c|d|d]c, d]
c_deadline_array(@) <= '0';
c_deadline_array(1) <= '0';
c_deadline_array(2) <= '1';
c_deadline_array(3) <= '0';
c_deadline_array(4) <= '0';
c_deadline_array(5) <= '1';

d_deadline_array(@) <= '1';
d_deadline_array(1) <= '1';
d_deadline_array(2) <= '0';
d_deadline_array(3) <= '1';
d_deadline_array(4) <= '1';
d_deadline_array(5) <= '1';
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We see that the code fragment initializes the same array as the annotation, with the
difference that the realization uses a bit array to indicate if a periodic stream is part
of the current deadline. In the deadline handling phase, we then assign the periodic
streams to the current value in the bit array encoding the schedule and disable all
event-based streams. To relate and visualize these assignments with the corresponding
part in the specification, we annotate them with the activation condition. This results in
the following code fragment for the deadline handling.

--% a @{a}

a_en_push <= '0';

--x b @{b}

b_en_push <= '0';

--% c @2Hz

c_en_push <= c_deadline_array(deadline_pos);
--x d @5Hz

d_en_push <= d_deadline_array(deadline_pos);
--% e @{a}

e_en_push <= '0';

--*% f @{a, b}

f_en_push <= '0"';

We see that all periodic streams are assigned to the schedule whereas the event-based
streams are disabled. For the event-handling, the prototype assigns the input streams to
the enable signal from the incoming events. The event-based output signals are assigned
to the encoding of their activation condition, and periodic streams are disabled. As
for the periodic handling, the compiler annotates each assignment. This results in the
following code fragment for the event-based handling:

--x a @{a}
a_en_push <= a_en;
--x b @{b}
b_en_push <= b_en;
--% Cc @2Hz
c_en_push <= '0"';
--x d @5Hz
d_en_push <= '0';
--% e @{a}
e_en_push <= a_en;
--x f @{a, b}
f_en_push <= a_en and b_en;

4.3.7. High-level Controller

The top element of the HLC is an entity with a mixed architecture. With the previously
described changes, the entity contains the single components of the HLC and maps their
input and output signals. Additionally, it contains a new process which slows down
the input clock for the ScHEDULER, the EXTINTERFACE, the CHECKNEWINPUT, and the
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EventDELAY. Appendix represents the process template for the HLC, if you are
interested in the implementation details.

4.4, Low-Level Controller

The structure of the Low-Level Controller (LLC) in the realization is the same as in Sec-
tion The LLC contains LLQINTERFACE with the state machine to pop the values from
the queue. Additionally, the LLC contains a component which provides a single entity for
each stream and sliding window in the specification. This entity is called the EvaLuaror
in the realization and also implements the state machine in the EvaALCoNTROLLER With
the mixed architecture. As in Section[3.2] the EvaLuATOR in the realization receives the
information which streams have to be updated with the current input values. The single
timing issue of the EvaLuarTor is the evaluation order of the specification. The following
sections describe the LLC templates, starting with the compilation of input streams.

4.4.1. Input Streams

The prototype compiles a new component for each input stream s' in the specification.
This entity receives the input data from the HLQINTERFACE and provides the accessed
offset values to the output streams. The specification encodes the information of the
value type in the input stream declaration. The storage requirement for a stream is
inferred from the dependency graph, as shown in Section @ For valid RTLora
specifications, the storage requirement for each stream is finite and statically known.
Therefore during the compilation, the compiler builds an array storing all accessed
values. To relate this array, i.e. the numeric type and the size, with the specification, the
entity starts with:

--x Input Stream: {{input_stream}}
--*% Input Dependencies: {{input_dependencies_in_dg}}
--% Storage Requirement: {{storage_requirement}}

The first line annotates the entity with the input stream declaration to relate the value
type of the stream with the VHDL numeric type for each entry in the array. The second
line annotates the realization with the input edges for this stream in the dependency
graph, followed by the resulting storage requirement. This relates the specification with
the size of the array to guarantee that the implementation covers all lookups.

The implementation of the process in input stream entities is nearly independent
of the value type and the storage requirement of the current input stream. Figure
presents the process in the behavioral architecture. In the reset phase, the process assigns
each signal to its default value and prepares the entity for the next input. Additionally,
it assigns all lookups to invalid such that default expressions take the default value,
because the stream lookup fails. The logic phase performs the update when receiving
a new event. In this case, the entity shifts the data array by one and adds the current
event value in the first position. Additionally, the phase marks the current input as
valid. Because of the parallel execution of hardware, this shift produces no overhead
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architecture behavioral of {{name}}_entity is
-- Internal Signal Declarations
signal data : {{array_ty}};
signal data_valid : bit_array({{array_size}} downto 0);
signal done : std_logic;
begin
process (clk, rst) begin
if (rst="1") then
-- Reset Phase
done <= '0';
data(data'high downto @) <= {{array_default}};
d_valid(d_valid'high downto @) <= (others => '0');
elsif (rising_edge(clk)) then
-- Logic Phase
if (upd='1' and done = '@') then
-- Register Update
data <= data(data'high-1 downto @) & d_in;
d_valid <= d_valid(d_valid'high-1 downto @) & '1';
done <= '1';
elsif (upd='0') then
-- Reset done Signals
done <= '0';
end if;
end if;
end process;
-- Mapping: Register to Output Wires
d_out <= data;
d_valid_out <= d_valid;
done_out <= done;
end behavioral;

Figure 4.8.: Template for input stream entities. The LLC builds for each input stream

in the specification a new entity out of the template. The logic phase of
this entity updates the stream values with the incoming events. The output
of the entity is a data array of size n, with the last n stream values. The
compiler determines the size of the array from the dependency graph.
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compared to a ring buffer implementation. After the EvaLuartor has updated all streams,
the EvaLuaror disables all update signals, and the input stream entity prepares for the
next event.

Example 4.4.1 (Input Stream Realization). Consider the input stream a in the specifi-
cation from Example The compiler creates the following annotation and entity
declaration for this input stream:

--x Input Stream: input a : Int8
--x Input Dependencies:
--% Stream Lookups:
-—% - e: -1
--x Window Lookups:
--x - d: (2s, sum)
--x Storage Requirement: 2
entity a_input_stream_entity is
port (
clk,rst : in std_logic;
upd : in std_logic;
d_in : in signed(7 downto 0);
d_out : out signed8_array(1 downto 0);
d_valid_out : out bit_array(1 downto 0);
done_out : out std_logic
);

end a_input_stream_entity;

The first annotation defines the corresponding input stream declaration in the specifi-
cation for the input stream entity. The declaration contains the value type Int8 of the
stream which is realized with the VHDL numeric type signed(7 downto @). Therefore,
the input signal d_in representing the value for an incoming event is declared with the
VHDL numeric type. The output signal with the current stream values provided to the
other streams is declared with the array type signed8_array(1 downto 0). Each entry
of the array is of the same numeric type signed(7 downto 0), which is also documented
by the stream declaration. The size of the array is related to the storage requirement of
the stream. For this reason, the compiler annotates the input stream realization with the
incoming edges in the dependency graph and the resulting storage requirement of the
stream. A

4.4.2. Output Streams

Similar to input streams, we compile for each output stream s’ in the specification,
a single entity. Because the HLC computes the timing of the streams, the LLC does
not differentiate between periodic streams and event-based streams anymore. In both
cases, the compiler uses the same template which follows the same structure. An output
stream entity evaluates the stream expression and provides the stream values to output
streams. As for input streams, the value type of the stream is encoded with the output
stream declaration, and the number of accessed values is inferred from the dependency
graph. Output stream entities start with the following annotations:
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Figure 4.9.: Template for the process in output stream entities. The LLC builds for
each output stream in the specification a new object out of the template.
These entities realize the stream expressions and store the n stream values
based on their memorization bound. The logic phase is separated into three
phases: The first one performs the pseudo evaluation and shifts the stream
values by one. The second phase updates the stream value by realizing the
stream expression. The last step then prepares the entity by resetting the

process (clk, rst)
-- Temporal Variables
{{temporaries_declaration}}
variable updt : {{ty}} := {{default_init}};
begin
if (rst='1") then
-- Reset Phase
data(data'high downto @) <= {{default_array}};
d_valid(d_valid'high downto @) <= (others => '0');
pe_done <= 'Q';
evaluate_fired <= '0';
elsif (rising_edge(clk)) then
-- Logic Phase
if (pe = '1' and pe_done = '@') then
-- Pseudo Evaluation
data <= data(data'high-1 downto @) & {{default_value}};
d_valid <= d_valid(d_valid'high-1 downto @) & '0';
shift_done <= '1"';

elsif (eval = '1' and eval_done = '@') then
-- Evaluation
{{expr}}

-- Register update
data(@) <= updt;
d_valid(e) <= '1';
eval_done <= '1';

elsif (pe = '@' and eval = '0') then
-- Reset done Signals
pe_done <= 'Q';
eval_done <= '0';

end if;

end process;

done signals.
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--% Qutput Stream: {{output_stream}}

--x Input Dependencies: {{input_dependencies_in_dg}}
--% Storage Requirement: {{storage_requirement}}

--x Qutput Dependencies: {{output_dependencies_in_dg}}

The first three annotations are the same as the annotations in input stream entities. The
first line relates the stream value type with the VHDL numeric type, and the second and
third annotations relate the storage requirement of the specification with the size of the
data array in the realization. The new line visualizes the outgoing dependencies in the
dependency graph for the current output stream. These edges represent all lookups that
are used in the evaluation of the stream expression. For the stream evaluation, the entity
in the realization receives these values as input signals. The annotation contains the
offset value as well as the corresponding value type and documents the input signals for
the output stream entity. Note that sliding window lookups are outsourced to a separate
entity as in Section |3.2|and this lookup value is also received as an input signal.

The template for the process realization in the behavioral architecture is represented in
Figure As for input streams, the reset phase initializes the signals with their default
values, declares all output values as invalid, and prepares the process for the next input.
The logic phase in output stream entities is separated in three cases. The first one is the
pseudo evaluation, as described in Section The realization for this phase is similar
to the update case in input stream entities. The implementation shifts the data array,
which evicts the last entry and fills the first position with a pseudo value, which is never
accessed because of the evaluation order. The second case is the evaluation of the stream.
The backend compiles out of the stream expression VHDL code with the same behavior.
During this expression computation, the realization uses variable assignments instead
of signal assignments, which are evaluated sequentially. This increases the depth of the
resulting circuit and slows done the clock signal. Because of this sequential execution,
we can evaluate a stream expression in one clock cycle and do not have to separate the
computation in several cycles. The compiler uses the intermediate representation of a
stream expression and assigns each subexpression to a temporary variable. To relate
these assignments with the stream expression in the specification, we annotate each
temporary variable, with the corresponding subexpression in the specification. If you
are interested in the realization of the stream expressions, Appendix describes in
detail how to compile the VHDL code from the stream expression in the specification. The
last line of this compiled code fragment assigns the latest temporary variable containing
the full expression to the updt variable. The last case prepares the stream entity for the
next event, similar to input stream entities.

Example 4.4.2 (Output Stream Realization). Consider the output stream e in the speci-
fication from Example The compiler compiles the following annotation and entity
declaration for this output stream:

-—% Qutput Stream: output e : Float16 := a.offset(by: -1).defaults(to:0) -3
--*% Input Dependencies:

--x Stream Lookups:

--%x - f: 0
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--% Storage Requirement: 1
--x Qutput Dependencies:
--x - a of Type Int8 : -1
entity e_output_stream_entity is
port (
clk,rst : in std_logic;
pe, eval : in std_logic;
a_negl : in signed(7 downto 0);
a_valid_negl : in std_logic;
d_out : out signed8_array(@ downto 0);
d_valid_out : out bit_array(@ downto 0);
pe_done_out : out std_logic;
eval_done_out : out std_logic;
)5

end e_output_stream_entity;

The first annotation defines the corresponding stream declaration in the specification.
This relates the value type of the stream with the used VHDL type. The second and third
annotations describe the storage requirement for the stream, which is realized with the
size of the data array. These are the same annotations as for input streams. The last
annotation describes the outgoing edges in the dependency graph. In our example, the
stream expression a.offset(by: -1).defaults(to:0) - 3 accesses the previous value
of the input stream a. This value as well as a bit indicating if the lookup is valid are
represented with the input signals a_neg1 and a_neg1_valid. To document the type of
these signals, we annotate each lookup with the corresponding VHDL type.

The prototype compiles the realization of stream expression and fills this code frag-
ment at the {{expr}} placeholder. In our example, the stream expression is realized
as:

--*% temp_0 := a.offset(by:-1)

temp_0 := a_negl;

--% temp_1 := @

temp_1 := 1;

--x temp_2 := a.offset(by: -1).defaults(to: 0)
temp_2 := sel(temp_0, temp_1, a_valid_negl);

--x temp_3 := 3

temp_3 := 3;

--x temp_4 := a.offset(by:-1).defaults(to: @) + 3
temp_4 := temp_2 + temp_3

updt := temp_4

We assign each subexpression to a temporary variable and document these expressions
with the corresponding part in the specification. A

4.4.3. Sliding Windows

A sliding window expression aggregates with a function y over all values of a stream
s inside a specific period. For an efficient evaluation of sliding windows, we use the
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bucket approach from Section This evaluation model restricts the aggregation
function y to list homomorphism. Recap, a list homomorphism y : A* — B consists of
an unary map map,, : A — T and a finalization fin, : T — B function, an associative
binary reduction ®,, : T x T — T and a neutral element ¢,. It allows splitting the
computation of a sliding window into sub-aggregations, represented by the buckets.
Because a sliding window expression appears only in a periodic stream with a fixed
frequency, the compiler computes the number of buckets out of the frequency of the
source stream and the duration of the window.

A sliding window entity in the realization, pre-aggregates the entries of the buckets
for each incoming event and return the result if requested. In the specification, this is
all encoded with the single sliding window expression. To relate a sliding window entity
in the realization with the corresponding part in the specification we annotate sliding
windows with:

--x Sliding Window: {{sliding_window}}

--% Source Stream: {{source_stream}}

--x Number of Buckets: {{bucket_size}}

--x Time per Bucket: {{time_per_bucket}}

--x Input Type: {{type_of_aggregated_stream}}
--% Return Type: {{return_type}}

The first annotation contains the sliding window lookup in the specification, to check
which sliding window is covered by the current entity. Additionally, the expression
contains the duration of the window, which is needed to compute the number of buckets
and the time per bucket, as presented in Section The next annotation documents
the source stream of the sliding window, i.e. the stream which contains the sliding
window lookup. This annotation also presents the frequency of the source stream,
which is used to compute the number of buckets and the duration of each bucket. The
next two annotations then present these values computed from the specification. The
number of buckets is related to the size of the array signal representing a bucket, and
the time of each bucket is related to the signal with the timestamp of the next bucket
creation. The last two annotations summarize the types of the aggregation function in
the specification. The input type relates the specification with the numeric type of the
input signal representing the current value of the target stream. i.e. the stream over
which the sliding window aggregates. The return type documents the value type of the
aggregation function, which is realized with the numeric type of the output signal.
Depending on the type of the stream and the used aggregation function, the prototype
compiles a new entity from the template in Figure The realization is dependent on
the aggregation function, but each sliding window follows the same structure from Sec-
tion The realization uses an array where the size of the array equals the number of
buckets buckc,, to represent the different buckets. However, some aggregation functions
use tuples as intermediate representation in the list homomorphism, which is not a
supported type. To solve this issue, we split the array containing the buckets into
several registers, one for each element in the intermediate representation. Because some
aggregation functions return | representing an invalid value for the sliding window, the
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process (clk, rst) begin
if (rst="1") then
-- Reset Phase
evict_done <= '0';
upd_done <= '0';
request_done <= '0';
data <= (others => '0');
d_valid <= {{valid_upd}};
last_ts_before_upd <= (others => '0');
-- Reset Buckets
data_valid_buckets(data_valid_buckets'high downto 0)
<= (others => {{valid_upd}});
{{set_sw_buckets_to_default_values}}
elsif (rising_edge(clk)) then
-- Logic Phase
if (evict='1' and evict_done = '0') then
-- Evict Case: New Timestamp
if (time_in > last_ts_before_upd) then
-- Update Timestamp
last_ts_before_upd <= last_ts_before_upd + {{time_per_bucket}};
-- Create New Buckets and Shift Bucket Array
data_valid_buckets
<= data_valid_buckets(data_valid_buckets'high-1 downto 0)
& {{valid_upd}};
{{create_new_and_shift_sw_buckets}?}

else
-- No Timestamps Update
evict_done = '1';

end if;

elsif (upd = '1' and upd_done = '@') then
-- Update Case: Map New Input and Update Last Buckets Entry
{{map_and_update_last_sw_bucket}}
upd_done <= '1"';

elsif (request = '1' and request_done = '@') then
-- Request Case: Finalize Buckets
{{finalize_sw}}
d_valid <= {{finalize_valid}};
request_done <= '1';

elsif (evict = '@' and upd='Q' and request ='0') then
-- Reset done register
evict_done <= '0'; upd_done <= '@'; request_done <= '0';

end if;

end if;
end process;

Figure 4.10.: Template for the process in sliding windows entities. The logic phase of

the sliding window realization is separated in the evict case, update case,
and request case implementing the different behavior of windows.

74



4.4. Low-LeEverL CONTROLLER

code always contains a valid array, which determines for each bucket whether the bucket
contains a value. Figure[4.10]represents the process of the template implementing the
logic of a sliding window, separated into the reset and the logic phase.

The reset phase assigns the signals to their default values and prepares the entity for
the next input as for output stream entities in Section @ Based on the aggregation
function, this phase also assigns each entry in the valid bucket to valid or invalid
and assigns each bucket entry to the neutral element ¢,. The logic phase is separated
into the evict case, the update case, and the request case. The first phase checks if the
buckets need to be updated with the current timestamp. In case of an eviction, the
implementation updates the buckets by shifting them by one position. This shift deletes
the last buffer, which contains the values that are not part of the window anymore and
creates a new one initialized with the ¢, value. Depending on the aggregation function,
the buckets and the neutral element differ such that the compiler needs to compile the
corresponding code fragments. A new timestamp could shift the buffer more than one
position, so we end this phase only in case of no eviction. The second case of the logic
phase performs the update of the "newest" bucket". For this update, the implementation
lifts the incoming stream value to the representation of the list homomorphism by
applying the map, function. Afterwards, it updates the bucket value v,,,, using the
associative binary reduction function ®, with the old value v,; and the lifted value as
parameters. Formally, this approach is expressed as v;,¢y, := Vp1q ®,, map,,(s~). The last
case covers the request of the sliding window, i.e. the situation that the periodic stream
using the sliding window needs to be updated. As a consequence, this computation
needs the current value on the window. The implementation concatenates the bucket
values with the binary reduction function ®, and applies the finalization function fin,,
on the result to compute the current sliding window value.

Example 4.4.3 (Realization of Sliding Windows). Consider the sliding window in the
specification in Example a.aggregate(over: 2s, using: sum). The entity
declaration and the corresponding annotation for this sliding window are presented
with the following code fragment:

--x Sliding Window: a.aggregate(over: 2s, using: sum)

--% Source Stream: d @5Hz

--% Number of Buckets: 10

--% Time per Bucket: 0.2 s

--% Input Type: Int8

--% Return Type: Int8

entity a_sum_sliding_window_entity is

port (

clk, rst : in std_logic;
evict, upd, request : in std_logic;
time_in : unsigned(63 downto 0);
d_in : in signed(7 downto 0);
d_out : out signed(7 downto 0);
d_valid_out : out std_logic;
evict_done_out : out std_logic,
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upd_done_out : out std_logic,
request_done_out : out std_logic
end a_sum_sliding_window_entity;

First, we see the relationship between the value type for the target stream a and the
numeric type of input signal d_in representing the input value in the update case. The
return type of the aggregation function is reflected in the output signal d_out, providing
the result of the request case. The number of buckets is reflected in the following
internal signal declaration representing the buckets:

\ signal sum_buckets : signed8_array(9 downto 0);

Note that the realization starts with zero, whereas the specification starts counting with
one. So the number of buckets is in both cases ten. The time per bucket annotation is
reflected in the evict case of the logic phase, i.e. in the assignment for the timestamp
with the next eviction:

last_ts_before_upd <= last_ts_before_upd + to_unsigned(200000000,
last_ts_before_upd'length);

Note that the realization computes the timestamp in nano seconds whereas the specifi-
cation uses seconds. A

Our prototype supports the aggregation functions counting, addition, averaging,
and integration. In the following paragraphs, we describe the realization of counting
and average by replacing the place holders. The interested reader may refer to App-
endixfor details about the addition and integration aggregation.

Counting

The aggregation function counting over a stream s~ counts the number of computed
stream values in s*. Independent of the stream type T~ of stream s-, the return type of
this sliding window is of type UInt64. The following list homomorphism expresses the
counting function mathematically: count: A* - N

* map,,,,; - A — Nwithmap,,,..(x)=1
o finyum - N— Nwith fin, . (x) = x
* ®count * N2 — N with X1 Beount X2 = X1 + X3

* Ecount =0

The compiler needs as internal register one bucket array, called count_buckets, which
initializes each bucket entry to zero in the reset phase, to realize the counting aggre-
gation function. Because the return value of this entity is always valid independent
on how many stream values the sliding window receives, the compiler generates the
code ’1’ for the place holder {{valid_upd}} and {{finalized_valid}}. To realize the
update of the sliding window bucket, we perform the previously described shift and
insert the neutral element 0. This approach results in the following realization for the
{{update_sw_buckets}} placeholder:
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count_buckets <= count_buckets(count_buckets'high-1 downto 0)
& to_unsigned(@,count_buckets(®@)'length);

To lift an incoming stream value and to update the last entry of the bucket, the
prototype uses the code fragment:

‘ count_buckets(@) <= count_buckets(@) + to_unsigned(1, count_buckets(®)'length);

The implementation adds up all bucket values to compute the final value of the counting
window, realized by:

\ d <= count_bucket(®) + ... + count_bucket({{num_buckets}});

Averaging

One approach for the computation of the average value over some time, is to add up and
counts all values and divides the sum by the number of events during the finalization.
Another approach is the running average, which computes the average with each event
but additionally counts the number of events to balance the current average value with
the incoming event. Therefore, the list homomorphism uses a tuple for the intermediate
representation to store the average and the count value. In the prototype, this approach
is used for the fixed-point numeric type. The mathematical description for the averaging
aggregation avg: A* — Ais:

© mapg,, : A — (A, N) with mapm,g(x) =(x,1)

e fin, (AN —A withﬁnwg(x, c)=x

avg *

* @Baug t (AN)? > A with (x1,¢1) Bgug (x2,62) = (2L ¢ + 5 )

* Caug = (0,0)

To realize the tuple used as the intermediate representation, the prototype uses two
internal registers for the bucket approach, which initialize each bucket entry to zero.
The count_buckets signal counts the number of received stream values per bucket and
the avg_buckets signal stores the average value for each bucket. Similar to the counting
aggregation function, the evict case shifts the buckets and inserts the default neutral
element zero. In the update case, we replace the place holder {{update_sw_buckets}}
with:
avg_buckets(0)
<= resize((avg_buckets(@) * count_buckets(®) + d_in)

/ (count_buckets(@) + 1), u, I);
count_buckets(@) <= resize(count_buckets(®) + 1, u, I);

The request case computes the average of all buckets, by balancing their average value
with the number of entries and dividing the result with the number of events. Therefore,
the realization replaces {{finalize_sw}} with:

77



>Ex.[A3.1} P9

4. PROTOTYPE

d <= resize(
(avg_buckets(@) * count_buckets(@®) + ... +
avg_buckets({{num_buckets}}) * count_buckets({{num_buckets}})
/ (count_buckets(@) + ... + count_buckets({{num_buckets}}))) ,u, I);

Since the division by zero is not defined, which is possible, if no value was received
inside the timed window, the entity notifies the stream expression to take the default
value. Therefore, the return value for the d_valid_out is assigned to ’@’, which is
achieved by replacing the {{valid_upd}} place holder with ’@’. This assignment defines
each bucket entry to invalid. If an event is received, i.e. a rising edge of the upd signal,
the valid entry for this bucket is assigned to one. Therefore, the compiler inserts the
following assignment to the {{map_and_update_last_sw_bucket}} placeholder:

| data_valid_buckets(0) <= '1';

In the request case, the compiler builds the disjunction of all valid_buckets entries for
{{finialize_valid}}.

4.4.4. Evaluator

The EvaLuartor is the core element of the LLC. It receives the output from the QUeue
between the HLC and LLC and updates the different stream values. This entity receives
flags from the LLQINTERFACE expressing that the state machine is in the evaluation mode.
This flag is set until the EvaLuaTor notifies the state machine in the LLQINTERFACE, that
the evaluation cycle has finished. With this signal, the state machine can access a new
value from the QUEUE.

To update the different stream values and sliding windows, and to coordinate these
computations, the EvALuaTOR needs a mixed architecture. It has the component instan-
tiation and declaration for each stream and sliding window in the specification. The
compiler annotates each declaration and instantiation with the corresponding stream
and window. This annotation describes the category of the stream or sliding window,
its name and its value type to relate the type declarations and signal mappings with
the specification. The annotations for output streams additionally describe the stream
expression to document the additional input signals for output streams. Because the
LLC receives from the Queug, which streams need to be evaluated, the activation condi-
tion is not part of the documentation. The annotation relates the used signals with the
corresponding stream in the specification. Additionally, it documents that each stream
and sliding window is covered in the EvaLuAaTOR.

Example 4.4.4 (Instantiation of Stream Entities in the Evaluator). The instantiation for
the input stream entity realizing the stream a in the specification from Example is
represented with the following code fragment:

--%x input a : Int8
a_input_entity_instance: a_input_entity
port map (
clk => clk,
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rst => rst,

udp => a_udp,

d_in => a_d_in,

d_out(@) => a_d_o,

d_out(1) => a_d_negl,
d_valid_out(@) => a_d_valid_o,
d_valid_out(1) => a_d_valid_1,
done_out => a_upd_done

s

The instantiation assigns each input and output signal in the entity declaration to the
corresponding signals in the EvaruaTor. The annotation relates the current instantiation
a_input_entity_instance with the corresponding stream a in the specification. A

Besides the component declarations and instantiations, the entity has a new process
that implements the state machine with the evaluation order from Section The
implementation of this state machine is done implicitly by assigning the stream enable
signals to their enable signals, set by the HLC and their dependencies. The enable
signals correspond to the result of the activation condition of the stream, such that
the LLC can ignore them. This encoding is realized in the new process represented in
Figure In the reset phase, the stream-enable signals and sliding window-enable
signals are disabled to prepare the streams and windows for the first input. The reset

phase notifies the state machine in the LLQINTEREACE that a new event can be received.

The logic phase is separated into three parts, encoding the state machine. The first case

covers the input stream update and the pseudo-evaluation phase of the state machine.

In the state machine from Section this code fragment implements the effect from
the switch of the idle state to the first node. Additionally, this case has to cover the evict
phase for sliding windows. To relate this realization with the evaluation order in the
specification, we categorize the streams and windows in input streams, output streams,
and sliding windows and annotate the corresponding code fragments with their stream
names and sliding windows.

Example 4.4.5 (Realization Input Update, Pseudo Evaluation, and Sliding Window
Evict Phase). Consider the specification from Example The compiler builds the
following assignments and annotations for this specification:

-- Pseudo Evaluation Phase, Input Stream Update Phase and Evict Phase
-—-% Input Streams:
——% - 3

__*_b

a_upd <= a_en;
b_upd <= b_en;

-—x Qutput Streams
——% - ¢

-——% - d

——x - e

-—% - f

c_pe <= c_en;
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process(clk, rst) begin
if rst = '1' then
-- Reset Phase
evaluator_done <= '1';
upd_and_pe_done <= '0';
{{disable_in_stream_upd_signals}}
{{disable_pe_signals}}
{{disable_eval_signals}}
{{disable_evict_signals}}
{{disable_sw_upd_signals}?}
{{disable_request_signals}}
elsif rising_edge(clk) then
-- Logic Phase
if input_clk = '1' then
if upd_and_pe_done = '@' then
-- Pseudo Evaluation Phase, Input Stream Update Phase and Evict Phase
--% {{input_streams_in_specifcation}}
{{enable_in_stream_upd_signals}}
--*% {{output_streams_in_specifcation}}
{{enable_pe_signals}}
--*% {{sliding_windows_in_specifcation}}
{{enable_evict_signals}}
upd_and_pe_done <= '1';
evaluator_done <= '0';
else
-- Sliding Window Update Phase
{{enable_sw_upd_signals}}
-- Sliding Window Request Phase
{{enable_request_signals}}
--Eval phase
{{enable_eval_signals}}
--Done port assignment
evaluator_done <= upd_and_pe_done and {{done_port_assignment}}
end if;
else
upd_and_pe_done <= '0';
{{disable_in_stream_upd_signals}}{{disbhale_pe_signals}?}
{{disbale_eval_signals}}
{{disable_evict_signals}}
{{disable_sw_upd_signals}?}
{{disable_request_signals}}
end if;
end if;
end process;

Figure 4.11.: Template for the process in the Evaruaror entity. This process realizes the

state machine from Figure coordinating the evaluation order of the
stream and sliding windows evaluation.
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d_pe <= d_en;
e_pe <= e_en;
f_pe <= f_en;

--x Sliding Windows:
--x - a.aggregate(over: 2s, using: sum)
a_sum_evict_sw <= '1';

The annotation relates the assignments with the corresponding part in the evaluation
order in the specification. The implementation enables the update phase for input
streams, the pseudo evaluation for output streams if the stream is affected by the current
event. Additionally it unconditionally starts the evict case for sliding windows. A

The second case is separated in the eval phase, i.e. the enabling of output stream
entities to evaluate their expression, the sliding window update phase, i.e. the enabling
of sliding window entities to update the "newest" bucket, and the sliding window
request phase, i.e. enabling of sliding window entities to request the current window.
For the eval phase, we assign the enable signal of output stream entities to the outgoing
dependencies in the DG. In the state machine in Section these steps are performed by  »Sec. 3.2, P32
switching the state 2.n to 2.n+1. This corresponds to the computation of the evaluation
layer for the specification. We annotate these assignments with the corresponding
stream in the specification, and the outgoing dependencies in the DG, which access
the current value of other output streams, i.e. synchronous lookups and sample & hold
lookups, or access a stream with a sliding window. This relates the evaluation layer in
the specification with their encoding in the implementation. The phases in the sliding
window entities are enabled after the target stream is updated and before the source is
evaluated, respectively. Therefore we annotate these assignments with the source and
target stream in the dependency graph to relate these assignments with the evaluation
order in the specification.

Example 4.4.6 (Realization Eval Phase and Sliding Window Update & Request Phase).
Consider the specification in Example The compiler builds the following assign- -Ex.[E3.1} P
ments and annotations:

-- Eval Phase

--*% Evaluation Phase for Output Stream c is Influenced by no Lookup:

c_eval <= c_en;

--x Evaluation Phase for Output Stream d is Influenced by the Following Lookups:
--x - Window Lookups: a.aggregate(over: 2s, using: sum)

d_eval <= d_en and a_sum_request_done;

--*% Evaluation Phase for Output Stream e is Influenced by no Lookup:

e_eval <= e_en;

--*% Evaluation Phase for Output Stream e is Influenced by the Following Lookups:
--x = Synchronous lookups and Sample & hold Lookups: e

f_eval <= f_en and e_eval_done;

-- Sliding Window Update Phase

--% a.aggregate(over: 2s, using: sum) Targets a

a_sum_upd <= a_upd_done;

-- Sliding Window Request Phase

81



> Sec. 3.1, P.[I0]

->App. A2, P

4. PROTOTYPE

--%x a.aggregate(over: 2s, using: sum) has Source d and Target a
a_sum_req <= d_en and (not a_en or a_upd_done);

The evaluation of the output stream c and e is in the second layer after the input streams.
These streams do not access a current value of an output stream, or of a sliding window
lookup, so after the input update, these streams are evaluated. The compiler annotates
this information before the assignments and relates them with the evaluation order in
the specification. Recap from Section that the evaluation order is computed out
of these lookups. The realization enables the evaluation of these streams if the current
event affects the stream which corresponds to the second layer in the evaluation order.
The output stream d aggregates over the input stream a. Because the sliding window
lookup is outsourced into a new entity, the evaluation of the output stream waits until
the result of the aggregation function is requested and computes then the value. This can
delay the current evaluation layer by one clock cycle but does not change the semantics,
because all affected streams are delayed recursively. This dependency in the specification
is annotated by the compiler and reflected in the assignment. The output stream f has
a synchronous lookup to the output stream e. Therefore the evaluation has to wait for
the evaluation of e. In the specification, this is reflected by the different evaluation
layers, computed from the dependency graph, described by the annotation. In the
assignment, this is reflected by the conjunction. The annotation for the sliding window
contains the source and target stream to reflect the behavior between specification and
realization. The update of the sliding window is performed after the update of the
target input stream a. The realization requests the sliding window if the source stream
d is enabled. Because an event might update and request a stream, the request has to
wait until a possible update is performed. This is in the assignment encoded with the
implication. A

Additionally, this case has to decide if the evaluator has performed all stream updates
and evaluations for the current input. Therefore, we have to check if every stream that
was enabled by the queue value has finished its computation. In this case, we notify the
LLQINTERFACE. In our backend, the implementation of the implication s™_en — s™_done
realizes this logic for each stream s~. This implication expresses that if a stream was
enabled, the computation of this stream has finished.

4.4.5. Low-level Controller

The top entity of the LLC, the LLC entity itself, is an entity with a mixed architecture.
It contains the EVALUATOR as a component and a process realizing the LLQINTERFACE
from Section Details about the process realizing the state machine are presented
in Appendix The input signals of the LLC are the output signals of the queue,
and the output signals are the output signals of the Evaruator. The instantiation of the
Evaruator maps the input and output signals to their respective signals, as described in
the previous section.
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4.5. Monitor

The top element of the monitor is an entity with a mixed architecture. The monitor
contains as input signals:

¢ the different clocks
* an input bit indicating that new values are received

* for each input stream in the specification, a signal with the input data and a one
bit signal, that indicates whether the current event contains a value for this input
stream

The output signals for this entity are the system time of the monitor and the current
values for each input and output stream. The architecture of the monitor contains the
HLC, LLC, and Queue declaration, instantiation, and signals to connect them. It maps
the clock signals to their respective components, the input signals of the monitor to
the input signals of the HLC, the output signals of the HLC to the input signals of the
queue, and the output signals of the queue to the input signals of the LLC. The output
signals of the LLC are mapped to internal registers used by the new process. The process
uses these registers to update the output values of the monitor only if the evaluation
has finished. Therefore, it waits on a falling edge of the LLC that indicates that the
computation is done.
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domain. We integrated the hardware ZC702 Base Board from Xilinx'} on which a com-
pilation of our monitor is running, into an unmanned aerial vehicle (UAV). Therefore,
we cooperate with the Unmanned Systems department at the German Aerospace Center
(DLR) Institute of Flight Systems in Brunswick. The overall goal of this department is
the development of easy and safe operations of unmanned aircraft. One step towards
this goal is the project ALAADy (Automated Low Altitude Air Delivery). From the con-
ceptual planning to an actual flying demonstrator, ALAADy considers low-altitude cargo
air delivery of over 1t over hundreds of kilometer. When flying long distances, many
issues may occur, e.g. data link loss. The UAV has to be autonomous to automatically
react to such situations. Since proving the correctness of such a complex autonomous
system is a hard task, monitoring can be used as the central safety mechanism. The
presented prototype solves several safety concerns, e.g. static memory consumption or
worst case runtime due to the inherent nature of the hardware solution. To validate
the prototype for this domain, we integrate monitors running on a ZC702 Base Board
into replays of pre-recorded flight. Next, we integrate and deploy the hardware-board
into the UAV to identify the overall system impact. The following sections describe the
mission that is monitored by our prototype, the integration in the re-play environment,
the integration into the vehicle, and the general structure of the communication between
the monitor and the UAV.

This chapter describes the integration of the prototype from Chapteinto a real-world
i

5.1. The Mission

To implement a monitor as part of the ALAADy project, we need a monitor interface
which gives the monitor an adequate amount of data to validate the properties. There-
fore, the system needs to forward sensor values with realistic frequencies, which can

1https://www.xilinx.com/support/documentation/boards_and_kits/zc7®2_zvik/
ug850-zc702-eval-bd. pdf
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5. INTEGRATION

Figure 5.1.: Picture of the helicopter that is used for the flight test. This vehicle has a
total mass of 150kg and a payload up to 85kg. The high payload allows
besides the sensors needed for the flight execution also additional hardware
like the board running the hardware monitor.

vary from sensor to sensor. Because such an interface is currently not provided by the
ALAADy demonstrator, we integrated the monitor in a flight test [32, 33] using the
ARTIS (Autonomous Rotorcraft Testbed for Intelligent Systems) testbed. This testbed
consists of a software framework replaying pre-recorded flights and a fleet of UAVs. For
this, technology and components for autonomous flights are deployed and evaluated.
Part of this testbed is a helicopter, represented in Figure [5.1]— called superARTIS —
with a payload up to 85kg. This payload is high enough to carry the sensor used for the
optical navigation, and the hardware board running the monitor. The validation results,
i.e. whether the prototype can hold up to data rates and is able to compute evaluation
results in time, carry over from superARTIS to ALAADy since in both systems the same
sensors are used.

The overall goal of the flight test is optical navigation based on landmarks. Figure
represents the flight test area with the different landmarks from a bird’s-eye view. This
area is prepared with individual landmarks of which the system knows their exact
position. The landmarks are printed with individual QR-codes such that the on-board
camera can recognize and differentiate them. Based on the ID of a recognized landmark
and the distance to them, an algorithm then estimates the current position of the vehicle.
Additionally, the setup records all the sensor data to validate the position as a post
process. This logging procedure can be reused for our monitor interface by not only
writing the data to file but also sending the data to the monitor.

Figure [5.3|represents the abstract structure of the system setup including the monitor.
The system collects all data from the different sensors fixed on the payload with their
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Figure 5.2.: A representation of the landmarks used for visual navigation in the test
flight.

desired frequencies. These data packages are given to the state estimation algorithm but
also to the Logger. The Logger writes the estimated position and the sensor values to
files. Additionally, it directly sends them to the monitor via UDP. With this architecture,
the system provides an interface for the monitor to receive raw data from sensors based
on their frequencies and can compare the computed values from the monitor with
the values from the system. Furthermore, because the system performs most of the
communication without the monitor integration, the integration hardly changes the
timing behavior. This property is desired, especially in real-world applications working
with inputs from the environment, to guarantee the independence of the monitor and
the monitored system and increases the confidence in the monitoring process. It is also
essential for the development to test the system and the monitor independently of each
other without changing the timing behavior.

5.2. Integration Setup

At first, we integrate the hardware-board in a simulation, replaying a pre-recorded flight
with the same timing behavior. Figure [5.4a|represents the replayer, which is a computer
identical to the one used in the vehicle. In comparison to a real execution, the device
receives the values from log files instead of real sensors. These files are generated from
sensor readings during a flight and are stored to replay this specific flight. As during
actual flights, the algorithm estimates the position from the different sensor values and
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CAMERA LipAR GNSS IMU

STATEESTIMATIONALGORITHM

LoGGER

MoONITOR HarpDisk

Figure 5.3.: A representation of the abstract structure of the system with the monitor.
The state estimation algorithm receives values from the sensors in the pay-
load and computes the current position of the vehicle. During the execution,
the system logs the incoming and computed values with the Logger. Addi-
tionally, the Logger parses the received values to UDP packages to forward
them to the monitor.

(a) Representation of the replayer that plays a (b) Representation the hardware board inte-
prerecorded flight by reading sensor values  grated in the payload. The board is fixed
out of log files generated during a flight = within a 3D-printed case on the payload
and sending the values to the monitor. and connected with the vehicle.

Figure 5.4.: Integration of the hardware board, where the monitor from Chapterruns,
in the simulation environment, and the payload.
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sends the original values and the computed ones to the Logger. With this setup, the
replayer plays a prerecorded flight with the same timing behavior as during the flight.
For the replay, we establish an ethernet connection between the hardware board and
the simulation device. Additionally, we adapt the execution to send the packages to the
Logger as well as the hardware board, where the monitor is running.

We also integrate the monitor into the helicopter. The hardware board is located
on the landing skids next to the sensor devices. We build a case out of a 3D-printer
to protect the hardware from the environment. The case is also needed to attach the
board on the landing skids, represented in Figure The case has an interface for an
ethernet connection to bridge the board with the system. Additionally, it provides an
interface for the power supply given by the vehicle and provides an interface for a SD
Card. On this SD Card, the processor stores the file with the computed stream values
and it also contains the boot image for the hardware board. In contrast to the simulation,
the hardware board needs to boot from an SD card rather than with the ]TAGEI industry
standard from an external device. Therefore, the board is implemented with a first-stage
bootloader. When starting the device, the bootloader loads the bitstream onto the FPGA
and configures the processing system.

5.3. BoardSetup

To integrate the hardware-based monitor compiled out of the prototype from Chapter [4]
we use the Xilinx Zyng-7000 SoC ZC702 Evaluation Kit. This board is part of the
Zynq-7000 SoC family that features a dual-core ARM Cortex-A9 processor integrated
with an Artix-7 programmable logic and combines programmability of software and
hardware. The used board provides a couple of interfaces, e.g. USB communication
and ethernet, which allows integration with different interfaces. The architecture of
the monitored system provides an interface with an ethernet connection sending UDP
packages, which we used for the integration.

The focus of this thesis is to show the practicability of a hardware-based monitor in
a real-world application. We use the on-board processor for the communication with
the monitored system and the programmable logic only for the monitor evaluation.
Figure[5.5|is a representation of the general structure and control flow on the hardware
board. The processor receives the packages sent by the vehicle or the simulation of a
vehicle. Besides the IP-Header and the UDP-Header implementing the UDP protocol,
the UDP-Data uses a separate header, represented in Figure They start with an
identification number (ID) from the device, sensor or algorithm which produces the
values, the ID of the package, a timestamp, and an error code. Based on the ID of the
package, the execution parses different input stream values from the data block. The
packages are sent with different frequencies, which requires an asynchronous monitoring
mechanism, that is supported by our monitoring approach. In the asynchronous setting,
not all input streams have to contain a value in comparison to a synchronous setting,

thtps ://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/
ug850-zc702-eval-bd. pdf|describes the different boot modes.
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Figure 5.5.:
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Representation of the separation between software and hardware on the
Xilinx Board. The processor receives the different asynchronous UDP pack-
ages via the Ethernet connection. Afterward, the parsed event is given to
the programmable logic, synthesized with the hardware monitor. After the
computation, the hardware gives the current stream values to the processor,
which writes them to a file.
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Figure 5.6.:

Representation of the structure of the UDP-Data. The data fragment of
each UDP package starts with the ID of the system, sensor or algorithm
computing the values of the current package. Afterward, the serviceID
and subservicelD stores the ID of the current package identifying how the
following data has to be parsed. Then, each data package is annotated with a
timestamp and an error code, followed by the current event, which is given
to the monitor.
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Figure 5.7.: Representation of the block design used for the hardware-based monitor
integration. The AXI Interconnect component connects the processor, which
handles the communication with the monitored system, with the hardware-
based monitor. The monitor is integrated into a new AXI4 peripheral by
assigning the registers to the input and output signals of the monitor.

where for each incoming event, each input stream always has to contain a value. After
parsing the incoming package, the process forwards the information to the monitor
running on the FPGA. Therefore, the processor transfers the different elements to their
bit representation used on the monitor. This transformation is necessary especially for
real-numbers, where the floating-point representation on the processor is transformed
into the fix-point representation used for the programmable logic. The monitor then
computes the different stream values and forwards them to the processor in the next
step. In the last step, the processor parses the bit representation from the FPGA to C
types and writes the current stream values into a file.

For the communication between the processing system and the programmable logic,
we used the pre-defined AXI communication protocolﬂ This interface allows connecting
multiple master devices with several slave devices by using read and write channels
between the master and the slave. Figure represents the block design of the im-
plementation on the board. The Zynq processing system component, representing the
processor, is the memory-mapped master device. The monitor, which is in our architec-
ture the memory-mapped slave, is implemented as a new AXI4-peripheral. The AXI
Interconnect component completes the communication between the monitor and the
processing system. The AXI4-IP contains the VHDL monitor as a separate component
and performs the communication part of the monitor. Therefore it implements the AXI
protocol and maps the wires of the AXI Interconnect to their corresponding signals in
the monitor. With this communication the master devices access variables from the
slave devices and perform read or write operations.

3https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/
ug1037-vivado-axi-reference-guide.pdf
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> Chap. 4, P[53] The prototype from Chapter compiles besides the VHDL file containing the monitor
also VHDL code fragments needed for the AXI integration. Additionally, the compilation
produces C files that implement the previously described approach. Further details
> App. A4, P[T2§| about integration the VHDL files are presented in the Appendix
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Case Study

This chapter describes a case study for the prototype from Chapter integrated into  »Chap. 4,P[53
the simulation environment from Chapter |5 For this, we performed three experiments, - Chap. 5, P[5
geofencing, sensor validation, and cross validation.

Before we present the results of the case study, we first describe the corresponding
specification in detail. For the geofence specification and the cross validation, we
additionally describe the underlying model.

6.1. RTLoLA Specifications

6.1.1. Geofencing

In the first experiment we monitored a high-level command structure of our system,
i.e. the operations of the vehicle. The example for the high-level control mechanism
presented in this thesis is the position monitoring. During a flight, the vehicle has to
avoid No-fly zones, e.g. nearby airports, and has to stay in the granted flight area. We
realized the area in which the vehicle is allowed to fly with a polygon — called geofence.
We check if the latitude and longitude values of the UAV are in the approved flight zone.

Underlying Model

To compute the crossing of a boarder in a geofence, we use vector arithmetic: In a first
step, we describe each border in the fence as well as the flight path as a function. In
a second step, we compute the intersections of these functions which correspond to
potential intersections of the flight path with the geofence. Afterward, we check if the
intersection is between the points describing the line of a fence and between the two
samples describing the current vehicle function. Figure|6.1|gives an example, of such
a border crossing. In our coordination system the x-axis represents the latitude (short:
lat) and the y-axis the longitude (short: lon). The red line represents a geofence border
between the points p; and p,. The green line describes the monitored flight described
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S1

Figure 6.1.: Representation of the border crossing example. The red line represents the
border of the geofence. The green line represents the flight path, constructed
from the sample points sy, s,, 53, and sy.

by the sample sy, 55, s3, and s4. At first we define the function [, represented with the
green dotted lines, based on the fence points p; and p,, by:

lon, =my -lat, +b
lon,, =my, -lat, + by,

lon
lat

- lonp1
lat

= mll — P2

P2~
= by, =lon,, —my -lat,,
= Iy (lat) = my, -lat + b, = lon
Next, we define the function v, from two sample points s, and s,,,; in the same way and

compute the intersection between the function describing the geofence line /; and the
function describing the current flight v, by:

I (lat;) = v, (lat;)
my, 'latin + bll =my, ’lati,, + bvn

bvn B bll

= latin =
mll - mvn

= lon; =my -lat; +by,
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Afterward, we check if the intersection point i, is between the two samples and the
fence, which is the case for the intersection i3, with:

min(lat, ,lat,)) <lat; <max(lat, lat,,)

A min(lon, ,lon, ) <lon; <max(lon, ,lon,,)

P’

A min(lat, ,lat, ) <lat; <max(lat; ,lat,

Sn+1 n+1)

A min(long ,lon, ) <lon; <max(long ,lon )

RTLoLA Specification

The specification in Figure [6.2|represents the previous example in RTLora. Because the
geofence points p; and p, are fixed, we can precompute the function [; (lat) = my, -lat+by,
as well as the minimum and the maximum of the latitude and longitude of p; and p,. In
the specification, we represent these numbers with the italic variables.

At first we start with the declaration of the input streams lat_in_degree and
lon_in_degree of type Float32. These streams represent the current latitude and
longitude of the vehicle in degree. Because the following specification uses radians, the
first two output streams transform the degree value in radians.

Next, we define the vehicle line between two samples. We compute the current
gradient m_v and the y-intercept b_v, out of lat, lat_pre, lon, and lon_pre as in the
previous example. However, two consecutive samples may have the same latitude value,
which would result in a division by zero. For this, we define the output stream is_Fnc,
comparing the latitude values to prevent the zero division. Such a line would correspond
to a parallel line to the y-axis, which cannot be expressed mathematically but can result
in a border crossing. Because the latitude and the longitude values have a floating-point
representation in the data package, checking for equality is problematic, because two
mathematically equal numbers may have different bit representations. So, instead of
equality, we check if the difference between two numbers is smaller than a threshold ¢.
If the is_fnc stream is true, we assign the affected streams m_v and b_v to a default value
0. Afterward, we compute the current minimal and maximal latitude and longitude of
the vehicle with the streams min_lat_v, max_lat_v, min_lon_v, and max_lon_v.

To check the crossing between a geofence line and the vehicle line, we compute their
intersection. For this, we compute the latitude value by dividing the y-intercept differ-
ence with the gradient difference. This can result in a division by zero if the gradient is
the same, i.e. if both lines are parallel to each other. In this case, there is no intersection,
and so no geofence crossing, which is checked by the stream intersect_p1p2. With the
latitude, we compute the longitude by inserting the value in the line function. Afterward,
the trigger analyses if the existing intersect is in the bounds of the vehicle line and the
border, which triggers an alarm with a crossing. In case that the vehicle line runs in
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import math

1

2

3 // Latitude and Longitude in Degree

4 input lat_in_degree :Float32

5 input lon_in_degree :Float32

6

7 // Transform Degree in Radian

8 output lat := lat_in_degree * 3.14159265359 / 180.0
9 output lon := lon_in_degree * 3.14159265359 / 180.0
10
11 // Compute Vehicle Line

12 // Samples for the Line Computation

13  output lat_pre := lat.offset(by: -1).defaults(to: lat)
14  output delta_lat := lat - lat_pre

15

16 output lon_pre := lon.offset(by: -1).defaults(to: lon)

17 output delta_lon := lon - lon_pre

18

19 // Gradient and y-Intercept

20 output is_fnc := abs(delta_lat) > ¢

21 output m_v := if isFnc then (delta_lon) / (delta_lat) else 0.0
22 output b_v := if isFnc then lon - (m_v * lat) else 0.0

23

24 // Minimum and Maximum

25 output min_lat_v:= if lat < lat_pre then lat else lat_pre
26  output max_lat_v := if lat > lat_pre then lat else lat_pre

27
28 output min_lon_v := if lon < lon_pre then lon else lon_pre
29 output max_lon_v := if lon > lon_pre then lon else lon_pre
30

31 // Polygonline p1p2

32 output intersect_plp2 := abs(m_v - "”1) > €

33 output intersect_lat_plp2

34 := if is_fnc A intersect_p1p2 then (b_v - bh) / (my - m_v) else lat
35 output intersect_lon_p1p2 := mj * intersect_lat_pl1p2 + bh

36 trigger intersect_plp2

37 A ((intersect_lat_p1p2 > min_lat_v A intersect_lat_p1p2 < max_lat_v)
38 A (intersect_lon_p1p2 > min_lon_v A intersect_lon_p1p2 < max_lon_v))

39 A ((intersect_lat_pip2 > nihqa%llaﬁu A intersect_lat_pip2 < 1naxhnplju%2)

40 A (intersect_lon_p1p2 > ”ﬁnbnmfbnpz A intersect_lon_p@p1 < rnaxmnmjbnpz))
41 "Border crossing between p1 and p2”

Figure 6.2.: RTLotra specification to detect a line crossing in the geofence.
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parallel to the y-axis, carried by the is_fnc stream, the latitude of the intersect is the
current position of the vehicle, which cannot be computed from the function. This case
is covered with the if-condition in intersect_lat_p1p2.

6.1.2. Sensor Validation

In the second experiment, we monitor the correctness of sensor values. In autonomous
flights, the system uses the sensor values for navigation. For this, it is necessary that
each sensor delivers reliable data. Incorrect data can be caused, for example, if the
environment interfere the communication between the GPS Module and the satellites.
To compute the current position, the module requests the position of GPS satellites to
compute the trilateration out of their response time. If too less satellites are in range
or if the response signal is blocked or even worse deflected, the module computes a
false position, which the monitor has to detect. Another problem can be caused if the
timing behavior of a module is unsatisfied, i.e. if the module delays it indicates a black
out of the module or inaccurate data. We separate the experiment in two parts, with
different concepts of how we monitor the incoming sensor values. At first, we monitor
two packages from the Global Navigation Satellite System (GNSS), where we test the
asynchronous behavior of RTLorLa. We define constraints, which validate the incoming
events from the GPSVelocity package and events from the GPSPosition package in an
event-based and time-based way. Additionally, we validate the timing behavior of the
GPSPosition package. The second specification focuses on the validation of sensor values
with respect to their timing behavior. In this part, we describe a property that can detect
a significant change of a sensor value — called a peak — which is an indication for false
sensor values.

Simple Sensor Validation

For this part of the case study, we use the specification in Figure At first, we
specify two constraints validating the incoming horizontal and vertical speed values
from the GPSVelocity package against upper bounds. To represent these input speed
values, we define the input streams speed_h and speed_v. Afterward, we specify the
trigger checking the input values against their upper bounds and report the user if the
system violates its speed limits. Then, we specify the constraints for the GPSPosition
input values, separated into two parts. On the one hand, we validate the reliability
of the sensor values, on the other hand the timing constraints. First, we monitor the
enum postion_type. This enum defines the algorithm computing the GPS Position and
has, in our setting, only two valid values. To check this constraint, we define a trigger
reporting if the input stream position_type contains an invalid enum value. Next, we
monitor the number of satellites used for the GPS-position computation. If the number
of satellites decreases, the accuracy of the current position also decreases. In general, it
is not alarming if this number decreases from time to time. However, with an increased
number of violation over a small duration, the position becomes inaccurate. This bad
situation should be detected by the monitor. For this, we define the output stream
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import math

// GPS Velocity Package
input speed_h : Float16 // Horizontal Speed
input speed_v : Float16 // Vertical Speed

trigger abs(speed_h) > 1.5 "GPSVel Speed Horizontal”
trigger abs(speed_v) > 2.0 "GPSVel Speed Vertical”

// GPS Position Package:

input diff_age : Float32 // Time since Last Correction

input solution_age : Floatl16 // Time of the Computation

input position_type : UInt8 // Method of the Computation

input num_of_sats : UInt8 // Number of Satellites used for the Computation

trigger —(positionType = 34 V positionType = 17) "False Position Type"

output cur_violation_with_sats_num : UInt8 := if numOfObs < 9 then 1 else 0
output violation_with_sats_num : Bool @THz
:= cur_violation_with_sats_num.aggregate(over: 5s, using: sum) > 12
trigger —violation_with_sats_num.offset(by:-1).defaults(to:false) A
violation_with_sats_num
"To less Satellites in Range”

trigger diff_age > 135.0 "Correction too old”
trigger solution_age > 0.15 "Computation too long”

trigger @1Hz num_of_sats.aggregate(over: 3s, using: count) < 10
"Frequency of GPS Module Violated”

Figure 6.3.: RTLoLa specification for a simple sensor validation, monitoring the GPS-

module.
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1— speedHorizontal

2.75 3.00 3.25 3.50 375 4.00 4.25 4.50
timestamp 1e8+1.519056e15

Figure 6.4.: Horizontal speed values from a test flight

cur_violation_with_sats_num, which compares the current number of observations
against a threshold. Then, we aggregate the number of violations and trigger an alarm if
necessary.

The last three triggers check the timing constraints of the sensor. One way to check
such constraints are event-based streams like the first two triggers in line 24 and 25.
These streams use the time-stamp produced by the sensor or system and compare them
against upper bounds. The monitored UAV uses a differential GPS-Module, which
considers for the position estimation the distance to an accurate DGPS Reference Station
besides the satellite distances. The GPS-Module requests these stations frequently to
improve the position accuracy. As a consequence, with increased time, the accuracy
decreases. The time since the last correction is received in the diff_age stream, which
the trigger compares against an upper bound. The second trigger compares the sol_age
stream containing the period of how long the computation for the GPS module took.
If this value is too large, the GPS is delayed. Event-based streams have the advantage
of a very memory efficient check because the monitor only has to compare two values,
which do not need to be stored. However, the monitor has to receive an incoming
event to perform this check, which can become a problem. For example, the case that
a sensor fails, and produces no further events, cannot be recognized by the monitor.
Another possibility to check timing constraints is using periodic streams as the trigger
in line 27. This stream counts the number of received events to compute the current
frequency of the package. Because the monitor evaluates periodic streams with a
frequency, the previous example is recognized. However, aggregating over a stream is
not as memory efficient as comparing two values, resulting in one disadvantage of this
approach. Another problem with this specification results from the architecture of the
system. The event is produced by the sensor and is afterward sent by the system to the
monitor. This architecture produces a variable delay depending on the system state of
the processor sending the event, which results in false-positive alarms.
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import math

1

2

3 input speed_h : Float16 // Horizontal Speed

4 input speed_v : Float16 // Vertical Speed

5

6 output avg_speed_h @THz

7 := speed_h.aggregate(over: 10s, using: avg).defaults(to:0.0)
8 output speed_h_diff

9 := abs(speed_h - avg_speed_h.hold().defaults(to:speed_h))
10 trigger speedH_diff > 0.4 "Peak in Horizontal Speed”
11
12 output avg_speed_v @1Hz
13 := speed_v.aggregate(over: 10s, using: avg).defaults(to:0.0)
14 output speed_v_diff
15 := abs(speed_v - avg_speed_v.hold().defaults(to:speed_v))
16 trigger abs_speed_v_diff > 1.0 "Peak in Vertical Speed”
17
18 output speed_all

19 := sqrt(speed_h * speed_h + speed_v * speed_v)
20 output avg_speed_all @1Hz
21 := speed_all.aggregate(over: 10s, using: avg).defaults(to:0.0)
22 output speed_all_diff
23 := abs(speed_all - avg_speed_all.hold().defaults(to:speed_all))

24 trigger speed_all_diff > 1.0 "Peak in Speed Vector”

Figure 6.5.: Specification for a peak detection, monitoring the horizontal and vertical
speed.
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Peak Detection

In the previous specification, we compared the velocity values against upper bounds.
These checks however do not take the previous values into account, with is focused in
this part of the sensor validation. As an example, consider the speed_h from Figure
We can see that at the beginning of the execution, the upper bound from the previous
specification in Figure is not violated. However, we also recognize that one data
point differs a lot compared to the previous ones. We call such a significant difference
a peak, which might have different causes, e.g. a GPS jump. Because the velocity is
computed out of the GPS position, incorrect GPS coordinates from the GPS Module
result in incorrect velocity values. To detect a peak, we need to consider a set of values
beside the current one.

Such a peak detection in RTLota is represented in Figure where the incoming
velocity values from the GPSVelocity package are monitored. At first, the specification
defines the input stream with the incoming velocity. Then, we specify a peak detection
for the horizontal velocity, the vertical velocity, and the total velocity. The specification
first computes a reference value with the output stream avg_speed_h to detect a peak of
the horizontal speed. For this, we aggregate over the incoming events computing the
average. Then, the next output stream speed_h_diff compares the current value with
the reference. Because speed_h is event-based and avg_speed_h is periodic, we use the
sample & hold lookup to access the current average value As a consequence, the stream
speed_h_diff is evaluated for each incoming event. The following trigger then raises the
alarm if this value is higher than a threshold. The same approach is used for the vertical
speed. For the total speed, we first define the output stream speed_all, which computes
the total velocity by calculating the length of the velocity vector. Then, we specify the
streams to detect a peak for the total velocity. Alternatively to the periodic streams
avg_speed_h, avg_speed_v, and avg_speed_all, we could also consider an event-based
approach using offset values. However, in this case, the timing of the incoming events
would not be included.

6.1.3. Cross Validation in RTLoLA

The last experiment defines the concept of a cross validation. In comparison to the
experiment for the sensor validation, we do not compare the stream values against static
threshold separately. Different modules have a connection to each other, e.g. if the
acceleration increases this has an affection on velocity of the vehicle. If the behavior of
the sensor is reflected in another sensor the confidence of both sensor value rises. In this
theses, we compare the acceleration from the Internal Measurement Unit (IMU), with
the velocity given by the GNSS. To compare these values, we integrate the acceleration
after the time resulting in the velocity. Alternatively, we could also derivate the velocity,
which give the acceleration.
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Cross Validation in RTLoLA

Before we describe the RTLotra specification for this experiment, we first debate the best
stream lookups in RTLota for cross validations. Section introduced synchronous
lookups, sample & hold lookups and sliding window lookups. In the following examples,
we address these three expressions and discuss the advantages and disadvantages. For
this, we assume that the total velocity values from the IMU and GNSS are received with
the input streams gps_vel and imu_vel.

First, we compare the input values with synchronous lookups resulting in the follow-
ing specification:

input gps_vel : Float32

input imu_vel : Float32

output cross : Float32 := abs(gps_vel - imu_vel) < ¢

With the synchronous lookups in cross, the activation condition of this event-based
stream is bounded to the activation of gps_vel and imu_vel. As a consequence, if an
incoming event never contains values from gps_vel and imu_vel simultaneously, the
stream cross is never evaluated. In our setup, this is however the case. The IMU and
the GNSS send their values in different packages, such that the activation condition of
cross is never satisfied.

To solve this issue in RTLora, we prefer asynchronous lookups, starting with a
sample & hold lookup.

input gps_vel : Float32
input imu_vel : Float32

output cross : Float32 := abs(gps_vel - imu_vel.hold().defaults(to: gps_vel)) < ¢

Again we compare the current velocity form the GPS Module with the current velocity
from the IMU. However, the imu_vel lookup is realized with a sample & hold lookup.
This bounds the activation condition of the cross stream to the activation condition
of the gps_vel stream, instead of both input streams. So cross is evaluated with every
event updating gps_vel. This approach just compares the current values to each other.
This logic needs hardly no resources, but only works in an optimal world, where the
increase acceleration is directly reflected in the velocity. However, in practice the value
of the models might be delayed or influenced with noise, but the general behavior of
the sensor behave as expected. For this reason, we use for the cross validation sliding
window lookups resulting in the specification:

input gps_vel : Float32
input imu_vel : Float32

output avg_gps_vel : Float32 @nHz

:= gps_vel.aggregate(over: d, using: avg).defaults(to: 0)
output avg_imu_vel : Float32 @nHz

:= imu_vel.aggregate(over: d, using: avg).defaults(to: 0)
output cross : Float32 := abs(avg_gps_vel - avg_imu_vel) < ¢
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First, the monitor computes with the streams avg_gps_vel and avg_imu_vel the average
velocity of both streams. Then the cross stream compares these average values. This
filters the small differences caused by the undesired delay and noise. Because the
activation condition of all output streams is bounded to the same fixed frequency, we
make sure that the cross stream is activated, comparing the velocity values. Instead
of computing the average, we could also consider, the summation of all stream values.
Depended on the value type of the stream and the duration of the window, summing all
values has a high risk of an overflow. With the moving average approach, this risk is
reduced to a minimum. Alternatively, we could increase the value type to a larger bit
representation to prevent the overflow, but this increases the used memory consumption.
Resources on the board limited are limited, such that we prefer the average computation.

Underlying Model

The specification in our experiment validates the GNSS against the IMU. For this check,
the GNSS delivers the velocity of the vehicle in m/s. The IMU sends the acceleration of
the vehicle in m/s2. To get the velocity from the acceleration as demanded in the previous
section, we need to integrate the acceleration. With the prototype the integration over a
sliding window is realized with the trapezoid abstraction. This results in the RTLora
specifciation:

input gps_vel : Float32

input imu_acc : Float32

output avg_gps_vel : Float32 @nHz

:= gps_vel.aggregate(over: d, using: avg).defaults(to: 0)
output imu_vel : Float32 @nHz

:= imu_acc.aggregate(over: d, using: J).defaults(to: 0)
output avg_imu_vel : Float32 @nHz

:= imu_vel.aggregate(over: d, using: avg).defaults(to: 0)
output cross : Float32 := abs(avg_gps_vel - avg_imu_vel) < ¢

If we unroll the computation for the integral, we get the following formula for an
input trace t = ((ay,t1)...(a,,t,)):

1
Z 5'(ai+ﬂi+1)'(ti+1—ti)

1<i<n-1

With this summation, we again have a high risk of an overflow, as described in the
previous section. For this, we need another approach. To reduces this risk, we use the
assumption that the input values are received with a fixed frequency, resulting in the
input trace: t = ((ay,t1)...(a, t,)), Vi.(t;y1 — t;) = p. If we apply this assumption to the
trapezoid construction we get:

1 1
Z E'(ai+ai+1)'(ti+1_ti): Z 5'(ﬂi+ﬂi+1)'P

1<i<n 1<i<n
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To get the average velocity, we divide the result with the number of incoming events n:

plra) (2

1<i<n

n P n
This expression can be realized with the stream expression:

output avg_imu_vel : Float32 @nHz
:= p * imu_acc.aggregate(over: d, using: avg).defaults(to: @)

Specification

Figure represents the specification, which is used in the experiment. The spec-
ification receives from the IMU the acceleration in x, y, and z-direction. To get the
total acceleration, the output stream acc computes the length of the acceleration vector.
The avg_IMU_vel then integrates over the acceleration with the previously describes
approach.

From the GPS module, the monitor uses the horizontal and vertical speed. Because the
integration over the acceleration computes the relative velocity with respect to the start
of the window instead of the absolute velocity, we cannot aggregate over the absolute
speed values from the GPS module. For this, we aggregate over the speed difference
instead of the absolute values. These transformations are realized with the output
streams speedH_diff and speed_v_diff. As for the acceleration, we then compute the
length of the vector with the all_speed stream and aggregate over this stream to get the
average velocity. With the final trigger, we check if the difference between the IMU and
the GPS Module is greater than a threshold, which raises an alarm if appropriate.
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import math

// IMU

input acc_x : Float32 // Acceleration in x Direction
input acc_y : Float32 // Acceleration in y Direction
input acc_z : Float32 // Acceleration in z Direction

output acc := sqrt((acc_x x acc_x) + (acc_y * acc_y) + (acc_z * acc_z))
output avg_IMU_vel @1Hz := acc.aggregate(over: 10s, using: avg).defaults(to:0.0) * 0.01

// GPS Module

input speed_h : Float16 // Horizontal Speed

input speed_v : Float16 // Vertical Speed

output speed_h_diff : Float32 := cast(speed_h -
speed_h.offset(by:-1).defaults(to:speed_h))

output speed_v_diff : Float32 := cast(speed_v -
speed_v.offset(by:-1).defaults(to:speed_v))

output all_speed := sqrt(speed_h_diff * speed_h_diff + speed_v_diff * speed_v_diff)

output gpsVel_avg_vel @I1Hz := all_speed.aggregate(over: 10s, using: avg).defaults(to:0.0)

// Comparison
trigger abs(gpsVel_avg_vel - avg_IMU_vel) > 0.5 "Cross Validation”

Figure 6.6.: Specification for a cross validation, comparing the acceleration with the
velocity.
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Specification/Module FF LUT CA MULT | Idle [ mW] Peak [W] WNS [ns]

Geofence 149 1.871 9.011
Monrror | 2,853 26,181 5,425 46
HLC 504 275 38 0
QuEUE 426 286 28 0
LLC | 1,721 25,429 5,359 46
Sensor Validation 156 2.088 9.063

Monrror | 4,800 34,356 8,480 128

HLC 708 347 38 0
QUEUE 627 600 52 0
LLC | 3,055 33,200 8,390 128
Cross Validation 150 1.911 9.128

Monrtror | 3,441 23,261 5,703 100
HLC 706 347 38 0
QUEUE 627 475 44 0
LLC | 1,795 22,184 5,621 100

Table 6.7.: Static Analysis

6.2. Evaluation

To validate the monitor, we compile three RTLoLra specifications to VHDL with the proto-
type from Chapterand integrate the resulting monitor into the replay environment
from Chapter|5| The first specification is a geofence from Section|6.1.1} consisting of
12 borders, visualized in Figure For further details, Appendix|A.5|presents the
complete specification. The following specification is the union of the specifications
from Section [6.1.2]containing the simple sensor validation and the peak detection. The
third specification is the cross validation from Section

6.2.1. Static Analysis

After synthesizing the VHDL code onto the ZC702 Base Board, we can statically analyze
the resource consumption of the specifications, represented in Table This table
reports the number of flip-flops (FF), the number of lookup tables (LUT), the number of
carry adders (CA), the number of multipliers (MULT), and the worst negative slack time
(WNS).
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Remark 6.2.1. Flip-flops are used to store signal values for the next clock cycle. Lookup
tables are a boolean operation table, which implements a boolean function. Carry adders and
multipliers are gates to realize a fast binary addition and multiplication. The worst negative
slack time is the time difference between the time when the next data is received and the time
which is needed to process the longest path.

In general, we see that in all three specifications, most of the resources are used in the
LLC. This is expected because the LLC performs the stream evaluations, which is more
complex than evaluating the activation conditions. An indicator of the complexity of
the components is the number of lookup tables. The smallest difference is in the Cross
Validation specification between the Queuke and the LLC. There, the number of lookup
tables is about 47 times higher than in the Queuk. The most significant difference is in
the Sensor Validation specification, where the number of lookup tables in the LLC is with
a factor of 96 times higher than in the HLC. The different complexity of the components
is also reflected in the number of carry adders and multipliers. In all specifications, the
number of lookup tables differ from a factor of 47 up to a factor of 96. The different
complexity between LLC, HLC, and QueuUE respectively is also reflected in the number
of carry adders and multipliers.

Concerning the memory consumption of the specifications, we consider the number
of flips flops. Table[6.7]shows that all specifications required more than 600B. As for the
complexity, the memory consumption between the LLC and the HLC or LLC and Queue
varies. Again, this is expected. The LLC stores all needed stream values, including the
input and output streams, as well as the buckets in the sliding windows. If we compare
this to the HLC, this component only contains the received event and the static array
for the periodic streams, which are much fewer values than all stream or bucket entries.
This is similar to the QUEUE, which stores beside the received event the enable bits of
the output streams. For this, the number of flip-flops in the LLC is in every specification
at least twice as many as the number of flip-flops in the HLC and QuEuk. If we compare
the HLC with the Queug, we see that they have similar results.

To identify which streams need most of the resources, Table[6.8|reports the resource
consumption of all entities in the geofence specification individually. First, we see that
only the stream entities with a multiplication operation in the stream expression contain
one or more multiplier components, which was expected. The same holds for the sliding
windows aggregations. Concerning the lookup tables and the carry adders, we realize
that most of the lookup tables and carry adders are used if the stream expression or
sliding window contains a division operator. In the geofence specification, these are the
streams computing the latitude position of the intersect and the m_v stream computing
the current gradient of the vehicle line. This hypothesis is supported in the sensor valida-
tion and in the cross-validation specification, where the sliding windows computing the
average need most of the resources. For example if we compare the sliding windows in
the sensor validation specification, the speed_all.aggregate(over: 10s, using: avg)
needs 10496 lookup tables, whereas cur_violation_with_sats_num.aggregate(over:
5s, using: sum) need 85 and num_of_sats.aggregates(over: 3s, using: count) uses
272. This high resource consumption for the division is logical. To compute the division,
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Component FF LUT CA MULT
Monitor 2853 26181 5425 46

HLC 504 275 38 0
CHECKNEWINPUT 2 127 0 0
EXTINTERFACE 66 0 0 0
EventDEeLay 128 8 0 0
TIMESELECT 61 63 16 0
SCHEDULER 111 13 22 0
HLQINTERFACE 133 61 0 0
QUEUE 426 286 28 0

LLC 1721 25429 5359 46

Evarvator 1717 25429 5359 46
LATINDEGREE 67 386 0 0
LoNINDEGREE 67 193 0 0
Lar 68 841 104 4

Lon 68 903 104 4

LaTPre 34 69 0 0

LoNPrE 34 68 0 0
DeLtaLAT 34 295 38 0
DEeLraLon 34 102 22 0
IsFnc 6 8 8 0

M_V 46 3619 1000 0

BV 34 366 116 4

MiINLATV 34 195 4 0
MinLonV 34 181 4 0
MaxLatV 34 157 4 0
MaxLonV 34 161 4 0
INTERSECTPOP1 3 35 8 0
INTERSECTP1P2 3 33 8 0
INTERSECTP2P3 3 100 16 0
INTERSECTP 3P4 3 66 8 0
INTERSECTP4P5 3 68 8 0
INTERSECTP5P6 3 65 8 0
INTERSECTP6P7 3 34 8 0
INTERSECTP7P8 3 63 8 0
INTERSECTP8P9 3 91 22 0
INTERSECTPIP10 3 33 8 0
INTERSECTP10P11 3 32 8 0
INTERSECTP11P12 3 64 8 0

Component FF LUT CA MULT
INTERSECTLATPOP1 34 2472 633 0
INTERSECTLATPIP2 34 2566 633 0
INTERSECTLATP2P3 34 2575 632 0
INTERSECTLATP3P4 34 199 10 0
INTERSECTLATP4PS5 34 394 19 0
INTERSECTLATP5P6 34 2579 633 0
INTERSECTLATP6P7 34 2592 633 0
INTERSECTLATP7P8 34 321 19 0
INTERSECTLATP8P9 34 351 19 0

INTERSECTLATPOP10 34 336 19 0
INTERSECTLATP10P11 34 326 29 0
InTERSECTLATP11P12 34 420 19 0

InTERSECTLONPOP1 34 179 18 4
InTERSECTLONP1P2 34 130 8 2

INTERSECTLONP2P3 34 180 17 4

INTERSECTLONP3P4 34 133 8 2

INTERSECTLONP4P5 34 144 8 2

INTERSECTLONP5P6 34 178 18 4

INTERSECTLONPOP7 34 152 8 2
INTERSECTLONP7P8 34 155 18 4
INTERSECTLONP8P9 34 177 18 4

INTERSECTLONPI9P10 34 156 8 2
INTERSECTLONP10P11 34 137 8 2
InTERSECTLONP11P12 34 124 8 2

TrIGGERPOP1 3 7 32 0
TricGerP1P2 3 4 32 0
TriGGerP2P3 3 4 32 0
TricGerP3P4 3 5 32 0
TrIGGERP4P5 3 5 32 0
TrIGGERP5P6 3 6 32 0
TRIGGERP6P7 3 6 32 0
TrIGGERP7P8 3 4 32 0
TrRIGGERP8P9 3 6 32 0
TriGGerP9P10 3 4 32 0
TriGGerP10P11 3 7 32 0
TricGerP11P12 3 5 32 0
CouNTER 68 71 8 0
(TimeCounter) 68 71 8 0

Table 6.8.: Resource consumption of the geofence specification.
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the circuit needs several clock cycles. However, with a pipeline architecture, some
computations can be parallelized to reduce the clock cycles but with the tradeoff of an
increased resource consumptionﬂ Further details about the resource consumption of
the other specifications are presented in Appendix

Remark 6.2.2. In concern of the sliding windows, we have to involve the different value
types and the duration of the window, such that the difference between the count and the sum
aggregation can be explained. However, because the value type of the average sliding window
is a 32-bit representation, whereas the counting aggregation uses a 64-bit representation, the
example supports the hypothesis that division needs many resources.

Concerning the worst negative slack time, which is also represented in Table all
specifications have a positive number such that the execution on the FPGA fulfills its
timing constraints.

Table also leads to another interesting fact, if we look at the intersect_lat_p5p6
and intersect_latp7p8 stream entities. Both streams contain the same stream expres-
sions except different static constants. From a theoretical point of view, we would assume
that the resource consumption of both streams would be equal. This assumption holds
for the number of flip flops, where both streams contain 34 flip-flops. However, if we
look at the number of lookup tables or carry bits, we see a huge difference. The stream
entity intersect_lat_p5p6 needs 2579 lookup tables and 633 carry adders, whereas
intersect_latp7p8 needs only 312 lookup tables and 19 carry adders. One explanation
for this difference could be the multi-dimensional optimization of the VHDL synthesis.
The synthesizer tries to parallelize as most computations as possible. From a theoretical
point of view, this is possible for all border crossing computation. However, the space
on the hardware-board is limited such that the synthesizer tries to reuse computation
logic as long as the general timing behavior of the FPGA is still satisfied. This explains
why the number of flip-flops are in both streams the same because the streams can
contain different values, whereas the number of lookup tables differs such that previous
computation logics are reused.

To check the behavior of specifications with different border numbers, we compile
and synthesize a geofence with 14 borders, which was the maximum on the hardware
board, and decreased the borders iteratively. Figure summarizes the results for
the number of flip-flops, lookup tables, and carry adders as well as the worst negative
slack time. In these graphics, the blue line represents the consumption of the complete
monitor, the red line the HLC, the brown line the Qurug, and the black line the LLC.
We see that for all specifications, the resource consumption of the HLC, and the Queue
is equal. However, the consumption of the LLC and so forth the monitor varies. This
was expected, because the logic for the HLC and the Queug is in all specifications
the same. Figure[6.9a]shows that the number of flip-flops increases linearly, which is
unsurprising concerning the observations from the previous paragraph. Figure [6.9¢]
and Figure illustrate the number of lookup tables and carry adders. Due to the

IThe synthesizer unrolls the division in our monitors, Radix-2 Solution in https://www.xilinx.com/
support/documentation/ip_documentation/div_gen/v5_1/pg151-div-gen.pdf
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Figure 6.9.: Result of the static analysis for different number of lines in the geo-fence.
The blue line visualizes the complete monitor, the red line the HLC, the
brown line the Queug, and the black line the LLC.

previous observations, we assume a nonlinear increase of the lookup tables and carry
adders, because the synthesis tool optimizes for a fast parallel execution but also for
an execution with few resources by reusing logic computations. The tradeoff is seen
if we compare the results of the specification with one border and with two borders.
The number of lookup tables is in the specification with two borders smaller than with
one, so the synthesized execution reuses some computation logic. For this, the worst
negative slack time shown in Figure also decreases, expressing the less parallel
execution. For specifications between five and seven borders, the number of carry
adders and lookup tables increases linearly. For this reason, the worst negative slack
time equals despite a small error margin.From the specification with eight borders, we
cannot see such a pattern anymore. This can be explained by the different optimizations
performed by the synthesizer. With the increased size of the architecture, it is harder
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longitude

latitude
Figure 6.10.: Representation of the test flight and the geofence

to find interplays between the different entities optimizing the design. This explains
why the worst negative slack time decreases between 10 and 13, even if the number of
lookup tables increases.

Another static analysis is the power consumption of the monitor, shown in Table
All specifications have extremely low power consumption: In the idle state, they con-
sume approximately 150mW and under heavy workload, a peak with approximately
2W. For comparison, we report the power behavior of two Raspberry PI mode]ﬂ where
a software-based monitoring approach could run on. The Model 2B with s 32-bit archi-
tecture consumes at idle 1.1W and the Model 4B with a 64-bit architecture 2.7W. Under
pressure, the power about twice as much with 2.1W and 6.4W. To justify the low power
consumption of the prototype, we compare the values to a Mac Pro 2013 mode]ﬂ The
consumption in idle state is of factor 280 higher, where the consumption under pressure
shows a factor 100 compared to our implementation

6.2.2. Validation

To evaluate the specification, we replayed two different flights with the setup from
Chapter |5 The first benchmark is a test flight, represented with the green line in
Figure In this benchmark, the setup for the optical navigation was tested with
different states of the vehicle,e.g. hovering. We monitored this flight with the geofence
specification, visualized with the red line in Figure The GPS position was sent
from the GPS-Module with a frequency of 5Hz. During the flight, the vehicle crossed

2Data collected from https://www.pidramble.com/wiki/benchmarks/power-consumption
3Data collected from |https://support.apple.com/el-gr/HT201796
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the fence twelve times on several lines, which the monitor recognized and reported.
The second benchmark is an on-site ground test on the area of the DLR institute in
Brunswick. In this test, the general setup of the landmark recognition was tested. For
this, the vehicle is attached on a platform and moved manually. Because the test area is
surrounded by buildings, the GPS-module had to deal with much interference. This was
the motivation to verify the Sensor Validation and the Cross Validation with this run. For
the Sensor Validation, the monitor received the GPS velocity data package, containing
the speed data, and the GPS position data. Both packages were sent with a frequency
of 5Hz from the GPS module. Our monitor reported 113 violations. However, most of
them were connected, i.e. if the monitor recognized a peak on the horizontal speed, it
often recognized a peak for the vertical and total speed as well. For the Cross Validation,
the IMU sends the acceleration values with a frequency of 100Hz and the GPS module
the speed values with a frequency of 5Hz. This monitor issued 36 violations.
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Chapter

Conclusion & Future Work

This thesis presented a traceable compilation for RTLota specifications to VHDL. RTLora
is a stream-based specification language with the great tradeoff-between formal guaran-
tees and expressiveness. For this reason, it is an excellent candidate for formal runtime
monitoring of cyber-physical systems. Safety-critical domains such as avionics, automo-
tive, or medical markets share the restriction that these products are required to satisfy
certification requirements. By showing the traceability property for our hardware-based
approach, we made the first step to satisfy these requirements. In our prototype, we
relate each component in the compiled architecture with the corresponding part in the
specification and annotate them.

In the next step, we experimented with our prototype in a real-world domain, avia-
tion. In cooperation with the German Aerospace Center in Brunswick, we integrated
a hardware board into the replay environment of an unmanned aerial vehicle (UAV)
and the UAV itself. The replayer played pre-recorded flights for the UAV with the same
timing-behavior as the UAV, which provided a perfect development environment for the
integration of the monitor. The integrated board contained a Field Programmable Gate
Array (FPGA), on which we synthesized compiled RTLora specifications. As input data,
the monitor received UDP packages from the UAV or replayer, analyzed these inputs
and stored the output of the monitor into a file. In the resulting case study, we tested
the integration and the compilation in a real-world domain with realistic frequencies.
We described three RTLora specifications which covered different parts of the vehicle:
The sensor validation checked the correctness of the sensor data. The cross-validation
described different approaches to validate different sensors against each other. The
geofence specification monitored a high-level command structure of the vehicle by
analyzing the position of the vehicle and checking if the UAV stays in the restricted
area, described by a polygon. We synthesized all specifications on the hardware board
and performed different static analyzes. The power consumption of each monitor was
around 150mW in idle and around 2W under pressure, which is extremely low. We
also reported the resource consumption of the specifications, which was on the limit of
the hardware board. The geofence specification presented that the synthesis tool reuses
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some computations to decrease the number of resources, but results in less parallel
execution. Additionally, we integrated the compiled monitors in the replay environment.
We replayed two pre-recorded flights, violating different constraints, which the monitor
recognized. Unfortunately, we could not validate the monitor during a flight because
of timing schedule problems and weather conditions. However, a flight test with the
hardware-based monitor is scheduled in March 2020, to identify the overall system
impact.

Currently, the hardware board stores the stream values into a file and does not
provide any feedback during the execution. For further applications, the stream values
and triggers need to be provided to the pilot or the system. In this case, the monitor
supports the pilot by providing compressed data and notifications in case of a violation.
Alternatively, the output of the monitor can be provided to the system directly, which
can start counter measurements automatically, e.g. starting a safe landing. However,
in this case, the output of the monitor needs to be considered when designing and
developing the UAV.

The specifications in this thesis were on the limit of resources of the hardware-
board, but only partially monitored the UAV. This issue can be solved with distributed
monitoring. In this case, we split the logic of the specification into different monitors.
For this approach, an architecture needs to describe the inputs and outputs of the
separate monitors as well as their connections. An example of an architecture can be a
separation between the sensor validations as well as the cross-validation: The validation
of the different sensors is covered by separate monitors, which send compressed data
to the cross-validation. This approach solves the problem of the board limitations but
introduces new ones, e.g. the encoding of the architecture in the RTLoLa specification,
or representing the time for the communication between the monitors.

Besides, the language RTLota is not yet complete. For example, one extension of
Loia [34] introduces parameterization for network monitoring. In this case, the number
of instances of a parametrized stream is bounded by the value types of the parameters.
This results in a conflict when using our hardware-based approach: The number of enti-
ties needs to be known at compile-time, to realize the logic in the hardware. Therefore,
we need to define an instance for each parameter value. However, because of the board
limitation, we cannot create all instances. One approach to solve this issue is to restrict
the number of instances explicitly instead of using the value types of the parameter.
However, in this case, we need to define the semantics if the number of instances is
violated with an input trace.
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A.l. Inference Rules Type System

Input Streams

TLUf(T) & =(s)

5,TEs

Periodic Output Streams

slhext=1 TCL(T)M T LT E s|.expr

LTE slT

Event-base Output Streams

TCsl.ext TCIf(T)M T GTE sl.expr

T,TEs,

Trigger

{Boo}ET 0,7 s).tar

o, TES;

Synchronous Lookups
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Offset Lookups

o/, UEs; GCo TCOpKT) neh

0,T | Offset(s;, n)

Sample & Hold Lookup
o', T Es; TEOpHT')
0,7 | Hold(s;)

Default Expression

oL,TiFer 03T FEe; 61=0pKoi’) GC61'Mo, TCTMNTG
0, 7T | Default(eq, e;)

Function Expression
f:Tyx---xT,->T TClf(T) Vi:o;,tEa; Vi:t Clift(T;) 6CaoM...Mao,
0,7 | Func(f,ay,...,a,)

Sliding Window Lookup
oelh y:T;-»T, tClift(T,) o, 7 ks; T Clift(T,)
7, T | Window(s;,0,y)

A.2. Templates

A.2.1. TIMESELECT

The code fragment realizes the computation of the system time:

1 -- Internal Signal Declarations

2 signal sys_time : unsigned(63 downto 0);
3

4  begin

5

6 process(clk, rst) begin
7 if rst = '1' then

8 -- Reset Phase

9 sys_time <= to_unsigned(@, sys_time'length);

10 elsif rising_edge(clk) then

11 -- Logic Phase: Compute System Time

12 -- Relation Clock Frequency and Period per Cycle:
13 -- {{clk_freq_in_hz}} <=> {{period_in_sec}}

14 sys_time <= sys_time + {{time_per_cycle}};

15 end if;
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16 end process;

A.2.2. CHECKNEWINPUT

This entity realizes the detection when the values on the input signals of the HLC entity
are a new incoming event for the monitor. For this, the entity waits on a rising edge on
the new_input signal, set by the monitored system.

0 NI O\ U1 = W N -

\O

10
11

12
13
14
15
16
17
18
19
20
21
22

-- Internal Signal Declarations
signal prev_new_input_in : std_logic;

begin

process(clk, rst) begin
if rst = '1' then
-- Reset Phase
new_input_out <= '@';
prev_new_input_in <= '0';
elsif rising_edge(clk) then
-- Logic Phase: Check If There Is a New Event
if new_input_in = '1' and prev_new_input_in = '@' then
-- Current Event Is New
new_input_out <= '1"';
else
-- No New Event
new_input_out <= '0';
end if;
prev_new_input_in <= new_input_in;
end if;
end process;

A.2.3. EXTINTERFACE

This entity realizes the conversion from the bit-vectors to the corresponding numeric
types.

= N =

o N N

-—*% Input Streams and their Types in the Specification:
--% {{print_input_streams}}

-- Internal Signal Declarations
signal time_converted : unsigned(63 downto 0);

{{converted_signals}}

begin
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9
10 process(clk, rst) begin

11 if rst = '1' then

12 -- Reset Phase

13 time_converted <= to_unsigned(@, time_converted'length);
14 {{signal_default_assignment}}

15 elsif rising_edge(clk) then

16 -- Logic Phase: Convert Input in Numeric Types

17 time_converted <= unsigned(time_in);

18 {{converts}}

19 end if;

20 end process;

A.2.4. HLC

This process creates a clock that is fourth times slower, such that the HLQINTERFACE can
forward the information of the ScHEDULER and the EvENTDELAY in one clock cycle of the
HLC.

1 process(clk, rst) begin

2 if (rst = '1"') then

3 -- Reset Phase

4 slow_hlc_clk <= '0';

5 hlc_clk_count <= 0;

6 elsif rising_edge(clk) then

7 -- Logic Phase: Raise Slow Clock Signal Every Fourth Cycle
8 hlc_clk_count <= (hlc_clk_count + 1) mod 4;

9 if hlc_clk_count = 3 then
10 slow_hlc_clk <= '"1";

11 else

12 slow_hlc_clk <= '0';
13 end if;

14 end if;

15 end process;

A.2.5. LLQINTERFACE
This process realizes the state machine from Figure

1 process(clk, rst) begin
2 if rst="1"' then

3 -- Reset Phase

4 eval <= '0';

5 current_state <= 0;
6 pop_data <= '0';
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7 elsif rising_edge(clk) then

8 -- Logic Phase

9 if (current_state = @ and data_available = '1') then
10 -- idle

11 pop_data <= '1';

12 eval <= '0';

13 current_state <= 1;

14 elsif current_state = 1 then
15 -- pop

16 eval <= '1';

17 pop_data <= '@';

18 current_state <= 2;

19 elsif current_state = 2 and evaluator_done = '1' then
20 -- eval
21 if data_available = '1' then
22 pop_data <= '1';
23 eval <= '0';
24 current_state <= 1;
25 else
26 eval <= '0';
27 current_state <= 0;
28 end if;
29 end if;
30 end if;

31 end process;

A.3. Realization of Stream Expressions

To realize stream expression in the prototype, we assign each subexpression to a new
VHDL variable. Such variables are declared after the process keyword and have a scope
limited to this single process. In comparison to signal assignments, which perform
their assignments in parallel, variable assignments have a sequential execution. This
method increases the depth of the resulting circuit and slows down the clock signal.
However, with this sequential execution, we can evaluate a stream expression in one
clock cycle and do not have to separate the evaluation. The compiler uses the abstract
syntax tree (AST) of a stream expression and assigns each subexpression to a temporary
variable. This AST is part of the intermediate representation (IR) of the specification,
returned by the STREamMLAB frontend. Our prototype compiles the corresponding VHDL
realization from this tree by iterating through the AST in post-order and assigning
each subexpression to a temporary variable. With these temporal assignments, the
prototype can compile the VHDL code for each expression type separately without using
the previous context. The following algorithm gives an idea of the recursive approach
for the expression generation.

First, the algorithm checks the amount of children of the current expression. Af-
terward, it builds recursively the VHDL realization for each child. Then, the compiler
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Algorithm 1: generate_vhdl_code_for_expression

Data: The parameter expr contains the current expression.

Result: The function returns the code fragment realizing the stream expression.
1 if expr is leave expression then
2 L return generate_leave_expression(leave type of expr);

3 if expr is unary expression then
4 subexpr = generate_vhdl_code_for_expression(subexpression of expr);
return subexpr + generate_unary_expression(unary type of expr);

if expr is binary expression then

lhs = generate_vhdl_code_for_expression(lhs of expr);

rhs = generate_vhdl_code_for_expression(rhs of expr);

return lhs + rhs + generate_binary_expression(binary type of expr);

o e N S

10 if expr is ternary expression then

11 para_1l = generate_vhdl_code_for_expression(first parameter of expr);

12 para_2 = generate_vhdl_code_for_expression(second parameter of expr);

13 para_3 = generate_vhdl_code_for_expression(third parameter of expr);

14 return para_l + para_2 + para_3 + generate_ternary_expression(ternary type
of expr);

15 return Error;

realizes the VHDL code of the current expression type and returns the code fragments of
the subexpressions and the current expression type. Sometimes, the prototype needs
more than one temporary variable for the realization of one expression type. To see the
realization for each expression, we describe the expression in vanilla RTLora and show
their realizations:

LoadConstant(constant)

A constant ¢ in STREAMLAB is a function f, which maps to the constant value c. There-
fore, the result of the AST function in vanilla RTLora is: Func(f), which need to be
transformed in VHDL code. Based on the type T of the constant the prototype builds the
following realization:
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Stream Type VHDL Realization Explanation

Bool tempeonst = € ¢’ is > 1’ if the constant value

cis true and '@’ otherwise

UInt8, UInt16, temp opst n is the size of the Ulnt type
UInt32 or UInt64 := to_unsigned(c,n-1)

Int8, Int16, temp opst n is the size of the Int type
UInt32 or UInt64 := to_signed(c,n-1)

Float16, Float32 temp yus: I is the lower bound and u is the
or Float64 := to_sfixed(c,l,u) upper bound of the Float type

StreamAccess(target, kind)

A stream access to s; in the IR is either a synchronous lookup or a hold access. Therefore
the output of the AST function would be Offset(s;,0) or Hold(s;). Due to the parsing that
checks if a default expression follows the hold access, there is no difference for the IR.
In both cases, the expression generator assigns the corresponding input value to the

temporary variable.
‘ tempyee 1= 575

OffsetLookup(target, offset)

The prototype realizes an offset lookup Offset(s;, n) by assigning the input signal from
the output stream entity to the temporary variable. Like the realization of a hold access,
the compiler knows at this time that a default expression follows an offset lookup.
Therefore, there is no check if the value is valid at this position, and the corresponding
VHDL code is:

| tempyps := s;_negn;

WindowLookup (window)

The realization of a window lookup Window(sl_, 0,7) is the same as a synchronous access
to another stream. The compiler builds a new entity for each sliding window computing
the sliding window. The value is received by the output stream entity and assigned to
the temporary variable, resulting in:

| tempy; := s;_0_y_sw_d;
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Default(sub_expr,default)

For the realization, the expression generation function receives the last offset Offset(s;, n),
hold Hold(s;), or sliding window access Window(s;, 6,y) from the recursive call. Addi-
tionally, a variable last_access is needed to access the correct valid input signal. With
this value, the function decides if to take the default value or the expression value. For
this decision the compiler generates:

‘ tempg.r := Sel(tempsub_exprv tempgefauis validiast access) s

where tempg,;,_cypr is assigned to the subexpression value and tempgef,u; is assigned to
the default value. Additionally, the function sel returns the first value, if the third
argument is 1’ and the second otherwise.

Ite(condition, consequence, alternative)

This expression is syntactic sugar for a function expression Func(f,cond,cons,alt). The
definition of f is to return the second parameter cons if the first one containing the
condition cond is true and the third one with the alternative alt otherwise. Therefore,
the first parameter is of type Bool, and the second and third one have the same type t. In
StreaMLaB, the three parameters are expressions that are realized by a recursive call of
the expression generator. As a result, the subexpressions are assigned to the temporary
variables temp.,,4, temp,,s and temp,,. To realize the Ite expression itself the function
generates the following code fragment:

if tempgyug = '1' then

tempjs, = tempgous;
else

tempj, = tempgy;
endif’;

ArithLog(operator, parameters)

In vanilla RTLoLa, the arithmetic operators are represented as functions. Based on the
operator, these functions have a different number of parameters. The realization uses
the corresponding VHDL operator and the variables containing the subexpressions for the
assignment. However, dependent on the operator or the stream type of the expression,
the VHDL realization needs to resize the variable afterwards to their corresponding bit
length in the specification. The following table shows for each operator the realization,
where u and I define the same range as in Section
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Operation Result Type VHDL Realization Notes
—expr temp,es 1= - tempeyy;

—expr temp, 1= neg tempyyp,;

lhs o rhs Integer temp,,s := tempy, o temp,; o€ f{+—/}
lhs o rhs Fix-point Number temp,, := tempy, o tempy;; o€ f{+,—,/}

tempyes := tempop(u downto [);

Ihs % rhs temp,.s = tempy, rem temps;
lhs = rhs temp, := tempp, * temp,;
temp,,s := temp,(u downto I);
lhs A rhs temp,.s := tempy, and temp,s;
lhs V rhs temp,es := tempys or temps;
lhs o rhs temp,,s := to_std_logic(tempy, o temp,); ce{=,<>,
>=, <:}
lhs # rhs temp,,s := to_std_logic(tempys /= temp,;);

Function(name, parameters, returntype)

Our prototype supports at this point in time two functions apart from the arithmetic
operators, the abs returning the absolut value of a number and the square root function
sqrt. To compute the absolut value in VHDL, we use the predefined abs function from the
ieee library, resulting in the following assignments:

-- integer type
temp,es := abs(tempeyy,);

-- Real Number with Fix-point Representation
tempgys <= abs(tempexpr);
| tempy := tempyy, (u downto 1);

with u is the upper bound and [ is the lower bound from the fix-point representation
from Section As for some of the arithmetic operators, we have to resize the bit vector
after applying the operation.

In VHDL there is no predefined square root function in the ieee library for the numeric
types signed, unsigned and sfixed. Currently, the frontend in STReEaAMLAB enforces that
the argument type of the function is a float type. Because of the fix-point representation
of real numbers, we can use integer arithmetic and only need to implement a square root
function for integers. We realized the square root computation for unsigned integer with
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the constant-time function proposed by Li and Chu [35]. To implement the function
for real numbers, we interpret the bit vector as a real number and divide the result
afterwards based on the representation. The following proof shows the correctness of
this approach, where x is a real number with the bit representation using m bits for the
fractional part.

X*2m+1
2m+1

Vy # 2m+1
\/2m+1

3 Junsigned(x) << 1

m+1
2

Vi=

m+1

= (\/unsigned(x) << 1) >>

Since the sqrt function is only defined for positive numbers, the first bit of x is always
zero. Therefore, by multiplying the number with 2 after interpreting the bit vector as an
unsigned value, we ensure that there was no overflow, because the first bit is zero. This
shift is needed, because Section |4.2|assigns each stream type for real number to an odd
number m, and otherwise mT“ would not be an integer value.

The implementation of this approach is outsourced into a new VHDL package — called
my_math_pkg — which is included in each output stream entity . The expression gener-
ator only calls the implemented function with the temporary variable, containing the

result of the sub expression expr and assigns it to a new one:

‘ temp,es 1= my_sqrt_func(tempexpr);

Convert(from_type, to_type, expr)

The conversion of the expression expr of type tg,,, to another type t;, is separated into
two categories. The first kind of conversion is a resizing of the same type, e.g. the
type Int8 is converted to Int32. Because no type cast is needed for this category, the
realization is a mapping of the corresponding bits. The compiler determines the upper
bound u and lower bound [, from the type with the smaller bit range and assigns only
these bits to the new temporary variable:

‘ temp,,s(u downto [) := temp,,, (u downto I);

The second kind of conversion involves a new interpretation of the bit vector. At first,
the signed interpretation is cancelled by uninterpreting the bit vector. Afterwards, the
bit vector is resized if needed and interpreted as an unsigned integer value:

‘ tempy;rec (u downto I) := std_logic_vector(temp,, (u downto [));
‘ tempes 1= unsigned(temppityec) ;
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For a conversion from an unsigned integer value to a signed one, the compiler uses the
same approach and replaces the unsigned keyword with signed. If one of the types is
a real number, the expression generator uses the functions to_sfixed and to_signed
from the fixed_pkg in the ieee library. These function take as inputs the expression,
that needs to be converted and the new bit range. For a conversion from a real number
to an integer with an unsigned interpretation and vice versa, the realization uses an
additional step with a conversion to an integer value with a signed interpretation:

-- From Int to Float

temp,s := to_sfixed(temp,yy,,, u, D;

-- From UInt to Float

temp,es = to_sfixed(signed(tempexp,), u, 1;
-- From Float to Int

temp,es := to_signed(tempeyy,, u);
-- From Float to UInt
temp,es := unsigned(to_signed(tempexp,, u));

where u and I are the upper and lower bounds of the ¢, type.

A.3.1. Sliding Window Realizations

Summation

To add up all values over a time window, we use the aggregation function sum: A* — A
* mapy,,, : A = A with map,,,, (x) = x

. fing,,, A — Awith fin,, (x) = x

o @y A2 = A with x; ®g, X0 = X1 + X
* Eum =0

Apart from the lifting function map,,,,,, this homomorphism has the same definition as
the counting aggregation. The realization of this function is similar to the counting real-
ization. At first, we change the name of the buckets register to sum_buckets. Afterwards,
the compilation replaces the {{map_and_update_last_sw_bucket}} place holder with:

| sum_buckets(@) <= sum_buckets(@) + d_in;

For real numbers, the compiler resizes the bit vector after the addition like in Section 2?.  sSec.0,P. 22

Averaging

The computation of the average value over some time sums and counts all values and
divides the sum by the count during the finalization. Therefore, the list homomorphism
uses a tuple for the intermediate representation to store the sum and the count value.
The mathematical description for the averaging aggregation avg: A* — A is:

© map,,, : A — (A, N) with mapm,g(x) =(x,1)
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(x,c)==%

¢ fing, : (A N) —> A with fin

m/g
* ®aug 1 (A, N)? = Awith (x1,¢1) ®aug (X2,02) = (X1 + X2, 01 + )
R (0,0)

To realize the tuple used as the intermediate representation, the prototype uses two
internal registers for the bucket approach, which initialize each bucket entry to zero.
The count_buckets signal counts the number of received stream values per bucket and
the sum_buckets signal stores the summed value for each bucket. The realization of the
averaging aggregation avg is then the combination of the realization for the counting and
summation function for the evict and the update case. Then, the request-case replaces
{{finalize_sw}} with the separate summation of the arrays and performs the division:

d <= (sum_bucket(®) + ... + sum_bucket({{num_buckets}})
/ (count_bucket(@) + ... + count_bucket({{num_buckets}}));

Like in the summation, the compiler adds a resize operation before writing the value
to the data signal. Since the division by zero is not defined, which is possible, if no
value was received inside the timed window, the entity notifies the stream expression
to take the default value. Therefore, the return value for the d_valid_out is assigned
to ’@’, which is achieved by replacing the {{valid_upd}} place holder with *@’. This
assignment defines each bucket entry to invalid at first. If an event is received, meaning a
rising edge of the upd signal, the valid entry for this bucket is assigned to one. Therefore,
the compiler adds the following assignment to the map_and_update_last_sw_bucket
replacement:

| data_valid_buckets(0) <= '1';

In the request case, the compiler builds the disjunction of all valid_buckets entries for
{{finialize_valid}}.

Integration

The integration over a specific time is performed in the prototype with the trapezoid ab-
straction. This approach reconstructs the function from received samples by connecting
them with a straight line and computes the volume of this reconstructed graph. The
sub-aggregations and, therefore, the different buckets in the homomorphism represent a
section of the graph. The intermediate value of the function is an optional tuple storing
the left-most value and its timestamp, the right-most value and its time-stamp and the
current volume. The complete homomorphism J : (A, T)* — Optional(A) is described by:

* map: (A, T)— Optional(A, T,A,T,A) with mapj((x, t)) =(x,t,x,t,0)

. ﬁnf : Optional(A, T,A, T,A) — Optional(A) with
ﬁnf(J_) =1 and
ﬁnf((xL, th xR R v)) =v
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®| : (Optional(A, T, A, T,A))? — Optional(A, T, A, T,A) with

J_C)I.L.I Jq
(.X'l,tL xl, V])@IL (xl;tL x])tR )
L R R R
J‘®J (xz,t Xy, by, Vp) = (xz,t?_,xz,t ,V;) and

L
(xl,tl,xl,tl,v1)®f (xz,tz,xz,tz,vz)
L R 1. (R R
(xl,t xz,l‘z,2 (2] +x2) (t2 ')+ vy +vy)
L] EJ = J_
This function requires besides the stream value also the system time. However, this
value is already available for the evict phase, and the update phase can reuse the time_in

input signal. For the tuple realization, the implementation uses a single internal register
for each component in the tuple representation:

* The signal 1hs_value_buckets stores the first value of a bucket.

* The signal rhs_value_buckets stores the last value of a bucket.

The signal 1hs_time_buckets stores the time stamp of the first element in a bucket.

The signal rhs_time_buckets stores the timestamp of the last element added to a
bucket.

* The signal volume_buckets stores the current volume of a bucket.

Like averaging, integration is not defined if a window does not receive any value.
Therefore, the buckets in the valid_bucket signal array are assigned to ’@’ when creating
a new one and during the reset phase. For the mathematic function, this zero assignment
corresponds to the 1| value. The other bucket signals are assigned to their type-specific
zero values to prevent an access to an uninitialized value. During the update case,
the realization has to differentiate the execution with a 1| value and none. During the
execution, the 1 value is only possible in the first iteration for a bucket, the update
last bucket case starts with a case disjunction if the current bucket value is valid. If
this is not the case, which happens in the first iteration, the implementation assigns
the bucket to the current input and the volume value to ’@’. Otherwise, the input is
lifted to the intermediate representation and a binary reduction is performed. This logic
results in the following code fragment for {{map_and_update_last_sw_bucket}}, where
the variables half_time_diff and product are variables with a sequential execution:

if (data_valid_buckets(@) = '@') then
lhs_value_buckets(@) <= d_in;
lhs_time_buckets(@) <= time_in;
rhs_value_buckets(®) <= d_in;
rhs_time_buckets(@) <= time_in;
volume_buckets(@) <= (others => '0');
else
half_time_diff := std_logic_vector((time_in - rhs_time_bucket(@)) / 2 );
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product := (rhs_value_buckets(®) - d_in) * cast(time_diff) ;

rhs_value_buckets(@) <= d_in;

rhs_time_buckets(@) <= time_in;

volume_buckets(@) <= volume_buckets(@) + resize(product);
end if;

cast is a VHDL code fragment to cast the time and the value to the same numeric
type. resize is a code fragment that casts the product value to the right bit-vector size
(Compare Section ). The request case combines the different buckets with the
binary reduction operator and finalizes the result by returning the volume value. The
implementation uses an iterative to realize this logic. Starting with the last bucket,
the implementation iterates over all buckets, and stores the pre-aggregated results in
the pre_valid, last_lhs_value, last_rhs_time and cur_volume variables. Because the
implementation iterates from the bucket with the latest timestamp to the earliest one,
the right-hand side of the pre-aggregations can be ignored and do not need to be stored.
This approach is realized by:

-- Iterate Over All Buckets, Beginning with the Last Time Stamp
pre_valid := data_valid_buckets(@);
last_lhs_value := lhs_value_buckets(0);
last_lhs_time := lhs_time_buckets(0);
cur_volume := volume_buckets(0);
for i in 1 to {{num_buckets}} loop
if pre_valid = '0' then
-- Reduction with Bot for the Pre-aggregated Values
pre_valid := data_valid_buckets(i);
last_lhs_value := lhs_value_buckets(i);
last_lhs_time := lhs_time_buckets(i);
cur_volume := volume_buckets(i);
elsif data_valid_buckets(i) = '1' then
-- Reduction with Valid Values on Both Sides
half_time_diff := std_logic_vector((last_lhs_time - rhs_time_buckets(i)) / 2
);
product := (last_lhs_value + rhs_value_buckets(i)) * cast(time_diff);
cur_volume := cur_volume + volume_buckets(i) + * resize(product);
last_lhs_value := lhs_value_buckets(i);
last_lhs_time := lhs_time_buckets(i);
end if;
data <= cur_volume;

The {{finalize_valid}} place holder is assigned to the pre_valid variable, which is set
during the iteration over the buckets.

A.4. Roadmap to Integrate the monitor in Vivado
This is a roadmap for a program, that creates a binary file for an runtime monitor for an

RTLora specification, that can be executed onto an Xilinx board. This roadmap is based
on the tutorials [36,(37]]. We perform the following steps:
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Step 1: Compile VHDL file out of an RTLola specification

Step 2: Create a new Vivado Project

Step 3: Create a new Block design

Step 4: Create Monitor Component

Step 5: Generate Hardware Bitstream

Step 6: Generate First Stage Boot Loader and Add lwip Library
Step 7: Generate the Execute Project

Step 8: Generate Boot Image

Step 1: Compile VHDL file out of an RTLola specification

* open a terminal and execute the fpga_streamlab.exe program in the following
way: fpga_streamlab.exe --vivado_files --<online|offline> <pathToSpecification>
<pathToTargetDirectory> <pathToTemplateDirectory>

Step 2: Create a new Vivado Project

* Run Vivado and create a new project
— Click on Create New Project
— Click on Next
- Enter a project namen, location and click the Next botton
— Select RTL Project and click Next
- Click on Next
- Click on Boards and select the Zynq ZC702 Evaluation Board file
— Click on Next
- Click on Finish

* Add Compiled Monitor:

Click on Tools — Create and Package New IP
Click on Next

Select Create a new AXI4 peripheral and click on Next

Enter a monitor name and click on Next

Enter a number of Register, whereas the output of fpga_streamlab gives you
the minimum number and click on Next

Select Edit IP and click on Next

A new window should open
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Step 3: Create a new Block design

* Creating a New Block Design

Open the window, that is not named edit_<monitorname>

Click on Create Block Design

Enter a name and click on OK

Click the Add IP button and search for the ZYNQ?7 Processing System
Click on Run Block Automation and click on OK

Click the Add IP button and search for the <monitorname>
Click on Run Block Automation and click on OK

* Validate Design, Generate HDL Wrapper and Generate Bitstream
— Click on Validate Design

— Right-click on design_name.bd in the Design Sources tab and click on Create
HDL Wrapper

Step 4: Create Monitor Component

* Add the compiles files

Open the window, that is named edit_<monitorname>
Click on Add Sources
Click on Next

Click several times on Add Files and add all compiled files except the files in
the vivado_files folder

Click on Finish

* Add the fixed_pkg 2008 package to the ieee library
— Click on Tcl Console
— Type the following commands:
* add_files -norecurse <path to pkg>/fixed_pkg_2008.vhd
x set_property library ieee [get_files <path to pkg>/fixed_pkg_2008.vhd]
x read_vhdl -vhdl2008 <path to ip_repo>edit.xpr
x» launch_runs synth_1 -jobs 4

* wait_on_run synth_1

* Integrate the monitor

— Open the 0_S00_AXI inst file in the Source — Design Sources tab
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- Go to the line with the signal declaration for the registers and before the
begin keyword

— Open the vivado_integration.vhdl file in the vivado_files folder

— Copy all line up to the end component keyword and paste the line at the
previous described position

— Move the curser at the beginning bracket after the process keyword after the
following comment "Implement memory mapped register select and read
logic generation"

— Copy the next line from the vivado_integration.vhdl file at this position and
add a comma

- Replace the following case disjunction with the case disjunction from the
vivado_integration.vhdl file

- Go to the comment "Add user logic here" and copy the rest of the vi-
vado_integration.vhdl file at this position

— Store the file

* Update the package
— Click on Package IP file
— Click on File Groups and on Merge changes
— Click on Review and Package and on Re-Package IP
- Click on Yes

Step 5: Generate Hardware Bitstream

* Update Block Design
— Click on Report IP Status
— Click on Upgrade Selected in the IP Status Tab

— Click on Generate

* Generate Bitstream
- Click on Generate Bitstream at the Flow Navigator tab. Wait for the process
and click OK
* Export Hardware File and Launch SDK
— Go to File — Export — Export Hardware
— Select the Include bitstream box and click on OK
- Go to File — Launch SDK and click on OK
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Step 6: Generate First Stage Boot Loader and Add lwip Library

* Generate the First Stage Boot Loader Project
— Go to File - New — Application Project
— Enter fsbl as project name and click on Next

— Select the Zynq FSBL template and click on Finish

* Add the lwip141 library to the project
— Open the system.mss file in the fsbl_bsp folder
— Click on the Modify this BSP’s Settings button

— Select the lwip141 box in the Overview — Supported Libraries tab and click on
OK

Step 7: Generate the Execute Project

* Generate the Echo Project
— Go to File - New — Application Project
— Enter a project name

— Choose Use existing in the Board Support Package tab, select fsbl_bsp and click
on NEXT

— Select the IWIP Echo Server template and click on Finish

* Modify the Echo Template and Board Support Package
Delete the echo.c and main.c file
Add all *.h and *.c files from the vivado_file folder to the src folder

Select the system.mss file in the fsbl_bsp folder and click on Modify this BSP’s
Settings

Click on Overview — standalone — lwip141 — temac_adapter_options, change
the value phy_link_speed from Autodetect to 100 Mbps, and click on OK

Correct the base address in the macros.h file

Step 8: Generate Boot Image

* Create Boot Image and Store It on the SD Card
- Right-click on the echo folder and click on Create Boot Image
— Click on Create Image
— Copy the BOOT.bin file in the .../projectname.sdk/execute/bootimage
folder to the SD card

* Test the program
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— Open Tera for the serial communication
— Plug in the SD card in and change the switch setting (SW16) to 00110

— Start the sender program

A.5. Geofence

import math
input lat_in_degree :Float32
input lon_in_degree :Float32

output lat := lat_in_degre * 3.14159265359 / 180.0
output lon := lon_degree * 3.14159265359 / 180.0

output lat_pre := lat.offset(by: -1).defaults(to: lat)
output delta_lat := lat - lat_pre

output min_lat := if lat < lat_pre then lat else lat_pre
output max_lat := if lat > lat_pre then lat else lat_pre
output lon_pre := lon.offset(by: -1).defaults(to: lon)

output delta_lon := lon - lon_pre
output min_lon := if lon < lon_pre then lon else lon_pre
output max_lon := if lon > lon_pre then lon else lon_pre

output isFnc := abs(delta_lat) > 0.00000001
output m := if isFnc then (delta_lon) / (delta_lat) else 0.0
output b := if isFnc then lon-(mxlat) else 0.0

// Polygonline p@pl1: (@.1180559967662996, 0.0399734162336672) to (0.11908193655673749,
0.04525405540696442)

output intersect_p@pl := abs(m-5.147123859035988) > 0.00000001

output lat_p@pl := if isFnc and intersect_p@pl1 then (b - -0.5676754214244288) /
(5.147123859035988 - m) else lat

output lon_p@pl := 5.147123859035988 * lat_p@Opl + -0.5676754214244288

output check_p@p1 := (intersect_p@p1) and ((lat_p@p1 > min_lat and lat_p@pl1 < max_lat)
and (lon_p@p1 > min_lon & lon_p@p1 < max_lon)) and ((lat_p@p1 > 0.1180559967662996
and lat_p@pl < 0.11908193655673749) and (lon_p@p1 > ©.0399734162336672 & lon_p@p1 <
0.04525405540696442))

// Polygonline p1p2: (0.11908193655673749, 0.04525405540696442) to (0.11617135825882872,
0.046935706350154524)

output intersect_plp2 := abs(m--0.5777721026774507) > 0.00000001

output lat_plp2 := if isFnc and intersect_p1p2 then (b - 0.11405627628225343) /
(-0.5777721026774507 - m) else lat

output lon_p1p2 := -0.5777721026774507 x lat_pip2 + 0.11405627628225343

output check_pl1p2 := (intersect_pip2) and ((lat_pip2 > min_lat and lat_p1p2 < max_lat)
and (lon_p1p2 > min_lon & lon_p1p2 < max_lon)) and ((lat_pl1p2 > ©.11617135825882872
and lat_pl1p2 < 0.11908193655673749) and (lon_p1p2 > 0.04525405540696442 & lon_plip2 <
0.046935706350154524))

// Polygonline p2p3: (@.11617135825882872, 0.046935706350154524) to (0.11766289020098507,

0.05297933593688546)
output intersect_p2p3 := abs(m-4.051961219143263) > 0.00000001
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output lat_p2p3 := if isFnc and intersect_p2p3 then (b - -0.42378613208981786) /
(4.051961219143263 - m) else lat

output lon_p2p3 := 4.051961219143263 * lat_p2p3 + -0.42378613208981786

output check_p2p3 := (intersect_p2p3) and ((lat_p2p3 > min_lat and lat_p2p3 < max_lat)
and (lon_p2p3 > min_lon & lon_p2p3 < max_lon)) and ((lat_p2p3 > 0.11617135825882872
and lat_p2p3 < 0.11766289020098507) and (lon_p2p3 > 0.046935706350154524 & lon_p2p3
< 0.05297933593688546))

// Polygonline p3p4: (0.11766289020098507, ©.05297933593688546) to (0.11463282400467073,
0.054732465100919954)

output intersect_p3p4 := abs(m--0.5785778430078313) > 0.00000001

output lat_p3p4 := if isFnc and intersect_p3p4 then (b - 0.12105647715143869) /
(-0.5785778430078313 - m) else lat

output lon_p3p4 := -0.5785778430078313 * lat_p3p4 + 0.12105647715143869

output check_p3p4 := (intersect_p3p4) and ((lat_p3p4 > min_lat and lat_p3p4 < max_lat)
and (lon_p3p4 > min_lon & lon_p3p4 < max_lon)) and ((lat_p3p4 > 0.11463282400467073
and lat_p3p4 < 0.11766289020098507) and (lon_p3p4 > 0.05297933593688546 & lon_p3p4 <
0.054732465100919954))

// Polygonline p4p5: (0.11463282400467073, 0.054732465100919954) to (0.12039516145301407,
0.06110106989155227)

output intersect_p4p5 := abs(m-1.1052120511379069) > 0.00000001

output lat_p4p5 := if isFnc and intersect_p4p5 then (b - -0.07196111344501288) /
(1.1052120511379069 - m) else lat

output lon_p4p5 := 1.1052120511379069 * lat_p4p5 + -0.07196111344501288

output check_p4p5 := (intersect_p4p5) and ((lat_p4p5 > min_lat and lat_p4p5 < max_lat)
and (lon_p4p5 > min_lon & lon_p4p5 < max_lon)) and ((lat_p4p5 > 0.11463282400467073
and lat_p4p5 < ©.12039516145301407) and (lon_p4p5 > 0.054732465100919954 & lon_p4p5
< 0.06110106989155227))

// Polygonline p5p6: (0.12039516145301407, 0.06110106989155227) to (0.12135284424675223,
0.05413856066294947)

output intersect_p5p6 := abs(m--7.270162181180861) > 0.00000001

output lat_p5p6 := if isFnc and intersect_p5p6 then (b - ©.936393419484419) /
(-7.270162181180861 - m) else lat

output lon_p5p6 := -7.270162181180861 * lat_p5p6 + 0.936393419484419

output check_p5p6 := (intersect_p5p6) and ((lat_p5p6 > min_lat and lat_p5p6 < max_lat)
and (lon_p5p6 > min_lon & lon_p5p6 < max_lon)) and ((lat_p5p6 > 0.12039516145301407
and lat_p5p6 < ©.12135284424675223) and (lon_p5p6 > 0.05413856066294947 & lon_p5p6 <
0.06110106989155227))

// Polygonline p6p7: (0.12135284424675223, 0.05413856066294947) to (0.12199513900152693,
0.05357314974496478)

output intersect_p6p7 := abs(m--0.8802982023152586) > 0.00000001

output lat_p6p7 := if isFnc and intersect_p6p7 then (b - 0.16096525129920902) /
(-0.8802982023152586 - m) else lat

output lon_p6p7 := -0.8802982023152586 * lat_p6p7 + 0.16096525129920902

output check_p6p7 := (intersect_p6p7) and ((lat_p6p7 > min_lat and lat_p6p7 < max_lat)
and (lon_p6p7 > min_lon & lon_p6p7 < max_lon)) and ((lat_p6p7 > 0.12135284424675223
and lat_p6p7 < 0.12199513900152693) and (lon_p6p7 > 0.05357314974496478 & lon_p6p7 <
0.05413856066294947))
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// Polygonline p7p8: (0.12199513900152693, 0.05357314974496478) to (0.12272805380095549,
0.05060231541569706)

output intersect_p7p8 := abs(m--4.053451140001608) > 0.00000001

output lat_p7p8 := if isFnc and intersect_p7p8 then (b - 0.5480744850053588) /
(-4.053451140001608 - m) else lat

output lon_p7p8 := -4.053451140001608 * lat_p7p8 + 0.5480744850053588

output check_p7p8 := (intersect_p7p8) and ((lat_p7p8 > min_lat and lat_p7p8 < max_lat)
and (lon_p7p8 > min_lon & lon_p7p8 < max_lon)) and ((lat_p7p8 > ©.12199513900152693
and lat_p7p8 < 0.12272805380095549) and (lon_p7p8 > 0.05060231541569706 & lon_p7p8 <
0.05357314974496478))

// Polygonline p8p9: (0.12272805380095549, 0.05060231541569706) to (0.12135284424675223,
0.04598052457716757)

output intersect_p8p9 := abs(m-3.3607902333162474) > 0.00000001

output lat_p8p9 := if isFnc and intersect_p8p9 then (b - -0.3618609291524651) /
(3.3607902333162474 - m) else lat

output lon_p8p9 := 3.3607902333162474 * lat_p8p9 + -0.3618609291524651

output check_p8p9 := (intersect_p8p9) and ((lat_p8p9 > min_lat and lat_p8p9 < max_lat)
and (lon_p8p9 > min_lon & lon_p8p9 < max_lon)) and ((lat_p8p9 > 0.12135284424675223
and lat_p8p9 < 0.12272805380095549) and (lon_p8p9 > 0.04598052457716757 & lon_p8p9 <
0.05060231541569706))

// Polygonline p9p10: (0.12135284424675223, 0.04598052457716757) to (@.12447245465942572,
0.043556374755305015)

output intersect_p9p10 := abs(m--0.777068127486174) > 0.00000001

output lat_p9p10 := if isFnc and intersect_p9p10 then (b - 0.14027995202111265) /
(-0.777068127486174 - m) else lat

output lon_p9p10 := -0.777068127486174 x lat_p9p10 + 0.14027995202111265

output check_p9p10 := (intersect_p9p10) and ((lat_p9p10 > min_lat and lat_p9p10 <
max_lat) and (lon_p9p1@ > min_lon & lon_p9p10 < max_lon)) and ((lat_p9pio >
0.12135284424675223 and lat_p9pl10 < 0.12447245465942572) and (lon_p9pl10 >
0.043556374755305015 & lon_p9p10 < 0.04598052457716757))

// Polygonline p10p11: (0.12447245465942572, ©.043556374755305015) to
(0.12175508788375872, ©.03872383447446285)

output intersect_p10pl11 := abs(m-1.7783908760921594) > 0.00000001

output lat_p10p11 := if isFnc and intersect_p10p11 then (b - -0.17780430293581267) /
(1.7783908760921594 - m) else lat

output lon_p10p11 := 1.7783908760921594 x lat_p10pl11 + -0.17780430293581267

output check_p10p11 := (intersect_p10p11) and ((lat_pl10p11 > min_lat and lat_p1@p11 <
max_lat) and (lon_p1@p11 > min_lon & lon_p1@p11 < max_lon)) and ((lat_p1opil >
0.12175508788375872 and lat_p10p11 < 0.12447245465942572) and (lon_p10p11 >
0.03872383447446285 & lon_p10p11 < 0.043556374755305015))

// Polygonline p11p12: (0.12175508788375872, 0.03872383447446285) to (0.1180559967662996,
0.0399734162336672)

output intersect_pl11p12 := abs(m--0.3378077802156663) > 0.00000001

output lat_p11p12 := if isFnc and intersect_p11p12 then (b - ©.07985365044243875) /
(-0.3378077802156663 - m) else lat

output lon_p11p12 := -0.3378077802156663 * lat_pl1ip12 + ©.07985365044243875

output check_p11p12 := (intersect_p11p12) and ((lat_p11p12 > min_lat and lat_p11p12 <
max_lat) and (lon_p11p12 > min_lon & lon_p11p12 < max_lon)) and ((lat_p1ipl12 >
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0.1180559967662996 and lat_p11p12 < 0.12175508788375872) and (lon_p11p12
0.03872383447446285 & lon_p11p12 < 0.0399734162336672))

// Activates termination

//output any_violated := ! any_violated.offset(by:-1).defaults(to:false) and
(height_check or check_p@p1 or check_p1p2 or check_p2p3 or check_p3p4 or
or check_p5p6 or check_p6p7 or check_p7p8 or check_p8p9 orcheck_p9p10 or
check_p10p11 or check_p11p12)

output counter : Int32:= counter.offset(by:-1).defaults(to:0) + 1
output time_counter : Int32 @THz := time_counter.offset(by:-1).defaults(to:0)

>

check_p4p5

+1

A.6. Static Analyzes

A.6.1. Cross Validation

Component FF LUT MUX CA MULT

Monitor 3441 23261 99 5703 100

HLC 706 347 0 38 0

CHEckNEWINPUT 2 194 0 0 0
EXTINTERFACE 133 0 0 0 0
EventDELAY 195 13 0 0 0

TIMESELECT 61 63 0 16 0

ScHEDULER 111 68 0 22 0
HLQINTERFACE 200 60 0 0 0

QUEUE 627 475 0 44 0

LLC 1795 22184 0 5621 100

Evarvaror 1791 22184 0 5621 100
ArLIMUuAccAvGSLipINGWINDOW 731 10183 0 2620 0
ArLIMUAcc 18 871 0 156 12
SPEEDALLAVGSLIDINGWINDOW 731 9917 0 2609 40
SPEEDALL 18 806 0 146 8

SPEEDALLAVG 34 131 0 8 0
sPEEDHDIFF 18 4 0 4 0

sPEEDH 35 36 0 0 0

SPEEDV DIFF 18 4 0 4 0

SPEEDV 35 33 0 0 0

accIMUO 33 1 0 0 0

accIMU1 33 1 0 0 0

accIMU2 33 1 0 0 0

AVGSPEEDIMU 29 182 0 58 0
TRIGGERCROSSVALIDATION 3 6 0 16 0
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A.6.2. Sensor Validation

Component FF LUT MUX CA MULT
Monitor 4800 34356 0 8480 128
HLC 708 347 0 38 0
CHECKNEWINPUT 3 195 0 0 0

EventDeLay 196 1 0 0

ExTINTERFACE 134 0 0 0
TIMESELECT 61 63 0 16 0
ScHEDULER 111 68 0 22 0
HLQINTERFACE 100 17 0 0 0
Queue 627 600 0 52 0
LLC 3055 33200 0 8390 128
Evarvaror 3051 33200 0 8390 128
AVGSPEEDALL 35 69 0 16 0
AVGSPEEDHORIZONTAL 35 36 0 0 0
AVGSPEEDVERTICAL 35 36 0 0 0
CueckGPSNuMOrOBs 3 6 0 0 0
CHECKGPSNUMOFOBsSuMSLIDING WINDOW 106 85 0 28 0
DirrAGE 33 32 0 0 0
NumOrOBsCounTtSLIDINGWINDOW 314 272 0 54 0
NumOrOBs 9 7 0 0 0
rosTypE 9 4 0 0 0
SOLAGE 15 14 0 0 0
AVGSPEEDALLAVGSLIDINGWINDOW 731 9873 0 2598 40
SPEEDALL 18 843 0 146 8
AVGSPEEDHAvVGSLIDINGWINDOW 731 10496 0 2696 40
sPEEDH 33 335 0 38 0
AVGSPEEDVAVGSLIDINGWINDOW 731 10499 0 2696 40
SPEEDV 33 336 0 38 0
SPEEDALLDIFF 34 101 0 4 0
sPEEDHDIFF 34 36 0 12 0
sPEEDV DIFF 34 37 0 12 0
TIMECHECK 6 8 0 0 0
TrRIGGERFREQ 3 3 0 8 0
TrIGGERDIFFAGE 3 6 0 4 0
TrIGGERPOSTYPE 3 3 0 0 0
TRIGGERSOLAGE 3 7 0 2 0
TriGGERsPEEDHBOUND 3 3 0 8 0
TrIGGERSPEEDHPEAK 3 5 0 4 0
TRIGGERSPEEDV BOUND 3 4 0 8 0
TRIGGERSPEEDVPEAK 3 4 0 4 0
TrIGGERNUMOFOBS 3 5 0 0 0
TRIGGERSPEEDALLBOUND 3 17 0 10 0
TRIGGERSPEEDALLPEAK 3 4 0 4 0
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