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Abstract

Synthesis is the ambitious task of automatically generating an implementation fulfilling a
given specification against all possible inputs or proving the unrealizability of the specification,
i.e, the absence of a fulfilling implementation. As the user does not need to come up with an
implementation herself but gets presented with a, by default, correct one, synthesis offers maximal
convenience. In distributed systems, individual processes act both locally and communicate
with one another without having full information about the global state of the system. For
distributed synthesis we hence try to generate a family of individual implementations, that
governs the processes such that the system as a whole satisfies a given objective, independent of
received inputs. We explicitly consider systems where the processes share no information when
acting concurrently but exchange their entire causal past, i.e., all information known to them,
upon communication.

So far the synthesis problem for this class of systems has been studied in terms of either
Petri games or control games. In both the overall system is modelled as either a Petri net or
an asynchronous automaton and the synthesis problem consists of finding a restriction on the
global behavior that accomplishes a given objective. Petri games partition the places of a net as
either system or environment and allow only tokens on system places to forbid transitions, while
tokens on environment places are regarded as adversary players that cannot be controlled. By
contrast, control games split the actions of an asynchronous automaton as either controllable
or uncontrollable. Individual processes can refuse controllable actions and thereby restrict the
executions of the automaton, while uncontrollable ones cannot be thwarted and have to be
accounted for in any execution.

In both frameworks it is an open question whether the existence of a correct implementation
for the system is decidable. There are, however, interesting classes for which decision procedures
exist. The precise connection between both games and therefore the question whether existing
results can be transferred to the other type was, so far, unknown.

In this thesis we establish the first formal connection of Petri games and control games by
providing exponential translations in both directions. We show that our translations yield
structurally equivalent games, in the sense that they admit weak bisimilar implementations. In
addition to our upper bound we provide lower bounds in both directions showing an intrinsic trade
off between the two frameworks. Our translation allow for the transfer of existing decidability
results to the respective other game type. We exemplary outline the newly identified decidable
classes of control games where at most one process comprises controllable behavior as well as
Petri games with acyclic communication architectures.
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Chapter 1

Introduction

Verification is the task of checking a given implementation against a provided specification,
i.e., either prove that the specification is obeyed or return a counterexample that witnesses
an execution that violates the specification. A user can thus write an implementation and,
using verification, guarantee that it behaves as intended. Synthesis, on the other hand, is the
ambitious task of automatically generating an implementation fulfilling a given specification or
proving the non-existence of one. For a user, synthesis offers maximal convenience: Instead of
coming up with an implementation herself and afterwards verifying it, she is presented with
an automatically generated and, by default, correct solution or proof that her specification is
unrealisable.

In this thesis we consider reactive systems, i.e., systems that might run forever and continuously
interact with the environment. In a reactive setting, a synthesized implementation should thus
fulfil a specification against all possible inputs received in a potentially infinite execution. It is
therefore natural to consider synthesis as a game played between the system and the environment
where winning objectives for the system are imposed. While the environment is responsible for
generating continuous inputs, the system needs to react such that the overall execution fulfils
the objective. System and environment can hence be seen as antagonists: The system tries
to accomplish the winning objective, whereas the environment attempts to play such that the
system fails to do so. An attempt to win a game from the view of the system is often condensed
as a strategy, i.e., a description of how to react to different states of the game. Since a winning
strategy needs to achieve the objective against all possible environment behavior, it corresponds
to an implementation fulfilling the specification against all possible inputs.

More specifically, our work is concerned with distributed reactive systems. A distributed
system comprises multiple individual processes that act independently and possess incomplete
information about the state of the global system. As an example, we can consider a network
as a distributed system where the individual components of the network are accommodated as
distinct processes, that, as in real-world systems, act independently. We can view synthesis in
this setting as a game played between a collection of system players against the environment.
To synthesize distributed systems we are interested in a distributed strategy that governs the
local processes such that the system as a whole satisfies an objective, independent of the inputs
that are received from the environment. A distributed strategy hence prescribes the behavior of
individual players based on the individual partial information.

The behavior of the overall system is often described by an underlying arena. Synthesis of
implementations can then be considered as finding restrictions to this behavior where every
execution in the conditioned system fulfils a given objective. To represent the aspects of
environment and system responsibilities one often imposes additional constraints on the model
that allow a strategy to restrict parts of the behavior, while other parts cannot be controlled.
Finding a winning strategy hence consists of finding a restriction to the overall behavior that
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achieves the objective against all behavior that cannot be averted, i.e., all environment controlled
moves. As the underlying arena describes a distributed system, we are not interested in global
restrictions of the behavior but aim for ones that originate from decisions that can be made
by the local protagonists. The restriction must thus be made in accordance with the local
information of each player. Distributed synthesis has firstly been studied in a synchronous setting
[25] where the problem is given in terms of an architecture that comprises all processes as well as
communication channels between them. The processes can synchronously read from and write to
the communication channels that are associated to them and try to, as a whole, create execution
admitted by an LTL specification. By contrast, this thesis is concerned with asynchronous
distributed systems, i.e., systems where individual components progress concurrently and at
different speeds. We hence consider models that describe concurrent executions of individual
components in a system and try to restrict an underlying behavior in accordance with an
objective. Two natural models for concurrent and asynchronous executions are Petri nets and
asynchronous automata.

In distributed systems, individual players progress on their own and distributed strategies
prescribe the next move of each. As the players act on incomplete information it is natural to
contemplate on the explicit information primitive underlying such systems, i.e., ask the question
of how the local information of the players changes during the course of a game. In interesting
models the players should possess the possibility to communicate with one another, i.e., apart
from playing concurrently, they ought to be admitted to synchronize and exchange information.
One popular paradigm to model this exchange of information is causal memory: While acting
independently processes share no information about one another, whereas they exchange their
entire casual past upon synchronization. Decidability of asynchronous synthesis with causal
memory has, so far, been studied independently from each other in two distinct game types:
Petri games and control games.

Petri Games [12] Petri games are distributed games played between tokens on an underlying
Petri net. As Petri nets are intuitive representations of concurrent executions, Petri games
naturally define asynchronous games. The places of the net are partitioned into system and
environment. The tokens progress as defined by the underlying net where communication
between them is accommodated as shared transitions. The objectives of a strategy is to restrict
the asynchronous execution of the Petri net such that a winning condition imposed on the
tokens of the net is fulfilled. It is defined in terms of a branching process, which can be seen
as a restriction on the possible behavior of the game based on the previous execution of the
individual token. To distribute responsibilities of system and environment, i.e, declare which
parts of the behavior can be controlled and which cannot we conceptually sort the tokens in
the net as system and environment players. If a token resides on a system place we regard
it as a system player for which a strategy can control what transitions to allow. A token on
an environment place is viewed as an environment player whose moves cannot be prohibited.
A strategy can hence govern the course of all system players while having to account for all
decisions of the environment, observed as moves of the environment players.

Control Games [14, 22] Control games are played on asynchronous automata, which are
compositions of local processes that synchronize on shared actions. The actions in the automa-
ton are distributed as either controllable or uncontrollable. The processes in the automaton
progress as prescribed by the automaton, i.e., move independently but synchronize if an action
involving multiple processes is executed. A strategy should restrict the execution of the game,
i.e., prohibit certain sequences in the automaton, such that a winning objective is accomplished
on all unrestricted executions. The description of a strategy is defined as an individual set of
rules for each process. Each of which is condensed as a function mapping previous executions
to decisions of what actions to enable. To model the distributed character of asynchronous
automata, each process makes its decision based on an explicit local view on the overall exe-
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cution. At every point of the execution, all processes decide what actions to allow, proceeded
by executing one where all involved processes agreed on. By proscribing actions, the overall
executions are hence restricted. Unlike Petri games where players are regarded as either system
players or environment players, the environment responsibilities in control games is phrased
using uncontrollable actions. Even though all processes can decide which actions to allow, they
can only do so for controllable actions. Uncontrollable ones, on the other hand, cannot be
thwarted and are conceptually controlled by the environment. The strategy should hence govern
the behavior of the global automaton such that the system as a whole satisfies an objective and
while doing so has to account for all uncontrollable actions.

There has been a significant amount of work for both game types by identifying classes for
which the existence of winning strategies is decidable. While both game types share decisive
characteristics the precise connection between them was, so far, unknown and so was the
question of whether existing results can be transferred between both types. Progress in terms of
decidability results has been made separately in both “camps”. In this thesis, we provide formal
translations in both directions and thereby establish that both models are equally expressive.
To this extent we introduce the intuitive notion of strategy-equivalence that relies on a weak
bisimulation between the admitted executions in two strategies. We show that our translations
yield strategy-equivalent games, and thereby preserves the structure of winning strategies.

High-Level Descriptions While both game types admit strategies based on causal information,
the concrete formalisms describing which parts of the game are controlled by the system and
respectively which by the environment, differs. In Petri games, the places are partitioned as
system and environment ones. Since only players on system places can refuse transitions, this
offers precise control about who can restrict a shared transition. A player in a system place
has full control of all outgoing transitions and is not subject to any environment behavior. In
contrast, in a control games the actions are partitioned in controllable and uncontrollable and can,
therefore, be restricted by either all or none of the involved players. The environment is modelled
by defining which actions can be averted. While this compromises fine control about which
process can restrict an action, a state in a control game can comprise both system (controllable)
and environment (uncontrollable) behavior. Apart from having a distinct formalism to sort
responsibilities between system and environment, strategies in both games are fundamentally
different. In Petri games, a strategy is defined as a global branching process inheriting concurrent
behavior of the game. In contrast, a control game strategy is defined in terms of local strategies
acting on an explicit local view on the overall execution. The challenge of a translation is to
resolve the controllability aspects of the game types, while preserving the causal information
and thus allow a strategy transfer between the two game types.

For both translations, we adopt the concept of commitment sets: Instead of having the players
control behavior directly, they move to a state or place that explicitly encodes their decision.
Using this explicit representation, we can express the controllability aspects of one game in the
respective other one, i.e., make actions in a control game controllable by only a subset of players
and allow places in Petri games that comprise both environment and system behavior.

In addition to the upper bounds established by our exponential translations, we provide
matching lower bounds under the assumption that weak bisimilar strategies are required. While
our translations show that the contrasting formalisms can be overcome, our lower bounds
show an intrinsic difference between both and moreover highlight the key limitations of them.
The equivalence of both models, as witnessed by our results, gives rise to more practical
applications by allowing the transfer of existing decidability results between both models. As
an example, we outline the transfer of decidability for single-process systems in distributed
environments, originally obtained for Petri games [11], to control games and decidability for
acyclic communication architectures, originally obtained for control games [21, 15], to Petri
games.
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Parts of the results in this thesis have been published [2, 3].

Structure The remainder of this thesis is structured as follows: In Chapter 2 we define the
necessary preliminaries and thoroughly introduce both Petri games and control games. We
proceed by outlining how the two models considered in this thesis compare to the existing
attempts on distributed synthesis, summarize previous work for both Petri game and control
games and give a high-level comparison of both formalisms (Chapter 3). Afterwards, we define
a notion of game equivalence (Chapter 4) as our main reference of what “structure-preserving”
translations should comply with. In Chapter 5 and Chapter 6 we then give our translations
in both directions, prove them correct and, furthermore, provide lower bounds. We conclude
by outlining some of the newly obtained decidable classes (Chapter 7) and close this thesis by
discussing our results as well as future work in Chapter 8.



Chapter 2

Preliminaries

In this chapter we formally introduce Petri games and control games. We conclude each section
by presenting small example games, modelling interesting real-world situations. We begin by
recalling multiset and partially ordered sets.

Multisets Sets are collections of objectives defined in terms of membership “∈”. A multiset
generalizes this by allowing to quantify the number of occurrences of an element. We view a
multiset A over a set X as a function A : X → N. For any x ∈ X , A(x) defines the number
of occurrences of x in A. We write x ∈ A for A(x) > 0 and define |A| =

∑
x∈X A(x). An

ordinary set can be seen as a multiset with domain {0, 1}. Similar to sets we can build the
union and difference of multiset. To distinguish them from their set-counterparts we denote
them with + and −. They are defined in the obvious way: (A + B)(x) = A(x) + B(x) and
(A−B)(x) = max(0, A(x)−B(x)). We define A ⊆ B if A(x) ≤ B(x) for all x ∈ X .

Partially Ordered Sets Throughout this thesis we deal with asynchronous games and thereby
with concurrent executions. While such executions can be described in terms of totally ordered
sequences of events, doing so feels unnatural and compromises information about the causal
relationship of events. We will see that, while both game types are fundamentally different, they
both admit comparable concurrent executions. As a natural representation we use partially
ordered sets. Recall that a relation ≤ over some set X is a partial order if it is reflexive, transitive
and antisymmetric. A partially order set (poset) is a tuple (X ,≤) where X is some set and ≤ is
a partial order on elements from X .

2.1 Petri Games

As the first asynchronous game we introduce Petri games [12]. Since Petri games are played on
Petri nets [26] we begin by introducing the latter.

Petri Nets
Definition A Petri net (net) is a tuple N = (P, T ,F , In) where

P (places) and T (transitions) are disjoint sets.

The flow relation F is a multiset over (P × T ) ∪ (T × P)

The initial marking In is a multiset over P with |In| <∞

We call elements from P ∪ T nodes and N finite if P ∪ T is a finite set. For a node x ∈ P ∪ T ,
the multiset pre(x) defined as pre(x)(y) = F(y, x) is called the precondition and post (x) defined
as post (x)(y) = F(x, y) the postcondition. The precondition (postcondition) is the multiset of
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all nodes having an ingoing (outgoing) arc to x according to F . Through this thesis we often
encounter situations where multiple nets N σ,N 1, · · · are considered, we refer to the components
by, e.g., PNσ and write preNσ(x) unless clear from the context. A marking in a Petri net is
a multiset over places and represents the current configuration of the net. In is the initial
marking, i.e., the initial configuration. We call a transition t enabled from a marking M if every
place in the precondition contains at least as many tokens as required by the flow relation, i.e,
pre(t) ⊆M . If a transition is enabled in M it can fire and thereby produce a new marking M ′.
Firing consumes a token from every place in the precondition (possibly multiple tokens from one
place) and puts new tokens on the postcondition of the transition: M ′ = M − pre(t) + post (t).
We denote the fact that M ′ is the marking reached by firing t from M by M [ t 〉 M ′. We
generalize this to sequences of transitions: With M [ t0,t1,··· ,tn−1 〉 M ′ we denote that there exist
markings M = M0, M1, · · · ,Mn = M ′ such that Mi [ ti 〉 Mi+1 for all 0 ≤ i < n. A marking M
is called final if there are no transitions enabled from it. We define the set of reachable markings
R(N ) as all marking reachable by a finite sequence of transitions:

R(N ) = {M | ∃n ∈ N, t0, · · · , tn−1 ∈ T : InN [ t0,··· ,tn−1 〉 M}

We call a sequence κ of transitions valid from a marking M if M [ κ 〉 M ′ for some M ′. Given a
valid sequence κ from M we introduce the shortcut M [5κ ] as the marking reached by firing κ
starting in M . It always holds that M [ κ 〉 (M [5κ ]). Note that M [5κ ] is unique. It can be
computed by

M [5 ε ] = M

M [5κ′ t ] = M [5κ′ ]− pre(t) + post (t)

For the initial marking we abbreviate InN [5κ ] with N [5κ ].

A

B

a b

C

D

E

c

d

e

Figure 2.1 Exem-
plary Petri net (Petri
Game).

A Petri net is called concurrency-preserving if ∀t ∈ T : |pre(t)| =
|post (t)|, i.e., the number of tokens in the course of a play does not change.
It is k-bounded if ∀M ∈ R(N ) : q ∈ P. M(q) ≤ k, i.e., in each reachable
marking there are at most k tokens on each place. It is said to be bounded
if it is k-bounded for some k and safe if it is 1-bounded.
A net N ′ is a subnet of N (written N ′ v N ) if P ′ ⊆ P, T ′ ⊆ T , In′ ⊆ In
and F ′ = F � (P ′ × T ′) ∪ (T ′ × P ′). That is N ′ is obtained from N by
removing places and transition but while preserving the flow between the
non-removed nodes.

To represent a Petri net graphically we view the net as a bipatite,
directed multigraph over P ∪ T and the flow relation as weighted arcs
between nodes. Transitions are depicted as rectangle, whereas places are
circles. A current marking (for instance the initial one) is illustrated by
putting tokens/dots on the places of the marking. An example Petri net
is depicted in Fig. 2.1. For now we ignore the fact that some places are coloured in gray. The
net comprises places A to E and transitions, a to e. The initial marking is {A,C} and it, e.g.,
holds that pre(d) = {B,D} and post (D) = {d, e}.

Branching Processes A Petri net progresses by firing transitions and thereby change the
current marking. Even though we defined the set of reachable markings as the markings reached
on a fixed sequence of transitions, Petri nets allow to model concurrent behavior that abstracts
from concrete sequences of transitions. In Fig. 2.1 transitions a and c can be fired sequentially,
however, as they are completely independent, the concrete order of execution does not matter.
This motivates to look for characterisations of Petri net behavior that are better suited than
sequences and captures the causal independence of transitions. It turns out that we can model
this causal dependency in executions of a Petri net as a Petri net itself using so called occurrence
nets. We begin by formally defining the causal dependency between nodes.
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For nodes x and y we define xl y iff F(x, y) > 0, i.e., if there is at least one arc from x to
y. We denote the transitive and reflexive closure of l by ≤ and the transitive closure by <. x
and y are called causally related if x ≤ y or y ≤ x. Two nodes x and y are in conflict, denoted
x]y, if there is a place q different from x and y and two distinct transitions t1, t2 ∈ post (q) s.t.
t1 ≤ x and t2 ≤ y. That is, x and y are reached leaving q on two different transitions. They
are hence exclusive in the sense that they result from two different nondeterministic choices. A
node x is in self-conflict if x]x. If nodes x and y are neither casually related nor in conflict we
call them concurrent.

Definition An occurrence net is a Petri net N where:

(1) ∀t ∈ T : pre(t) is a set (4) In = {q ∈ P | pre(q) = ∅}

(2) ∀q ∈ P : |pre(q)| ≤ 1 (5) No transition is in self-conflict

(3) ≤ is well founded, i.e., there is no infinite descending sequence of nodes.

In occurrence nets transitions consume at most one token from each place (1), each place is
reached by an unique transition (2), following the inverse of the flow always terminates (3) and
the initial places of N coincide with the places with no ingoing transitions (4). Furthermore, the
absence of self-conflicts (5) guarantees that each choice of transitions from one place “separates”
the remaining net: If two transitions are leaving a place q then the successor nodes of both
transitions are disjoint. As occurrence nets are, by definition, acyclic one might think of them
as tree-like nets where each transition moves the current marking further down in the tree.

For a set of places C the causal past of C is the set

past(C) = {y ∈ P ∪ T | ∃x ∈ C, y ≤ x}

As we are mainly interested the events, i.e., transitions, we, furthermore, define

pastT (C) = {y ∈ T | ∃x ∈ C, y ≤ x}

We abbreviate past(x) = past({x}) and pastT (x) = pastT ({x}). The causal past of a node or
set of nodes hence comprises all nodes that have been visit in the past. Since in occurrence nets
the precondition of every place is unique (2), every place therefore comprises precise information
about its journey to get there. The causal past of a place (or a set of places), together with the
causal relationship ≤ forms a partially ordered set ((pastT (q),≤)) that naturally represents a
concurrent execution in an occurrence net. Unordered transitions correspond to transition that
can be executed concurrently.

We can define a homomorphism between two Petri nets as a mapping between nodes that
preserves the structure on transitions.

Definition For two nets N = (P, T ,F , In) and N ′ = (P ′, T ′,F ′, In′) a function λ : P∪T →
P ′ ∪ T ′ is called a initial homomorphisms from N to N ′ if

(1) λ[P ] ⊆ P ′ and λ[ T ] ⊆ T ′

(2) For every t ∈ T : λ[ preN (t) ] = preN ′(λ(t) ) and λ[ postN (t) ] = postN ′(λ(t) )

(3) λ[ In ] = In′

One can think of a homomorphism λ as a labelling of N by nodes of the same type from N ′.
For a homomorphism from N to N ′, N can be considered as a conceptually bigger net that can
duplicate nodes. The labelling requires N to be structure-preserving on transitions: For each
transition t the pre- and postcondition must be equally labelled as the pre- and postcondition of
λ(t). Note that we only require transitions to preserve the structure so, in particular, places can
copy outgoing transitions.
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As occurrence nets are a natural concept to describe the causal relation between concurrent
events, we use them to describe (parts of) the behavior of a Petri net. Using an initial
homomorphism we label events (transitions) and places in the occurrence net with nodes in the
original net. This is done formally by an initial branching process [5].

Definition An initial branching process for a net N is a pair  = (N , λ) where N  is
an occurrence net and λ is an initial homomorphism from N  to N with the additional
requirement that

∀t1, t2 ∈ T N


: λ(t1) = λ(t2) ∧ pre(t1) = pre(t2)⇒ t1 = t2

A

B B

a bC

D

c

d de

EE EB B

q1

Figure 2.2 Unfolding of the
Petri net from Fig. 2.1. The
gray label is the one given by λ.
The name of nodes are omitted
with the exception of q1.

While the initial homomorphism requires transitions in the oc-
currence net to preserve the structure of the original transitions,
an occurrence net necessitates each nondeterministic choice of
transitions to result in distinct places. If a node can be reached
on two different paths it is therefore split up in the branching
process. The resulting copies of nodes are labelled by λ with
the corresponding original node in N . The additional injectivity
requirement avoids copies to be added multiple times from the
same precondition: Each transition must either be labelled dif-
ferently or occur from different preconditions. As an occurrence
net preserves the structure of pre- and postcondition from the
original net, every valid sequence of transitions in N  is (by λ)
mapped to a valid sequence of transitions in N . On the other
hand, a branching can restrict behavior by not adding certain
transitions. Thus not every valid sequence of transitions in N
must be matched in N .

An exemplary branching process of the example net in Fig. 2.1
is depicted in Fig. 2.2 (when the colouring of places in gray is
ignored). The label given by the homomorphism λ is indicated in
gray. Note that all transitions in the branching process preserve the structure of the transition
in the underlying net. Place B in Fig. 2.1 can be reached on two distinct paths, i.e., via a or via
b. In the branching process it is split into two copies, both labelled with B. In the branching
process the causal past of any place, if paired with ≤, describes the concurrent execution that
lead to a token on that place. As an example, the causal past of place q1 comprises transitions
c, b and d, where c and b are unordered.

In this thesis we only deal with initial branching processes and thus refer to them simply as
branching processes. Note that branching processes, even for finite nets, can be infinite.

Unfolding While a branching process can describe restrictions of the behavior of a Petri net,
there is an unique maximal branching process, called the unfolding [6], representing every
behavior of a net:

Definition The unfolding of a netN is the (unique) branching process U = (NU, λ) satisfying:
For every set of pairwise concurrent places C in NU with λ[C] = preN (t) for some t ∈ T N
there exists a t′ with λ(t′) = t and C = preU(t′)

In the unfolding from every set C of reachable places all transitions possible from λ[C] in the
underlying net are added as some copy. Every sequence of transitions in the original net hence
corresponds to at least one equally labelled sequence in the unfolding1. Fig. 2.2 depicts the
unfolding of the net in Fig. 2.1.
Conceptually we can view any branching process  as a subprocess of the unfolding, i.e, N  v NU

1For safe nets one can show that there is exactly one.
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and λ = λU � (P∪T )2. This goes well with the intuition that, while the unfolding characterizes
every behavior of a net, a branching process describes a restriction of it.

Petri Games
A Petri game, first introduced in [12], is a distributed game played between the system and
the environment on a Petri net. Formally a game G is a tuple G = (PS ,PE , T ,F , In,Sp) where
N = (P, T ,F , In) with P = PS ] PE is the underlying, finite Petri net. We extend notation
from the underlying net to N by, e.g., defining preG(·) = preN (·) and PG = PN . We can view a
game as the underlying net where the places (P) are partitioned into system places (PS) and
environment places (PE). If a token resides on a system place it belongs to the system and is
regarded as a system player. A token on an environment place, on the other hand, is controlled
by the environment. The tokens can move through the game by firing transitions as defined by
the underlying net. The Petri nets describes all possible behavior of the (asynchronous) system.
A strategy can intuitively control the behavior of tokens on system places, i.e., restrict which
transition to take and which to forbid. Opposed to that, a token on an environment place is
controlled by the environment. A strategy cannot thwart the behavior of such tokens and has to
account for every possible move. The last component of a Petri game, Sp, marks a set of special
places (Sp ⊆ P) used to define a winning objective for the system. In this thesis we consider
either reachability or safety objectives. In the former Sp comprises a set of winning places,
whereas in the latter it defines losing ones. The strategy should restrict the overall behavior
such that either a winning configuration is reached or a losing one is avoided.
We graphically represent a Petri game as the underlying net and depict system places in gray
and environment places in white. The special places are marked by a double circle. When we
take the colouring of nodes into account, Fig. 2.1 depicts a possible Petri game. The game does
not comprise any special places.

Before we precisely set out how a game can be won by either the system or environment
we define the possibilities a system player has in a game. As we argued informally a strategy
can control the behavior of system tokens but has to account for every environment move. We
define a strategy as a branching process of the underlying net, that fulfils additional restrictions
corresponding to the structure of the game.

Definition A strategy for a Game G is a branching process σ = (N σ, λ) of the underlying
net that satisfies the following condition:

Justified Refusal: If C is a set of pairwise concurrent places in N σ and t ∈ T G a transition
with λ[C] = preG(t) then there either exists a transition t′ with λ(t′) = t and C = preNσ (t)
or there exists a system place q ∈ C ∩ λ−1[PS ] with t 6∈ λ[postNσ (q)]

The unfolding of a Petri net represents every possible behavior of a net, whereas a branching
process is obtained by removing parts of the unfolding. A strategy, defined by a branching
process, is therefore a restriction of the possible behavior in a game3. An ordinary branching
process alone could restrict the behavior of a game in any way imaginable. A strategy should,
however, respect the intended meaning of the partition of the places, i.e., only restrict behavior
from system places. Justified refusal requires every system place in the strategy to decide what
transitions to allow based on its causal past alone. To see this, it is easiest to compare the
definition of justified refusal with that of the unfolding: Suppose there is a set of pairwise
concurrent places C in a branching process and a transition t possible from the label of the places
in C, i.e., λ[C] = preG(t). The unfolding requires a copy of t to be added from C. Justified
refusal, on the other hand, either requires a copy t to be allowed, i.e., added to the strategy, but

2One can prove that every branching process is isomorphic to a subprocess of the unfolding. Where two branching
processes  and ′ are isomorphic if there is a bijective homomorphism λ between N  and N ′ and λ = λ

′ ◦ λ.
3Our definition of a strategy differs from the one used in existing Petri game literature [12, 11] in the sense that
our definition of a strategy is independent of the safety or determinism condition that we discuss later.
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Figure 2.3 Branching processes of the Petri game from Fig. 2.1. The gray label is given by λ
and places are distributed as system and environment. The explicit name of nodes are omitted. The
branching process in (a) is also a strategy for Fig. 2.1. Both (b) and (c) violate justified refusal.

allows for situations in which t can be restricted. This is, however, only admitted if there is a
system place q in C that never allows a copy of t (t 6∈ λ[postNσ (q)]). Any transition t not added
to the strategy must hence be justified by at least on system place q that uniformly forbids it,
i.e., forbids it independently of the concrete situation of the game. If there is a different set
of pairwise concurrent places C ′ where the precondition of t coincides with λ[C ′] and q ∈ C ′
then there cannot be a copy of t added from C ′. Every system place must thus allow either all
copies of a transition or none. This implicitly forces places to base their decision on their causal
past only and not restrict transitions as a reaction to the current situation of the game. If we
see a shared transition as communication, a system place needs to decide whether or not to
allow the particular communication without yet knowing in which situation the communication
partner(s) is. Note that, in particular, a transition that only involves environment places cannot
be restricted by the strategy.

As an example, we come back to our example from Fig. 2.1. Every branching process for
this game can be seen as a subprocess of the unfolding in Fig. 2.2. In Fig. 2.3 three branching
processes of the Petri game are depicted. While the one in (a) is also a strategy both branching
processes in (b) and (c) violate justified refusal. In (b) transition b is not added to the strategy
even though there is no system place involved in it. For the branching processes in (c) transition
d is not added provided that the environment used transitions b. While there is a system place
in the precondition of d this place does not forbid the transition uniformly, i.e., it allows the
transition from the other copy of B.

A strategy allows the system to restrict the behavior in the Petri game in a way that confirms
with our intended meaning of system and environment places. To obtain interesting games the
strategy should restrict the behavior such that a given objective is fulfilled. Throughout this
thesis we deal with two kinds of system-objectives:

Reachability Petri Games In reachability games the special places describe a set of winning
places W ⊆ P . The objective of the strategy is to manoeuvrer into a situation (reach a marking)
where every token is on a winning place:

Definition A strategy σ is (reachability) winning if N σ is finite and for every reachable,
final marking M in N σ, λ[M ] ⊆ W

Safety Petri Games In safety games the special places describe a set of bad places B ⊆ P.
A winning strategy should never allow for a situation where a token resides on a bad place.
The best chance of winning such a game is for all player on system places to refuse all possible
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transitions. To avoid such trivial strategies we require deadlock avoidance: A strategy cannot
refuse transitions if this would deadlock the system even though the underlying net could still
execute a transition.

Definition A strategy σ is deadlock-avoiding if for every final marking M ∈ R(N σ), λ[M ]
is final.

Deadlock avoidance states that a strategy is only allowed to terminate if the underlying Petri
net does. Note that deadlock avoidance describes a global property: Individual tokens might
refuse all transitions if there is at least one token that can continue playing.

Definition A strategy σ is (safety) winning if it is deadlock-avoiding and for every M ∈
R(N σ), λ[M ] ∩ B = ∅

We remark at this point that all existing results for Petri games [12, 11] are stated in terms of
safety objectives.4

Determinism Having established a winning objective and a notion of what the system is able
to control we can already ask the question whether a system has a winning strategy. In addition
to behave as intended (i.e., fulfil justified refusal) we can ask a strategy to be deterministic.

Definition A strategy σ is deterministic, if for every M ∈ R(N σ) and every system place
q ∈M ∩ λ−1[PS ] there is at most one transition t ∈ postNσ (q) enabled in M .

While a place might allow multiple outgoing transitions, i.e., postNσ(q) contains multiple
transitions, determinism requires that in any situation at most one of them can be taken. An
individual token on a system place hence never has to make a decision of what transition to
take: Once the strategy is fixed the execution progresses deterministically from the view of the
system. Requiring deterministic strategies is purely optional.

Example
As an example, we consider the (reachability) Petri game depicted in Fig. 2.4. It describes
possible police-behavior in a mafia investigation. The game consists of four player: A mafia boss
at place M , a burglar initially in the B place and an undercover-cop that behaves like a burglar,
initially at U . Furthermore, there is a single police officer starting in place P . The undercover
cop and the police are both modelled as a system player, i.e., their places are system place,
whereas the mafia boss and the loyal burglar belong to the environment. The game progresses
as follows: The mafia boss can choose whether she wants to burgle house X or Y by moving
to place Dx or Dy. Afterwards, she initiates the burglary by either synchronizing with the
burglar (ix) or the undercover cop (iy). The instructed player commits the crime, i.e., moves to
place Hx or Hy. The mafia boss progresses to place K. The police officer in place P is, as of
right now, not involved in any part of the game. Upon arrival of the mafia boss at place K she
can, however, interrogate the boss using transition i, resulting in the police officer knowing the
location of the burglary. Using transitions sx or sy she can afterwards send the mafia boss to
location Lx or Ly. To ensure all players to terminate on winning places the police is required
to send the mafia boss to the correct location of burglary as only then transitions leading to
winning places (wx, wy) are enabled.

This game can be won by the system: The undercover cop does not blow her cover and
commits the burglary even though she could forbid it. The police officer interrogates the mafia
boss and uses the obtained information to send the boss to the correct location of the burglary.
The existence of such a winning strategy depends on the fact that information is exchanged

4Our definition follows the one given in [12]: We define bad situations in terms of local bad places where every
marking containing such a state should be avoided. [11] allowed a more expressive characterisation by defining
bad situation in terms of a set of marking. This allows to characterise global situations that the system should
avoid. The translations presented in this thesis can be adopted to both formalisms.
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Figure 2.4 A (reachability) Petri game describing a mafia-police investigation that involves a mafia
boss, a burglar, an undercover cop and police officer. The mafia boss can decide the location of the
burglary, the police can interrogate her and send her to the location of burglary. To win the police uses
the information obtained in the interrogation and afterwards send her to the correct location.
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Figure 2.5 The unfolding of the Petri game in Fig. 2.4 if all gray parts are included. The gray label
is the λ-label to the original game. Some of the nodes nodes are named explicitly in black. If the grayed
out parts are removed, a winning (deterministic) strategy for Fig. 2.4 is obtained.

upon every communication. The interrogation transition i transfers the entire causal past of the
mafia boss, in particular, the location of the burglary. Only given this information the police
can act appropriately.

In Fig. 2.5 the unfolding of the Petri game from Fig. 2.4 is depicted. Note that every place or
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transition that can be reached on different paths is split up into copies of that place/transition.
Recall that causal past describes the information local to each player: As long as the players
progress independently they share no information but exchange their entire history upon
communication. We observe that every place in the unfolding encodes the causal past of a token
on it: Consider the place K in the original game. It can be reached on two different paths of
transitions, depending on whether the burglary occurred in house X or Y . In the unfolding the
place K is therefore split into two copies, K1 and K2. A token on a place can hence deduce
its entire causal past and comprehended how it got their: If a token is, e.g., on place K1 the
burglary happened in house X and vice versa. Taking the interrogation transition i results in
two additional copies of K, K3 and K4. This goes well with the idea of places encoding the
causal information of a token on it: For instance, place K3 carries the information that the
burglary occurred in house X and the police already interrogated her once. Places K1 to K4
therefore encode the causal information of the mafia boss if on the respective place.

As independent parts in the Petri game are added as disjoint parts in the unfolding the police
office in place P is, at the point of burglary, not involved in transition. His place does not
encode any information about the burglary, in particular, no information whether the mafia
boss resides on K1 or K2. We can, however, observe that taking transition i transmits all causal
information previously local to the mafia boss to the police. As we saw the causal information
of the mafia is encoded in places K1 and K2. Since the unfolding adds transitions from all
possible combination of copies, transition i is duplicated into i1 and i2 and so are the places in
the postcondition. In particular, the duplication of K results in a duplication of D (D1 and D2).
While the initial place of the police does not encode any information, utilizing i leads to copies
of the resulting place encoding the newly obtained knowledge as the new causal information of
a token on that place. If a token resides on D1, it knows that the burglary occurred at X, if on
D2 the mafia boss instructed to burgle house Y .

A strategy is a subprocess of the unfolding and can therefore forbid certain behavior by
removing transitions (and all subsequent nodes) from the unfolding. Since places in the unfolding
carry precise information about the causal past, removing parts of the unfolding results in
strategies that depend on causal information. A winning strategy for our example game is
obtained by removing the gray parts in the unfolding. This corresponds to our high level idea
of a winning strategy: If a token is on D1 the burglary must have occurred in X so the police
officer sends the mafia boss there using sx, and vice versa for D2.

2.2 Control Games

As the second asynchronous game we introduce control games on asynchronous automata. The
control problem in general has been first studied in [28] by Ramadge and Wonham and has been
extended to the asynchronous setting [20, 14]. Similar to Petri Games being played on Petri
nets, control games are played on asynchronous automata. We begin by introducing (Zielonka’s)
asynchronous automata [29] and fundamental trace theory [4].

Asynchronous Automata
Asynchronous automata (Zielonka’s automata) can be thought of as a family of local automata,
called processes, synchronizing on shared actions. With P we denote a finite set of processes. A
distributed alphabet is a pair (Σ, dom) where Σ is a finite set of actions and dom : Σ→ 2P \ {∅}
assigns to each action in Σ a non-empty set of processes that share this action. For an action a,
dom(a) comprises all processes that synchronize on a. For a process p, Σp denotes the set of
actions that p is directly involved in, i.e., Σp = {a ∈ Σ | p ∈ dom(a)}.
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Definition An asynchronous automaton is a tuple A = 〈{Sp}p∈P , sin, {δa}a∈Σ〉 where

Sp is a finite set of (local) states of process p

sin ∈
∏
p∈P Sp is the initial (global) state

δa :
∏
p∈dom(a) Sp →̇

∏
p∈dom(a) Sp is a partial transition function

We call an element {sp}p∈P ∈
∏
p∈P Sp a global state. Formally this is a dependent function

mapping a process p to a local state from Sp. For a set of processes R ⊆ P , {sp}p∈R ∈
∏
p∈R Sp

denotes the state of the processes in R, i.e., the restriction of the dependent function to R. We
abbreviate {sp}p∈R with sR. We denote that a local state s′ ∈ Sp is part of a global state s by
s′ ∈ s.
An asynchronous automata can be seen as a global automaton with state space

∏
p∈P Sp, initial

state sin and a transition from s
a7→ s′ if δa(sdom(a)) = s′dom(a) and sP \dom(a) = s′P \dom(a). The

processes start in their local initial states and progresses by firing actions and thereby change
their current state. When playing an action a the states of all processes in dom(a), i.e., all
processes synchronizing on a, is updated simultaneously according to δa. By Plays(A) ⊆ Σ∗∪Σω
we refer to the set of finite and infinite sequences5 in this global automaton. With act(s′) for
a local state s′ ∈

⋃
p∈P Sp we denote every action that can occur involving s′. Formally

act(s′) = {a ∈ Σ | ∃B ∈ domain(δa), s′ ∈ B}. For a finite u ∈ Plays(A), state(u) denotes the
global state reached on u and statep(u) the local state of process p.

Composition of local automata In our translation (Chapter 5), an alternative characterization
of a subset of asynchronous automata turns out to be practical: We describe every process
p by a local automaton �p, acting on actions from Σp. A local (deterministic) automata is
tuple �p = (Qp, ϑp, s0,p) where Qp is a finite set of states, s0,p ∈ Qp the initial state and
ϑp ⊆ Qp × Σp ×Qp a deterministic transition relation (labelled by Σp).

Definition For a family of processes modelled as local automata {�p}p∈P we define the
parallel composition as the asynchronous automaton ⊗p∈P �p = 〈{Sp}p∈P , sin, {δa}a∈Σ〉
with:
(1) For every p ∈ P , Sp = Qp (2) sin = {s0,p}p∈P

(3) δa({sp}p∈dom(a)): If for all p ∈ dom(a) there exists a s′p with (sp, a, s′p) ∈ ϑp then define
δa({sp}p∈dom(a)) = {s′p}p∈dom(a) otherwise it is undefined.

In ⊗p∈P �p each automaton acts locally but they synchronize on shared actions. For an action
to be possible all processes must be in states where the action can occur from (3). Viewing an
asynchronous automaton as the parallel composition of local automata is most intuitive and well
suited for graphical representation. It should, however, be noted that not every asynchronous
automaton can be seen as the parallel composition of local automata: The transition functions
{δa}a∈Σ in an asynchronous automaton define transitions between global states of the processes
in dom(a). Such global transitions might not be representable in terms of local automata.

In Fig. 2.6 a possible asynchronous automaton is depicted. The three processes are all
represented as local automaton that share actions. A possible play in this automaton is
a, d, c, c, b, e, c.

Traces
So far we have described plays in an asynchronous automaton as totally ordered sequences.
Since transition in asynchronous automata only involve subsets of the processes we notice that,
as for Petri nets, (totally ordered) sequences are not well suited to capture the concurrent nature
5The attentive reader might notice that a linear play is not well suited to describe behavior of a system allowing
concurrent behavior. We fix this later.
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admitted by an asynchronous automaton. We try to fix this now and recover the concurrency
lost when considering sequential executions.

p1 : p2 : p3 :

a b

c

c
c

d

e f

Figure 2.6 Example asynchronous au-
tomaton depicted as the composition of
local automata. It comprises three pro-
cess p1, p2, p3. The domain of all actions
includes all processes whose local descrip-
tion contains that action.

The distributed alphabet induces a natural depen-
dency relation on Σ. Actions a and b are said to be
independent (written a I b) if dom(a)∩dom(b) = ∅, that
is they involve disjoint sets of processes. Since an asyn-
chronous automataA is defined on the distributed alpha-
bet it is easy to see that if a I b and w1 a bw2 ∈ Plays(A)
for some w1 and w2 then w1 b aw2 ∈ Plays(A); Inde-
pendent action can be swapped. Note that swapping
independent actions does not change the global state
reached on a sequence. We use this insight to define
an equivalence relation ∼I on Σ-sequences by defining
u ∼I w if u and w are identical up to multiple swaps
of consecutive independent actions. That is ∼I is the
finest relation closed under w1 a bw2 ∼I w1 b aw2 for independent a and b. The equivalence
class of a sequence u ∈ Σ∗, denoted [u]I, is the smallest set that contains u and is closed under
∼I. The equivalence class [u]I is called a trace, its elements are called linearisations of [u]I.
Many operations can be extended to traces by defining them in terms of linearisation of a trace:
With | · | we denote the length of a trace and for traces [u]I and [w]I, [u]I [w]I denotes their
concatenation. Note that for sequences with u ∼I w it holds that u ∈ Plays(A)⇔ w ∈ Plays(A),
we hence say that the set Plays(A) is trace closed. It is therefore natural to abstract from
sequences of actions in A and instead view the plays in A as traces. A trace is a natural
representation of the concurrent execution of an automaton, by abstracting from sequential
executions. From now on, unless explicitly stated, we work with traces instead of sequences. In
particular, Plays(A) denotes the set of traces. If clear from the context we also write u instead
of [u]I. Note that state(·) (statep(·)) is invariant under ∼I and can hence be extended to traces.

p1

p2

p3

a

d

c

d

c

b

e f

Figure 2.7 Poset representation of play
uexample = [a, d, e, c, d, f, c, b]I in the asyn-
chronous automaton in Fig. 2.6. Every element
in the poset formally is a primed prefix and is
labelled by its last action.

Traces as Partially Ordered Sets While traces
are a natural concept to describe concurrent execu-
tions, they are tedious to work with since they are
defined in terms of a representation of the respec-
tive equivalence class. For Petri nets we already
saw that partially ordered sets are well suited to
capture the causal independence of events in an
execution. In similar fashion, we can now consider
a trace as a poset where the concurrency of actions
in the trace is made explicit in the partial order.
This gives us an unique representation of trace and
is well suited for both graphically representation
as well as comparison to concurrent executions in
Petri nets.

For a totally ordered sequence u we denote the
last action with last(u). A trace [u]I is called prime if the last action agrees on all its linearisations.
A trace [w]I is the prefix of [u]I, denoted [w]I v [u]I, if w′ vseq u′ for some w′ ∈ [w]I and
u′ ∈ [u]I where vseq denotes the prefix relation on sequences6. To each trace [u]I we associate a
partially ordered set (X ,≤) where

X = {[w]I | [w]I v [u]I ∧ [w]I is prime}

6Prefixes on traces behave fundamentally different then prefixes of sequences. For example, an intuitive result for
sequences is that two prefixes of the same sequence are comparable w.r.t. vseq . This does not hold for prefixes
of traces.
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and
[w1]I ≤ [w2]I if [w1]I v [w2]I

When depicting the poset we are mainly interested in the actions associated with the element in
the poset. We hence label each element from X with the last element of the trace. Since all
elements in X are prime this is well defined. Computing the poset representation for a trace is a
injective operation. A poset is hence a true alternative representation of a trace.

The poset representation of the example trace uexample with

uexample = [ a , d , e , c , d , f , c , b ]I

in the automaton from Fig. 2.6 is depicted in Fig. 2.7. To aid readability the actions are grouped
in rows of the processes involved in them. The concurrency of actions a and d is, e.g., made
explicit as they are unordered in the poset representation. In particular, we can note that every
total order of the partially ordered set forms a linearisation of the trace and, conversely, every
linearisation corresponds to a total order compatible with the partial one.

Control Games
Similar to Petri nets being the playing arena of Petri Games, asynchronous automata define the
arena of a control game [20, 14]. The game is played between the system and the environment.
Formally a control game is a tuple C = 〈A,Σsys,Σenv, {Sp}p∈P 〉. A delineates an asynchronous
automaton, called the plant, as the underlying arena of the game. Σ = Σsys ]Σenv is a partition
of the set of action Σ into controllable (Σsys) and uncontrollable (Σenv). We define the set
of possible plays as Plays(C) = Plays(A). While the asynchronous automaton describes all
plays admitted by the underlying (asynchronous) model, a strategy can restrict this behavior
by prohibiting actions from occurring. Unlike Petri games where we distinguish system and
environment places and therefore charactered who can restrict behavior, in control games the
actions are distributed to indicate what can be restricted. Intuitively a strategy can refuse
controllable actions, whereas uncontrollable ones are conceptually controlled by the environment
and can therefore not be restricted by a strategy. The last constitute {Sp}p∈P describes a set of
special local states used to express winning objectives for the system. As for Petri games we
operate with either reachability or safety objectives.

For graphical representation we depict control games as the underlying automaton, denote
controllable actions with dotted arrows and mark special places with a double circle.

Local View Any play in the automaton, u ∈ Plays(C), describes a global execution of the
system. At every point, each process conceptually decides what next moves to allow. Apart from
progressing asynchronously, the processes should also act on partially information, i.e., not act
on the entire u. Instead every process bases its decision on a restrictive view on the overall play.
Process p1 in the example from Fig. 2.6 should not observe any of the actions played by p3, so the
local view should not comprise any of those actions. On the other hand, communication between
p1 and p2 on c should transmit information previously local to one process and therefore extend
the local view. We define the p-view on u, denoted viewp(u), as the part of the play that is
observed by process p. Formally viewp(u) is the smallest (shortest) trace [v]I such that u ∼I v w
for some w that does not contain any action from Σp. The p-view is hence the smallest prefix of
u containing all actions where p is involved in. It is easy to check that viewp(u) is well defined,
i.e., there is an unique minimal element. We write Playsp(C) = {viewp(u) | u ∈ Plays(C)} for
the p-view of every play in Plays(C).

By definition it always holds that the p-view on u is a prefix of u. If we think of a trace as a
concise concept to model the concurrent nature of an execution, we can view ever linearisation of
a trace as execution where the processes act sequentially. As viewp(u) is a prefix of u there hence
is a sequential execution of u where all events (actions) from viewp(u) proceed all remaining
actions from u. As the remaining execution (w in the definition above) does not contain any
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action from Σp, process p is not involved in any of those actions and can therefore not tell that
they actually happened. The causal dependency comprised in a trace can, on the other hand,
express that each communication transmits the entire causal past of the involved processes. If p
and another process p′ synchronize on an action a their local views align: The shared action a
induces a causal dependency in the trace between the actions from p and p′. The local view
hence constitutes all actions a process is involved in herself as well as all parts of the execution
transmitted upon communication.

Having the aforementioned poset representation of a trace u is particularly useful when
“computing” the local view. Since the local view is the minimal prefix containing every action
from Σp and the order of the poset agrees with the dependency in a trace, the local view in a
poset is the minimal, downwards closed set that contains all actions from Σp. Since incomparable
elements in the poset are not causally related, i.e., unordered in time, it is easy to see that this
set of actions is indeed the causal past of a process.

When computing the local view of p2 on the play uexample we obtain

viewp2(uexample) = [ a , d , c , d , c ]I

In Fig. 2.7 the poset representation of the local view of process p2 is depicted if the grayed out
parts are removed. In particular, the actions d and e where p1 is neither involved in nor can
hear about in communication are removed from the local view. The trailing b is removed as
well as there is no communication informing p2 about the occurrence. Furthermore, note that
the local view comprises actions where p2 is not involved in directly. In particular, action a is
included in her local view. This goes well with the idea of causal information as communication
with p1 on action c transmits the entire causal past of p1, including a.

Controller To avoid confusion between Petri games and control games we refer to strategies
for control games as controllers. A (global) controller % is a family of local controller for each
processor, % = {f%p }p∈P . A local controller for process p is a function f%p : Playsp(C) → 2Σsys

p

where Σsys
p = Σp ∩Σsys. The set of % compatible plays, Plays(C, %), is the smallest set satisfying:

ε ∈ Plays(C, %)

If u ∈ Plays(C, %) and u a ∈ Plays(C) for a ∈ Σenv then u a ∈ Plays(C, %)

If u ∈ Plays(C, %) and u a ∈ Plays(C) for a ∈ Σsys and a ∈ f%p (viewp(u)) for all p ∈ dom(a)
then u a ∈ Plays(C, %)

The plays admitted by the controller, Plays(C, %), form a subset of all plays possible in the game.
On the other hand, not every play in the game must be admitted by the controller. A controller
can hence restrict executions of the underlying plant. Our indented meaning of controllable
and uncontrollable can be found in the definition: Uncontrollable actions can always happen,
provided they are admitted by the underlying automaton. In order for a controllable actions to
occur all involved processes need to agree. The local controllers can hence forbid such actions
by excluding them from their decision. Note that the controller makes its decision based on the
local view of that process. Even though the overall play has progressed further a local decision
is always made based on the information known to one process.
We define the set of maximal plays compatible with %, Plays(C, %)M , as the (possible empty) set
of all finite plays u ∈ Plays(C, %) such that there is no a with u a ∈ Plays(C, %). Similarly we
define Plays(C)M , as the (possible empty) set of all finite plays u ∈ Plays(C) such that there is
no a with u a ∈ Plays(C). A global state s is called final if for all u ∈ Plays(C) with state(u) = s,
u ∈ Plays(C)M , that is, once in state s no further action can be executed.

Reachability Control Games In reachability games the winning objectives is stated in terms
of winning states {Wp}p∈P . A controller fulfils a reachability objective if it ensures that every
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Figure 2.8 A (safety) control game modelling the behavior of a driver in an unpredictable traffic
situation. It comprises two road section RS , a news radio Ra and a driver DR. Each road section
models the traffic at two location and can decide which of the construction sides A to D are blocked.
The driver needs to gather information and circumvent both blocked sections.

process terminates in a winning state and therefore, in particular, does not admit infinite plays.
All existing decidability results for control games [21, 15, 14, 19, 16] are stated in terms of
reachability objectives.

Definition A controller % is (reachability) winning if every u ∈ Plays(C, %) is finite and for
every u ∈ Plays(C, %)M and p ∈ P , statep(u) ∈ Wp

Safety Control Games In safety control games the winning objectives is stated in terms of
losing states {Bp}p∈P . A controller should not permit any play leading to a bad state. A
trivial controller would, similar to Petri games, refuse all controllable actions. To avert such
trivial controllers we require a controller to progress if possible. A controller is only allowed to
terminate, i.e., if the underlying automaton does.

Definition A controller % is deadlock-avoiding if Plays(C, %)M ⊆ Plays(C)M .

A deadlock-avoiding controller hence only terminates in final states. As for Petri games,
deadlock-avoidance is a global property.

Definition A controller % is (safety) winning if it is deadlock-avoiding and for every
u ∈ Plays(C, %) and p ∈ P , statep(u) 6∈ Bp

Example
Consider the (safety) control game depicted in Fig. 2.8. The game is depicted as a composition
of local automata where controllable actions are indicated as dotted arrows. Losing states are
marked with a double ring. The action r is depicted in gray to improve readability. The game
describes the behavior of a car-owner in the presence of two traffic-construction-sides. It consists
of four players. Two of which represent the traffic situation at two distinct road-sections (RS),
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Figure 2.9 The poset representation of the trace u = [B,m, c, C,m]I is delineated in (a). The second
m and C are independent and can be switched in u. They are hence not ordered. (b) depicts the local
view of the driver (Dr) on u, (c) the local view of the first section (RS1) and (d) the local view of the
second section (RS2) as well as the radio (Ra).

one modelling a local radio-channel (Ra) and the last describing the driver (Dr).
The processes representing the road sections comprise construction sides A and B or C and
D. Each road section can decide which of the two construction sides is blocked using A to
D. The radio-channel synchronizes with the latter road-section on C or D, i.e., gets informed
about the traffic situation at the later section. At all times the radio channel offers the driver to
communicate using c. In the initial state the driver can synchronize with the first road-section
on A or B, i.e., observe the traffic situation at the first section. Using a controllable action
(m) she can move on and synchronize with the radio channel on c. Upon communication on c
she can decide to either move back and repeat communication using m′ or move on using m.
Utilising controllable action she can, in both sections, decide which of the respective construction
sides she wants to pass. In a first stage she can either move through side A or B by passing
through states SA or SB. At the second section she can decide for C or D. If she chooses a
path that has been decided to be blocked by the corresponding road-section-processes one of
the ⊥-actions can fire, moving her to a losing state; she is locked in traffic jam. If she asks for
the same information (using c) even though she is already up to date the radio crew is annoyed
and causes a loss. Once she successfully passes both road sections the global system resets with
the r action and a new work-day with unpredictable traffic begins.

This game has a winning controller: The driver awaits the traffic information for the first
section. Afterwards, she moves on and cycles through communication with the news challenge
until she knows the traffic situation at the second section. This might take forever if the second
road section never decides to block either construction side. Once informed about both sections
she proceeds and bypasses both blocked road-sections using her controllable actions. Upon
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a rest on r she repeats her procedure. The existence of a winning controller rests upon the
communication aspect associated with each synchronization. The communication action c
between the radio and driver transmit all available information about the situation at the second
road section. A correct circumnavigation of both sections is based on this information.

A possible initial play in this game is the play

u = [ B , m , c , C , m ]I

On this execution the driver communicated with the news radio before the second road section
indicated which section is blocked (C). As C causally succeeds the communication action c the
driver should, from her local information, not be able to deduce which road section is blocked.
The poset representation of u is depicted in Fig. 2.9 (a). Note that the independent actions C
and m are not causal related in the trace and therefore unordered in the poset. Fig. 2.9(b)-(d)
depict the local views of each process on u, i.e., the downwards closed set containing all actions
from that process. We realize that our previous intuition about the local information of the
driver are confirmed. The local view of Dr is depicted in (b) and does not comprise action C.
Even though the global play progressed in the sense that SR2 decided which section to block,
the driver needs to decide which way to circumvent the road section based on her local view, not
including this decision. Fig. 2.9 (c) and (d) depict the local views of the remaining processes.
Even though their view is not particular interesting as none of the processes can influences the
game in terms of controllable actions, we can still study their local information. Note that SR1
is barely informed as it has not taken part in any action apart from the initial decision to play
B. Process S2 does obviously know that it itself blocked section C but it can, for instance, not
deduce that the driver already progressed using m.

RS1

Dr

Ra

RS2

B

m

c

m′

C

c

m

Figure 2.10 Poset representation of the trace u =
[B,m, c,m′, C, c,m]I. The local view of the driver (Rd)
on u agrees with u itself.

Fig. 2.10 depicts the poset representa-
tion of a slight variation of the previous
trace: After executing c and noticing that
no interesting information is available the
driver used m′ to repeat the process. As
the second communication c occurred af-
ter the road section played C, the infor-
mation about this event is transmitted
upon communication. Building the local
view of the driver on the modified play
agrees with the play itself. In particu-
lar, the occurrence of C is included in
her local view. The controller could now,
successfully circumvent both sections.



Chapter 3

Related Work and Comparison

In this chapter we give a quick overview on reactive synthesis in general and, in particular,
on related work in the area of distributed synthesis. We outline the key difference between
the models studied in this thesis compared to the most influential framework for distributed
synthesis [25]. We then give a brief comparison between Petri games and control games and
highlight their key differences. As one key achievement of this thesis is the transfer of existing
results, we summarize the existing results for both Petri games and control games.

3.1 Context Of Our Framework

The existing results and attempt to synthesize programs are rich enough to warrant a work on
its own. For a thorough introduction to the history and milestones of reactive synthesis we refer
the interested reader to [8]. In this section we quickly discuss the origins of reactive synthesis
and afterwards consider related work done in the area of distributed, reactive synthesis and
pinpoint to some key differences that separates previous attempts from the models considered
in this thesis.

The synthesis problem as it is known today has first been proposed by Church in the 1957
[8]. He asked for the automatic generation of programs that react to given inputs such that
overall execution is admitted by a temporal specification. Church proposed Linear Temporal
Logic (LTL) as a formalisms to specify relations between input and output. The objective of
the system is hence to produce traces that are admitted by the formula independent of the
received inputs. In particular, the implementation acts on full information, as it can base its
decision on the entire previous execution. While Churchs problem sparked the entire field of
reactive synthesis, this thesis focuses on distributed system, i.e, systems comprised of individual
components acting on partial information.

Synthesis of distributed systems has first been pioneered by Pnueli and Rosner in the 90s.
Their most influential work [25] still forms the standard setting for distributed synthesis. They
tried to lift the traditional setting of synthesizing a program from a LTL-specification, as
asked by Church, to distributed systems. A synthesis problem in their framework consists
of both a temporal specification as well as a system architecture, i.e., a description of the
structure of the underlying system. The architecture can be seen as directed graph where
vertices indicate processes of the system and acrs between them shared variables (channels)
used for communication. The processes can read from and write to the variables associated
with them and try to produce, as a whole, execution admitted by the logical specification. In
particular, they act synchronously. Synthesis aims to find finite-state programs that govern the
local processes such that the entire system generates admitted executions in an unrestricted
environment. As for Petri games and control games the individual processes act on partial
information. The existing amount of information can be extended by reading values from the
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associated channels. Communication between processes is hence accommodated as information
exchange through shared variables. In their early work [25] they already showed that the
existence of winning strategies is undecidable in general, even for simple architectures comprising
as little as three processes. Later [13] extended this by outlining precise classes of architectures
for which the problem is decidable.

While the Pnueli and Rosner framework is regarded “the standard” when it comes to
distributed synthesis, it differs quite substantially from the more recent setting we are concerned
with in this thesis. We briefly discuss three important ones. The most pressing difference being
that they assumed the processes to progress in a synchronous lock-step execution, whereas
the models we considered in this thesis proceed asynchronously, i.e., without a global clock.
Secondly, their setting comprises more direct communication primitive as each process can
explicitly decide what information to forward using the shared variables. This goes well with the
intuitive notion of communication in distributed systems where information must, e.g., be send
over a network. In contrast, both Petri games and control games consider communication that
transmits the entire information available; their entire causal memory. This might, at first glance,
seem unrealistic as distributed systems have no unlimited communication capacities allowing to
transmit the, possibly unbounded, causal memory of a processes. It does, however, give a good
over approximation of whether the prescribed communication structure, defined in the underlying
Petri net or asynchronous automaton, is sufficient to admit winning strategies. If a winning
strategy relying on causal memory is found one can manually analyse what information are
really in need to be transmitted and which can be neglected. Conversely, the non-existence of a
strategy in a setting modelled with causal memory already implies the absence of implementation
with a more restrictive communication primitive. Lastly, in the Pnueli and Rosner setting the
environment is regard as an adversary that can challenge the system by providing arbitrary,
non structured inputs. The environment has no underlying assumption but is assumed to be
able to produce every possible input at any time. In contrast, Petri games and control games
allow to model the environment explicitly, i.e., abstract from viewing the environment as some
omnipresent entity that can at all times generate all possible inputs, and, instead, encode
assumptions on the environment.

The traditional Pnueli and Rosner work has been extended to the asynchronous setting [24],
allowing for descriptions much closer to our setting. Asynchronicity is achieved by deploying
an explicit scheduler that can direct the order in which the, originally synchronous, processes
progress. As communication is modelled as explicit communication channels, a process might
miss information, whereas in our setting, where communication is defied in terms of causal
memory, information cannot vanish upon communication. In [27] they showed that the problem
is doubly exponential even under strong assumptions on the scheduler and undecidable if more
than one process in the system architecture is being synthesized.

3.2 Comparing the Two Game Types

In these early framework for distributed synthesis one quickly runs into the undecidability
barrier[25, 13]. Control games, first studied in [14], and the more recent Petri games [12] try to
get a broader class of decidable synthesis problems by relaxing the communication primitive
and thereby avoid trivial barriers as encountered in previous results. We proceed by discussing
some of their key similarities as well as their fundamental differences.

Similarities Petri games and control games share a lot of similarities. The two most important
ones are the asynchronous nature of both games as well as the primitives with which information
is transmitted, namely causal memory.

Both games are played asynchronously. From her local information a player cannot deduce
how many transitions or actions the other players have played. The asynchronous scheduling is
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conceptually controlled by the environment, since every possible execution has to be accounted
for by the system. Secondly, both model distributed systems are intrinsically based on partial
information. The processes in the system can possess different information about the global
state of the system. Without having explicit local information the distributed components
can be regarded as one big system; losing all distributivity in the system. Having an explicit
information model motivates the natural question of how the local information change during the
execution of the system. In the two asynchronous models we discuss in this thesis the arguably
simplest communication model is used: Every communication transfers everything, i.e., the
entire causal past. At the point of communication the local information of involved components
aligns. While the formalism to ensure partial information differs quite substantially (local view
on an execution vs. defining strategies in terms of branching processes), the underlying simple
primitive is shared.

Differences Despite their key similarities both game types chose fundamentally different
approaches to model the responsibilities of system and environment. As a Petri game distributes
the places between system and environment, it is natural to distinguish the tokens in a game
as system and environment player. In particular, the environment is modelled as dedicated
players that can interact and communicate like every other player. A system player has full
control about her next move, i.e., she decides herself what next move to allow. In the control
game, on the other hand, the environment is not modelled as a dedicated player but rather
via uncontrollable action. The environment can be regard as an omnipresent adversary that
interacts and provides information using those actions. Conceptually we no longer think of
a game played between system and environment players but a game played between system
players that are subject to environment decisions beyond their control. Both approaches of
modelling the environment can be justified by synthesis problems in the real-world.

a b

t1

t3
t2

Figure 3.1 (Reachability) Petri game
that can only be won by non-deterministic
strategies. To win the system must en-
abled transitions a and b since otherwise
the environment can choose t1 or t2 to
block the system from reaching a winning
marking. If both are enabled the environ-
ment can create non-determinism using
t3.

Petri game strategies can be required to be determin-
istic and all previous results have been established un-
der this premise. For control games, on the other hand,
there has been no attempt to work with deterministic
controllers and all existing results allow nondetermin-
istic controllers. Unlike the previous differences, this
disparity is not related to the game type itself but rather
to the choice of the people who introduced them. There
is no real reason to restrict Petri games to deterministic
strategies and control games to non-deterministic con-
trollers. As control games are conceptually not played
between system and environment player there exist mul-
tiple valid attempts to define what determinism means
in the presence of uncontrollable and controllable ac-
tions. In this work we do not attempt to come up
with a definition by ourself but merely discuss some
possibilities in our conclusion. Throughout this the-
sis we consider controllers that are no subject to any
determinism criterion. Nondeterministic strategies for
Petri games are in general more powerful as there ex-
ists games that can only be won by nondeterministic
strategies. One such example is depicted in Fig. 3.1.

3.3 Previous Results for Asynchronous Games

Both Petri games and control games are used to pose synthesis problems for distributed systems.
As winning strategies/controllers conceptually correspond to correct implementations, we are
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mainly interested in the existing of a winning strategy/controller. We thus call a class of games
decidable if the existence of a winning strategy is decidable.

Unlike the traditional Pnueli and Rosner setting where the boundaries of decidability are
well understood [13], decidability for both game types in this thesis is an open question and
yet to be fully explored. The question whether (bounded) Petri games or control games are
decidable in general is still open. There are, however, interesting classes in both types for which
decision procedures exist. As mentioned before progress has, so far, been made independently
for both game types, resulting in mostly incomparable results. In this section we briefly outline
the existing results for both.

Petri Games
Since Petri games utilize Petri nets as the underlying arena they offer more flexibility when it
comes to modelling interactive ad-hoc systems where players join and leave. In particular, they
allow for spawning and termination of players resulting in a flexible amount of players in the
game that, with progressing execution, might grow arbitrary large. Even though reachability is
still decidable in unbounded Petri nets [18], unbounded Petri games are in general undecidable
[12].

For bounded Petri games there exist two known classes of decidability: Bounded Petri games
with at most one system or at most one environment player [12, 11]. In both results they
considered safety Petri games and required strategies to behave deterministic. Petri games are
intrinsically based on the partial information of each player. [12, 11] achieved to reduce a game
played on partial information to an ordinary two player game. Two player games are played
on an underlying graph whose nodes are controlled either by the system or the environment.
Whenever on a system node a strategy can decide where to go next, whereas the environment
can appoint the next move from environment nodes [8]. In particular, the system always knows
what the last moves of the environment have been, i.e., can base its decision on full information.
To reduce a game on partial information to a game on full information without violating the
information of each player they scheduled the game such that invalid information flows are
prevented. For Petri games with at most one environment player [11], it suffices to postpone
every environment decision as far as possible, i.e., until every player either gets informed about
the environment in the next move anyway or can play without ever needing the environment
again. For Petri games with at most one system player [12] the scheduling of transitions is left to
the environment regarding the scheduling itself as adversary. While this might leak information,
they showed that the environment can always schedule such that no illegal information are
given to the system. The strategy needs to base its decision on the last known location of all
other player. Both restrictions of the scheduling allow to model the local information in a fully
informed setting. In addition to their exponential time decision procedure, both provided an
exponential lower bound, thus establishing the EXPTIME-completeness of both classes.

For Petri games there also has been an increasing effort to investigate bounded-synthesis
[7] where strategies are looked for up to a given size (bound). The size-bound can be raised
incrementally giving a semi-decision procedure for general Petri games. Unlike the first two
results, bounded synthesis can provide a winning strategy but is not able to prove the non-
existence of one. There is a lot of exiting work on tool support for bounded synthesis [9, 17, 10].

Control Games
Control games can be defined in two variations, called process-based and action-based. Throughout
this thesis and, in particular, in Chapter 2 we work with process-based games, where the decision
of what actions to enable is made by the processes. In contrast, in action-based control games
the processes are conceptually regarded as memory cells and the actions as agents acting on
them. All enabling-decision are therefore made by the actions. While a process decides what
actions to enable based on its causal information, an action can make a decision based on the



3.4. Our Contributions 25

causal information of all involved processes. Intuitively an action-based control game allows for
more precise control as decision are based on a greater pool of information. A first translation of
asynchronous games has been proposed in [22] where they showed that processes based games
are reducible to the action-based variant.

Control games have, so far, been only considered for reachability objectives. Results were
obtained for four distinct classes [19, 14, 15, 16]. In [19] they studied asynchronous automata,
called connectedly communicating, where there is a bound on the number of actions possible
between the communication of two processes, i.e., automata where the processes communicate
“sufficiently many times”. They showed that the MSO (monadic second order logic) theory of
connectedly communicating automata is decidable and thereby every control game played on
them.

The causal information during the execution of a control game can grow arbitrarily large.
Throughout the execution of a game a controller might need to base its decision on a growing
amount of information. [14] restricted the distributed alphabet to a special structure; a cograph.
Using an inductive argument on the structure of the game they were able to show that the
causal information in such games can be bounded, while not compromising winning controller.
Whenever the information that needs to be considered for winning controller is bounded,
decidability follows by enumeration of all possible controllers.

Given a control game one can analysis the communication structure between the processes by
building the communication architecture. This is an undirected graph where the vertices comprise
all processes and edges between them indicate shared actions between the processes. In [15, 21]
they showed that control games played on automata with acyclic communication architecture are
decidable. A process at the leaf of the architecture can be encoded in its parent by simulating
the process locally in an exponentially bigger process. Using an involved set construction they
showed that the combination of both processes does not leak information, i.e., the information
flow of the original game is preserved. By repetitively encoding leafs in their parents, any acyclic
game can be reduced to a control game consisting of a single process for which decidability is
trivial1. Because each encoding of leaf and parent results in an exponentially bigger process the
resulting game is of non-elementary size in the depth of the communication architecture. In
addition to their upper bound, [15] proved the, to our knowledge, first non-elementary lower
bound for control games.

Recently [16] proposed the new class of decomposable games and established decidability.
They proved that this new class subsumes all previously known classes of decidability, while
containing new intriguing classes such as four player games. Unlike previously identified decidable
classes, which are mostly based on the structure of the game, decomposable games are defined
in terms of executions making the results less intuitive and applicable.

3.4 Our Contributions

Our main contribution is a translation between Petri games and control games in both directions.
To this extent we define a notion of game-equivalence that is based on weak-bisimilar behavior
of possible strategies/controllers and show that our translation fulfils it. The games returned
by our translation are therefore not only winning-equivalent, but preserve the structure of the
game. Winning strategies can hence be transferred into bisimilar ones in the translated game.
Our translations allow us to unify the scattered decidability landscape by using existing results
for the respective different game type. For instance, the two examples given in the preliminaries
(Fig. 2.4 and Fig. 2.8) correspond to the newly identified classes of acyclic Petri games and
single system control games. We conjecture that there are many more decidable classes for both
games that are yet to be discovered. Our translations are not limited to existing results and

1A single process control game can be seen as game between system and environment on full information.
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make future results applicable in both types. We hope that the translation brings both “camps”
together and leads to a joint effort to discover the decidability boundaries of asynchronous
distributed synthesis.

In addition to our exponential translation we provide exponential lower bounds in both
direction indicating a intrinsic difference of both game types. The lower bounds allow for a
precise study of the modelling advantage of one game type over the other. While this can be
overcome with exponential effort (as witnessed by our translations), it might motivate the study
of unified game models that comprise the most intriguing features of both frameworks.
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Game Equivalence

We translate games from one class to the other one. The minimum requirement for any reasonable
translation is winning-equivalence: The system has a winning strategy in one game if and only
if it has a winning strategy in the translated game. A trivial translation fulfilling this is to first
solve the games and then return a minimal winning equivalent game of the other type. Such a
translation is not desirable, especially since decidability in both, control games and Petri games,
is still an open question [12, 22].

Asynchronous games can be used to state synthesis problems for distributed systems where
winning strategies correspond to correct implementations in the distributed system. From a
very abstract point of view one would like to be able to extract a implementation from winning
strategy. A translation between two game types should ideally be modular in the sense that
a user can model a given problem in one game type (say control games), translate it to Petri
games and can, from a winning strategy of a Petri game, construct her implementation. A
translation should therefore not only preserve the existence of a winning strategy but ideally
allow for structurally similar strategies. This motivates the search for translations that preserve
the structure of a game. We propose strategy-equivalence, defined in terms of a weak bisimulation
between strategies, as an adequate equivalence notion.

Bisimulation (and weak bisimulation) are well studied relations for concurrent systems [1, 23].
In two bisimular systems the states of both systems can be grouped together in classes of
“equal behavior”. Every move from a state can be matched with an equal move (preceded
by possible internal computation) in every state of that group, resulting in states that are
again grouped together. It is easy to define a bisimulation between the markings in a Petri
net and the global states in an asynchronous automaton. To related dynamic executions in
both games this is, however, not sufficient. Instead we want to express that any strategy for
one game can be matched by a strategy in the respective different game that allows equivalent
(bisimilar) behavior, i.e., allows identical actions/transitions. The current state of a game is
described as either a marking in a strategy (in Petri games) or a global execution (play) of the
automaton (in control games). We consider a strategy σ for a Petri game and a controller % for
a control game equivalent if there is a weak bisimulation between the reachable markings in the
branching process of the strategy (R(N σ)) and the plays that are compatible with the controller
(Plays(C, %)). There hence is a relation between the current “situations” in both games where
bisimulation requires equivalent situations to be extended in an identical form.

To compare Petri games and control games we require a shared core of transitions/actions
between two games. We refer to them as observable. All transitions/actions that are not shared
are considered internal (τ), i.e., correspond to internal computation steps that must not be
matched in related situations.
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Definition A strategy σ for G and controller % for C are bisimilar if there exists a relation
≈B⊆ R(N σ)× Plays(C, %) such that:

Inσ ≈B ε

If M ≈B u and M [ a 〉 M ′ for some M ′ ∈ R(N σ) then there exists u′ with u′ =
u τ∗ a τ∗ ∈ Plays(C, %) and M ′ ≈B u′.

If M ≈B u and M [ τ 〉 M ′ for some M ′ ∈ R(N σ) then there exists u′ with u′ = u τ∗ ∈
Plays(C, %) and M ′ ≈B u′.

If M ≈B u and u′ = u a ∈ Plays(C, %) then there exists M ′ ∈ R(N σ) with
M [ τ∗aτ∗ 〉 M ′ and M ′ ≈B u′.

If M ≈B u and u′ = u τ ∈ Plays(C, %) then there exists M ′ ∈ R(N σ) with M [ τ∗ 〉 M ′
and M ′ ≈B u′.

The definition requires that there exist a relation that witnesses bisimulation (≈B) and relates
markings and plays. The initial situation in both the strategy (Inσ) and the controller (ε) are
related and any move in one strategy/controller can be matched after some preceding τ -steps.

Definition A Petri game G and a control game C are called strategy-equivalent if: For every
winning strategy σ for G there exists a bisimilar winning controller %σ for C and for every
winning controller % for C there exists a bisimilar winning strategy σ% for G

Note that strategy-equivalent games are by definition winning-equivalent. The converse does
not hold in general.

The definition of strategy equivalence is, on its own, independent of translating a game
but can be seen as a general notion to compare two games. In particular, we note that if
the set of shared transitions/actions between both games is empty, there are no observable
transitions/actions and two games are hence strategy-equivalent iff they are winning-equivalent.
For a translation as attempted in this thesis, we use the notion of strategy-equivalence to justify
structural identical games and therefore do not want to consider the set of shared events as
empty. If we, e.g., attempt to translate a Petri game to a control game we aim for a game that
comprises all transitions of the Petri game as actions, i.e., T ⊆ Σ. Every behavior in the Petri
game should hence be matched in the translated control game.

We already argued why we are interested in translations that permit similar strategies/controllers.
Strategy-equivalence captures this very well as any winning strategy/controller corresponds to a
bisimilar winning controller/strategy in the other game. In strategy-equivalent games we can
hence grantee that any environment controlled move can be matched and everything in control
of the system can be matched as well, i.e., a strategy/controller allows reaction in an equivalent
way.



Chapter 5

Translating Petri Games to Control Games

In this chapter we provide an exponential translation from Petri games to control games. We
prove that our translation yields strategy-equivalent (and therefore winning-equivalent) games.
Moreover we give an exponential lower bound showing that our translation is asymptomatically
optimal when restricting to strategy-equivalent translations. The existing decidability results
for control games [14, 19, 15, 16] are all stated in terms of reachability objectives. We therefore
explicitly give the translation for games with reachability winning conditions. It is, however,
easy to extend the translation to other winning objectives.

5.1 Construction

We describe the construction of the translated game. We begin by defining our translation for a
restricting class of Petri games, called sliceable. In Sec. 5.5 we outline how the translation can
be generalized to the broad class of concurrency-preserving games.

Slices A Petri game describes the global behavior of the players. By contrast a control game is
defined in terms of local processes. Similarly, a Petri game strategy is a global branching process
opposed to a family of local controllers for control games. This is due to the intrinsic nature of
the underlying model: Petri nets model global behavior, whereas asynchronous automaton are
defined locally. The first step towards a successful translation is to dismantle a global Petri net
into local parts. To this extent we introduce slices.

Definition A slice of a Petri net N is a net ς = (Pς , T ς ,F ς , Inς) such that :
(1) ς v N (2) |Inς | = 1

(3) ∀t ∈ T ς : |preς(t)| = |postς(q)| = 1 (4) ∀p ∈ Pς : postN (p) ⊆ T ς

A slice is a subnet of N (1) that is concurrency-preserving (2) and contains exactly one player
(3). (4) requires the slice to allow every behavior, i.e., if a place is added to a slice then all
outgoing transitions must also be added. Note that (1) requires the flow to be preserved between
the nodes that are added to the slice. A slice describes the behavior of a single token in the
global net. One can think of a slice as a finite state automaton where the token marks the
current state.

We call a family of slices S = {ςi}i∈I over some finite index set I, compatible if the places
of the slices are disjoint. For a compatible family S we define the composition 〈‖S〉 as the
Petri net with places

⊎
i∈I Pi, transitions

⋃
i∈I T i, flow relation

⊎
i∈I F i and initial marking⊎

i∈I Ini. Since the places of slices are disjoint, all unions, except for the union of transitions, are
disjoint. Transitions can, however, be shared between multiple slices, creating synchronization.
A Petri net N is sliceable if there exists a compatible family of slices S, s.t. N = 〈‖S〉. Due to
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the fact that the places in an a compatible family are disjoint,
⊎
i∈I Pi also forms partition of

PN . Sliceable nets are nets that can be described as the composition of local tokens that move
along individual slices. We call such a family of slices a distribution (or slice-distribution) of N .
Sliceable nets are always concurrency-preserving and safe. We extend slices to Petri games in
the natural way by distinguishing between system and environment places and marking places in
slices as winning. A Petri game is therefore sliceable iff the underlying net is sliceable. Fig. 5.3
depicts a Petri game (a) and a distribution into slices (b). Note that both slices synchronize on
the shared transitions a and b.

A

C D

B

t1 t2

Figure 5.1 Concurrency preserv-
ing, safe Petri net that is not slice-
able. Because of transitions t1 and
t2 both places C and D must belong
to the same slice as place A. One of
them must, however, also be in the
same slice as B.

It is interesting and important to note that not every
Petri net (Petri game) is sliceable, even in the concurrency-
preserving, bounded case where each place is part of a reach-
able marking. For an example of this consider Fig. 5.1. Petri
nets can hence describe complex behavior that cannot be
modelled by viewing the net as a composition of local tokens
that can share transitions. If a net is sliceable a distribution
must not be unique.

Commitment Sets In control games actions are either con-
trollable or uncontrollable, whereas in Petri games transitions
can only be forbidden from involved system places. If we
translate a Petri game to a control game we want to repre-
sent transitions as actions. We hence require actions that
can only be controlled by some of the involved player. This
cannot be expressed directly using controllable and uncon-
trollable actions. We overcome this by using commitment
sets. Every process that should be able to control an action does not restrict it directly but
instead chooses a commitment set, i.e., moves to a state that explicitly encodes its decision.

Description of CG For now we fix a sliceable (reachability) Petri game G = (PS ,PE , T ,F , In,W)
and slice-distribution S. We begin by defining our translated control game CG . Afterwards, we
describe a possible modification ĈG used in the context of determinism. Both translations are
depicted in Fig. 5.2 where the former is obtained if the red parts are excluded and the latter
with the red parts included. As we begin by describing CG the red parts should be ignored at
first.

The causal information in a Petri game is carried by tokens. Since a slice describes the
movement of precisely one token, it is natural to view every slice as a process in a control
game. We therefore transform each slice ς ∈ S into a local process that is described by a local
automaton �S

1. Every place of the slice becomes a state in the process2. From now on we
hence use the terms slice and process interchangeably. Every local automaton starts in the
state that corresponds to the initial place of the slice. For every system place q we add the
aforementioned commitment sets. These are states of the form (q, A) that encode every possible
choice made by a token on place q, i.e., every A ⊆ postG(q). A controller can later on achieve
any possible combination of allowed transitions by moving to an appropriate commitment set.

We add every transition t ∈ T from the Petri game as an uncontrollable action. Action t
involves all processes that are build from a slice taking part in t, i.e., all slices ς where t ∈ T ς .
To choose commitment sets we add additional controllable τ(q,A)-actions that are local to one
process. We assume that each process chooses at most one commitment set.

1Our final control game consists of the parallel composition of automata as defined in the preliminaries. Our
translation therefore yields a more specific class of control games.

2To avoid clustered notation we view a place q as both a place in the Petri game as well as a state in our
translated game. We proceed similar for transitions/actions. If we refer to those elements it should be clear
from the context whether we consider it as a transition in the Petri game or an action in the control game.
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Define P = S and the alphabet of the asynchronous automaton to be (Σ, dom) with:

Σ = T ∪ {τ(q,A) | q ∈ PS ∧ A ⊆ postG(q)}

∪ { E(q,A)
[t1,t2] | q ∈ PS ∧ A ⊆ postG(q) ∧ t1 6= t2 ∈ A}

and dom : Σ→ 2P \ {∅}:

dom(t) = {ς ∈ S | t ∈ T ς} for t ∈ T
dom(τ(q,A)) = {ς} where ς ∈ S is the unique slice s.t. q ∈ Pς

dom(E(q,A)
[t1,t2]) = {ς ∈ S | t1 ∈ T ς ∨ t2 ∈ T ς}

For each slice ς = (Pς , T ς ,F ς , Inς) ∈ S we define the local process �ς = (Qς , ϑς , q0,ς)
with ϑς ⊆ Qς × Σς ×Qς as:

Qς = Pς ∪ {(q, A) | q ∈ Pς ∩ PS ∧ A ⊆ postς(q)} ∪ {⊥ς}

q0,ς is the unique state s.t. Inς = {q0,ς}

and ϑς is given by:

q
τ(q,A)
7−−−−−→ (q, A)

q ∈ PS ∧

A ⊆ postς(q)

(1) q
t7−−−→ q′

q ∈ Pς ∩ PE ∧ t ∈ T ∧

q ∈ preς(t) ∧ q′ ∈ postς(t)

(2) (q, A) t7−−−→ q′

q ∈ Pς ∩ PS ∧ t ∈ A ∧

q ∈ preς(t) ∧ q′ ∈ postς(t)

(3)

(q, A)
E
(q,A)
[t1,t2]
7−−−−−→ ⊥ς

(4)
q

E
(q′,A′)
[t1,t2]
7−−−−−−→ ⊥ς

q′ 6∈ Qς ∧ q ∈ PE ∧

(t1 ∈ T ς ⇒ t1 ∈ postς(q)) ∧
(t2 ∈ T ς ⇒ t2 ∈ postς(q))

(5)
(q, A)

E
(q′,A′)
[t1,t2]
7−−−−−−→ ⊥ς

q′ 6∈ Qς ∧

(t1 ∈ T ς ⇒ t1 ∈ A) ∧
(t2 ∈ T ς ⇒ t2 ∈ A)

(6)

Define AG as the parallel composition of each process
⊗

ς∈S �S .
And CG = (AG ,Σsys,Σenv, {Wς}ς∈S) where

Σsys = {τ(q,A) | q ∈ PS ∧ A ⊆ postG(q)}

Σenv = T ∪ { E(q,A)
[t1,t2] | q ∈ PS ∧ A ⊆ postN (q) ∧ t1 6= t2 ∈ A}

Wς = (W ∩ Pς ∩ PS) ∪ {(q, A) | q ∈ (W ∩Pς) ∧ A ⊆ postς(q)}

Figure 5.2 The translated control game for a (reachability) Petri game G = (PS ,PE , T ,F , In,W)
and distributed in slices S = {ςi}i∈I. Excluding the red parts it depicts the definition of CG . Including
the red parts it depicts the definition of ĈG .
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The transition relation of �ς is given by three rules: If a process is on an environment place
q an action t can fire if it involves this place in the Petri game, i.e., if t ∈ preς(t). In this case
the process is moved to the state q′ that corresponds to the place that is reached when firing
transition t in the slice (q′ ∈ postς(t)) (2). For an environment place the local automaton �ς

hence copies the structure of slice ς and simply replaces all transitions between places with
actions between states. Since all processes that correspond to slices taking part in t must allow
t in their local description, executing t in the automaton has the same effect as firing t in the
Petri game. Since all the actions that correspond to transitions are uncontrollable, a controller
on a state that corresponds to an environment place cannot avert any behavior. If a process is
on a system place it should be allowed to control the outgoing actions using the aforementioned
commitment sets. From every system place q the process can move to every possible commitment
set of that state using the local τ(q,A)-action (1). The behavior from a state representing a
commitment set is almost identical to that from an environment place, i.e., the transition fires if
in the precondition (q ∈ preς(t)) and moves the process to the place reached when firing t in the
slice (q′ ∈ postς(t)). The only difference is that action t is only added if included in the chosen
commitment set (3). While a process on an environment place cannot control any behavior a
process on a system place can choose a commitment set and thereby implicitly restrict which of
the outgoing should be allowed. Using the commitment set construction we can hence guarantee
that only processes on system places can restrict actions.

An example translation is depicted in Fig. 5.33. In the Petri game Ġ in (a) the token initially
in A can move to B taking either e1 or e2. The system player starting in C can shift to D
utilizing transition i. Afterwards, they can synchronize on either a or b, returning them to the
initial configuration or letting them stay in B and D. This game can be won by the systems: It
can play any combination of a or b as long as at some point it refuses to take both. The players
hence eventually terminate in B and D. Note that justified refusal forbids the system player to
base its decision (enable a and/or b) on the most recent decision of the environment player (e1
or e2). In (b) a possible (in this case unique) slice distribution is depicted. Transitions a and b
are shared between both slices. In (c) the translated game is given if the red parts are excluded.
Each slice in (b) defines a process in the control game where every place of a slice is added as a
local state of one of the processes. The slice that only contains environment places results in
the left process p1 that comprises no controllable actions. Every transition between the places
of the slice is added as an action between the states. The second slice results in process p2. For
the system places C,D there are commitment sets {C}× 2{i} and {D}× 2{a,b} ranging over the
set of outgoing transitions. A controller can for every system place precisely determine what to
allow by choosing an appropriate commitment set using the controllable τ -actions. The actions
a, b and i can only occur from a commitment set that includes them4. In our construction only
the second player is able to control a or b, just like in the Petri game. Note that, as in Ġ, the
second process p2 needs to make a decision (allow a b or both) without yet knowing the most
recent decision of p1.

5.2 On Nondeterminism

For Petri games one can focus on deterministic strategies. In such strategies every system place
allows transitions such that in every situation at most one of them is enabled. We have not
described yet how strategies and controllers can be translated between G and CG . The high
level idea is that every place allows exactly the transitions that the controller for CG chose as a
commitment set. To yield deterministic strategies we hence want to restrict the commitment sets

3Throughout this section we switch between explaining concept on an example and talking about general games.
We hence annotate the example with a dot to ease readability.

4The attentive reader has noticed that the commitment set for transition i is redundant. Making i controllable
and add no commitment set would also be feasible. We decided to omit such special cases in our definition in
the pursue of a concise construction.
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D

e1 e2 ia

b

(a)

A

B

e1 e2 a

b

C

D

ia

b

(b)

A

B

⊥ς1

e1 e2a

b

E

C(C, ∅) (C, {i})

D

(D, {a, b})

(D, {b})

(D, ∅)

(D, {a})

⊥ς2

τ(C,∅) τ(C,{i}

iτ(D,{a,b})

τ(D,{b})

τ(D,∅)

τ(D,{a})

a

b
b

a

E

p1 : p2 :

(c)

Figure 5.3 Exemplary sliceable Petri game Ġ (a), a possible (in this case unique) distribution in
slices (b) and the asynchronous automaton ĊG obtained by our translation (c). Including the red parts
(c) delineates ĈG , which is identical to ĊG except for additional E-actions. The E-action leaving from
states B and (D, {a, b}) is an E(D,{a,b})

[a,b] action which is labelled as “E” to improve readability.

such that from any chosen commitment set at most one action can occur. To put it differently:
We want to penalize a controller if it allows commitment sets such that two distinct action from
the same set can occur from the same global state.

We modify the previous CG slightly and obtain the new control game ĈG . The structure
of the latter is almost identical to the former but adds further uncontrollable actions. These
actions enforce every winning controller to behave “deterministic” in the sense that from every
commitment set at most one action is possible. The construction of ĈG is depicted in Fig. 5.2 by
including the red parts. In ĈG we equip every process with an additional ⊥-state. This state is
neither winning nor has it any outgoing actions. As soon as a process has entered a ⊥-state, no
winning configuration is reachable and the game is therefore lost by the system. The situation
to cover comprises a process that has chosen a commitment set, i.e., is in a state (q, A) and two
distinct actions t1, t2 in A. For every such situation we add a E(q,A)

[t1,t2]-action that involves all
processes involved in t1 or t2 and can be taken exactly if there is a process in local state (q,A)
and t1 and t2 are both enabled from the current global state.

The three rules of ϑ add the E(q,A)
[t1,t2]-action to each process. The action can be executed if

there is one process in state (q,A) (4) and all others are in states such that both t1 and t2
can occur. To ensure that t1 and t2 are both enabled, we distinguish between system and
environment places: Every process ς on an environment place needs to be in the right state, i.e.,
if ς is involved in ti (ti ∈ T ς), then ti is in the postcondition of its current state for i = 1, 2 (5).
If on a system place, ti must not only be in the postcondition but also in the currently chosen
commitment set (6). Whenever all processes involved in either t1 or t2 are in states that have
an outgoing E(q,A)

[t1,t2]-action we know that t1 and t2 can both occur from the current global state.
E(q,A)

[t1,t2] is hence possible iff both t1 and t2 are possible.

ĈG for the example game in Fig. 5.3 (a) is depicted in (c) if the red parts are included.
There is a E(D,{a,b})

[a,b] action possible if the p1 is in B and p2 in (D, {a, b}). In this case p2 has
chosen a commitment set such that both a and b are enabled. Recall the game in Fig. 3.1
from Chapter 3 that can only be won by non-deterministic strategies. The interested reader is
advised to construct the translation of this game. With the added E-action the translation has
no winning controller.
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5.3 Correctness

We still need to argue that our translation are correct, i.e., yield strategy-equivalent games. It
thus remains to prove that G and CG are strategy equivalent and that G and ĈG equivalent if we
restrict strategies for Petri games to be deterministic. Our final result is:

Theorem 1 G and CG are strategy-equivalent. G and ĈG are strategy-equivalent if we
require deterministic Petri game strategies.

To prove this, so we need to show that we can translate winning strategies and controllers
between both games in a bisimilar way. We begin by giving an informal description of how this
translation looks like. This high level outline should already be sufficient to comprehend why
the translation work. We then proceed by giving a formal description in Sec. 5.3.2, including
proofs. As the latter section is very technical it might be helpful to skip it on first read and
continue with the remainder of this thesis.

5.3.1 Intuition

Controllability Our translation needs to overcome the different formalism in both game types.
In control games actions are either controllable or uncontrollable and can hence be controlled by
either all or none of the involved player. When translating a Petri game to a control game we
require actions that can be restricted by some processes but not all of them, i.e., only player on
system places should control them. Our commitment set construction overcomes this difference.
A process on a local state that corresponds to a system place can indirectly control all outgoing
actions by using a commitment set, while a process on a state that corresponds to an environment
place can restrict none of the (uncontrollable) actions. A process on a local state s has the same
control possibilities as the place that s is build from, i.e., can either restrict all actions (system
place) or none (environment place). The high level idea of a strategy/controller translation
consists of simulating and copying the decision made by the existing strategy/controller.
Given a strategy for G we can build a controller for CG that copies the decision of the strategy:
If a process is on a local state that corresponds to an environment place, it cannot control
any behavior and neither can the strategy. If on a system place the controller can choose a
commitment set and thereby implicitly control the outgoing actions. The controller can copy
the system place by choosing the commitment set that contains all transitions allowed from the
place. Using commitment sets it can copy the decision precisely.
For the reverse direction we are given a controller for CG and build a strategy for G. Any system
place in a strategy has to decide which transitions should be allowed. The controller can, if on
a system place, choose a commitment set. The place now allows exactly the transitions that
the controller has chosen as a commitment set. From an environment place a strategy cannot
control any behavior and neither can the controller given it is on a state that corresponds to an
environment place.

On Strategy-Equivalence Strategy Equivalence is defined by a relation ≈B between the
markings in branching process of the strategy and plays compatible with the controller. It
turns out that we can provide an even stronger statement than required by strategy-equivalence.
Instead of relating markings in a branching process and controller compatible plays for fixed
strategy and controller, we relate markings in the unfolding of the Petri game and all plays in
the control game. Since every branching process can be seen as a subprocess of the unfolding
and controller compatible plays are a subset of all possible plays, our relation extends naturally
to a concrete strategy and controller.

The relation ≈B should intuitively relate markings and plays that represent a “similar
situation”. In these situations a strategy and controller should act identical, i.e., allow the same
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Figure 5.4 An initial fragment of the unfolding of the Petri game Ġ in Fig. 5.3. The gray label is
the one given by λ. Two markings M1 and M2 are surrounded in blue and orange. The causal past of
the system place in M2 is surrounded in red.

moves. We define M ≈B u if M describes exactly the situation that results from the observable
actions (non τ -actions) in u. That is, M is the marking reached in the unfolding by firing the
observable actions from u.

As an example, we again consider the translation for Petri game Ġ depicted in Fig. 5.3.
Fig. 5.4 shows an initial fragment of the unfolding of Ġ. Every strategy for this game can be
considered a subprocess of this unfolding. Each marking in the unfolding characterizes the
precise situation of the game, i.e., what transitions have fired in what order. Every play in
our translated control game ĊG corresponds to a marking in the obvious way. As an example,
consider the play

u1 = [ e2 , τ(C,{i}) , i , τ(D,{a,b}) , a , e2 , τ(C,{i}) , i , τ(D,{a,b}) , b , τ(D,{a,b}) ]I

The observable actions in u2 are e2, i, a, e2, i and b. u1 naturally corresponds to the orange
marking M1 in Fig. 5.4. Both M1 and u1 describe the “same situation”: The environment has
played e2 twice and communication occurred on a and then on b. In fact firing the observable
actions of u1 in the unfolding results in M1, so M1 ≈B u1.

We can make a few observation regarding our definition. Firstly, if we have any play in
CG then the observable actions in that play form a valid sequence in the unfolding of G. For
every play there hence exists a related marking. The simulation is, furthermore, invariant under
elements in the trace-equivalent class: If two actions in a play are independent they can be fired
in the unfolding in any order without changing the reached marking. Secondly, we observe that,
by construction of CG , in related situation the game is in equally labelled states (as long as we
identify states that represent a commitment set with the underlying local state). We can see
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both observations in our example: Firing the example u1 from above results in marking M1 no
matter what concrete linearisation of u1 is chosen. It holds that state(u1) = 〈B, (D, {a, b})〉
which, if we ignore the commitment sets, is identical to the label of the places in M1.

Having described ≈B we still need to argue that a strategy and a controller can actually
achieve bisimilar behavior from related situations. Since by ≈B-related situations are equally
labelled our construction guarantees that both a strategy and a controller have identical control
possibilities. That is if M ≈B u then every place in M can control behavior (is on a system
place) if and only if the process he corresponds to can control any behavior on u (can choose
commitment sets). Strategy and controller do, however, act on partial information. To show that
bisimilar behavior is achievable we hence need to take the local information of each player into
account. We can show that the information of each player aligns in ≈B-related situations, i.e., if
M ≈B u then every token in M possess the “same information” as the process counterpart does
on u. This is due to the underlying structure of CG . Every observable action in this control game
involves exactly the processes whose slices are involved in the underlying transition. In both
game types each communication exchanges the entire causal history. Due to the communication
behavior of G being reproduced truthfully in CG , a process always posses comparable information
to its counterpart place in M .

As an illustrative example, we consider the blue marking M2 in Fig. 5.4 and a ≈B-related
play u2 with

u2 = [ e2 , τ(C,{i}) , i , τ(D,{a,b}) , a , e2 , τ(C,{i}) , i , τ(D,{b}) ]I

We can compare the local information of process p2 and the corresponding system player in
M2, i.e., the player on the place in M2 ∩ λ−1[Sp2 ]. We can not compare information formally
yet but can argue informally with what information a player can base its decision on. While p2
can deduce from its local view on u2 that the environment chose e2 the first time, it cannot
tell the most recent decision of the environment. His local view does not include the trailing e2
that has already been played. A possible controller can hence not base its decision (allow a, b,
both or none) on the fact that p1 already played e2 a second time. Similarly justified refusal
forbids the place in M ∩ λ−1[Sp2 ] to base its decision (i.e., enable a, b, both or none) on whether
e1 or e2 occurred. The decision of the place can, however, be based on the knowledge that the
environment chose e2 the first time as this information is encoded inn the place itself. In both
M2 and u2 the player hence possess a comparable amount of information: Both players cannot
base their decision on the most recent move by the environment, whereas they can take the first
environment decision, to play e2, into account.

Translating a Strategy for G to a Controller for CG Given a winning strategy σ for G we
construct a winning controller %σ for CG . The only states in CG from which a process p can
control any behavior (in terms of controllable actions) are of the form q ∈ PS . If in such a state
it can choose a commitment set using local τ -actions. As we conceptually build our controller to
achieve the same behavior as σ, the decision what commitment set to choose should be made in
accordance with the strategy. p wants to allow exactly those observable actions that σ allowed
in a similar situation. In order to do so, p simulates the observable transitions in its local
view in the branching process of σ. In the resulting marking there is a place q′ that belongs
to p, i.e., a place of the slice that p is build from. The transitions allowed from that place are
postNσ (q′). Process p now copies this decision by choosing an appropriate commitment set, i.e.,
allow τ(q,λ[postNσ (q′)]) and forbid all other controllable actions.
For the bisimulation we need to show that if M ≈B u then σ and %σ allow the same behavior.
Note that definition of ≈B and the construction of %σ are completely independent. From
M ≈B u conclude that firing the observable actions from u results in M . To show bisimilarity
we want to show that p copies the decision made in M . Because p does not posses the entire u
but only a local view on it (viewp(u)) simulation of the local view (as in the definition of %σ)
results in a marking M ′ that is different from the one reached when firing the observable actions
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in u (which is precisely M). One can, however, prove that the place that belongs to process p is
identical in M and M ′. Even though p acts on partial information, it can replicate the decision
made by the corresponding place in M . Since every process copies the decision of one place in
M , together all processes hence allow the same behavior as possible in M .
The E-actions in ĈG forbid nondeterminism as they can only fire if a commitment set has been
chosen such that two actions from that set are possible. If we build our controller from a
deterministic strategy the commitment sets are chosen in accordance with the strategy. In a
deterministic strategy no two transitions are enabled from the same system place, so no two
actions are possible from the same commitment set. In the translated controller the E-action are
hence never possible.

Translating a Controller for CG to a Strategy for G Given a winning controller % we incremen-
tally build a strategy σ%. We start by adding the initial marking and add the correct λ-labels.
Every system place q in a partially constructed strategy can decide what transitions to allow.
To, in the end, be bisimilar q should copy the decision of % made in a similar situations. The
information local to q is its causal past. We can take the transitions in that past and add
τ -actions to obtain a play in CG . Place q can hence translate its causal information (in terms of
its causal past) to a play in C. If this play is given to % the process that correspond to q will
choose a commitment set. We define the set of transitions allowed from q to be exactly to be all
transition in that commitment set. We then extend the strategy by adding all transitions where
all involved system places have agreed on.
If M ≈B u we again need to show that % and σ% allow equal behavior. One can show that if
M ≈B u then the causal past of any place q in M with the added τ -actions agrees with viewp(u)
for the corresponding process p. By translating its causal past to a play any place hence copies
the local view of its corresponding process on u and therefore duplicates the decision made by p.
Every place in M hence copies the decision of one process in CG on u. Together the places in M
therefore achieve the same behavior as %.
A winning controller for ĈG , furthermore, avoids all uncontrollable E-actions, so at any point no
two actions from a chosen commitment set are enabled. The constructed strategy copies the
commitment sets and is therefore deterministic.

5.3.2 Proving Strategy Equivalence

Following this informal description we give a formal construction, including proofs establishing
Theorem 1.

For convenience we abuse the notation: The transitions in a branching process of a Petri
game are not the ones from the game but are merely equipped with a λ-label to them. Writing
M [ t 〉 M ′ for some marking M in a branching process and transitions t in the underlying game
is therefore not defined. Unless for very specific occasions we are, however, not interested in the
precise transition in a branching process but solely on the label of it. In the proofs an notion
defined below we hence always identify transitions in the branching process (strategy) with the
original ones. M [ t 〉 M ′ should therefore be understood as: There is a transitions t′ in the
branching process with M [ t′ 〉 M ′ and λ(t′) = t. Using this notational shortcut we could, for
instance, write NU[5κ ] for a sequence κ of transitions in the underlying game. It should be
noted that this notional shortcut is not well defined for arbitrary Petri nets; there could be
multiple equally labelled transitions enabled from the same marking in the branching process.
For branching processes of safe games (and therefore of sliceable games), however, there is at
most one transition with an matching λ-label enabled.
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On the relation ≈B Any state in
⋃
ς∈S Qς \ {⊥ς} corresponds to a place in G in the natural

way. This correspondence is formalized by ζ where:

ζ(q) = q

ζ( (q, A) ) = q

We extend ζ to global states by defining for each global state {qp}p∈P a corresponding marking
by: ζ({qp}p∈P ) =

⋃
p∈P {ζ(qp)}. For a process p we define the shortcut S(p) for the slice that

p has been build from5. Conversely, for a slice ς, P (ς) denotes the process that is build from
ς. By definition of CG we have that T ⊆ Σ. For a sequence of actions u ∈ Σ∗ we denote the
projection on T by 〈u〉T↓ . It is defined by:

〈ε〉T↓ = ε

〈u τ〉T↓ = 〈u〉T↓
〈u t〉T↓ = 〈u〉T↓ t if t ∈ T

We can now formalize our initial idea of the relation ≈B⊆ R(GU)× Plays(CG) by defining:

M ≈B u iff GU[5〈u〉T↓ ] = M

This captures the idea that a marking and play are similar/related if they are reached with the
same observable trace. GU[5〈u〉T↓ ] should be understood as firing any linearisation of 〈u〉T↓ .
We hence need to prove that ≈B is well defined, i.e., GU[5〈u〉T↓ ] is invariant elements of the
equivalence class u. Since the actions in CG are constructed from transitions they inherit the
dependency from the transition. If two actions are independent the corresponding transitions
are concurrent in the Petri net and can be executed in any order:

Lemma 1 If GU[5〈u〉T↓ ] = M for u ∈ Σ∗ and u ∼I w for some w ∈ Σ∗ then GU[5〈w〉T↓ ] =
M

Proof If actions t1, t2 ∈ T are independent in CG they belong to different slices (by definition
of the dependency relation), so (preG(t1)∪postG(t1))∩ (preG(t2)∪postG(t2)) = ∅. Swapping
t1 and t2 hence results in the same marking in the unfolding GU. The claim follows by
induction on the number of swaps in the proof of u ∼I w.

In our construction every place in the Petri game is represented as possibly many states in the
control games. These additional copies, used to represent commitment sets, are equipped with
the same ζ label. Every observable action t in the control game precisely captures the movement
of the tokens involved in t. We hence see that for a related marking and play the underlying
net/automaton is in an equally labelled state:

Lemma 2 If M ≈B u then ζ(state(u)) = λ[M ].

Proof Follows by induction on the length of u using the fact that for all t ∈ T and all
B ∈ domain(δt) it holds that ζ(B) = preG(t) and ζ(δt(B)) = postG(t).

Causal Information Flow In our construction we represent each slice as a distinct process. The
actions of a process p (Σp) are precisely the transitions that S(p) is involved in (and additional
τ -actions). Now consider a marking M and play u where M ≈B u. By construction firing the
observable action from u in the unfolding results in M . The marking M and trace u do not only
represent the global state of the system but also include the information local of each token or
process. The crucial observation of our translation is that this information is “the same”. The
5In the construction p is exactly this slice. However, having explicit notion makes the proofs more understandable.
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local view of process p on u is the same as the causal past of the token in M from slice S(p).
We have already observed this phenomenon with the example from Fig. 5.4. This holds as in CG
the communication behavior of G is modelled truthfully. Every process hence participates in
exactly the actions that its slice takes part in. For our translation we need a more formal notion
of what “having the same information” means. We thus need to find a way to relate causal
information between both games. Unfortunately Petri games and control games represent causal
information in a fundamentally different way utilizing either the causal past of a place or the
local view on a play. We hence need to come up with an efficient intermediate representations
that allow for comparison and transfer of causal memory.

Partially Ordered Sets To this extent we can use the poset representation established for
both game types. Recall that a poset is a pair (X ,≤) where ≤ is a partial order on elements
from X . We introduce a labelled partially ordered set as a triple (X ,≤, β) where (X ,≤) is
a poset and β : X → Y labels the elements from X in some set Y. Two posets (X1,≤1)
and (X2,≤2) are isomorphic if there is a bijection g between X1 and X2 such that for all
x, y ∈ X1 : x ≤1 y ⇔ g(x) ≤2 g(y). In the literature such a function is refereed to as an
order isomorphism. Two labelled posets (X1,≤1, β1) and (X2,≤2, β2) that are labelled in the
same set Y are isomorphic if there exists an order isomorphism g between X1 and X2 where
∀x ∈ X1 : β1(x) = β2(g(x)), i.e., the label agrees. We call two posets equal and write “=”
between them if they are isomorphic6. We have seen that both the causal past of a place and a
trace have intuitive poset characterisation:

For the causal past of place q in an branching process, we can define the labelled poset
(pastT (q),≤, λ) where ≤ is the causal dependency relation and λ the homomorphism
associated to each branching process7.

For a trace u we can define the labelled poset (Preprime(u),v, last) where Preprime(u) are
all primed prefixes of u, v is the prefix relation and last labels each prefix with its last
action.

For both a play and the causal past the poset representation can be seen as a relaxation of the
sequence of transitions that lead to a place q or have been played in u, by leaving concurrent
executions unordered. The poset hence hence describes the concurrent execution leading to
this place. If we consider a play u and the poset representation of 〈u〉T↓ we observe that the
poset is labelled in T . For any place q in the unfolding of a G, the poset is also labelled in T .
This allows us to express equality between the causal past of a pace and a trace. We can, for
instance, write pastT (q) = 〈u〉T↓ , which should be understood as the fact that both sides have
equal poset representations.

As an example, we consider the play [e2, τ(C,{i}), i, τ(D,{a,b}), a, τ(C,{i}), i, τ(D,{b})]I whose poset
representation is depicted in Fig. 5.5. Let q2 be the system place in marking M2 in Fig. 5.4.
The causal past of this place is surrounded in red. The transitions in the causal past of q2 form
a poset in the natural way. Using our new formalism we can now state pastT (q2) = 〈u2〉T↓ . The
attentive reader is encouraged to comprehend why this equality holds.

We can now state the following result which gives us a direct characterisation of the local
information of individual player. It tells us that in ≈B-related situations, the local view of each
process aligns with the causal past of the corresponding place.

6Throughout this thesis we never explicitly work with the order isomorphism between two posets.
7This is one of the rare occasion where we explicitly work with transitions in a branching process.
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p1

p2

e2

τ(C,{i}) i τ(D,{a,b})

a

τ(C,{i}) i τ(D,{b})

Figure 5.5 The poset representation of [e2, τ(C,{i}), i, τ(D,{a,b}), a, τ(C,{i}), i, τ(D,{b})]I in the control
game ĊG from Fig. 5.3 (c).

Lemma 3 IfM ≈B u and q ∈M∩λ−1[PS(p)] (for some p ∈ P ) then pastT (q) = 〈viewp(u)〉T↓

Proof From M ≈B u we conclude that GU[5〈u〉T↓ ] = M . The simulation is invariant under
elements from u as we argued in Lemma 1.
The local view of p on u is defined as the smallest trace [v]I such that u ∼I v w for some w
that contains no actions from Σp. We can hence write u = viewp(u)w. Since the τ -actions
are local to one process it holds that 〈u〉T↓ = 〈viewp(u)〉T↓ 〈w〉T↓ and 〈w〉T↓ contains no actions
from Σp. We hence obtain that

GU[5〈u〉T↓ ] = GU[5〈viewp(u)〉T↓ 〈w〉T↓ ]

and, in particular,

GU[5〈u〉T↓ ] ∩ λ−1[PS(p)] = GU[5〈viewp(u)〉T↓ 〈w〉T↓ ] ∩ λ−1[PS(p)]

The observable actions in Σp are exactly the transitions that the slice S(p) is involved in.
〈w〉T↓ contains no action from Σp and therefore contains no transition that involves S(p).
We can hence see that

M ∩ λ−1[PS(p)] = GU[5〈u〉T↓ ] ∩ λ−1[PS(p)]
= GU[5〈viewp(u)〉T↓ 〈w〉T↓ ] ∩ λ−1[PS(p)]
= GU[5〈viewp(u)〉T↓ ] ∩ λ−1[PS(p)]

Firing 〈viewp(u)〉T↓ and firing 〈u〉T↓ results in the same place for slice S(p). We later recover
exactly this statement (Lemma 4) from our current lemma.
We next show that GU[5〈viewp(u)〉T↓ ] = GU[5 pastT (q) ], i.e., firing the transitions in the
causal past of q results in the same marking as firing 〈viewp(u)〉T↓ . Note that by definition
every linearisation of pastT (q) results in the same marking, so GU[5 pastT (q) ] is well defined.
It trivially holds that GU[5 pastT (q) ] ∩ λ−1[PS(p)] = M ∩ λ−1[PS(p)], so we get that

GU[5〈viewp(u)〉T↓ ] ∩ λ−1[PS(p)] = GU[5 pastT (q) ] ∩ λ−1[PS(p)] (1)

We want to show the more general statement that not only the place that belongs to process
p is shared in GU[5〈viewp(u)〉T↓ ] and GU[5 pastT (q) ] but the place of every process.
We can first observe that pastT (q) is the smallest set of transitions that needs to fire to reach
q. As soon as we remove a single transition from the set, the simulation will no longer reach
place q. From (1) we get that simulating 〈viewp(u)〉T↓ also results in place q. Simulating
〈viewp(u)〉T↓ instead of pastT (q) therefore results in a marking that has progressed more,
i.e., a marking where the game has progressed further (2).
We assume for contradiction that GU[5〈viewp(u)〉T↓ ] 6= GU[5 pastT (q) ]. There hence is a
process p′ with

GU[5〈viewp(u)〉T↓ ] ∩ λ−1[PS(p′)] 6= GU[5 pastT (q) ] ∩ λ−1[PS(p′)]
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Let q1 and q2 be the unique places with

q1 ∈ GU[5〈viewp(u)〉T↓ ] ∩ λ−1[PS(p′)]

q2 ∈ GU[5 pastT (q) ] ∩ λ−1[PS(p′)]

By assumption q1 6= q2 and from (2) it is easy to see that q2 < q1, i.e., the token of slice
S(p′) has progressed further when firing 〈viewp(u)〉T↓ instead of pastT (q).
Let t be the unique transition in preGU(q1). It holds that q2 < t < q1. We know that
t must be included in viewp(u) and since t has no successor transitions we observe that
viewp(u) = r t (3) for some play r, i.e., there is a linearisation of viewp(u) that ends with
t. Since t does not involve the token from slice S(p) we can conclude that t 6∈ Σp. (3) is,
however, a contradiction to the minimality of viewp(u).
Hence GU[5〈viewp(u)〉T↓ ] = GU[5 pastT (q) ]. If two transitions in pastT (q) are unordered
they are independent in 〈viewp(u)〉T↓ . Conversely, consecutive independent actions in
〈viewp(u)〉T↓ involve disjoint set of slices and are hence unordered in pastT (q). It is therefore
easy to see that pastT (q) = 〈(viewp(u))〉T↓ .

Lemma 3 tells us that our relation ≈B does not only capture the global configuration of both
games (as stated in Lemma 2) but also respects the local information. This is of tremendous
importance for a translation of strategies/controller. If M ≈B u then every process in p possess
the same information (in terms of the local view on u) as the corresponding place in M has (in
terms of the causal past).

To see this on an example we once more consider the blue marking M2 in Fig. 5.4 and play
u2 with

u2 = [ e2 , τ(C,{i}) , i , τ(D,{a,b}) , a , e2 , τ(C,{i}) , i, τ(D,{b}) ]I

It holds that M2 ≈B u2. In both situations the environment has played e2 twice. However, in
both, M2 and u2 the second execution of e2 occurred after the communication of a, so neither
p2 nor the system place in M2 that corresponds to p2 can deduce that the environment has
played e2. If we compute the local view of the process p2 on u2, we get that

viewp2(u2) = [ e2 , τ(C,{i}) , i , τ(D,{a,b}) , a , τ(C,{i}) , i , τ(D,{b}) ]I

The poset representation of which is depicted in Fig. 5.4. The causal past from of the system
place q2 in M2 (the place in M2 ∩ λ−1[PS(p2)]) is surround in red in Fig. 5.4. As we observed
before it holds that pastT (q2) = 〈(viewp(u2))〉T↓ , which is exactly the result stated in Lemma 3.

5.3.3 Translating Strategies to Controllers

In this section we provide a formal translation of strategies to controllers. Given a winning
strategy σ for G. We construct a winning controller %σ = {f%σp }p∈P for CG and, furthermore,
show that if σ is deterministic, %σ is a winning controller for ĈG . The description of the local
controller f%σp for process p is depicted in Fig. 5.6.

Every process p in %σ does what we described informally. Given a play u ∈ Playsp(CG) it
computes its current state. Only if this state correspondences to a system place of G (case 3.)
any controllable actions are available. In this case the observable action in u are simulated in
N σ, i.e., the branching process of σ. In Lemma 1 we already argued that simulation of traces is
well defined, i.e., invariant under linearisations. For an arbitrary u, 〈u〉T↓ might not be a valid
sequence in the strategy. We therefore include case b) to obtain a total function f%σp . In case of
a successful simulation (case a)) the simulation reaches some marking M . p should now copy
the decision of the strategy made in M . It therefore computes the place in M that corresponds
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For p ∈ P and u ∈ Playsp(CG):

1. If statep(u) ∈ PE all outgoing transitions are uncontrollable. Define f%σp (u) = ∅.

2. If statep(u) = (q, A) for some q ∈ PS and A ⊆ postG(q) all outgoing transitions
are uncontrollable. Define f%σp (u) = ∅.

3. If statep(u) ∈ PS , we distinguish two cases

a) 〈u〉T↓ is a valid sequence of transitions in N σ:
Let M = N σ[5〈u〉T↓ ]. There exists an unique place q ∈M ∩ λ−1[PS(p)].
Define f%σp (u) = { τ(statep(u),λ[A]) } where A = postNσ (q).

b) 〈u〉T↓ is no valid sequence of transition N σ:
Define f%σp (u) = ∅.
This case will never occur if u is a controller compatible play.

4. If statep(u) = ⊥ there are no outgoing transitions. Define f%σp (u) = ∅.

Figure 5.6 Description of local controller f%σp for process p ∈ P . The controller is build from a
strategy σ for G with branching process N σ.

to the slice p is build from, i.e., the place q ∈M ∩ λ−1[PS(p)]. The set of transitions allowed by
this place are postNσ(q). To copy p hence chooses the commitment set that contains exactly
those transitions. We later show that for controller compatibles plays u, 〈u〉T↓ is always a valid
sequence, i.e., we never land in situation b).

As an example, we consider the translation from Fig. 5.3 and the winning (non-deterministic)
strategy σ̇ depicted in Fig. 5.7. Whenever possible σ̇ allows transition i to move to place D. If
in place D the first time it allows communication on both a and b. Upon communication on
either a or b the strategy can, furthermore, deduce whether the environment played e1 or e2,
as this information is conceptually transmitted in the communication. There are hence four
different cases possible: In case of synchronization on a, σ̇ allows the token on a system place
to move to D using transition i. It then distinguishes whether e1 or e2 have been played. In
case of e1 it terminates and in case of e2 it allows communication on b for one more time. If
synchronization occurred on b the strategy again distinguishes the two cases. If it can deduce
e1 it allows b for one more time. In case of e2 it terminates directly. Even though σ̇ seems
unnecessary complicated8, strategy-equivalence requires us to build a controller that copies
this behavior. We can now translate σ̇ according to our translation of strategies and obtain a
controller %̇σ for ĊG . Since there is no intuitive way to represent a controller graphically, we
depict %̇σ as a table that summarizes a selection of plays in ĊG and the decision made by p2
(the local controller f %̇σp2

). The table is shown in Fig. 5.8. As we only depict the decision of
p2, we listed the p2-view on all plays. %̇σ initially allows the i action by choosing the (C, {i})
commitment set. Afterwards, it admits communication on both a and b by moving to the
(D, {a, b}) commitment set. %̇σ copies the “cases analysis” of σ̇. We can observe that every
decision of the controller is made in accordance with our construction. As an example, consider
the play [τ(C,{i}), i, τ(D,{a,b}), e1, b]I (play (1) in Fig. 5.8). The observable action on that play
comprise e1, i and b. The simulation of this play in N σ̇ results in the orange marking M1. Since
the system place (the place in M1 ∩ λ−1[PS(p2)]) allows b in its postcondition, the controller
chooses (D, {b}) as a commitment set. The interested reader is advised to convince herself that
all decision listed in Fig. 5.8 are in accordance with both our construction and σ̇.

8In the sense that there are much simpler winning strategies.
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Figure 5.7 A winning strategy σ̇ for the Petri game Ġ in Fig. 5.3. The marking of winning places
has been omitted. After first allowing both a and b the strategy makes a case distinction on which
commination of e1 ot e2 and a or b occurred. We can view this strategy as a subprocess of the unfolding
(depicted in Fig. 5.4). Reachable marking M1, M2 and M3 are surrounded in red, green and blue.

u ∈ Plays(ĊG , %̇σ) ∩ Playsp2 (ĊG) f %̇σp2 (u)

ε {τ(C,{i})}
τ(C,{i}) ∅
τ(C,{i}), i {τ(D,{a,b})}
τ(C,{i}), i, τ(D,{a,b}) ∅
τ(C,{i}), i, τ(D,{a,b}), e1, a {τ(C,{i})}

(1) τ(C,{i}), i, τ(D,{a,b}), e1, b {τ(D,{b})}
τ(C,{i}), i, τ(D,{a,b}), e2, a {τ(C,{i})}
τ(C,{i}), i, τ(D,{a,b}), e2, b ∅
τ(C,{i}), i, τ(D,{a,b}), e2, a, τ(C,{i}), i {τ(D,{b})}

· · ·

Figure 5.8 Controller %̇σ build from the winning strategy σ̇ in Fig. 5.7. The controller is depicted
by listing possible plays and the decision of f %̇σp2 on them.

Strategy-Equivalence
Given the constructed %σ we can prove it strategy-equivalent to σ. For our bisimulation ≈B

we use the one we already defined, but restrict it to reachable markings in N σ and plays in
Plays(CG , %σ). The previous statements (Lemma 2 and Lemma 3) extend to this restricted
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relation. We begin by showing a direct consequence of Lemma 3:

Lemma 4 If M ≈B u and p ∈ P then

M ∩ λ−1[PS(p)] = GU[5〈u〉T↓ ] ∩ λ−1[PS(p)]
= GU[5〈viewp(u)〉T↓ ] ∩ λ−1[PS(p)]

Proof Let q be the unique place with q ∈M ∩ λ−1[PS(p)]. It holds that M ∩ λ−1[PS(p)] =
GU[5 pastT (q) ] ∩ λ−1[PS(p)] since firing the transitions in the past of q is always sufficient
to reach q. Note that writing down GU[5 pastT (q) ] is well defined. By Lemma 3 it holds
that pastT (q) = 〈viewp(u)〉T↓ . We know conclude that

M ∩ λ−1[PS(p)] = GU[5 pastT (q) ] ∩ λ−1[PS(p)]
= GU[5〈viewp(u)〉T↓ ] ∩ λ−1[PS(p)]

Our definition of %σ is completely independent from the definition of ≈B. Lemma 4, however,
establishes an important relation between them. Suppose u is the global play in CG and M
a marking such that M ≈B u. From the definition of ≈B we know that N σ[5〈u〉T↓ ] = M .
Since viewp(u) differs (in general) from u, simulating viewp(u) instead of u results in a different
marking M ′. Lemma 4 now states that for process p, the place that belongs to S(p) is identical
in M and M ′. This establishes a connection to our controller definition as, in %σ, each process
simulates its local view and copies the decision on the resulting marking. By Lemma 4 in related
situations every process therefore copies the decision of one of the places in M .

We can see this at our example strategy σ̇ and translated controller %̇σ. Here the controller
compatible play

u2 = [ e2 , τ(C,{i}) , i , τ(D,{a,b}) , a , e2 , τ(C,{i}) , i, τ(D,{b}) ]I

and the green marking M2 in Fig. 5.7 are related by ≈B. When simulating the local view of p2
on u2 in N σ̇ we reach the blue marking M3, which is, as we observed earlier, different from M2.
The system place labelled D (the place that belongs to p2) is, however, shared in M2 and M3
(as stated in Lemma 4). In our construction of a controller p2 would simulate its local view on
u2 and copy the decision in the resulting marking. It thereby copies the decision made in M2,
even though it computed the different M3.

Lemma 4 allows us to show that the defined %σ actually enable the same behavior if M ≈B u.
Essentially it allows us to conclude that in ≈B-related situation %σ copies σ. We can reason in
both direction:

If u t ∈ Plays(C, %σ) then all involved processes allowed t. So every process p ∈ dom(t)
either resides an environment place (a state corresponding to an environment place) where
it has no control or it is on a system place where it must have chosen a commitment set
where t is included. p chose its commitment set by simulating its local view on u in the
branching process of σ. By Lemma 4 it thereby copied the decision of a system place in
M (the system place q ∈M ∩ λ−1[PS(p)]). As t is in the commitment set of every process
involved in t, it must be in the postcondition of every of every system place involved in t
so t is enabled in M .

If, on the other hand, the strategy allows a transition t from M , all system places must
have agreed, i.e., included t in their postcondition. In %σ each process decided on what
to allow as a commitment set by simulating its local view and, by Lemma 4, therefore
copies the decision of one system place in M . As t is included in the postcondition of
all involved places, every process involved in t thus chooses a commitment set where t is
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included. We can hence see that t is an extension of u (after playing sufficiently many
τ -actions to choose a commitment set).

%σ is a controller for both CG and ĈG . To prove that σ and %σ are bisimilar we can treat CG and ĈG
as the same, i.e., ignoring all E-actions in ĈG . We later show that, if σ is deterministic, E-actions
are never part in any play compatible with %σ and can hence be neglect for bisimulation.

Lemma 5 If M ≈B u and u′ = u t ∈ Plays(CG , %σ) then there exists a M ′ ∈ R(N σ) with
M [ t 〉 M ′ and M ′ ≈B u′.

Intuition If u′ = u t ∈ Plays(CG , %σ) then t must be included in the chosen commitment
set of every p ∈ dom(t) that resides on a state that corresponds to a system place. By
definition of %σ every process chose the commitment set as the set of transitions leaving the
corresponding place that results from simulation the local view in the branching process.
By Lemma 4 every process thereby copies the decision of one system place in M . Since t
is in every commitment set, every system place in M involved in t has allowed t, so t is
possible from M .

Proof Since M ≈B u, Lemma 2 allows us to conclude that ζ(state(u)) = λ[M ].
We want to show that t is enabled in M . This would imply that M [ t 〉 M ′ and M ′ ≈B u
is a trivial consequence. From ζ(state(u)) = λ[M ] and since t is possible from state(u), the
construction of CG allows us to conclude that t is enabled in λ[M ]. There hence is a set
C ⊆M with λ[C] = preG(t).
We assume for contraction t is not allowed by the strategy. Because of justified refusal there
hence is a system place q ∈ C with t 6∈ λ[postNσ (q)] (1). Place q belongs to some process
p, i.e., q ∈ M ∩ λ−1[PS(p)]. We know that λ(q) = ζ(statep(u)). By construction of dom
we know that p ∈ dom(t). Since u′ = u t ∈ Plays(CG , %σ) and q is a system place we know
that statep(u) = (λ(q), B) for some B with t ∈ B, i.e., process p has chosen a commitment
set that includes t (2). We derive the contradiction by showing that the set of transitions
leaving q (λ[postNσ (q)]) agrees with the decision of p and must hence, by (2), include t.
As statep(u) = (λ(q), B) there must be a τ(λ(q),B) action in u, since this is the only action
leading to state (λ(q), B). Let uτ v u be the prefix obtained by removing the last such
action. uτ is a %σ compatible play. It holds that statep(uτ ) = λ(q). We conclude that
τ(λ(q),B) ∈ f%σp (viewp(uτ ))
We can now study how %σ chooses B as its commitment set. By definition of %σ we know
that B = λ[postNσ (q′)] for the unique system place q′ with

q′ ∈ N σ[5〈viewp(uτ )〉T↓ ] ∩ λ−1[PS(p)]

Now by Lemma 4:

{q′} = N σ[5〈viewp(uτ )〉T↓ ] ∩ λ−1[PS(p)]
= N σ[5〈viewp(u)〉T↓ ] ∩ λ−1[PS(p)]
= N σ[5〈u〉T↓ ] ∩ λ−1[PS(p)]
= M ∩ λ−1[PS(p)]
= {q}

The system place reached by simulating 〈viewp(uτ )〉T↓ is hence exactly the system place in
M . It follows that

B = λ[postN
σ

(q′)] = λ[postN
σ

(q)]

This is a contradiction to t ∈ B (2) but we assumed t 6∈ λ[postNσ (q)] (1).
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Lemma 6 If M ≈B u and u′ = u τ ∈ Plays(CG , %σ) then M ≈B u′.

Proof Obvious consequence from the definition of ≈B.

In the proofs above we never have to cope with case b) in the definition of %σ: We always have
to conclude statements under the assumption that M ≈B u for some M and u. By definition of
≈B, 〈u〉T↓ is a valid sequence in N σ and therefore 〈viewp(u)〉T↓ as well (since 〈viewp(u)〉T↓ is a
prefix of 〈u〉T↓ ). We can show the next corollary which shows that case 3b) can be ignored for
any %σ compatible play9.

Corollary If u is a %σ compatible play then 〈viewp(u)〉T↓ is a valid sequence in N σ.

Proof It holds that Inσ ≈B ε. By playing u and using Lemma 5 and Lemma 6 we get a
reachable marking M in N σ with M ≈B u. By definition of ≈B, 〈u〉T↓ is a valid sequence
in N σ. Since 〈viewp(u)〉T↓ is a prefix of 〈u〉T↓ it is a valid sequence as well.

Lemma 7 If M ≈B u and M [ t 〉 M ′ for some M ′ ∈ R(N σ) there exists u′ = u τ∗ t ∈
Plays(CG , %σ) with M ′ ≈ u′.

Intuition If M [ t 〉 M ′ then every system place in M that is involved in t has allowed
it, i.e., t is in the postcondition of the place. By definition of %σ every process that is on
a state that corresponds to a system place simulates the local view on u. By Lemma 4
simulating the local view on u results in a place in M so every process involved in t copies
the decision of one place in M . Since all places in M allow t in their postcondition, t is
included in the commitment set of every process. After choosing a commitment set for all
processes we can hence execute t.

Proof Since M ≈B u Lemma 2 allows us to conclude that ζ(state(u)) = λ[M ] (1). Transi-
tion t is enabled in M and hence for every place q in M with λ(q) ∈ preG(t) it holds that
t ∈ λ[postNσ (q)] (2).
Let uτ be u extended with as many τ actions as possible s.t. no τ -action is possible after
uτ . Since %σ always allows a commitment set, after playing uτ every process that can
choose a commitment set, has chosen a commitment set, i.e., for every process p with
ζ(statep(uτ )) ∈ PS we know that statep(uτ ) = (_,_).
Assume for contradiction uτ t 6∈ Plays(CG , %σ). Since (1) holds, every process on a system
state has chosen a commitment set and action t is uncontrollable, we can conclude that there
is a process p ∈ dom(t) with statep(uτ ) = (qp, B) but where t 6∈ B. That is p has chosen
a commitment set where t is not included. Let q′p ∈M ∩ λ

−1[PS(p)] be the corresponding
place in M . Since p ∈ dom(t) and t is enabled in λ[M ] we conclude that λ(q′p) ∈ preG(t)
and by (2) we get that t ∈ λ[postNσ (q′p)] (3), i.e., from the place in M that corresponds to
p, t is enabled (in the postcondition).
Since p is in state (qp, B) there is an τ(qp,B) action in uτ . Let u−τ be uτ where the last such
action is removed such that p has not chosen a commitment set (i.e., statep(uτ ) = qp). We
can conclude that τ(qp,B) ∈ fp(viewp(u−τ )).
By the definition of %σ it holds that B = λ[postNσ (q′′p )] for the unique place q′′p with

q′′p ∈ N σ[5〈viewp(u−τ )〉T↓ ] ∩ λ−1[PS(p)]

9This is no statement required by strategy-equivalence.
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Because of Lemma 4:

{q′′p} = N σ[5〈viewp(u−τ )〉T↓ ] ∩ λ−1[PS(p)]
= N σ[5〈viewp(uτ )〉T↓ ] ∩ λ−1[PS(p)]
= N σ[5〈u〉T↓ ] ∩ λ−1[PS(p)]
= M ∩ λ−1[PS(p)]
= {q′p}

We hence conclude that q′′p = q′p and get

B = λ[postN
σ

(q′′p )] = λ[postN
σ

(q′p)]

The chosen commitment set, B, agrees with the transitions leaving q′p. This is a contradiction
to t ∈ λ[postNσ (q′p)] (3) and our assumption t 6∈ B.

Corollary σ and %σ are bisimilar.

Proof By definition Inσ ≈B ε. Since there are no local (unobservable) transitions in G the
statement follows from Lemma 5, Lemma 6 and Lemma 7.

Having proved bisimilarity we can easily show that winningness is preserved by our translation.

Lemma 8 If σ is a winning strategy for G then %σ is a winning controller for CG .

Proof We first show that all plays in Plays(CG , %σ) are finite: Assume for contradiction
there is an infinite play u. Due to CG not permitting infinite sequences of consecutive
τ -actions, u must contain infinitely many observable actions. By bisimulation we therefore
have an infinite sequence of markings N σ. This is a contradiction since σ is by assumption
winning and therefore by definition finite.
We now show that all maximal plays terminate in a winning configuration: Suppose
u ∈ Plays(CG , %σ)M is a maximal %σ-compatible play, i.e., cannot be extended by any
action. Using our bisimulation, there exists a reachable marking M in N σ with M ≈B u.
Since u is maximal, M is final. Since σ is winning M must be a winning marking. Now
ζ(state(u)) = λ[M ] (by Lemma 2) and from our construction of the winning states in CG it
follows that state(u) is winning as well.

Deterministic Strategies
So far we have ignored all E-actions introduced with ĈG . We can justify this by showing that
the E-actions can actually never be taken, if %σ is constructed from a deterministic σ. The
E-transition can occur when the processes have choosen their commitment sets such that two
transitions are enabled from the same set. By construction %σ chooses its commitment sets in
accordance with the strategy σ, i.e., the actions in a commitment set are exactly the ones that
are enabled by a place in σ. If σ is deterministic there is a most one transition enabled from
every system place and thereby at most one action possible from each commitment set; the
E-actions are thus never enabled. Formally:

Lemma 9 If σ is deterministic, then there is no play in Plays(ĈG , %σ) that contains a
E-action.

Proof Suppose the opposite, i.e., there is a %σ compatible play u that contains a E-action.
W.l.o.g. u = u′ E(q,A)

[t1,t2] with q ∈ PS , A ⊆ postG(q), t1, t2 ∈ A, and there is no E action in u′.
By construction of the E-actions it is easy to see that if u′ E(q,A)

[t1,t2] is a play then u′ t1 and
u′ t2 are as well.
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If E(q,A)
[t1,t2] is possible, the transition relation in ĈG also requires a process p in state (q, A), i.e.,

statep(u′) = (q, A). Since there are no E-action in u′ we can use the previous bisimulation
result and obtain a marking M ∈ R(N σ) with M ≈B u′. By bisimulation we know that t1
and t2 (transitions with that label) are enabled from M .
Let q′ ∈ M ∩ λ−1[PS(p)] be the system place in M that corresponds to process p. From
Lemma 2 know that λ(q′) = q. Since t1, t2 ∈ dom(p) we get t1, t2 ∈ T S(p). Place q′ is
therefore involved in both t1 and t2 so we see that t1, t2 ∈ λ[postNσ (q′)] and both can occur
from M . This is a contradiction to the assumption that σ is deterministic.

If σ is deterministic, Lemma 9 shows that %σ does not allow any E-actions. We can hence neglect
all E-actions and extend our proofs for bisimulation and winningness from CG to ĈG . We get
that %σ is a winning controller for ĈG (and also CG) and, furthermore, bisimilar to σ. This gives
us the first half of our proof of Theorem 1:

Proposition 1 If σ is a winning strategy for G then %σ is a winning controller for CG and
bisimilar to σ.
If σ is a winning, deterministic strategy for G then %σ is a winning controller for ĈG (and
for CG) and bisimilar to σ.

5.3.4 Translating Controllers to Strategies

In this section we provide the formal translation of controllers to strategies. We first need
to restrict the possible controllers for CG : We only consider controller that allow at most one
commitment set (one τ -action from each state). This restriction is needed to allow for bisimilar
strategies10. Even though this constraint is not desirable, we can argue that it does not impose
any relevant restriction on possible controller: Suppose controller % = {f%p }p∈P allows more
than one commitment set. We can build a modified controller %′ = {f%′p }p∈P by

f%
′

p (u) = {τ(q, ⋃
i=1,··· ,n

Ai)} when f
%
p (u) = {τ(q,A1), · · · , τ(q,An)}

Whenever % allows multiple commitment sets, %′ chooses the union of all of them as the new
(unique) commitment set. %′ admits the same observable sequences as %. In particular, %′ is
winning if and only if % is winning. Allowing more commitment does not yield any advantage
for a controller11. For convenience we also restrict controller even further by enforcing exactly
one commitment set. If a controller % chooses no commitment set we can instead choose the
empty one12 We call this restriction on controller ?.

Assume now we are given a winning controller % for CG (or ĈG) that satisfies ?. We need to
construct a winning, bisimilar strategy σ% for G. Unlike controllers that are defined as functions
evoked on an entire play, strategy for Petri games are defined as branching processes. We thus
incrementally build a branching process for σ%. In our incremental strategy construction every
system place needs to decide what transitions to allow from that place. This decision should
be based on the causal past of that place and should be made in accordance with % in order
to, in the end, obtain a bisimilar strategy. We would therefore like to be able to translate the
causal past to a play in CG , give this play to controller % and enable exactly the transitions that
the controller chose as a commitment set. The crucial step is the translation of the causal past
of place q to a play in CG that is compatible with %. When translating strategies to controller
10If two commitment sets are chosen, two states that are indistinguishable by weak-bisimulation allow different
behavior. A strategy must hence allow the behavior of both states from a single place. This is in general not
possible.

11Instead of building the union-commitment set it would be valid to simply choose one of the allowed commitment
sets. An approach similar to this has been realised in [22].

12Unlike the restriction to at most one chosen commitment set, the further restriction to exactly one commitment
set is not needed to maintain bisimilarity but purely for convenience.
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function extend%
input: u ∈ Plays(CG)

for all p ∈ P with statep(u) ∈ PS do
Compute f%p (viewp(u)) = {τ(statep(u),A)}
u← u τ(statep(u),A)

end for
return: u

(a)

function rec′%
input: κ← κ0, · · · , κn−1 ∈ T ∗

u← extend% (ε)
for i← 0 to n− 1 do

u← uκi
assert u ∈ Plays(CG) (A)
u← extend% (u)

end for
return: u

(b)

function rec%
input: pastT (q)

Order pastT (q) totally into a sequence
κ← κ0, · · · , κn−1 ∈ T ∗

return: rec′%(κ)

(c)

Figure 5.9 Description of algorithm rec% used to reconstruct a play in CG from the transitions in the
causal past of a place.

(Sec. 5.3.3) we had to do conserve, i.e., translate a local view into the causal past of a place. We
could easily do so by ignoring all τ -actions using 〈·〉T↓ . In contrast, in our present translation we
have to add τ -actions to obtain a play in CG . For a place q with causal past pastT (q) we thus
want to compute a % compatible play u that contains the same observable actions, i.e., where
〈u〉T↓ = pastT (q).

Play Reconstruction
Given the causal past of q we need to add τ -actions to the play. We pursue an incremental
construction of that play: We begin with an empty play and add the transitions in the past of
q one at a time. In between we need to play τ -actions to allow all processes on system places
to choose a commitment set. The incremental construction is done by a function rec% that is
depicted in Fig. 5.9. As the past of q is a partially ordered set and it is intrinsically hard to write
function on such sets, we begin by fixing a total order κ. The main work is then done by rec′%.
The idea is to add the transitions in κ one at a time and in between play as many τ -actions as
possible. The subroutine extend performs the addition of τ -actions by moving every process that
can choose a commitment set (statep(u) ∈ PS) to the chosen set by playing a τ -action. Note
that, as % satisfies ?, every process allows for exactly one commitment set. rec′% then repetitively
extends a play and adds a transition from κ. In the algorithm, we included an assertion (A)
that requires the trace constructed so far to be a play in CG . We discuss this assertion later. For
now assume it is always fulfilled. It is easy to see that if rec% does not trigger the assertion, the
outputted play u satisfies 〈u〉T↓ = pastT (q).

The first step in rec% consists in finding a total order of pastT (q). We can prove that the
resulting trace does not depend on the concrete choice. rec% is hence a deterministic procedure.
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Lemma 10 Let q ∈ PGU be any place in the unfolding of G. If κ1 and κ2 are two totally
ordered sequences of pastT (q) then rec′%(κ1) = rec′%(κ2).

Proof We first show that statements for two totally ordered sequences κ and κ′ of pastT (q)
that only differ at exactly one location, i.e., two consecutive transitions t1, t2 have been
swapped. So κ = κr1 , t1, t2, κ

r2 and κ′ = κr1 , t2, t1, κ
r2 for some sequences κr1 and κrr .

Since t1 and t2 are unordered in pastT (q), we can conclude (preG(t1)∪postG(t1))∩(preG(t2)∪
postG(t2)) = ∅. Since t1 and t2 can be fired exactly after another we can conclude that t1
and t2 involve different slices. By our construction of CG we hence know that t1 I t2.
We can see that rec′%(κ) and rec′%(κ′) have the following form:

rec′%(κ) = u′ t1 τ · · · τ︸ ︷︷ ︸
(1)

t2 τ · · · τ︸ ︷︷ ︸
(2)

u′′ and rec′%(κ′) = u′ t2 τ · · · τ︸ ︷︷ ︸
(3)

t1 τ · · · τ︸ ︷︷ ︸
(4)

u′′

For some plays u′ and u′′. The τ -actions played in (1) and (4) only involve processes from
dom(t1) and the ones in (2) and (3) from dom(t2). Since t1 I t2 and all the τ -actions are
local to one process, both rec′%(κ) and rec′%(κ′) describe identical traces.

We have shown the claim for two totally ordered sequences that differ at exactly one location.
The proof for the general κ1 and κ2 follows by induction on the minimal number of swaps
used to unify κ1 and κ2 using the insight from above.

We can now discuss the assertion. It can happen that adding a transition from κ results in a
play that is not in Plays(CG). The controller could have chosen its commitment sets such that
the action that is added from κ cannot be taken. We can, however, show that if rec% did not
cause an assertion, the obtained play is a valid play in CG and moreover compatible with %. We
can, furthermore, observe that if there is some play in Plays(CG , %) that contains exactly the
observable actions from the past of a place, then rec% is guaranteed to find such a play without
causing an assertion.

Lemma 11 Let pastT (q) be the causal past of some place q ∈ PGU in the unfolding of G.

1. Assume that u = rec%(pastT (q)) and no assertion is triggered. Then u ∈ Plays(CG , %).

2. If there is a play u ∈ Plays(CG , %) with 〈u〉T↓ = pastT (q) then rec%(pastT (q)) does not
trigger an assertion

Proof The first statement follows from the definition of rec% and the fact that all observable
actions are uncontrollable. The second claim follows since by ? every process has chosen at
most one commitment set and simulation is therefore unique.

We demonstrate rec on a quick example for our translation from Fig. 5.3. Consider a possible
winning controller %̇ for ĊG where p2 allows the following: Whenever in state C it chooses the
commitment set including i and hence allows a move to D. If in state D for the first time, p2
moves to the commitment set containing b, i.e., restricts communication to b. After executing b
it can deduce whether the environment played e1 or e2. In case of e1 it allows b for one more
time and subsequentially terminates. In case of e2 it allows communication on a, afterwards
moves to state D and terminates. The relevant plays and the decision of %̇ are depicted in
Fig. 5.10. We want to observe what rec%̇ does if applied to the causal pasts of some places in
the unfolding. In Fig. 5.11 we depicted an initial fragment of the unfolding of the Petri game Ġ.
We consider the transitions in the causal pasts of the places q and q′ which are surrounded in
blue and red. Applying rec%̇ to the transitions in the causal past of q yields

rec%̇(pastT (q)) = [ τ(C,{i}) , i , τ(D,{b}) , e1 , b , τ(D,{b}) ]I

which is a valid trace in Plays(ĊG , %̇) that agrees with the causal past of q on all observable
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u ∈ Plays(ĊG , %̇) ∪ Playsp(ĊG) f %̇p2 (u)

ε {τ(C,{i})}
τ(C,{i}) ∅
τ(C,{i}), i {τ(D,{b})}
τ(C,{i}), i, τ(D,{b}) ∅
τ(C,{i}), i, τ(D,{b}), e1, b {τ(D,{b})}
τ(C,{i}), i, τ(D,{b}), e2, b {τ(D,{a})}
τ(C,{i}), i, τ(D,{b}), e1, b, τ(D,{b}) ∅
τ(C,{i}), i, τ(D,{b}), ee, b, τ(D,{a}) ∅
τ(C,{i}), i, τ(D,{b}), e1, b, τ(D,{b}), b {τ(D,∅)}
τ(C,{i}), i, τ(D,{b}), ee, b, τ(D,{a}), a {τ(D,{i})}
τ(C,{i}), i, τ(D,{b}), ee, b, τ(D,{a}), a, τ(C,{i}) ∅
τ(C,{i}), i, τ(D,{b}), ee, b, τ(D,{a}), a, τ(D,{i}), i {τ(D,∅)}

Figure 5.10 Example winning controller %̇ for ĊG in Fig. 5.3. The controller is depicted by listing
plays and the decision of f %̇p2 on them.
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D B...
...

...
...

Figure 5.11 Initial fragment of the unfolding of ĊG from Fig. 5.3. The causal past of places q and q′

are surrounded by blue or red.

actions. The concrete order of the causal past of q is irrelevant as stated in Lemma 10. On
the other hand, evoking rec%̇ on the causal past of q′ (in red) causes the assertion to break. %̇
simply does not allow a play that contains i, e2, a as observable actions. The interested reader is
encouraged to comprehend how rec%̇ computes the play for the past of q and why it fails for q′.

rec for itself is a rather unitive concept. The idea of why we need such an algorithm should
become more clear in the context of the actual translation of a given controller to a strategy.
One may view rec as a black box that allows us to transfer the transitions in the causal past of
a place to a play in the control game.

The construction of σ%
Using rec% we can finally define the construction of σ%. It is depicted in Fig. 5.12 and does what
we described informally. We incrementally build up a branching process by iterating over every
reachable marking M in the partially constructed strategy. Every place q in a marking M needs



52 Translating Petri Games to Control Games

Start by creating an initial marking Inσ% and extend λ s.t. λ(Inσ%) = InG .
Iterate over every unprocessed reachable marking M in N σ% : Consider every q ∈M :

If q is a system place, i.e., q ∈ λ−1[PS ]:
q belongs to a process pq ∈ P , i.e., q ∈M∩λ−1[PS(pq)] Compute u = rec%(pastT (q)).
Assume that no assertion is violated and that ζ(statepq (u)) = λ(q) (A). Because
of (A) and the fact that in u every process has chosen a commitment set it holds
that statepq (viewpq (u)) = (λ(q), B). Define Aq = B ⊆ T G .

If q is an environment place, i.e., q ∈ λ−1[PE ]:
Define Aq = postG(λ(q))

Define

∆M = {t ∈ T G | preG(t) ⊆ λ[M ] ∧ ∀q ∈M : λ(q) ∈ preG(t)⇒ t ∈ Aq}

These are all transitions that can occur and where all places have agreed on. We want
to add exactly the transitions from ∆M from M : For every t ∈ ∆M : Check if there
already exists a transition t′ with preNσ% (t′) ⊆M and λ(t′) = t:

If it already exists, do not add anything.

If it does not exist: Create a new transition t′ and extend the flow, s.t., preNσ% (t′) =
{q ∈ M | λ(q) ∈ preG(t)} and extend λ with λ(t′) = t. Add a new place q′ for
every q ∈ postG(t) with λ(q′) = q and extend the flow, s.t., preNσ% (q′) = {t′}.

Mark M as processed and continue with another, unprocessed marking.

Figure 5.12 Construction of strategy σ% for G from a given controller % for CG

to decide what transitions to enable. This decision is stored in a set Aq. Since an environment
place cannot be restricted by a strategy all outgoing transitions are allowed (Aq = postG(λ(q))).
For each system place q we consider its causal past and convert it to a play in CG using rec%. In
this play the process that corresponds to q has chosen a commitment set., i.e., is in a state of the
form (_,_). We define Aq to be the set of transitions that are in the current commitment set of
that process. q hence copies the decision made by the corresponding process on the reconstructed
play. Once we have computed A for every place in the marking we add all transitions where all
places agree on, i.e., compute ∆M . Since G is sliceable and therefore safe we can uniquely tell
which places need to agree on a transition: ∆M is the set of all transitions that are enabled in
λ[M ] and where all places q in the precondition of t (λ(q) ∈ preG(t)) have agreed on t (t ∈ Aq).
For now we impose an assertion (A) in the construction. We later see that the assertion can be
neglected, i.e., the causal past of any place in the partially constructed strategy can always be
covered to a play using rec%.

To see our construction on an example we again consider the exemplary controller %̇ we
explained before and whose description is depicted in Fig. 5.10. If we apply our construction we
end up with the strategy σ̇% depicted in Fig. 5.13 (e). Note that σ̇% allows the same behavior as
%̇: After moving to D the system player allows communication on b only. Depending on whether
the environment chose e1 or e2, σ̇% either allows b once more or allows a and afterwards moves to
D using i. Apart from showing the final strategy, Fig. 5.13 also depicts possible indeterminate
steps in the strategy construction. Next to each place the set A as computed in the construction
is given in red. The gray label is the one given by λ. Places q1, · · · , q5 are named explicitly in
blue. The causal past of them is surrounded in blue.
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Figure 5.13 Intermediate Steps in the construction of strategy σ̇% (for ĊG from Fig. 5.3) from
controller %̇ (Fig. 5.10). The gray label is given λ. The red label are the transitions that should be
enabled, i.e., the set A computed in the construction. The causal past of places q1 to qn is surrounded
in blue. (e) illustrates the final strategy.

We try to comprehend the construction depicted in Fig. 5.13: Construction begins with an initial
marking (a). For every system place in that marking we compute the transitions in the causal
past and reconstruct a play using rec%̇. For the system place q1, rec%̇ applied to the empty causal
past gives us the play [τ(C,{i})]I. After playing [τ(C,{i})]I the process that corresponds to q1
(process p2) is in state (C, {i}). In our construction we define Aq1 as the set of transitions in the
commitment set of the corresponding process, so we derive that Aq1 = {i}.. For the environment
place we define A as the set of all outgoing transitions, i.e., {e1, e2}. After having computed
the A sets for all places in the initial marking, we add all transitions that are allowed by all
involved places and corresponding places for the postcondition. We end up with the branching
process in (b). We repeat the same procedure: For both new environment places we define A
as the set of outgoing transitions, in this case {a, b}. For the system place q2 we compute rec%̇
on the causal past (surrounded in blue) which gives us the play [τ(C,{i}), i, τ(D,{b})]I explaining
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why Aq2 = {b}. As q2 restricted its set A to b, only transition labelled b are added from that
place. We proceed this way and add more and more places and transitions. The construction
terminates with the strategy in (e). At this point all A-sets are such that no more transitions
can be added and our construction terminates. The reader is encouraged to convince herself of
this construction and, in particular, to comprehend how every A-set is chosen.

Coming back to our general translation, we can show that the construction does indeed yield
a strategy. The observation is that each place in σ% decides which transitions to enable (i.e.,
chooses A) based on its causal past only. The decision is therefore based solely on the place and
not on the current marking.

Lemma 12 N σ% is a strategy for G

Proof It is easy to verify that the constructed net N σ% is a branching process of G. We
need to prove Justified refusal:
Suppose there is a reachable marking M in σ% and transition t in G s.t. t is enabled in
λ[M ] (i.e., preG(t) ⊆ λ[M ]) but there is no t′ with λ(t′) = t enabled in M .
Since no such t′ has been added to σ% we conclude that t 6∈ ∆M .
Since we know that preG(t) ⊆ λ[M ], the definition of ∆M gives us that there is a q ∈ M
with λ(q) ∈ preG(t) but t 6∈ Aq. By construction of Aq we can conclude that q is a system
place. We, furthermore, know that Aq solely depends on the causal past of M . For every
marking M ′ that contains q we always have that t 6∈ Aq and therefore t 6∈ ∆M . It hence
holds that t 6∈ λ[postNσ% (q)].

Strategy-Equivalence
We can now prove % and σ% bisimilar. As relation ≈B we use the same one we used before
and restrict it to the reachable markings in N σ% and plays in Plays(CG , %). We begin with a
consequence of Lemma 3.

Lemma 13 IfM ≈B u, p ∈ P and q ∈M ∩ λ−1[PS(p)], then computing u′ = rec%(pastT (q))
does not trigger any assertion. If u is maximal w.r.t. τ -actions, i.e., there is no τ s.t.
u τ ∈ Plays(CG , %), it holds that

viewp(u′) = viewp(u)

Proof We first show that computing u′ = rec%(pastT (q)) does not trigger any assertion: By
definition from ≈B it holds that M = N σ% [5〈u〉T↓ ]. By Lemma 3 we get that

pastT (q) = 〈viewp(u)〉T↓ (1)

Since u ∈ Plays(CG , %) we know that viewp(u) ∈ Plays(CG , %). The claim that no assertion
is triggered now follows from Lemma 11.

We can now show that viewp(u′) = viewp(u). By definition of rec% it holds that 〈u′〉T↓ =
pastT (q). When using together with (1) we conclude that

〈u′〉T↓ = 〈viewp(u)〉T↓
It now follows that

viewp(〈u′〉T↓ ) = viewp(〈viewp(u)〉T↓ )
= viewp(viewp(〈u〉T↓ ))
= viewp(〈u〉T↓ )
= 〈viewp(u)〉T↓
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since viewp(·) is idempotent and the τ -actions removed by 〈·〉T↓ are local, i.e., 〈viewp(u)〉T↓ ) =
viewp(〈u〉T↓ ). We, furthermore, know that u and u′ are both maximal w.r.t. τ -actions (by
assumption and from definition of rec%). Because of ? every process chooses exactly one
commitment set. The τ -actions in both viewp(u′) and viewp(u) are hence unique and we
get viewp(u′) = viewp(u).

The definition σ% is completely independent to the definition of ≈B. Lemma 13, however,
characterizes a connection between both. In our construction of σ% each place computes its
decision (the set A) by applying rec% to the transition in its causal past. In ≈B-related situations
this results, according to Lemma 13, in the local view of one of the processes. This observation
allows us to show that % and σ% are bisimilar. We can reason in both direction:

If t is enabled in M then by construction of σ% every involved system place q has allowed
it, i.e., t ∈ Aq. The set Aq was chosen by computing the causal past of that place and
convert it to a play using rec%. By Lemma 13 each place therefore computes the local view
of one of the processes on u and copies the decision. Since t is allowed by all involved
system places, we can conclude that all involved processes must have chosen commitment
set where t is included. Hence u can be extended by t (after playing sufficiently many
τ -actions to choose a commitment set).

If, on the other hand, u can be extend with t by % then all involved processes enable t. So
every process p ∈ dom(t) either resides on an environment place where it has no control
or it is on a system place where it must have chosen a commitment set that includes
t. Each system place in M evokes rec% on its causal past and, by Lemma 13, therefore
computes the local view of on process on u. The place then copies the decision made on
that local play, i.e., copies the chosen commitment set. Since t is in the commitment of
every involved process every place q involved in t will allows t (i.e., chooses Aq such that
t ∈ Aq). So together the system places allow t from M .

We can now prove this formally. Since % is, by assumption, winning we can neglect all E-actions.

Lemma 14 If M ≈B u and M [ t 〉 M ′ for some M ′ ∈ R(N σ%) there exists u′ = u τ∗ t ∈
Plays(CG , %) and M ′ ≈B u′.

Intuition If M [ t 〉 M ′ then every system place q in M must have allowed t, i.e., t ∈ Aq. By
construction the set Aq was obtained by computing the causal past, convert it via rec% and
check which commitment set was chosen. By Lemma 13 this yields the same commitment
set that the processes would have chosen after u. So every process p ∈ dom(t) that is on a
system place chooses a commitment set where t is included. After moving each process to
their commitment-set state they hence all allow t.

Proof From M ≈B u we get λ[M ] = ζ(state(u)) (1) by Lemma 2. Since M [ t 〉 M ′ all
places in M that are involved in t allow it, i.e., for every q ∈M with λ(q) ∈ preG(t) it holds
that t ∈ λ[postNσ% (q)] . We hence conclude that t ∈ ∆M (2).
Let uτ be the trace obtained from u by playing as many τ actions as possible s.t. there
are no τ -actions enabled after uτ . It holds that M ≈B uτ . By assumption ? every process
that can chooses a commitment set, so for every p with ζ(statep(uτ )) ∈ PS we know that
statep(uτ ) = (_,_).
Assume for contradiction that uτ t 6∈ Plays(CG , %). Because of (1) we know that t would
be possible after uτ if the commitment sets are chosen appropriately. There hence is
a process p ∈ dom(t) that has chosen a commitment set that does not include i, i.e.,
statep(uτ ) = (λ(qp), B) where t 6∈ B.
Let qp ∈M ∩ λ−1[PS(p)] be the place that corresponds to p in M . By Lemma 13 and since



56 Translating Petri Games to Control Games

uτ is by assumption maximal we now know that

viewp(rec%(pastT (qp))) = viewp(uτ )

From (1) and since p ∈ dom(t) we can conclude that λ(qp) ∈ preG(t) so since t ∈ ∆M (2)
we get that t ∈ Aqp .
We can now analyse the construction of σ% to observe how Aqp is derived. It is computed
by matching

statep(viewp(rec%(pastT (qp)))) = (λ(qp),Aqp)

But now

(λ(qp), B) = statep(uτ )
= statep(viewp(uτ ))
= stateā(viewp(rec%(pastT (qp))))
= (λ(qp),Aqp)

So B = Aqp ., i.e., the transitions allowed by place qp are exactly the transitions that p has
chosen as a commitment set. This is a contradiction since t ∈ Aqp (2) but by assumption
t 6∈ B.

We can use the previous lemma to justify our assumption (A) made in the construction of σ%.

Corollary For any place q ∈ PNσ% with q ∈M ∩λ−1[PS(pq)], computing u = rec%(pastT (q))
does not trigger an assertion and ζ(statepq (u)) = λ(q).

Proof q is part of some reachable marking M . Using Lemma 14 we get that there is some
u′ ∈ Plays(CG , %) with M ≈B u′. By Lemma 13 computing rec%(pastT (q)) does not trigger
any assertion. For the second part we know (from Lemma 13) that viewp(u′) = viewp(u).
Now

ζ(statepq (u)) = ζ(statepq (viewpq (u)))
= ζ(statepq (viewpq (u′)))
= ζ(statepq (u′))
= λ(q)

where the second equability follows from viewp(u′) = viewp(u) and the third from Lemma 2
since M ≈B u′.

Lemma 15 If M ≈B u and u′ = u t ∈ Plays(CG , %) then there exists M ′ ∈ R(N σ%) with
M [ t 〉 M ′ and M ′ ≈B u′.

Intuition If u t ∈ Plays(CG , %) then every process that is involved in t and is on a system
place must have chosen a commitment set where t is included. By Lemma 13 the system
places in M copy the commitment sets and use them as the set of action they want to
enable (Aq). As t is in every commitment set of involved processes we get t ∈ Aq for every
system place that is involved in t. By construction of σ%, t is then enabled in M .

Proof From Lemma 2 we know that λ[M ] = ζ(state(u)), so t is by construction enabled
from λ[M ].
Assume for constriction t is not enabled in M , i.e., forbidden by the strategy. Then t 6∈ ∆M .
Since t is enabled from λ[M ], by construction of ∆M there must be a system place q ∈M
with λ(q) ∈ preG(t) but t 6∈ Aq (1), i.e., there is at least one place that hindered t from
being added to the strategy.
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Let pq be the process q belongs to, i.e., q ∈ M ∩ λ−1[PS(pq)]. Since q is involved in t we
get that pq ∈ dom(t). Since u′ = u t ∈ Plays(CG , %) and q is a system place we get that
statepq (u) = (λ(q), B) with t ∈ B (2), i.e., pq has chosen a commitment set that contains t.
We know that Aq for place q is computed by matching

statepq (viewpq (rec%(pastT (q)))) = (λ(q),Aq)

Let uτ be u extended with as many τ -actions as possible (only necessary to fulfil the
assumptions of Lemma 13). It holds that M ≈B uτ . By Lemma 13 we get

viewpq (rec%(pastT (q))) = viewpq (uτ )

It now holds that

(λ(q),Aq) = statepq (viewpq (rec%(pastT (q))))
= statepq (viewpq (uτ ))
= statepq (uτ )
= statepq (u)
= (λ(q), B)

Where the fourth equality holds since pq has already chosen a commitment set after u, i.e.,
adding more τ -actions to get from u to uτ does not affect pq.
So Aq = B. This is a contradiction to t 6∈ Aq (1) and t ∈ B (2).

Lemma 16 If M ≈B u and u′ = u τ ∈ Plays(CG , %) then M ≈B u′.

Proof Obvious consequence from definition of ≈B.

Corollary % and σ% are bisimilar.

Proof By definition of ≈B it holds that InN
σ% ≈B ε. Since there are now τ -transitions in

G it follows from Lemma 14, Lemma 15 and Lemma 16.

We show next that a winning % results in a winning σ%. Since a winning controller for ĈG avoids
all E-actions the neglection of them in our bisimulation proofs is justified.

Lemma 17 If % is a winning controller for CG or ĈG then σ% is a winning strategy for G.

Proof We first show that N σ% is finite: Assume for contradiction it is infinite. Koenig’s
lemma and the fact that N σ% is an occurrence net allow us to conclude that there is an
infinite sequence of markings. By bisimilarity any infinite sequence of markings in N σ%

results in an infinite % compatible play. A contradiction since % is winning.
Now suppose M is a reachable final marking in N σ% , i.e., there are no further transitions
enabled. There is a % compatible play u with M ≈B u and this play is maximal (up to
τ -actions). Since % is winning, state(u) must be winning (Playing further τ -actions does
not move into winning states). It holds that ζ(state(u)) = λ[M ] (by Lemma 2) so by
construction of CG , λ[M ] is winning.

Deterministic Strategies
By Lemma 17 any winning controller % for either ĈG or CG results in a winning strategy σ% for
G. If % is winning for ĈG it must additionally avoid all E-actions. We now show that such a
controller results in a deterministic σ%: The E-action are designed such that they can occur if
and only if a commitment set is chosen and two distinct actions from this set can occur. A
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winning controller for ĈG must avoid every E-action and therefore has to choose commitment
set where at most one transitions from every set is possible. In σ% every place decides what
to enable in accordance with the commitment sets chosen by %. If in % there is at most one
action from each commitment set enabled, from every system place in σ% there is at most one
transition enabled.

Lemma 18 If % is a controller for ĈG such that no play in Plays(ĈG , %) contains a E-action,
then σ% is deterministic.

Proof We assume for contradiction σ% is not deterministic, i.e., there exists a reachable
markingM in N σ% and a system place q ∈M from which two transitions t1, t2 ∈ postNσ% (q)
are enabled.
By our previous bisimulation result there is a u ∈ Plays(ĈG , %) with M ≈B u. Choose this
u such that there are no more τ -actions possible. Because of assumption ? every process on
a system place has chosen a commitment set. By bisimulation we know that u t1 and u t2
are both in Plays(ĈG , %).
Let p be the process that q belongs to, i.e., q ∈ λ−1[PS(p)]. Since q is in the precondition of
t1 and t2 we have t1, t2 ∈ T S(p) so p ∈ dom(t1) and p ∈ dom(t2). Since q is a system place
we can conclude that ζ(statep(u)) ∈ PS (by Lemma 2) and, since in u every process that
can has chosen a commitment set, statep(u) = (λ(q), B). Since t1 and t2 are both enabled
we derive t1, t2 ∈ B.
Now t1, t2 are both enabled from the same commitment set. By construction of the E-
actions it is easy to see that u E(λ(q),B)

[t1,t2] is a play in Plays(ĈG) and, since all E-actions are
uncontrollable, in Plays(ĈG , %). A contradiction.

Lemma 17 together with Lemma 18 give us the second half of our correctness proof:

Proposition 2 If % is a winning controller for CG , then σ% is a winning strategy for G
and bisimilar to %. If % is a winning controller for ĈG , then σ% is a winning, deterministic
strategy for G and bisimilar to %.

Combining Proposition 1 and Proposition 2 we conclude Theorem 1.

5.4 On Size and Lower Bounds

As we briefly discussed in Chapter 4 the simplest translation of a Petri game G is to return a
minimal winning-equivalent control game CG . Such a translation compromises all structure of G
and thereby the behavior of any winning strategy. In contrast, we proposed strategy-equivalence
as a notion of structure-perseverance and showed that it is fulfilled by our translation.

Apart form preferring structurally similar translation one is interested in both the compu-
tational effort required to compute the translation as well as the size of the translation itself.
There is a natural trade of between both. The size of a computed trivial translation is minimal,
whereas the game is required to be solved first, resulting in a high computational effort13. On
the other hand, our translation aims to “truly” translate a game without needing to solving it.
While this yields, in general, bigger game, the computational effort is significantly lower.

In this section we analyse the size of our translation as well as the computational effort
needed to compute it. We, furthermore, prove that our translation is asymptomatically-optimal
in size if we require strategy-equivalence by giving an exponential lower bound. While this does
not answer the question whether there is a sub-exponential translation, it highlight that such a
translation would inevitably destroy the structure of the game.

13The results of this thesis allow us to derive that Petri games inherit the non-elementary lower bound shown for
control games [15].
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The size of CG and ĈG
Before we can proceed with a concrete analyses we need to agree on the parameters used to
define the size of a control game and Petri games. Two natural parameters that are well suited
for measuring the size of a control game are the number of local states |

⋃
p∈P Sp| as well as the

number of actions |Σ|. Conversely, for Petri games the number of places |P| and transitions |T |
are good candidates14.

Since the computation of our translation is straightforward and local, the size gives a bound
on the computational effort. We observe:

CG ĈG

|
⋃
p∈P Sp| |P|+ |P| · 2|T | |P|+ |P| · 2|T | + |In|

|Σ| |T |+ |P| · 2|T | |T |+ |P| · 2|T | + |T |2 · 2|T |

The size of CG is exponential in the number of transitions but linear in the number of places. ĈG
comprises additional E-actions and ⊥-states. The E-action result in an only quadratic blow-up
of |Σ|, caused by building pairs of transitions. In CG we can avoid the exponential blow-up
in the size of the alphabet by using a tree-like structure to choose the commitment sets. Our
translation can hence be modified to comprise a polynomial number of actions and exponential
number of local states.

It is also worth noting that for Petri games with a (constant) bound on the number of
outgoing transitions both translations (CG and ĈG) are of polynomial size.

Lower Bound

A
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C

a b

t1

· · · · · ·

tn

D

t1

· · · · · ·

tn

Figure 5.14 Slices of a concurrency-
preserving (reachability) Petri game family
{Gn}n∈N where every strategy-equivalent con-
trol game is of exponential size.

A natural question to ask is whether we can do
better than that, i.e., keep the blow-up polyno-
mial all together. While this might be possible in
general we can show that a polynomial-translation
inevitably destroys the structure of the game, i.e.,
does either yield non-strategy-equivalent games, or
increases the number of players. We prove this by
giving a family of Petri games where every strategy-
equivalent control game must have exponential size.

Consider the Petri game family {Gn}n∈N ob-
tained as the composition of the slices in Fig. 5.14.
We fix any n and refer to Gn as G. In the initial
marking of G both a and b can fire resulting in a
marking M = {B,D}. From here all the transi-
tions t1, · · · , tn are enabled. G is played between
two players. Both of which possess different infor-
mation, i.e., the first player (starting in A) knows whether a or b occurred, while the second
(starting in D) does not. Only the second player can decide which of the transitions t1, · · · , tn
should be possible. The decision of which of the transitions in t1, · · · , tn to allows can hence
not be based on the occurrence of a or b. Since a winning strategy for G can restrict any
14We remark at this point, that the more concise communication scheme of control games over Petri games
allows us to hide additional complexity that is made explicit in Petri games. In a concurrency-preserving
Petri game the size of the flow relation F is always polynomial in the number of places and transitions. In a
control game the transition function {δa}a∈Σ, on the other hand, can be of exponential size in the number of
local states. Our resulting game CG can, however, be described as the parallel composition of local automata.
The local transitions relation is therefore again polynomial in |

⋃
p∈P

Sp| and |Σ|. For our analysis we hence
restrict to the number of local states and actions in the alphabet.
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combinations of ti-transitions, every strategy-equivalent control game must admit controllers
that can do the same. At the same time the decision, which of the tis to enable, cannot be based
on the occurrence of a or b, since this would imply a strategy for G that can do the same. Unlike
Petri games that can natively express that the second player can restrict transitions t1, · · · , tn,
while the first one cannot (using system and environment places), control games are limited to
controllable or uncontrollable actions. We show that this already results in exponentially many
global states.

Proving the lower Bound For a strategy σ for G we write seq(σ) for the set of sequences
admitted by σ. For every σ it holds that seq(σ) = {ε, a, b} ∪ {a t, b t | t ∈ B} for some
B ⊆ {t1, · · · , tn}. Conversely, for every such B there exists a σ s.t. seq(σ) has exactly this form.
In particular, a strategy cannot base the decision of what tis to enable on the occurrence of a or
b.

Consider any control game C that is strategy equivalent to G. Due to C being a translation of
G, we assume T ⊆ Σ. We treat C as a black box and deduce facts about it. A first step is to
show that a, b cannot be controlled by any controller, i.e., they are uncontrollable. Even though
the statement looks fairly obvious, it requires some involved and careful reasoning15.

Lemma 19 a and b are uncontrollable.

Proof Choose the (winning) strategy σ for G as the one that allows everything, i.e., N σ = GU.
Let %σ = {f%σp }p∈P be a bisimilar controller for C. There hence exists a relation ≈B with
InN

σ

≈B ε.
Since %σ is winning, every play must be finite. Now we consider every play u in Plays(C, %σ)
that only consist of τ -actions and is maximal w.r.t. τ -actions, i.e., u cannot be extended by
another τ . By bisimulation we know that InN

σ

≈B u. Since both a and b are possible from
InN

σ

, i.e., there is a marking M with InN
σ

[ a 〉 M and InN
σ

[ b 〉 M , we know that a and b
must be the only extensions of such a play u. So u a ∈ Plays(C, %σ) and u b ∈ Plays(C, %σ).
This holds for every play u that solely consists of τ -actions and is maximal w.r.t. them
(1). Now assume for contradiction and w.l.o.g. that a is controllable. We build a slightly
modified controller %′ = {f%′p }p∈P as follows:

f%
′

p (u) = f%σp (u)− {a}

%′ behaves like %σ but always forbids a.
As strategy-equivalence only considers winning strategies and controllers, our main objective
is to show that %′ is winning. It holds that Plays(C, %′) ⊆ Plays(C, %σ). This alone does not
allow us to conclude that %′ is winning. It could happen that %′ blocks action a and therefore
blocks itself from reaching a winning configuration. Suppose u ∈ Plays(C, %′) ⊆ Plays(C, %σ)
is any sequence that consist only of τ -actions and is maximal w.r.t. τ -actions, i.e., there is
no τ with u τ ∈ Plays(C, %′). Outside from always rejecting a, %′ behaves like %σ. As us is
maximal w.r.z. τ -actions in %′, it is hence maximal w.r.t. τ -actions for %σ, i.e., there is no τ
with u τ ∈ Plays(C, %σ). By (1) we now get that u a ∈ Plays(C, %σ) and u b ∈ Plays(C, %σ).
While %′ block a, we still conclude that u b ∈ Plays(C, %′). Starting in u b, %′ again behaves
like %σ, since after u b there cannot be any a-action (by bisimulation). Therefore there is no
maximal play in Plays(C, %′) that does not reach a winning configuration. %′ is winning.
Since %′ is winning, there exists a strategy σ%′ that is bisimilar to %′. We can derive an
easy contradiction: Let u ∈ Plays(C, %′) be any play that only consists of τ -actions and is
maximal w.r.t. them. It holds that InN

σ

≈B u. By construction of %′ we know that u b is
the only extension of u, i.e., no τ or a is possible. This a contradiction since InN

σ

[ a 〉 M
for some M as this is possible for any strategy for G.

15Actually Lemma 19 is not needed for our lower bound. It is nevertheless crucial to get an idea of the proof
used in the Lemma 20.
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We can show next that all ti-actions are uncontrollable. The insight is that if some of them
were controllable, all processes can control them. There must be at least one process that can,
from its local view, deduce whether a or b happened. This process can then base its decision of
which ti-actions to allow on the occurrence of a or b. Such behavior cannot be achieved by a
strategy for G.

Lemma 20 t1, · · · , tn are uncontrollable.

Proof Choose the strategy σ for G as the one that allows everything, i.e., N σ = GU. It
holds that seq(σ) = {ε, a, b} ∪ {a t, b t | t ∈ {t1, · · · , tn}}. Let %σ = {f%σp }p∈P be a bisimilar
winning controller for C that exists by assumption. Assume for contradiction and w.l.o.g.
that t1 is controllable.
We make an important observation: Any sequence of transitions in G or N σ always begins
with an a or b trailed by one of the ti-actions. Since %σ and σ are bisimilar we conclude
that for any play in Plays(C, %σ) the ti-action must always trail the a or b action. To put it
differently: Assume there is a play u = u′ t1 ∈ Plays(C, %σ), then there is an action a or b
in u′. At every point where t1 is executed there hence is some process in dom(t1) that can
derive the occurrence of a or b from its local view. The process might not be the same on
every execution, but at all times there is at least one.
We modify %σ into a new controller %′ = {f%′p }p∈P as follows:

f%
′

p (u) =
{
f%σp (u) if a 6∈ u
f%σp (u)− {t1} if a ∈ u

Here a ∈ u denotes that a is an action in u. %′ behaves just like %σ with one difference:
Whenever any process can deduce a in its causal past it forbids t1. Since there is at least
one process that can deduce a or b we can conclude that %′ never admits a sequence where
t1 is played after a previous a.
Similar to Lemma 19 the key is to argue that %′ is a winning controller, i.e., blocking t1
never results in a state from which no winning configuration can be reached. It holds
that Plays(C, %′) ⊆ Plays(C, %σ). By the same reasoning as for the previous lemma, any
maximal play u where no ti-actions have been played can be extended by all ti-actions, i.e.,
(u t1), · · · , (u tn) ∈ Plays(C, %σ) (since σ allows all ti-transitions). Since %′ only forbids t1
we conclude that (u t2), · · · , (u tn) ∈ Plays(C, %′). Bocking t1 never blocks a winning state,
so %′ is winning.
Since C and G are strategy-equivalent there now is a strategy σ%′ for G that is bisimilar to
%′. Because of the bisimulation it is easy to see that

seq(σ%′) = {ε, a, b} ∪ {a ti | ti ∈ {t2, · · · , tn}} ∪ {b ti | ti ∈ {t1, · · · , tn}}

Justified refusal forbids a strategy archiving this behavior, a contradiction.

Given this we can now show that there are exponentially many global states needed in C. The
idea is to simulate maximal τ -sequences in the controller. The resulting global state should
allow exactly all the actions in any subset of the tis. Since we know that the ti actions are
uncontrollable the fact that exactly certain actions are enabled from a global state must be a
“property” of the global state, i.e., it cannot be the result of a controller simply forbidding some
ti actions.
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Lemma 21 For every ∅ 6= B ⊆ {t1, · · · , tn} there is a global state sB = {sp}p∈P , s.t., for
the set of actions E that can fire from sB (E = {a ∈ Σ | {sp}p∈dom(a) ∈ domain(δa)}) it
holds that E ∩ T = B.

Proof Consider the (winning) strategy σ s.t. seq(σ) = {ε, a, b} ∪ {a t, b t | t ∈ B} and the
bisimilar (winning) controller %σ. We know that a is a σ-compatible sequence of transitions
(InN

σ

[ a 〉 M for some M), so by assumption there is a %σ-compatible play u with u = τ∗a
and M ≈B u. We now extend the play u as long as possible with τ actions. We obtain a
play u′ ∈ Plays(CG , %σ) s.t. u′ cannot be extend by another τ -action. We can guarantee
the existence of such a u′ since %σ is winning and therefore does not admit infinite plays.
It holds that M ≈B u′. Since σ does from M allow exactly the transitions in B, M ≈B u′

holds and u′ is maximal w.r.t. τ -actions, we know that the possible extensions of u′ are
exactly B. So

u′ ti ∈ Plays(CG , %σ)⇔ ti ∈ B

Since all ti-actions are uncontrollable (Lemma 20), we get that u′ ti ∈ Plays(CG , %σ) if and
only if u′ ti ∈ Plays(CG). So

u′ ti ∈ Plays(CG)⇔ ti ∈ B

The global state sB = state(u′) hence allows exactly the ti-actions that are in B.

Consequently there must be exponentially many global states. For every strategy-equivalent
control game C with a constant number of players there must hence be exponentially many local
states.

Theorem 2 There is a family of Petri games {Gn}n∈N with |T Gn | = n, s.t., every strategy-
equivalent control game (with an equal number of players) must have at least Ω(dn) local
states for d > 1.

Proof There are Ω(2n) many sets B ⊆ {t1, · · · , tn}. By the previous lemma any strategy-
equivalent control games must hence have Ω(2n) many global states. For any control game
(asynchronous automaton) with two processes p1, p2 there are at most |Sp1 | · |Sp2 | many
global states. Hence one of the two processes must have Ω((

√
2)n) many local states.

While our translation (Sec. 5.1) shows that the difference between controllable and uncontrollable
actions vs. system and environment places can be overcome, the lower bound shows an intrinsic
difficulty to do so. We can roughly analyse the main limitation of control games: A partition
of the places (as in Petri games) allows for a direct control of which player is able to control
certain moves. Using this formalism a transition can involve player of which some can restrict
it, while others cannot. In a control game, on the other hand, an action is either controllable or
uncontrollable and can therefore be restricted by either all or none of the involved processes.

5.5 Generalisation to Concurrency Preserving Petri Games

The translation as presented so far is limited to sliceable games, restricting its applicability. In
this section we introduce introduce a new mechanism to distribute a game and thereby generalize
our translation to all concurrency-preserving games. Before we proceed to our generalisation,
we once more, contemplate on the concepts of slices. Figure 3.1 in Chapter 4 already showed
that very simple nets (and hence games) must not be sliceable. We can show that the class of
sliceable nets is actually fairly interesting and that deciding sliceability is not as easy as one
might have thought.
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Proposition 3 Deciding whether a concurrency-preserving, safe, reachable Petri net is
sliceable is NP-complete.

Proof A given slice-distribution (encoded as a partition of the places) can be verified
efficiently so it is easy to see that the problem is in NP.
For the hardness we reduce from 3-SAT. Recall that 3-SAT is the problem of deciding
whether a given propositional CNF formula, where each clause contains exactly 3 literals, is
satisfiable. It is known to be NP-hard.
Fix a CNF-formula φ with

φ = C1 ∧ · · · ∧ Cm
where each clause has the form Ci = (L1

i ∨ L2
i ∨ L3

i ). Let x1, · · · , xi be the propositional
variables in φ
From φ we build a Petri net Nφ as follows:

>1 ⊥1 >2 ⊥2 >n ⊥n

x1 x̂1 x2 x̂2 xn x̂n

· · ·

C1C>1 CmC>m

V1V >1
VmV >m

· · ·

For every variable xi we create four places xi, x̂i, >i and ⊥i, place a token on >i and ⊥i
and add a transition that consumes tokens from the >i and ⊥i place and puts tokens on
the xi and x̂i place. For each clause we create a new transition Ci who’s precondition is
exactly the set that contains the three literals of the clause, i.e., the xi or x̂i place. For each
of these transitions Ci there are three outgoing places, two unimportant ones (only to stay
concurrency-preserving) and one special one, Vi. For each clause we, furthermore, create a
transition C>i who’s precondition are the > places of each variable in the clause. As for the
Ci transition we add two unimportant outgoing places (only to stay concurrency-preserving)
and one special one, V >i . We then connect V >i with a transition to Vi.
This reduction with 4n + 6m places and n + 3m transitions can be computed efficiently.
It is easy to check that the net is reachable, safe and concurrency-preserving. In every
slice distribution the places xi and x̂i must be split between the slices of >i and ⊥i. By
putting the variables places in slices we implicitly build an assignment for the variables
where literals in the > slice are set to true and in the ⊥ slice to false. The remaining
construction guarantees that each clause contains one variable that is in the >-slice. We
prove that φ is satisfiable if and only if Nφ has an acyclic distribution:
⇒: Let φ be satisfiable and h : {x1, · · · , xn} → {true, false} a satisfying assignment.
For each variable xi that is mapped to true we put the xi place in the same slice as the >i
place. Otherwise put xi in the same slice as the ⊥i place. Since h is a satisfying assignment
every clause contains a true literal. For each Ci transition we can hence put the Vi place in
the same slice as the literal of that clause that is satisfied. Since this literal is in the same
slice as the >-place of the corresponding variable, we can put V >i in the same slice as Vi.
This already forms a valid slice distribution. Nφ is sliceable.



64 Translating Petri Games to Control Games

⇐: Now suppose Nφ has a valid distribution. It is easy to see that xi and x̂i cannot be in
the same slice. For a valid distribution we know that Vi and V >i must be in the same slice.
As the V >i place is always in the slice of one of the > places of the variable, the Vi place
must also be in the same slice as one of the > places. For every clause there hence is one
literal in the same slice as the >-place. By setting every variable xi to true iff the xi place
is in the same slice as >i we hence obtain a satisfying assignment. φ is satisfiable.

Concurrency preserving Petri Games
We can now turn back and try to generalize our translation to a broader class. We can observe
that the notion of slices is too strict for our purposes: Our translation requires to distribute the
global movement of the Petri game in local behavior. A partition of the places (as prescribed by
slice distributions) is not necessarily needed. Requiring such a partition is what enables proofs
as the one above to work and hence limit the applicability of slices.

Singular Net Distribution We introduce the new concepts of singular nets (SN) and singular
net distributions (SND). A singular net is similar to a slice but does not partition the places.
Instead it is equipped with a labelling function π assigning to each place and transition in the
singular net a place or transition in the original net. Similar to a branching process this allows
us to split up nodes into equally labelled ones and therefore enables us to assign the same place
(copies of that place) to multiple tokens. Instead of dismantling a Petri net into a distribution of
slices, we consider a singular net distribution. This is a composition of singular nets that show
the same behavior as the original net: Every transition in the original Petri net can be matched
with an equally labelled transition between the singular nets and vice versa. Similar to a slice
distribution we can hence dismantle the global behavior of a Petri net, into local behavior of
individual tokens. We later see how our translation can be modified to work with SNs instead
of slices.

Even before giving a formal description we can consider the example in Fig. 5.15. The Petri
net in (a) comprises three tokens of which two reside on the same place. As the net is not safe it
is not sliceable. In (b) and (c) two possible singular net distributions of (a) are given. The black
label (annotated with a hat) is the name of the node, whereas the gray label is the one given
by π. The singular nets share transitions. If we, e.g., consider the SND in (b), the labelling of
the initial marking agrees with the initial marking of (a) and both transitions a and b can be
matched by some copy (â1, â2). By observing the SNDs in both (b) and (c) it becomes clear
that both are valid distributions of the behavior in (a).

Throughout this section let N be a finite, concurrency-preserving Petri net. We now proceed
and give a formal description of both SN and SNDs.

Definition A singular net (SN) of N is a pair (ς, π) where ς = (Pς , T ς ,F ς , Inς) is a Petri
net satisfying

|Inς | = 1 and ∀t ∈ T ς : |pre(t)| = |post (t)| = 1

and π : Pς ∪ T ς → PN ∪ T N is a mapping with the following properties:
(1) π(Pς) ⊆ PN and π(T ς) ⊆ T N (2) ∀q1, q2 ∈ Pς : π(q1) 6= π(q2)

(3) π(Inς) ⊆ InN (4) ∀q ∈ Pς : postN (π(q)) ⊆ π(T ς)

(5) ∀x, y ∈ Pς ∪ T ς : (x, y) ∈ F ς ⇔ (π(x), π(y)) ∈ FN

A singular net can be thought of as a generalized slice. The underlying net describes the
movement of a single token. Instead of viewing it as a subnet of N (as we have done fro slices)
we label it using π. This labelling should satisfy five properties, most of which correspond to
proprieties lifted from the definition of a slice: π must respect the node type (1) and copy each
place at most once (2). Singular nets of finite nets are hence finite. The initial marking must be
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B F̂

C

Ĝ
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C D̂

B Ê
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Figure 5.15 A Petri game (a) and two possible distributions in singular nets (b) and (c). In (b) and
(c), labels of the SND (π) are given in gray. The label of each node in a SND is annotated with a hat
and labelled in black. Note that transitions can be shared between SNs. In (d) the composition of the
SND in (b) is depicted.

labelled within the initial marking of N (3). Similar to the definition of slices we require that
all transitions leaving the label of some place are represented by at least one copy (4). Lastly,
the flow relation adds flow between to nodes if and only if there is some between the labels of
the nodes in N (5).

Singular nets are, similar to slices, defined as nets describing behavior of individual token.
To, in the end, model global behavior, we want to compose multiple singular nets to obtain a
description of a system involving more than one player.

Definition If N is a Petri net and S = {(ςi, πi)}i∈I with ςi = (Pi, T i,F i, Ini) is a finite
family of singular nets for N . We call S compatible if

Pςi ∩ Pςj = ∅ for all i, j ∈ I with i 6= j

and
∀t : t ∈ T ςi ∩ T ςj ⇒ πςi(t) = πςj (t)

If S is compatible we define the composition of S as the pair (〈‖S〉, π〈‖S〉) where

〈‖S〉 = (P〈‖S〉, T 〈‖S〉,F 〈‖S〉, In〈‖S〉)

with P〈‖S〉 =
⊎
i∈I Pi, T 〈‖S〉 =

⋃
i∈I T i, F 〈‖S〉 =

⊎
i∈I F i and In〈‖S〉 =

⊎
i∈I Ini and

π〈‖S〉 =
⋃
i∈I

πi

As for slices we require a family of singular nets to contain disjoint sets of places. As each
SN is furthermore labelled by π, we require that shared transitions are labelled equally among
all singular nets. 〈‖S〉 is then defined as the Petri net obtained by taking the union of places,
transitions, flow and initial marking. Since only transitions can be shared all unions except for
them are disjoint. As N is compatible we know that for all transitions the label agrees in all
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SNs. We can hence label the nodes in 〈‖S〉 with nodes in N , i.e., design π〈‖S〉 as the union of all
individual labelling functions. Note that unlike for slices the composition 〈‖S〉 in general differs
from N . In Fig. 5.15 (d) the composition of the SN-family in (b) is depicted. The π-label of the
composition is given in gray.

The labelling of a SND allows us to split up places and transitions. We want to distribute a
Petri net in a family of singular nets, that together shows the same behavior as the Petri net.
We can hence define what a family of singular nets should suffices to be a valid distribution of a
net:

Definition A singular net distribution (SND) for Petri net N is a compatible family S of
singular nets for N where the composition (〈‖S〉, π〈‖S〉) fulfils:

(1) π(In〈‖S〉) = InN

(2) For every transition t ∈ T 〈‖S〉, π(pre〈‖S〉(t)) = preN (π(t)), and pre〈‖S〉(t)) =
postN (π(t))

(3) For every t1, t2 ∈ T 〈‖S〉 with pre〈‖S〉(t1) = pre〈‖S〉(t2) and π(t1) = π(t2) it holds that
t1 = t2

(4) For reachable marking M ∈ R(〈‖S〉) and subset C ⊆ M with π(C) = preN (t) for
some t ∈ T N there exists a transition t′ ∈ T 〈‖S〉 with π(t′) = t and pre〈‖S〉(t′) = A

A singular net distribution is a compatible family of singular nets, i.e., a family with disjoint
places and equally labelled shared transitions. The additional restrictions guarantee that the
composition of the SNs shows the same behavior as the original net. They are reminiscent
of the definition of a branching process and unfolding. Restriction (1) requires the initial
marking of 〈‖S〉 to be labelled within the initial marking of N , whereas (2) requires the
composition to preserve the structure on transitions. Together (1) and (2) state that π〈‖S〉 is
an initial homomorphism from 〈‖S〉 to N . As for a branching process, (3) requires π〈‖S〉 to be
injective on transitions with the same precondition: Equally labelled transitions must occur
from distinct situations. A SND is almost identical to a branching process with the exception of
not requiring an underlying occurrence net and, furthermore, being described in terms of local
token movements. Lastly, requirement (4) is similar to the one found in the definition of an
unfolding. It is a maximality criterion that requires that for every situation where there are
tokens on places in C that every transition possible from π〈‖S〉(C) is matched by some copy.
While we can split up places in a SND, (4) requires us to still add transitions from every possible
combination of the new copies. Both families of singular nets in Fig. 5.15 (b) and (c) form
singular net distributions of the net in (a).

Note that our notion of a singular net distribution agrees with slice distributions if we enforce
to have only one copy of each place. In this case we can choose π as the identity. Every sliceable
net has a SND.

Properties of SNDs A SND is defined as a family of singular nets such that their composition
is both structure-preserving (2) and at the same time capture all behavior (4). It is easy to see
that a SND describes the exact behavior of a Petri net.

Corollary R(N ) = π(R(〈‖S〉)).

Our main motivation for defining SNs and SNDs is to generalize our previous translation to
allow for a broader class of games. We already remarked that every sliceable net has a SND.
In Fig. 5.15 we saw that even some non-sliceable nets have a SND. Nets with SND are thus
a strict superset of sliceable nets. The next theorem shows, that the class of Petri nets, that
can be distributed in singular nets, can be characterised precisely: It is exactly the class of
concurrency-preserving Petri nets.
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Proposition 4 Every finite, concurrency-preserving Petri net has a SND.

Proof We present a constructive proof. Given a Petri net N = (PN , T N ,FN , InN ) we build
|InN | many singular nets. Each of these nets initially consists of a copy of the places in N ,
i.e., |InN |-many copies of N without any transitions. So S = {(ς1, πi), · · · , (ς|InN |, π|InN |)}
where ςi = (Pi, T i,F i, Ini) with Pi = {qi | q ∈ PN } Define πi(qi) = q. From each ςi we
select a single place and add it to a set D s.t. π(D) = InN (this is always possible). We
put one token on each of these selected places, resulting in one token in the initial marking
of each SN.
Now define (〈‖S〉, π〈‖S〉) as the composition of the singular nets. We incrementally add
transitions to the SNs: We iterate over every reachable marking M in 〈‖S〉 and consider
every set C ⊆ M where π〈‖S〉(C) = preN (t) for some transition t and there is no t′ with
π〈‖S〉(t′) = t and pre〈‖S〉(t′) = C. The set of SNs involved in C is ∇C = {i | Pi ∩ C 6= ∅}
We create a new transition t′, define π〈‖S〉(t′) = t and add it to all SNs whose place is
contained in C.

T i =
{
T i if i 6∈ ∇C
T i ∪ {t′} if i ∈ ∇C

We extend the flow of every SN i in ∇C s.t. preςi(t′) = C ∩ Pi. We pick a set of places C ′
s.t. ∇C′ = ∇C and π〈‖S〉(C ′) = postN (t). We hence assign for each involved SN a place
such that the label of C ′ agrees with postN (t). We note that there might be many such
combinations but there is at least one. We extend the flow of all i in ∇C (∇C′) such that
postςi(t′) = C ′ ∩ Pi. Afterwards, we recompute the composition (〈‖S〉, π〈‖S〉) with the
newly added transitions and repeat until no more transitions can be added.

We iterate this and thereby add more and more transitions. Since we deal with a finite
number of places and transitions the construction terminates. Since we add exactly the
transitions required in a SND it can easily be checked that each net is a singular net and
the resulting family a singular net distribution.

Branching processes of SNDs
In the long run we want to extend SND to Petri games and use it for our translation. Since
strategies are defined in terms of branching processes we begin by comparing branching processes
for a SND with ones for the original net. Assume N is a Petri net, S is a SND for N and
(〈‖S〉, π) the composition of S. We analyse and compare possible branching processes for both
N and 〈‖S〉.

Let ι = (N ι, λ) be a branching process for N and ιS = (N ι
S , λS) a branching process for

〈‖S〉. λ labels the nodes from N ι with nodes in N , while λS labels the nodes of N ι
S in 〈‖S〉.

All nodes in 〈‖S〉 are themself, by π, labelled in N . A branching process of 〈‖S〉 hence has finer
label; instead of being labelled in nodes from N directly it is labelled in an intermediate entity,
namely 〈‖S〉, that is itself labelled in N . We define

ι! ιS ⇔ N ι = N ι
S ∧ λ = π ◦ λS

! relates a branching processes for 〈‖S〉 and N if the underlying occurrence net is identical
and the labelling of ιS is finer than that of ι, i.e., agrees when made coarser by applying π. It is
intuitive that!-related branching processes describe equivalent restrictions of the Petri net.

For an example we come back to the Petri net from Fig. 5.15. Recall that the unfolding of a
branching process is a branching process itself. In Fig. 5.16 (a) the unfolding of the Petri net in
Fig. 5.15 (a) is depicted if the gray labels are used. Fig. 5.16 (b) shows the unfolding of the
parallel composition in Fig. 5.15 (d). We note that both unfoldings are related by!. The
labelling of the unfolding in (b) is finer, as we can always recover the gray label by applying π
to the red one.



68 Translating Petri Games to Control Games

B

A A

D

C C

D

B B

D

C C

D

B B

a a

b b

a a

b b

(a)

Ê
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Figure 5.16 Including the red label the unfolding of the SND in Fig. 5.15 (b) is depicted. Using the
gray label it is the unfolding of the Petri net in Fig. 5.15 (a).
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Figure 5.17 Petri Game without a winning
strategy. The player starting in P should copy
the decision made by the player in E, indicated
with the red-arrows.

We can show that, as a SND preserves both the
structure and add every transition possible, that:

Corollary For every branching process ιS of
〈‖S〉 there exists a branching process ι for N
with ι! ιS
For every branching process ι of N there exists
a branching process ιS for 〈‖S〉 with ι! ιS

For every branching process of either N or 〈‖S〉
there hence exists an equivalent one for 〈‖S〉 or N ,
i.e., one with a finer or coarser labelling.

Translating Games using SND
We can now adopt the previous concepts to Petri
games, i.e., mark the places in a SN as either system
and environment, and require that π respects this
distributions. Let G be a concurrency-preserving
Petri game, S a SND for G and (〈‖S〉, π) the com-
position of S. While for every branching process
for G there exists an equivalent (defined by !)
branching process for 〈‖S〉 and vice versa, this does not hold for strategies. It still holds that
for every strategy of G there exists an equivalent one for 〈‖S〉, but the reverse does not hold in
general: A strategy for 〈‖S〉 can distinguish between copies of transition even though they have
the same π-label (i.e., belong to the same transition in G). Since a SND splits up transitions a
strategy for the composition can be more restricting without violating justified refusal. There
even exist games where the composition of a SND has a winning strategy even though the
original game has not.
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AÂ

mxm̂x my m̂y

meetˆmeet1

iî1
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Figure 5.18 A singular net distribution for the Petri game in Fig. 5.17 (a) and the composition of
the distribution in (b). The black label is the name of the node, while the gray label is the one given
by π. To aid readability the name of nodes in the SND are annotated with a hat and the π-label is
omitted in (b).

To have an example for this, consider the Petri game in Fig. 5.17. It comprises four player:
An environment that generates inputs starting in E, two dummy players starting in A and B as
well as a system player starting in P . The player starting in E can use transitions mx or my and
move to X or Y and thereby synchronizes with the dummy player in A. Upon synchronization
A hence moves to the meet place and the dummy player in B moves there directly. The system
player that is initially in place P can synchronize with a token on meet on i and afterwards use
cx or cy to move to Dx or Dy. To win the game the system player should copy the decision of
the environment, i.e., move to Dx iff the E moves to X. This wining criterion can be expressed
in either reachability and safety games. This game has no winning strategy: Both dummy
players do not possess the same information since only the one starting in A knows the decision
that needs to be copied. To copy the player from E reliably, the system player in P needs to
share transition i with the player starting in A since this is the only source of the much needed
information. Communication with the player from B does not provide any relevant information.
Justified refusal, however, prohibits strategies that can guarantee that communication occurs
with the token starting in A and not with the one from B.

A possible singular net distribution of the Petri game in Fig. 5.17 is depicted in Fig. 5.18 (a).
The gray label is the one given by π. The name of the node is depicted in black where each
name is equipped with a hat to aid readability. The place meet is split up into two places ˆmeet1
and ˆmeet2. The transition i is split up into î1 and î2. Fig. 5.18(b) delineates the composition of
the SND in (a). To aid readability the π-label is omitted. Unlike the initial game from Fig. 5.17
the composition (b) has a winning strategy, since a strategy could forbid î2 while allowing î1
without violating justified refusal. When applying the coarser label to this winning strategy
(i.e., apply π point wise), the resulting branching process is no strategy for the original game.

While we cannot find equivalent strategies between G and 〈‖S〉, we can, however, find equiva-
lent strategies, if strategies for 〈‖S〉 do not distinguish between equally π-labelled transitions.
This motivates the following definition:

Definition A strategy σ = (N σ, λ) for 〈‖S〉 is π-insensitive, if for any pairwise concurrent
set of places C with λ[C] = preG(t) for some transition t there either is a transition
t′ with λ(t′) = t and preNσ(t′) = C or there is a system place q ∈ C ∩ λ−1[PS ] with
π(t) 6∈ π(λ[postσ(q)])
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The definition is almost identical to the one of a strategy. While the original justified refusal
requires that every transition that is not added to the strategy must be uniformly forbidden by a
system place, in a π-insensitive strategy there must be a system place that uniformly forbids all
transitions with the same π-label. Even though a transition is duplicated, a π-insensitive strategy
considers all transitions with the same label as identical. The interested reader is advised to
check that the composition in Fig. 5.18 (b) has no winning strategy that is π-insensitive.

We can show that if a strategy for 〈‖S〉 is π-insensitive and we apply the coarse label, the
resulting branching process fulfils justified refusal, i.e., is a strategy:

Corollary If σ = (N σ, λ) is a π-insensitive strategy for 〈‖S〉 then σ′ = (N σ, π ◦ λ) is a
strategy for G.

Extending the Translation We can do a similar translation as in Sec. 5.1 but work with
singular net distributions instead of slice distributions by treating SNs as slices, i.e., ignore the
π label.

In Fig. 5.19 (a) the translated automaton for the SND from Fig. 5.18 is depicted. We already
saw that a composition of a SND might have a winning strategy even though the original game
has not (cf. Fig. 5.18 (b)). If we build our translation from a SND we run into the same problem:
We give potential controllers to much power, by allowing them to distinguish equally π-labelled
transitions (using their commitment sets) and therefore restrict the behavior in a way that the
strategy of the Petri game cannot. For example, the control game in Fig. 5.19 (a) has a winning
controller: As in composition of the SND, a controller can distinguish between â1 and â2 and
therefore enforce communication with the player that possesses the information needed to win
the game.

We fix this by modifying our translation slightly: We restrict the commitment sets for each
process to transitions in the original game instead of the copies in the SND16. From such a
commitment set all copies of a transition in the set are allowed. With the coarser commitment
sets a controller can no longer distinguish equally labelled transitions and has to allow either
all copies of a transition or none. If we translate the singular net distribution from Fig. 5.18
with the modified translation, the fourth singular net yields the process in Fig. 5.19 (b). If we
substitute this process into the overall control game in (a) the resulting control game has no
longer a winning controller, as î1 and î2 can no longer be restricted separately.

Translating Strategies to Controllers Given a winning strategy σ for G we outline that there
exist a bisimilar winning controller for the modified CG . We can refine the labels of σ to obtain
a strategy σS for 〈‖S〉. It holds that σ! σS . Since σ satisfies justified refusal we get that
σS is π-insensitive, i.e., if a place forbids a transition it forbids all transitions with the same
π-label. We can now do the same controller construction as in Sec. 5.3.3 on the strategy σS .
Since σS is π-insensitive every transition that is not added must be forbidden together with all
equally labelled transitions. The controller can hence choose an appropriate commitment set,
even though the selection of sets does not allow to distinguish equally labelled transitions. As
σ! σS it is easy to see that the obtained controller and σ are bisimilar17.

Translating Controllers to Strategies Given a controller for the modified CG , we can construct
a bisimilar strategy for G. We first build a strategy σS for 〈‖S〉 using the construction from
Sec. 5.3.4. As the commitment sets of the control game range over original transitions rather
than copies, we observe that the resulting σS is π-insensitive, i.e., equally labelled transitions
are not distinguished. When taking the coarser label we obtain a branching process σ for G.
Since σS is π-insensitive, σ fulfils justified refusal, i.e., is a strategy for G. Bisimilar behavior
follows since σ! σS .

16For a place q in the SND we do not allow all commitment sets A ⊆ post (q) but A ⊆ π(post (q))
17For the bisimulation we identify every transition in the control game with its π-label.
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î1 î2
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ĉx ĉy
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Figure 5.19 Translation of the Petri game from Fig. 5.17 using the singular net distribution from
Fig. 5.18 (a). The local automaton of the first three singular nets is depicted in (a). If we do our
unmodified translation the fourth SN is translated to the automaton in (b). The modified translation
designed for SNDs yields the automaton in (c).

The General Result
We argued that we are able to generalize the translation from Sec. 5.1 to work with SNDs instead
of slice distributions. In Proposition 4 we showed that all concurrency-preserving nets (and
hence games) have a SND. We can hence derive the following generalisation of our initial result:

Theorem 3 For every concurrency-preserving Petri game G there exist control games CG
and ĈG with an equal number of player such that

G and C are strategy-equivalent.

G and ĈG are strategy-equivalent if we require deterministic Petri game strategies.



Chapter 6

Translating Control Games to Petri Games

We give our translation from control games to Petri games and show that the translation yields
strategy-equivalent games. Since all existing Petri game results [12, 11] are stated for safety
objectives we explicitly work with safety games. Adapting our translation for, e.g., reachability
is, however, easy. Apart from our translation we provide an exponential lower bound.

6.1 Construction

In this section we describe our translation.

Actions as Transitions Our translation has to cope, not only with the different environment
formalism, i.e., controllable and uncontrollable actions vs system and environment places,
but also with a fundamental difference of both game arenas. By comparing Petri nets and
asynchronous automata it becomes clear that they use fundamentally different synchronization
primitives. An action a in an asynchronous automaton can fire from different configurations
of the processes in dom(a), i.e., all configurations in domain(δa). A transition in a Petri net is
only enabled from one fixed configuration; its precondition.

Instead of tackling the harder problem of translating the game variants of both models, it is
helpful to first consider the somewhat simpler task of describing an asynchronous automaton A
as an “equivalent” Petri net. A straightforward idea is so represent each local state in A as a
place in a net. For an example we consider the automaton depicted in Fig. 6.1 (a). We define a
Petri net with places A to D in (b). Action that move processes between states should then be
added as transitions moving tokens between places. To model an action a we have to duplicate
it into multiple transitions, one for each configuration from which a can fire (|domain(δa)| many
copies). Action b in the example in (a) can only occur from one configuration and is hence
added as single transition leaving place A and moving a token to place B. a, on the other hand,
can occur from global states 〈A,C〉 and 〈B,C〉. We hence duplicate a into two transitions a1
and a2 both corresponding to exactly one of these configurations and moving the tokens as the
action would. Until now we always worked with asynchronous automaton that can be described
in terms of a parallel composition of local automata. Fig. 6.1 (c) depicts the description of
an automaton where we can not find such a composition, as the transition relation achieves
behavior that depends on the global state of the system. The idea of adding places for states
and transitions for all configurations in the domain of a transition function extends to such
automaton. The resulting Petri net is depicted in Fig. 6.1 (d). The difference in synchronization
schemes results in an intrinsic exponential blow up1.

Following this very informal explanation of how to model asynchronous automata as Petri
nets we can continue with defining our intended construction of the game variants.
1In asynchronous automaton the complexity is hidden in the transition function {δa}a∈Σ.
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Figure 6.1 An asynchronous automaton described as a composition of local processes (a) and a possible
representation as a Petri net (b). The action a can occur from two configurations (|domain(δa))| = 2)
resulting in two copies of a (a1, a2). In (c) another asynchronous automaton is given that cannot be
described in terms of the parallel composition of local processes. (d) depicts a possible representation
as a Petri net where the action a is duplicated in two transitions (a1, a2).

Define GC = (PS ,PE , T ,F , In,B) where
PS =

⋃
p∈P

Sp

PE = {(s,A) | s ∈
⋃
p∈P

Sp ∧ A ⊆ act(s) ∩ Σsys} ∪ {⊥pDL | p ∈ P }

T = {(a,B, {As}s∈B) | a ∈ Σenv ∧B ∈ domain(δa) ∧
∀s ∈ B : As ⊆ act(s) ∩ Σsys} ∪ (1)

{(a,B, {As}s∈B) | a ∈ Σsys ∧B ∈ domain(δa) ∧
∀s ∈ B : As ⊆ act(s) ∩ Σsys ∧ a ∈ As} ∪ (2)

{τ(s,A) | s ∈
⋃
p∈P

Sp ∧ A ⊆ act(s) ∩ Σsys}∪ (3)

{tMDL |M ∈ DDL} (7)

F = {((s,A), (a,B, {As}s∈B)) | s ∈ B ∧ As = A} ∪ (4)

{((a,B, {As}s∈B), s′) | s′ ∈ δa(B)} ∪ (5)

{(s, τ(s,A))} ∪ {(τ(s,A), (s,A)} ∪ (6)

{(q, tMDL) | q ∈M} ∪ {(tMDL,⊥pDL) | p ∈ P } (8)

In = sA
in

B =
⋃
p∈P
Bp ∪

⋃
p∈P
⊥pDL

Figure 6.2 The construction of the translated Petri game GC for a control game C =
(A,Σsys,Σenv, {Bp}p∈P ) where A = ({Sp}p∈P , s

A
in , {δa}a∈Σ). We view the initial state sA

in of A as
a set of states. The gray parts correspond to the detection of artificial deadlocks.

Description of GC We fix a control game C = (A,Σsys,Σenv, {Bp}p∈P ) with safety objective
and transform it into a strategy-equivalent Petri game GC. Our translated Petri game GC is
depicted in Fig. 6.2. The gray parts describe a special treatment for deadlock detection. We
advise to first ignore them. In the control game actions are either controllable or uncontrollable.
Our first objective is therefore to achieve similar controllability even though a place in a Petri
game can restrict either none or all of the outgoing transitions. We pursue our success from
Chapter 5 and again use commitment sets to explicitly encode decisions.
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We represent each local state s as a system place. The initial marking of GC is the initial
state of C. The bad places are exactly the bad states in C. For each state s we additionally add
environment places representing chosen commitment sets of the form (s,A). The commitment
sets represent any combination of actions a controller could enable from s, i.e., A ⊆ act(s)∩Σsys.
Recall that act(s) are all actions that can occur invoking local state s. The idea is that, similar
to a controller being able to decide which of the outgoing actions to allow from a state, a
token on the system place can decide which of the controllable actions to allow by moving to
a commitment set2. From the system places the strategy can choose a commitment set by
using local τ -transitions (3, 6). The τ -transitions are the only transitions leaving the system
places. Every action a in C is represented as possibly many transitions whose precondition
comprises only environment places, i.e., places with chosen commitment set. As we observed
in, e.g., Fig. 6.1 actions need to be duplicated for every global state in C from which a can
fire. By introducing commitment sets we also have to account for every possible combination of
commitment sets and introduce distinct copies for each combination. Transitions hence have the
form t = (a,B, {As}s∈B) where a ∈ Σ is the action in the control game, B ∈ domain(δa) is the
configuration from which a can fire, and {As}s∈B are the involved commitment sets of the local
states in B (1, 2). When concerned with bisimulation we identify transition t with the action
a. Since transitions explicitly encode the commitment set from which they fire, we can read of
their precondition: A place (s,A) is in the precondition of transition t if s ∈ B, i.e., the global
state encoded in t includes s and As = A, i.e., the commitment set encoded in t agrees with the
current set A (4). When fired, t moves every token to the system place that corresponds to
resulting local state when executing a in C, i.e., a place in δa(B) (5). We can bring this in a
more understandable form by observing that

preGC ((a,B, {As}s∈B)) = {(s,As) | s ∈ B} and postGC ((a,B, {As}s∈B)) = δa(B)

Since the transitions explicitly encodes the commitment sets of the involved places we can
achieve the intended meaning of the commitment sets by restricting when such transitions are
added. If t corresponds to a controllable action a it should only be possible if the commitment
sets of all places involved in it agree on a, that is a ∈ As for every s ∈ B (2). If a token
resides on a place that encodes a commitment set not containing a there is no transitions that
corresponds to a added from this place. If action a is uncontrollable it is added independently
of the chosen commitment sets (1). This goes well with the intuition that an uncontrollable
actions should not be avertible using the commitment sets, but solely depend on the current
place of token.

The transitions hence move the tokens though the game exactly as the actions in C move the
processes. In particular, we can note that on every reachable marking in GC there is an one to
one correspondence between the place in the marking and processes in the control game: Every
place belongs to a process and for every process there is a place that corresponds to a state of
that process. We remark that the translated Petri game GC is always concurrency-preserving,
safe and, in particular, sliceable. Conceptually every token in GC hence moves along the states of
exactly one process. Every token on a place can, using its commitment set, control which of the
outgoing controllable actions to allow; just as the process counterpart can. As uncontrollable
actions occur independent of the current commitment set but solely dependent the current state,
a strategy for GC can not control them and neither can a controller for C.

Figure 6.3 depicts an example translation. The control game in (a) consist of two processes
p1 and p2. p1 can actively decide to move to B or is uncontrollably moved to C. If in B it
can synchronize with p2 on the uncontrollable d action, whereas from C it can communicate
with p2 on the controllable c. The objective for the system is to avoid place D. Since winning
controller for safety control games are necessarily deadlock-avoiding there does not exist a
2We note that a local controller for a control game is defined as a function Playsp(C)→ 2Σp∩Σsys . It, however,
is sufficient if a controller only chooses from the controllable actions that are enabled from its current state.
That is consider functions that map a play u ∈ Playsp(C) to a subset of act(statep(u)) ∩ Σsys.
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Figure 6.3 Control game (a) and translated Petri game (b). Commitment sets without outgoing
transitions are omitted. The label of τ -transitions is not given as it can be infered from the context.
The set of artificial deadlocks DDL comprises every final marking that contains at least one of place
drawn with a dashed line ((C, ∅) or (E, ∅)). The resulting tMDL-transitions are omitted.

winning controller. Upon execution of the uncontrollable b action the processes must allow c,
causing them to lose. In (b) our translated Petri game is depicted. The two tokens start in
places A and E. Both of them can decide which of the outgoing (controllable) actions should
be allowed using their commitment sets. If we, for example, consider the token starting in
A we observe, that the transitions corresponding to a can only be executed if the player has
chosen the commitment set {a}, i.e., explicitly allowed a. Transitions corresponding to the
uncontrollable b, on the other hand, are possible from both possible commitment sets. As action
c only occurs from one fixed configuration in the control game and there is only one combination
of commitment sets, it is added as a single transition (c, 〈C,E〉, {{c}, {c}}) that can only fire if
included in both commitment sets. Action d, on the other hand, is duplicated to account for all
possible commitment set combinations.

On Deadlocks and Committing The observant reader might notice that the translation as
presented so far is not correct. In the translated GC the system might have a winning strategy
even though it has no winning controller in C. The two problems can be characterised as
”artificial deadlocks” and “commitment refusal”.

The first problem are artificial-deadlocks: In our translation we explicitly work with safety
objectives. It is therefore of utmost importance to require the system to behave deadlock avoiding.
Without this requirement deciding the existence of a winning strategy is trivial3. Since a winning
strategy for GC should correspond to a winning (and thereby deadlock-avoiding) controller for C
we obviously need to impose deadlock-avoidance on any winning strategy. Because deadlocks are
defined as situations where a strategy globally terminates even though the underlying model can
still progress, deadlock-avoidance naturally depends on the underlying automaton or Petri net.
The commitment sets introduced in the translation result in additional, “artificial” deadlocked
states, i.e., markings in GC that are final but where the corresponding state in C could still act.
By choosing certain commitment sets, e.g., always choose the empty one, the strategy could
manoeuvrer into an artificial deadlock, without violating the deadlock-avoidance requirement.
If we again consider Fig. 6.3 we can see that our translated game has a winning strategy even
though the control game has not. A controller can not refuse to allow c as this would result
in a deadlock. A strategy for the translation, on the other hand, can move to place (C, ∅) or
(E, ∅) and thereby effectively prohibit c without being deadlocked. As we explicitly encode the
decision in the commitment sets, we can detect and penalize such situations. We give a thorough
explanation in Sec. 6.2 below.

3There is a winning strategy if and only if the strategy that blocks everything is winning.
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The second, more involved, problem are strategies that refuse to commit, i.e., allow no com-
mitment set for certain player. GC is designed such that transitions that represent uncontrollable
actions are enabled independent of the chosen commitment but only occur from place that
represented a chosen commitment set. If a player refuses to choose a commitment set, i.e., block
all τ -transitions from a system place, no uncontrollable actions can occur. A controller in a
control game, on the other hand, has no such possibilities. In Sec. 6.4 we show how to enforce
commitment by leveraging deadlock-avoidance. In the following, including the correctness proofs,
we assume winning strategies for GC to always commit.

6.2 On Artificial Deadlocks

We want to hinder a strategy from terminating early by using the newly introduced commitment
sets. Recall our use of E-actions in Chapter 5: Back then we used uncontrollable actions to
prohibit certain global configurations, namely nondeterministic ones, by moving the processes
to a locked state and causing the system to lose. We pursue a similar approach by using (losing)
transitions to prohibit configurations where the commitment sets are used to terminate early.
The gray parts in the Fig. 6.2 describe this formalism. In contrast, to the E-actions that were
purely optional when considering deterministic strategies, the deadlock-detection mechanisms is
inevitable to even allow for winning equivalent translations.

We begin by formally defining artificial deadlocks: Every place in GC (ignoring the ⊥pDL places
being introduced in this section) corresponds to a state in C. The correspondence is formalized
by ζ as:

ζ(s) = s

ζ( (s,A) ) = s

We extend this definition to markings by defining for each marking M a corresponding global
state in the asynchronous automaton by: ζ(M) =

⋃
q∈M{ζ(q)}.

Recall that a state in a control game is final, if no further actions are possible once in
that state. An artificial deadlock now comprises a situation where M is final even though the
corresponding state ζ(M) could still act, i.e., is not final. As M is final a strategy would be
allowed to terminate in that marking even though the controller would still be required to keep
playing. We want to hinder and penalize a strategy that reaches such a situation. To this extent
we equip GC with additional ⊥pDL-places that are marked as losing. We define the set of all
artificial deadlocks by

DDL = {M ∈ R(GC) |M ⊆ PE ∧ M is final ∧ ζ(M) is not final}

Note that every marking in DDL contains only environment places, i.e., only places corresponding
to chosen commitment sets4. For every M ∈ DDL we add a transition tMDL (7) that fires exactly
from M and moves every token to a losing place ⊥pDL (8). It holds that

pre(tMDL) = M and post (tMDL) = {⊥pDL | p ∈ P }

Since all ⊥pDL places are losing, a winning strategy has to guarantee that none of the tMDL
transitions are enabled and therefore has to avoid all artificial deadlocks. We remark that this
relies on the fact that all places in any marking M ∈ DDL belong to the environment and are
therefore unrestrictable by a strategy. With the added deadlock detection a strategy can not
manoeuvrer into a situation where it can terminate early, but is only allowed to end the game if
the corresponding global state in C is final as well.
4We remark that the definition of DDL depends on the reachable markings in the very game we are just defining.
Conceptually we first construct the game without the deadlock-mechanism and afterwards add the gray parts
corresponding to the deadlock-detection.



6.3. Correctness 77

In Fig. 6.3 the set of artificial deadlocks, DDL, comprises all final markings that contain one
of the two places highlighted with a dashed line. In such situations at least on player refused c
and hence ended the game, even though in the underlying automaton c could still be executed,
i.e., the corresponding state is not final. If we add losing transition from all those markings
there no longer exists a winning strategy.

6.3 Correctness

We show that our translated Petri game GC and the control game C are strategy-equivalent. Our
final result is:

Theorem 4 C and GC are strategy-equivalent.

For our proofs we assume that any winning strategy for GC always commits. In Sec. 6.4 we
see that this is a valid assumption. Similar to our first translation we begin by giving a high
level idea of how a strategy/controller translation looks like and proceed with formal proofs in
Sec. 6.3.2, which we advise to skip on first read.

6.3.1 Intuition

Controllability We first argue that the controllability of the players is identical in C and GC.
In C actions are either controllable or uncontrollable, whereas in GC only system places can
restrict transitions. Our commitment set construction overcomes this difference: Every token in
GC can decide which commitment set to choose and thereby implicitly restricts the controllable
actions leaving this place. A controller for C can do the same by directly restricting which
controllable actions to allow. Transitions corresponding to uncontrollable actions, on the other
hand, can occur independent from the commitment set and can thus not be thwarted by a
strategy. Conversely a controller for C can not control any of the outgoing uncontrollable actions.
In both C and GC the system has the same control possibilities. A high level translation now
consist in copying the decision of an existing strategy/controller.
Given a controller for C we can construct a strategy for GC : For every local state the controller
cam decide which of the controllable actions to allow. The strategy can now copy this decision
by allowing the commitment set that comprises all actions allowed by the strategy. Both hence
allow identical controllable behavior.
If we are provided with a strategy for GC we can construct a controller for C: As the strategy
always commits it always chooses a commitment set, i.e., selects a set of actions enabled from a
state. A controller can copy this decision by allowing exactly for the actions that the strategy
chose as a commitment set. The controller cannot restrict uncontrollable actions and neither
can a strategy.

On Strategy Equivalence Strategy Equivalence is defined in terms of a relation ≈B that
witnesses bisimilar behavior. As for the first translation we can give an even stronger result by
defining ≈B not on a concrete strategy and controller but relate markings in the unfolding with
plays in the control games. Since strategies are subprocesses of the unfolding and controller
compatible plays subsets of all plays, our relation extends naturally.

Our previous example for our translation (Fig. 6.3) is well suited to highlight important
points of our construction but, as it cannot be won by the system, it is exempted from strategy-
equivalence and can hence not be used to demonstrate our strategy-controller translation.
Instead we consider a translation of a slightly simpler game depicted in Fig. 6.4. The control
game Ċ (a) comprises two processes p1 and p2 of which only one contains controllable actions.
p1 can uncontrollably take a or b to move to state B, while p2 cannot restrict a move to E
(using d) but can control whether or not to move to state D. If both are in B and D they can
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synchronize on c. This game is well suited to observe the different information of both processes
as p2 has to decide whether or not to enable e without yet knowing if a or b occurred. In (b)
our translated Petri game ĠC is depicted. To aid readability the label of all τ -transitions are
omitted and transitions of the form (a,B, {As}s∈B) are labelled by the underlying action a.
Using commitment sets the token in C can control e. All other places can only choose the empty
commitment set. Communication on c is represented as a shared transition between both token.

A

B

a bc

C

D

E

p1 :

p2 :
ce

d

(a)

A

(A, ∅) B

(B, ∅)

b

a

c

D

(D, ∅)C

(C, ∅) (C, {e})

E

e

d d

(b)

Figure 6.4 Control game Ċ (a) com-
prised of two processes p1 and p2. (b)
depicts the translated Petri game ĠC (b).
The labels of τ -transitions in (b) are omit-
ted and observable transitions are labelled
with their underlying action.

For our bisimulation we pursue a similar approach
as we did in Chapter 5. There we related a marking
and play if both describe the same situation, i.e., re-
sult from the same observable actions/transitions. To
translate strategies and controllers we showed that in
related situation the local information of each player are
identical to its counterpart in the other game and they
are therefore able to copy the decision of one another.
For our present translation we pursue a similar idea of
relating a marking M and play u if they describe the
“same situation”. We relate M and u if the observable
transitions in the causal past of M (when identifying
transitions with the corresponding action) agree with
u. More precisely if the poset structure of the tran-
sitions in the causal past of M agree with the poset
representation of u. This captures the idea, that in
equivalent situations a strategy and controller should
act equivalently.

As an example, we consider the Petri game ĠC from
Fig. 6.4. An initial fragment of the unfolding is de-
picted in Fig. 6.5. As we did in Fig. 6.4 we simplified
the names of transitions by identifying transitions of
the from (a,B, {As}s∈B) with a and omitted the label
of τ -transitions. Consider the blue marking M1. The
observable transitions in the past of this marking are
b and e. As both are completely unrelated and played
by distinct player they are unordered when viewed as
a poset. The situation of the game naturally corre-
sponds to the play u1 = [b, e]I. As actions b and e are
independent they re unordered in the poset represen-
tation. Their poset representation hence agree and we
get M1 ≈B u1.

We can state a few observation regarding ≈B: Firstly,
we can check that every reachable marking in the un-
folding of ĠC corresponds to a play in Ċ. Moreover,
on related situations the underlying state is equally
labelled as long as we identify places that represent a
commitment set with the underlying local state. For ex-
ample it holds that state([b, e]I) = 〈B,D〉 which agrees
with λ[M1] if we ignore commitment sets. If we consider the causal past of any reachable
marking in the unfolding from Fig. 6.5 there always is related play in Ċ.

Having fixed ≈B we need to show that we can translate strategies and controller such that
they allow bisimilar behavior from related situations. As our commitment set constructions
allows equal control possibilities, it remains to argue that the local information of each player
are preserved in related situations. To this extend, it is helpful to think of the tokens in the
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Figure 6.5 An initial fragment of the unfolding of the Petri game in Fig. 6.4. Two markings M1 and
M2 are emphasised in blue and green. The causal past of marking M2 is surrounded in red (dashed) and
the causal past of system place C in M2 in orange (dotted). To aid readability the label of transitions
are simplified by only giving the name of the action rather than the entire transition. τ -transitions are
not labelled and depicted in gray.

Petri game as player moving along one slice and consider the game as a composition of slices.
The game can be sliced up such that every token resides only on places of exactly one process.
A token hence takes part in precisely the transitions that correspond to the action in which one
process takes part in. In the example from Fig. 6.4 there is one token moving along the states
of p1 (A,B) and another one along the states of p2 (C,D,E). The communication behavior
of the control game is hence replicated truthfully as a Petri game. Since both game types
rely on causal information the local information of on token agrees with the information of its
process-counterpart.

As an illustrative example, we consider the green marking M2 in Fig. 6.5. The system place
C in M2 has to decide on a commitment set, i.e., needs to decide whether or not to allow e. The
other player is in the (A, ∅) place, i.e., has already played a second b. A strategy can now restrict
the transitions leaving C but has to do so independent of the decision made by the first player,
i.e., without knowing that the first player has played a or b. It can, however, base its decision
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on the knowledge that the first player chose b the first time, an information transmitted upon
communication on c. The causal past of M2 is surrounded in red. It comprises the observable
transitions b, e, c, b. The corresponding play in Ċ is

u2 = [ b , e , c , b ]I

It can easily be checked that M2 ≈B u2 as their poset representations align. The local view of
p2 on u2 is [ b , e , c ]I. A controller therefore has to decide whether or not to enable e without
knowing if p1 has already player the a or b action. p2 can, however, from its local view deduce
that p1 chose b the first time and hence base its decision on that knowledge. In both M2 and u2
the players hence possess the “same” information i.e., while knowing that b occurred the first
time, they cannot base their decision on the second occurrence of a or b. In both situation the
information about the first occurrence of b has been transmitted upon communication as both
game types rely on causal information.

Translating Controllers to Strategies Given a winning controller % for C we incrementally
construct a (possibly infinite) winning, deterministic strategy σ% for GC. We construct our
strategy incrementally by adding more and more nodes. As the decision of what to allow is
made by system places, every system place q should decide which of the possible transitions
are admitted, i.e., decide for a commitment set. The decision should be made based on the
causal information of q and should be made in accordance with % to, in the end, obtain bisimilar
behavior. In order to do so, q considers the observable transition in its causal past. This past
forms a play in C which can then be given to %. The process that correspond to place q then
decides which of the controllable actions to allow. q copies this decision by allowing exactly
those actions as its commitment set.
For bisimulation we need to show that if M ≈B u then M and u allow the same behavior.
By our definition of ≈B the observable transitions in the past of M agree with u. While the
causal past of M agrees with u the causal past of place q in M might differ from u. One can,
however, show that, while the causal past does not agree with the entire u, it agrees with the
local view of the respective process on u (viewp(u)). Every system place in M hence decides
for a commitment set that agrees with the decision of one of the processes on u. Together the
player achieving the same behavior as the processes do and allow bisimilar behavior.
Since % is deadlock avoiding the strategy never chooses the commitment sets such that an
artificial deadlock is reached. The tMDL-transitions are therefore never enabled and can be
neglected when proving bisimulation.

Translating Strategies to Controllers Given a winning, deterministic strategy σ (that always
commits) for GC . We build a winning controller %σ for C. If a process p is on any local state in C,
it can decide which controllable actions are admitted. The decision of what to enable should be
made in accordance with σ, i.e., made by copying the commitment set that a token in σ choose.
To copy the decision a process simulates its local view viewp(u) in the branching process of σ. By
simulating the actions in viewp(u) one at a time and simulate as many τ -transitions as possible
in between the simulation reaches a marking M ′. The process then copies the commitment set
that has been chosen by the corresponding place in this marking.
As before we need to show that if M ≈B u, i.e., the observable transitions in the past of M
agree with u, σ and %σ allow the same behavior. Every process p makes its decision based on
its local view on u. By simulating this local view on u it reaches some marking M ′ that in
general differs from M . One can, however, show that the place that corresponds to p is, however,
identical in M ′ and M . p hence allows for exactly those transitions that one of the players in
M chose as a commitment set . Together the process achieve bisimilar behavior.
Because σ is winning, it avoids all tMDL transitions and hence all artificial deadlocks. We can
show that the resulting controller is then deadlock-avoiding.
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6.3.2 Proving Strategy Equivalence

Following this informal description we proceed by giving formal proofs and precise descriptions
of our translated strategy and controller. As we did in our first translation we abuse notation
and do not distinguish between transitions in a branching process and transitions in the original
net. We are hence able to simulate sequences of original transitions in a branching process.
Since our obtained Petri game is safe we again obtain an unique simulation.

We can note that for any reachable marking in the unfolding there is an one to one corre-
spondence between places in the marking and processes. For marking M and p we define M 〈p〉
as the unique place in M with ζ(λ(M 〈p〉)) ∈ Sp.

On the relation ≈B We use the ζ function defined in the context of deadlock detection to
map places or markings in GC to states or global states in C. Recall that pastT (C) = {y ∈ T |
∃x ∈ C, y ≤ x} are the transitions in the causal past of a set of places C. The transitions in
the causal past can either be τ -transitions or of the form (a,B, {As}s∈B). Since τ -transitions
are only added in our translation and (a,B, {As}s∈B)-transitions were only needed because of
the restrictive synchronization primitives of Petri nets, we define a point wise operation � that
deletes τ -transitions and maps transitions to the corresponding actions.

�
(
τ(s,A)

)
= ε

�
(
(a,B, {As}s∈B)

)
= a

� can be seen as projection on the observable actions followed by a mapping to the underlying
action. ε denotes the deletion of an element. It should be noted that � is almost identical
to the projection 〈·〉T↓ defined in Chapter 5. The only difference is that � additionally maps
(a,B, {As}s∈B)-transitions to the action a.

We can now express our informal ideas on ≈B properly:

M ≈B u iff �(pastT (M)) = u

As we have done in Chapter 5 we can express an equality between the causal past of a marking
and a play by comparing the underlying poset representation. �(pastT (M)) = u hence means
that the poset of �(pastT (M)) and u is equal. Note that both are labelled with Σ. ≈B agrees
with what we argued informally. Given some marking M in the unfolding, �(pastT (M)) is the
partially ordered set that describes the observable transitions in the causal past of M . If this
agrees with some play u then M and u result from the same situation, i.e., they are reached on
the same observable actions/transitions.

In our translation we represent each local state as a place and add a transition (a,B, {As}s∈B)
exactly from preconditions that correspond to configurations from which a can occur. A transition
in GC hence moves the tokens exactly as the corresponding actions would move the processes in
C. We can hence see that related marking and play result in equally labelled configurations.

Lemma 22 If M ≈B u then ζ(λ[M ]) = state(u).

Proof By induction on the length of a totally ordered sequence of pastT (M) using

postGC ((a,B, {As}s∈B)) = δa(B) ∈ image(δa)

ζ(preGC ((a,B, {As}s∈B))) = ζ({(s,As) | s ∈ B}) = B ∈ domain(δa)

ζ(preGC (τ(s,A)) = ζ(postGC (τ(s,A))
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Causal Information Flow The translated Petri game GC describes the global behavior of all
player. It is nerveless helpful to view GC in terms of slices where one slice comprises all places
added from the local states of one process. A token hence moves along one slice and thereby
along the states of one process. Each transition (a,B, {As}s∈B) added in GC involves exactly
the tokens that correspond to the processes that take part in a.

Now consider a marking M and play u s.t. M ≈B u. By our definition the observable
transitions in the past of M agree with u. We can observer that in both M and u the local
information of a player can be seen as the minimal downwards closed set that contains all
transitions/actions where the player is involved in directly. This goes well with the idea that
both game types rely on causal information. The partial order orders the events in time. As
each communication transmit everything, the entire previous execution is transmitted so all
causally preceding events are transmitted. The local view of a player hence comprises all
transitions/actions it is involved in directly as well as all causally preceding ones, a downwards
closed set. We can state:

Lemma 23 If M ≈B u and p ∈ P then

viewp(u) = �(pastT (M 〈p〉)) = viewp(�(pastT (M 〈p〉)))

Proof Form M ≈B u it follows that �(pastT (M)) = u where both are considered as
partially ordered sets.
We first consider viewp(u): We already argued that in the poset representation viewp(u) is
the smallest downwards closed subset of u that contains all actions from Σp.
Now consider pastT (M 〈p〉): As GU is an occurrence net there is an unique transition
t ∈ pre(M 〈p〉). It holds that pastT (M 〈p〉) = pastT (t). The token on place M 〈p〉 moves
along the places that correspond to process p and thereby took part in all transitions that
correspond to an action in Σp. All transitions in pastT (M 〈p〉) that correspond to an action
in Σp are hence causally related to M 〈p〉. Since transition t also corresponds to an action in
Σp and pastT (M 〈p〉) = pastT (t) we can characterize pastT (M 〈p〉) as the smallest downwards
closed subset of pastT (M) that contains all transitions that correspond to action from Σp.
The minimal downwards closed subset is unique and as both viewp(u) and pastT (M)
describe the minimal downwards closed subset contain all actions in Σp or all transitions
corresponding to actions in Σp it holds that

viewp(u) = �(pastT (M 〈p〉))

We can then conclude viewp(u) = viewp(�(pastT (M 〈p〉))) as viewp(·) is idempotent.

Lemma 23 states that our definition of ≈B does not only capture the global configuration of both
games (as stated in Lemma 22) but preserves causal information. In by ≈B-related situations
M and u the causal past of the place in M that belongs to some process p (M 〈p〉) agrees with
the local view of p on u (after applying �). Note that in general pastT (M 〈p〉) 6= pastT (M).

As an example, we again consider the green marking M2 in Fig. 6.5. The causal past of M2
is surrounded in red. It holds that M2 ≈B u2 for

u2 = [ b , e , c , b ]I

We can now consider the local information of each player. M 〈p2〉
2 is the system place in M2, i.e.,

the place that corresponds to p2. The causal past M 〈p2〉
2 is surrounded in orange. Note that the

causal past does not agree with the past of M2. M 〈p2〉
2 has to make a decision of what to allow

based on this set only, in particular, it cannot base its decision on the fact that the other player
already played b. Conversely, the local view of p2 on u2 is

viewp2(u2) = [ b , e , c ]I
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We create places for the initial marking Inσ% and extend λ s.t. λ[Inσ% ] = InN .
We then iterate:

For every system place q with no outgoing transitions: q belongs to a process, i.e.,
λ(q) ∈ Sp for process p.
Compute u = �(pastT (q)) in the already constructed strategy.
We assume that u is a % compatible play and statep(u) = λ(q) (A). Now define
E = f%p (viewp(u)) ⊆ Σsys

p . Add a transition t′ with λ(t′) = τ(statep(u),E) and a
new place q′ with λ(q′) = (statep(u),E) and add the flow s.t. q ∈ preNσ% (t′) and
q′ ∈ postσ%(t′).
Afterwards, continue with a new unprocessed marking.

For every set of concurrent environment places C with λ[C] = preGC (t) for some t
we add a new copy of t and places for the postcondition (if these nodes did not
already exist).

Figure 6.6 Construction of strategy σ% for GC that is build from controller % for C

We can build the poset representation this play and, e.g., observe that b and e are unordered. If
we compare the poset with the causal past of M 〈p2〉

2 (surrounded in orange) we see that they
are identical (as stated in Lemma 23). In both situations the system needs to decide whether or
not to enable e without yet knowing the most recent decision of the environment (a or b).

6.3.3 Translating Controllers to Strategies

In this section we provide a formal translation of strategies for GC to controller for C. Given a
winning controller % for C we define a strategy σ% for GC . The strategy construction is depicted
in Fig. 6.6.
σ% does what we sketched informally. It is build incrementally. We start by creating a

branching process that only contains the initial marking and incrementally add more and more
places and transitions. For every system place q in the partially constructed strategy we need
to add an environment place that represents a commitment set. To decide which to choose we
apply � to the causal past of q, i.e., transform the transitions in the past to a trace of actions.
There is a process p that corresponds to q. The play obtained from the causal past is then given
to the local controller of this process which decides for a set of controllable actions E. q the
copies this decision by adding the commitment that contains exactly these actions. As soon
as our construction adds a new system place we can hence choose a commitment set for that
place. Apart from the τ -transitions used to choose commitment sets, no observable transitions
involve any system place. To add them we hence consider every set of pairwise concurrent places
C and add all transitions leaving from there. The construction hence proceeds by choosing
commitment sets for every system place and afterwards add all transitions possible from these
commitment sets.

The fact that σ% is a branching process of GC follows directly from the construction: We
observe that there is exactly one commitment set chosen. This directly gives us that σ% is
deterministic. Note that σ% always commits, i.e., every token on a system place can move to a
commitment set.
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Lemma 24 σ% is a deterministic, deadlock-avoiding strategy that always commits.

Proof It is easy to see that the constructed net is a branching process of GC. The only
transitions that might not be added are local τ -transitions. Since they are local and leave
a system place we can refuse to add them without violating justified refusal. From any
commitment set the construction adds all transitions possible from this set, i.e., does not
restrict any transitions that can occur from the commitment sets. The constructed σ%
is hence a strategy. For every system place we add exactly one commitment set. σ% is
therefore deterministic and always chooses a commitment set. As σ% always commits, it is
also deadlock-avoiding.

Strategy-Equivalence
Having constructed σ%, we can prove it strategy equivalent to %. For our bisimulation we use the
previously defined ≈B and restrict it to the reachable markings in N σ% and plays compatible
with %. The previous lemmas (Lemma 22 and Lemma 23), established for the unfolding, extend
to the restricted version.

The definition of σ% and ≈B are, on its own, completely independent. Lemma 23, however,
established an important connection between both: Assume that M ≈B u. By definition it
holds that �(pastT (M)) = u. In our construction of the strategy, every system place q in M
decides what commitment set to choose by construction a play from its causal past and copy
the decision of %. According to Lemma 23, the computation of viewp(�(pastT (q))) (as done in
the strategy definition) agrees with viewp(u). We hence conclude that in ≈B-related situations
the places in M copy the decision made by % on u. We can argue in both direction:

Suppose in M there is a transition (a,B, {As}s∈B) enabled. a is either controllable or
uncontrollable. If uncontrollable u can be extended by a as it is independent of the
controller and the state reached on u agrees with λ[M ] (Lemma 22). If a is controllable
all places q involved in (a,B, {As}s∈B) represent commitment sets that contain a. The
commitment set of a place q was chosen by computing viewp(�(pastT (q))) for the respective
process p and define the commitment set as the set of action allowed by the controller. By
Lemma 23 this is, however, identical to viewp(u). Since a is included in the commitment
set of all involved places we can deduce that a must have been allowed by the controller of
each involved process. We get that u a ∈ Plays(C, %).

Suppose u a ∈ Plays(C, %). Then a is either uncontrollable or controllable. We first move
all tokens from M to a commitment set to be able to execute observable transitions.
Call this marking M ′. In case of a being uncontrollable we can deduce that a transition
corresponding to a is possible from M ′. If a is controllable we observe that all processes
involved in a allowed a. By Lemma 22 every place in M ′ involved in a has chosen its
commitment set in accordance with the controllers decision on u. As all involved processes
allowed a, a is included in all commitment sets. There hence is a transition corresponding
to a enabled in M ′.

We can now give formal proofs: We begin by showing that it suffices to show that in ≈B-related
situations the same actions/transitions are possible. That is, if M ≈B u and we extend M and
u by the same action/transition we obtain markings and plays that are again related5.

5For the first translation Chapter 5 we have not needed such a results as we defined ≈B-directly in terms of
firing the actions in the branching process of a strategy. Extending a related marking and play with the same
action/transition hence automatically resulted in related situation.
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Lemma 25 If M ≈B u and M [ τ∗(a,B,{As}s∈B)τ∗ 〉 M ′ for some M ′ and u′ = u a then
M ′ ≈B u′

Proof From M ≈B u we conclude that �(pastT (M)) = u. All τ -transitions are local, i.e.,
involve only one place and hence not add any dependencies in the poset of pastT (M ′). An
action a adds dependency, i.e., a causal relation, to all actions from processes in dom(a).
As by construction (a,B, {As}s∈B) involves places of tokens that correspond to dom(a) it
induces a dependency to the transitions that belong to action where process in dom(a) are
involved in. It hence holds that �(pastT (M ′)) = u′.

We can now formally proof bisimilarity. GC comprises additional tMDL-transitions used to detect
artificial deadlocks. For our bisimulation proofs we ignore them. We later show that they are
indeed never enabled if we construct σ% from a deadlock-avoiding controller %.

Lemma 26 If M ≈B u and M [ (a,_,_) 〉 M ′ for some M ′ ∈ R(N σ%) then u′ = u a ∈
Plays(C, %) and M ′ ≈B u′

Intuition Assume M [ (a,B,{As}s∈B) 〉 M ′. We distinguish whether a is controllable or
uncontrollable. If uncontrollable we immediately get that u′ = u a ∈ Plays(C, %). If
controllable we know that a ∈ As for all s ∈ B. By Lemma 23 each system places copies the
decision of one process on u. Since a is contained in all commitment sets, every processes
involved in a must have allowed it so u′ = u a ∈ Plays(C, %).

Proof If M ≈B u then ζ(λ[M ]) = state(u) (1) (by Lemma 22). We first remark that a is a
possible extension of u in the underlying game arena, i.e, u a ∈ Plays(C). This follows from

preN ((a,B, {As}s∈B)) ⊆ λ[M ]

ζ(preN ((a,B, {As}s∈B))) = B ∈ domain(δa)

and (1). We now show that u′ = u a ∈ Plays(C, %). M ′ ≈B u′ follows from Lemma 25. We
distinguish two cases:

If a ∈ Σenv: Since a is enabled an uncontrollable and u a ∈ Plays(C) it follows that
u a ∈ Plays(C, %), i.e, u a is a % compatible play.

If a ∈ Σsys: We know that a is enabled in state(u). By our construction of GC because
a ∈ Σsys and since M [ (a,B,{As}s∈B) 〉 M ′ we can, furthermore, conclude that a ∈ As
holds for all s ∈ B (2).
We assume for contradiction that u a 6∈ Plays(C, %). Then there is a process p ∈ dom(a)
s.t. a 6∈ f%p (viewp(u)). We derive the contradiction by showing that the set of allowed
actions agrees with one of the commitment sets in M which, by (2), contains a.
Since (a,B, {As}s∈B) is enabled in M and because of (1) we conclude that for the
place q = M 〈p〉 it holds that λ(q) = (statep(u), Astatep(u)). Since p ∈ dom(a) we
conclude that statep(u) ∈ B and from (2) we get that a ∈ Astatep(u). The place that
belongs to process p has choosen a commitment set that includes a.
We can now observe how this commitment set was chosen. Let q′ be the predecessor
(system) place of q, i.e., the place in the strategy from which we added q as a
committent set. When considering the construction of σ% we observe that q′ computed
what commitment set to choose by applying � to its causal past. By looking at the
definition it holds:

Astatep(u) = f%p (viewp(�(pastT (q′))))
= f%p (viewp(�(pastT (q))))
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where the last equality holds since the causal past of q ad q′ only differ by one
τ -transition.
By Lemma 23 we get that

viewp(u) = viewp(�(pastT (q)))

We can conclude

Astatep(u) = f%p (viewp(�(pastT (q))))
= f%p (viewp(u))

The commitment set encoded in q (Astatep(u)), i.e, the set place q′ decided to add,
agrees with the decision of p on u. This is a contradiction to a ∈ Astatep(u) and our
assumption a 6∈ f%p (viewp(u)).

Lemma 27 If M ≈B u and M [ τ 〉 M ′ then M ′ ≈B u.

Proof Obvious consequence from definition of ≈B.

Using the two previous lemmas we already show that our assumption in the strategy construction
((A)) is justified:

Corollary For any place q ∈ N σ% that belongs to process p, u = �(pastT (q)) is a %
compatible play and statep(u) = λ(q)

Proof q is part of some reachable marking M and by Lemma 26 and Lemma 27 there is a
play u with M ≈B u. By Lemma 23 it holds that �(pastT (q)) = viewp(u) so, as viewp(u)
is a % compatible play, �(pastT (q)) is as well. statep(u) = λ(q) follows from Lemma 22.

Lemma 28 If M ≈B u and u′ = u a ∈ Plays(C, %) then there exists M ′ ∈ R(N σ%) with
M [ τ∗ (a,_,_) 〉 M ′ and M ′ ≈B u′.

Intuition We first move every token on a system place in M to an environment place,
i.e., to a place with chosen commitment set. We distinguish whether a is controllable
or uncontrollable. If a is uncontrollable we have a transition of the from (a,B, {As}s∈B)
independent of the commitment sets. If a is controllable we can only fire a (a,B, {As}s∈B)
transition if a is included in all commitment sets As. By Lemma 23 the commitment sets
are exactly the actions the processes allowed after u. Since u a is in Plays(C, %) we get that
a must be allowed by all involved processes and is hence included in all committent sets.

Proof Since M ≈B u we know that ζ(λ[M ]) = state(u) (by Lemma 22). We first move
every token in M that resides on a system place to an environment place, i.e., move it to
a chosen commitment set. Since σ% is by construction deterministic and always commits
there is exactly one τ -transition possible from every system place. So M [ τ∗ 〉 M ′′ and in
M ′′ every token is on an environment place. It holds that ζ(λ[M ′′]) = ζ(λ[M ]) = state(u).
We, furthermore, know that every q ∈ M ′′, λ(q) = (s,As), i.e., every place represents
commitment set. For every local state s ∈ state(u) there hence is a commitment set As, s.t.
there is a token on a place labelled (s,As) (1).
Let B = {statep(u)}p∈dom(a). Since a can occur from state(u) (as u a ∈ Plays(C, %)) we
know that B ∈ domain(δa). We now claim that there is a transition corresponding to a
possible from M ′′. As each transition explicitly encodes the configuration in domain(δa)
and commitment sets, we need the global state B and the current commitment sets As from
(1) to “design” the transition. We distinguish whether a is controllable or uncontrollable:
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If a ∈ Σenv: We consider the transition t = (a,B, {As}s∈B) where B and the As’s are
the state and sets from above. Such a transition exists as for uncontrollable actions
transitions are added independent of the commitment sets. Because of (1) we know
that t is enabled from M ′′, i.e., M ′′ [ t 〉 M ′ for some M ′. M ′ ≈B u′ follows from
Lemma 25.

If a ∈ Σsys: As u′ = u a ∈ Plays(C, %) we know that for every process p ∈ dom(a),
a ∈ f%p (viewp(u)) (2). We consider the transition t = (a,B, {As}s∈B) where B and
the As’s are the state and sets from above. Since a is controllable such a transition
must not necessarily exists. To show the existence we need to show that a ∈ As for
every s ∈ B.
Assume for contradiction that a 6∈ As′ for s′ ∈ B (and p the process with s′ ∈ Sp).
We derive the construction by showing that the commitment set As′ agrees with the
set of transitions allowed by p after u which, by (3), contains a.
Let q = M ′′〈p〉. It holds that λ(q) = (s′, As′), which exists by (1). We can study
the construction of σ% to see how the commitment set As′ was chosen. Let q′ be the
predecessor of q, i.e., the place from which q was added as a commitment set. By
construction it holds that

As′ = fp(viewp(�(pastT (q′))))
= fp(viewp(�(pastT (q))))

where the last equality holds since the pasts of q and q′ differ only by a τ -transition.
From Lemma 23 we get

viewp(u) = viewp(�(pastT (q)))

We conclude

As′ = fp(viewp(�(pastT (q))))
= fp(viewp(u))

The commitment set As′ encoded in q was added from q′ agrees with the decision of p
made on play u. This is a contradiction to a ∈ fp(viewp(u)) (2) and our assumption
that a 6∈ As′ .
Since t exists and because of (1) we know that t is enabled from M ′′, i.e., M ′′ [ t 〉 M ′
for some M ′. M ′ ≈B u′ follows from Lemma 25.

Corollary % and σ% are bisimilar.

Proof By definition Inσ% ≈B ε. Since there are (unobservable) τ -actions in C the statements
follows from Lemma 26, Lemma 27 and Lemma 28.

Deadlock-Avoidance
So far we have established bisimilarity under the assumption that no deadlock detecting
transitions tMDL is enabled. We now show that it is valid to assume. As discussed before a tMDL is
enabled if the strategy manoeuvred into an artificial deadlock. σ% simulates % and copies each
decision of the controller. Since the commitment sets are chosen according to the controller an
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artificial-deadlock is never reached, as it would correspond to a deadlock of %.

Lemma 29 If % is deadlock-avoiding then there are no tMDL transitions enabled in any
reachable marking of N σ% .

Proof Suppose there is a reachable marking M and a tMDL transition enabled from M .
By construction tMDL only exists if M is final. Using bisimulation of σ% and % we get a
play u ∈ Plays(C, %) with M ≈B u. By bisimilarity u is maximal (since M is final). By
construction of tMDL there is an action enabled from ζ(M) in the underlying automaton. By
Lemma 22 it holds that ζ(M) = state(u), so state(u) is not final. There hence is a play u
that is maximal w.r.t. % but ends in a non-final state state(u). This is a contradiction as
deadlock-avoiding requires a controller to only terminate in final states.

Winning Equivalence
Finally we can show that σ% is winning. Having already proved the bisimilarity this is rather
easy.

Lemma 30 If % is winning then σ% is winning.

Proof As noticed in Lemma 24 σ% is deadlock-avoiding.
Suppose there is a markingM reachable in N σ% that contains a bad place q. By construction
of GC it either holds that λ(q) ∈

⋃
p∈P Sp or λ(q) = Bp, i.e., the bad state must either be

inherited from C or part of the deadlock-detection mechanisms.

If λ(q) ∈
⋃
p∈P Sp, i.e., q is a place resulting from a bad state in C: By bisimulation

there is a u ∈ Plays(C, %) withM ≈B u. It holds that ζ(λ[M ]) = state(u) (Lemma 22).
By construction of GC , state(u) must contain a bad place. A contradiction ot the fact
that % is winning.

If λ(q) = Bp, i.e., q is a bad place added to detect artificial deadlocks. Since % is by
definition deadlock-avoiding, Lemma 29 gives us that no tMDL transition is enabled in
any reachable marking in N σ% . λ(q) = Bp is hence not possible.

We can state the first half of Theorem 4:
Proposition 5 If % is a winning controller for C then σ% is a winning, deterministic strategy
for G and bisimilar to %.

6.3.4 Translating Strategies to Controllers

In this section we provide the formal translation of strategies for GC to controllers for C. Given
a winning, deterministic strategy σ for GC that always chooses a commitment set. We construct
a winning controller %σ = {f%σp }p∈P for C. We refer to the fact that σ always commits by ?.
The description of %σ is depicted in Fig. 6.7.
%σ does what we argued informally. We depict the decision of a local controller f%σp for

process p. Given some play u it tries to simulate the actions in u in the branching process of
N σ. Since GC comprises additional local τ -transitions the simulation needs to add them as well.
After having played an action from u, %σ hence simulates as many τ -transitions as possible,
i.e., moves every token to a place that corresponds to a chosen commitment set. It is easy
to see that this is well-defined since all linearisations of a play result in the same marking: If
two actions in trace are independent they correspond to distinct parts in the unfolding. The
concrete order in which they are fired is hence irrelevant. The simulation of the actions in u
can fail, i.e., case b) can be reached. While we later show that if u is a controller compatible
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For p ∈ P and u ∈ Playsp(C).
Fix any linearisation u0, · · · , un−1 of u. Define M0 = Inσ. Define M̂0 as the marking
with M0 [ τ∗ 〉 M̂0 and there is no τ -transition enabled in M̂0. Since all τ are local and
σ is deterministic, M̂0 is unique.
Check if there is an observable transition t = (u0,_,_) enabled from M̂0. There is at
most one such transition t.

a) If such a t exists: Let M1 be the resulting marking, i.e., M̂0 [ t 〉 M1. Repeat the
procedure of playing as many τ -transitions as possible and all actions u1, · · · , un−1.

b) If no such t exists: Define f%σp (u) = ∅ (break).

We iterate like this until the markingMu = M̂n is reached. We observe that λ((Mu)〈p〉) =
(_,E) (Because of ?). Define f%σp (u) = E .

Figure 6.7 Definition of controller %σ = {f%σp }p∈P constructed from from strategy σ for GC. The
figure depicts the description of each of the local controller f%σp .

play the simulation always succeeds, we need to include b) to obtain a total function. In case
of a successful simulation, a marking Mu is reached. It is easy to see that on this marking all
tokens are on environment places, i.e., have chosen a commitment set. (Mu)〈p〉 is the place in
this marking that corresponds to p. Process p now copies the decision by allowing exactly the
action that are encoded in the commitment set of place (Mu)〈p〉 (E).

As an example, we consider our translation from Fig. 6.4. In Fig. 6.8 a possible winning
strategy σ̇ for ĠC is depicted. σ̇ always commits so, in particular, whenever only the empty
commitment set is available it is allowed. The only place from which any decision can be made
is C as a strategy can decide on a commitment set and thereby implicitly decide if transition
e should be allowed. In the initial state σ̇ allows e, i.e., admits the token on C to move to
place (C, {e}). The game then progresses: The first player can play either a or b and the second
can either take the controllable e or uncontrollable d. If they moved to B and D they can
synchronize. In case of an communication of c, the token that corresponds to p2 can deduce
whether the other player played a or b. In case of a the strategy terminates, i.e., allows the
player in C to move to the empty commitment set. In case of b the strategy allows e for one
more time. Note that σ̇ is winning as ĠC does not contain any bad places and σ̇ avoids artificial
deadlocks. To aid readability we label transitions of the form (a,B, {As}s∈B) with action a and
omitted the label of τ -transitions.

In Fig. 6.9 the resulting controller %̇σ is depicted. The controller is depicted by a table that
lists all plays allowed by the controller (the local view of p2) and the decision of the second
process p2. Just as σ̇ the controller initially allows e. Upon synchronization on c it only allows e
if the environment played b. If a has been played it refuses e. All decision of the controller are in
accordance with our description of the strategy translation. We can for exemplary comprehend
the decision made on the three plays (1, 2, 3). If the empty play is simulated according to
the definition the green marking M1 is reached. The place that corresponds to p2 (M 〈p2〉

1 ) has
chosen {e} as a commitment set, so %̇σ allows exactly e. Play (2) results in the blue marking
M2 in which the corresponding place has chosen the empty commitment set. Lastly play (3)
results in the pink marking M3. As the place in M 〈p2〉

3 is on a commitment set containing e, the
local controller of p2 in %̇σ allows e. The interested reader is advised to comprehend all decision
listed in Fig. 6.9.
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Figure 6.8 Example winning strategy σ̇ for the translated Petri game ĠC from Fig. 6.4. Reachable
marking M1,M2,M3,M3 and M5 are surrounded in green, blue, magenta, orange and red. Transitions
are labelled with the underlying actions. τ -transitions are depicted in gray and the label of them is
omitted.
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u ∈ Plays(ĊG , %̇) ∩ Playsp2 (ĊG) fp2 (u)

(1) ε {e}
d ∅
e ∅

(2) e, a, c ∅
(3) e, b, c {e}

e, a, c, d ∅
e, b, c, d ∅
e, b, c, e ∅
e, b, c, e, a, c ∅
e, b, c, e, b, c ∅
e, b, c, e, b, c, d ∅
e, b, c, e, b, c, d ∅

Figure 6.9 Controller %̇σ obtained by our translation if applied to the strategy in Fig. 6.8. The table
only depicts the decision of p2 as only it involves any controllable actions.

Strategy-Equivalence
Having defined %σ we can prove it bisimilar to σ. We use the same relation ≈B and restrict
it to the reachable markings in N σ and the plays compatible with %σ. As before the existing
results (Lemma 22 and Lemma 23) extend to the restricted version.

Lemma 31 If M ≈B u and p ∈ P and M 〈p〉 is an environment place, i.e., corresponds to a
chosen committent set then: Simulating viewp(u) as in the definition of %σ succeeds and
yields a marking Mviewp(u) where M 〈p〉 = (Mviewp(u))〈p〉

Proof From Lemma 23 we get that �(pastT (M 〈p〉)) = viewp(u). The actions in viewp(u)
hence agree with the past of q and since σ is deterministic the simulation is deterministic as
well. The simulation hence succeeds and yield a marking Mviewp(u). M 〈p〉 = (Mviewp(u))〈p〉

follows since the simulation fires exactly the transitions in the past from M 〈p〉.

Lemma 31 is a trivial consequence from Lemma 23 that allows us to prove the bisimilarity. It
tells that simulating the local view of a process results in a marking Mviewp(u) and the decisive
point in this marking is shared with M . This allows us to conclude a connection between our
definition of ≈B and our construction of %σ. In %σ every process simulates its local view and,
according to Lemma 31, thereby copies the decision in a related marking.

For our example we consider marking M4 in Fig. 6.8. It is easy to check that M4 ≈B u3 for

u4 = [ e , b , c , e , b , c , a ]I

In the simulation for our controller we simulate the local view of p2 on u4 which is [e, b, c, e, b, c]I,
i.e., identical up to a removed a. Simulating this play does not result in marking M4 but instead
in marking M5 coloured in red. The interesting place, i.e., place (C, ∅), is, however, shared in
both markings (as stated in Lemma 31). Controller %̇σ would on u4 hence forbid e and thereby
copy the decision in the related marking M4 even though he computed the different M5.

We can use Lemma 31 to show bisimilarity: We can reason in both direction:

If M [ (a,B,{As}s∈B) 〉 M ′ we can do a case analysis if a is uncontrollable or not. If it
is uncontrollable we immediately get that u a ∈ Plays(C, %σ) since the underlying state
reached on u agrees with λ[M ] (Lemma 22). If a is controllable we can deduce that a ∈ As
for all s ∈ B, i.e., every involved token has chosen a commitment set where a is included.
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By Lemma 31, %σ now simulates the local view of a process and thereby reaches a place in
M . Since all tokens involved in a have chosen a commitment set where a is included, all
processes involved in a will allow a. So u a ∈ Plays(C, %σ).

If, on the other hand, u a ∈ Plays(C, %σ) we first move every token in M to a commitment
set which is always possible by ?. The new marking is M ′. If a is uncontrollable a
transitions corresponding to a is possible from this commitment set combination. If a is
controllable every involved process has allowed a. By construction the processes decided
what to allow by simulating its local view, which, according to Lemma 31, results in a
place of M ′. Since every involved process allows a every involved place must have chosen
a commitment set where a is included. We drive that a transitions corresponding to a is
possible from M ′.

Since we assume that σ is winning, there can never be any tMDL-transitions enabled. We can
hence neglect them for our bisimulation proofs.

Lemma 32 If M ≈B u and M [ (a,_,_) 〉 M ′ for some M ′ ∈ R(N σ) then u′ = u a ∈
Plays(C, %σ) and M ′ ≈B u′

Intuition Assume M [ (a,B,{As}s∈B) 〉 M ′. We distinguish whether a is controllable or
uncontrollable. If uncontrollable we immediately get that u′ = u a ∈ Plays(C, %σ). If a
is uncontrollable we know that a ∈ As, i.e., a is included in every commitment set. By
Lemma 31 every process in dom(a) simulates its local view and arrives at a place in M .
Every process hence allows exactly the actions that are included in one of the commitment
sets As. So every involved process allows a and u′ = u a ∈ Plays(C, %σ).

Proof Since M ≈B u we know that ζ(λ[M ]) = state(u) (1) (by Lemma 22).
Because (a,B, {As}s∈B) is enabled in M , (1) holds and our construction of transitions we
know that a is enabled from state(u), i.e., u a ∈ Plays(C). We distinguish two cases:

If a ∈ Σenv: Then u′ = u a ∈ Plays(C, %σ) follows from the definition of control games.
M ′ ≈B u′ follows from Lemma 25.

If a ∈ Σsys: Assume for contradiction that u′ = u a 6∈ Plays(C, %σ). Then there is a
p ∈ dom(a) with a 6∈ f%σp (viewp(u)). We derive the contradiction by showing that the
set of allowed transitions by p is exactly one of the commitment sets in M which by
assumption includes a.
M 〈p〉 ∈ M is the place that corresponds to process p. As this place is involved in
(a,B, {As}s∈B) and (a,B, {As}s∈B) is enabled in M we conclude that λ(M 〈p〉) is
an environment place, i.e., a chosen commitment set. Because of (1) we get that
λ(M 〈p〉) = (statep(u), Astatep(u)) By construction of GC and since (a,B, {As}s∈B) is
enabled we get that a ∈ Astatep(u).
Let E = f%σp (viewp(u)) be this decision of process p on u. We can now study how
%σ came to this decision. It does so by simulating viewp(u) in the branching process
of σ and reaches a marking Mviewp(u) (by Lemma 31 the simulation is successfully).
By construction p then chooses E as the set with λ((Mviewp(u))〈p〉) = (statep(u),E).
That is %σ copies the decision of the corresponding place in Mviewp(u).
From Lemma 31 we now get that

M 〈p〉 = (Mviewp(u))〈p〉
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This allows us to conclude that

(statep(u),E) = λ((Mviewp(u))〈p〉)
= λ(M 〈p〉)
= (statep(u), Astatep(u))

We get that f%σp (viewp(u)) = E = Astatep(u). The decision of what to enable
(f%σp (viewp(u))) hence agrees with the commitment set of place M 〈p〉 which is M 〈p〉.
This is a contradiction to a ∈ Astatep(u) and our assumption a 6∈ f%σp (viewp(u)).
So u′ = u a 6∈ Plays(C, %σ). M ′ ≈B u′ follows from Lemma 25.

Lemma 33 If M ≈B u and M [ τ 〉 M ′ for some M ′ ∈ R(N σ) then M ′ ≈B u.

Proof Obvious consequence from definition of ≈B.

Lemma 34 If M ≈B u and u′ = u a ∈ Plays(C, %σ) then there exists M ′ ∈ R(N σ) with
M [ τ∗(a,_,_) 〉 M ′ and M ′ ≈B u′.

Intuition We first move every token to an environment place, i.e., to place that encodes
a commitment set. This is possible because of ?. We distinguish if a is controllable or
uncontrollable. If uncontrollable there always is a (a,B, {As}s∈B)-transition, independent
of the chosen commitment sets. If controllable we need to show that a is in the commitment
set of all paces involved in a (a,B, {As}s∈B)-transition. By Lemma 31 every process allows
exactly the actions that are included in the commitment sets. Since u′ = u a ∈ Plays(C, %σ)
every involved process has allowed a so every involved place has included a in its commitment
set.

Proof SinceM ≈B u we know that ζ(λ[M ]) = state(u) (by Lemma 22). We first move every
token that resides on a system place to an environment one, i.e., to a commitment set place.
Since σ satisfies ?, i.e., always commits this is always possible. So M [ κ 〉 M ′′ for some M ′′
and there are no enabled τ -transitions in M ′′. It holds that ζ(λ[M ′′]) = ζ(λ[M ]) = state(u).
For every q ∈M ′′ it holds that λ(q) = (s,As), i.e., all tokens have chosen a commitment
set. For every local state s ∈ state(u) there is a set As such that there is a token on a place
labelled (s,As) (1).
Since u a ∈ Plays(C, %σ) we know that a can occur from state(u). Let B =
{statep(u)}p∈dom(a). Since a can occur from state(u) (as u a ∈ Plays(C, %)) we know that
B ∈ domain(δa). We now claim that there is a transition corresponding to a possible from
M ′′. As each transition explicitly encodes the configuration in domain(δa) and commitment
sets, we need the global state B and the current commitment sets As from (1) to “design”
the transition. We distinguish whether a is controllable or uncontrollable.

If a ∈ Σenv: Consider the transition t = (a,B, {As}s∈B) where B is the global
state from above and As are the sets such that there is a token on (s,As) (1). By
construction of GC such a t exists. We conclude that t is enabled in M ′′ and, as t
involves only environment places, it is allowed by σ so there is a M ′ with M ′′ [ t 〉 M ′.
M ′ ≈B u′ is follows from Lemma 25.

If a ∈ Σsys: We know that for every p ∈ dom(a), a ∈ f%σp (viewp(u)) (2). We again
consider the transition t = (a,B, {As}s∈B) where B is the global state from above
and As are the sets such that there is a token on (s,As) (1). By construction of GC
such a transition only exists if a ∈ As for all s ∈ B.
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Assume for contradiction that a 6∈ As′ for some s′ ∈ B. Let p be the process with
s′ ∈ Sp (it holds that statep(u) = s′). We derive the contradiction by showing that
the set As′ is the set of actions allowed by p on u and a must therefore, by (2), be
included.
For M ′′〈p〉 ∈ M it holds that λ(M ′′〈p〉) = (s′, As′). Let E = f%σp (viewp(u)) be the
decision made by p. We can study how %σ came to this decision. It does so by
simulating viewp(u) in the branching process of σ and reaches a marking Mviewp(u).
E is then, by construction, the set with λ((Mviewp(u))〈p〉) = (statep(u),E).
From Lemma 31 we get that

(Mviewp(u))〈p〉 = M ′′〈p〉

So we can derive that

(s′, As′) = λ(M ′′〈p〉)
= λ((Mviewp(u))〈p〉)
= (statep(u),E)

So f%σp (viewp(u)) = E = As′ , i.e., the commitment set As′ agrees with the decision of
p made on u. This is a contradiction to a ∈ f%σp (viewp(u)) (2) and our assumption
that a 6∈ As′ .
We conclude that t exists and is enabled in M ′′ so there is a M ′ with M ′′ [ t 〉 M ′.
M ′ ≈B u′ follows from Lemma 25.

Corollary σ and %σ are bisimilar

Proof By definition it holds that Inσ ≈B ε. Since there are now unobservable τ -actions in
C the statements follows from Lemma 32, Lemma 33 and Lemma 34.

Deadlock-Avoidance
We show that %σ is deadlock avoiding. By construction %σ allows exactly the actions that σ has
included in the commitment sets. To avoid all tMDL transitions σ has to choose commitment sets
such that there is a transition possible if there is an action possible from the corresponding state
in C (cf. Artificial deadlocks). By copying commitment sets there is no deadlock reachable.

Lemma 35 If σ is deadlock avoiding and avoids tMDL-transitions, %σ is deadlock-avoiding.

Proof Assume for contradiction %σ is not deadlock-avoiding. Then there exists a play
u ∈ Plays(C, %σ) that is maximal w.r.t. the controller that could be extended in the
underlying automaton. By bisimulation there exist a reachable marking M in N σ with
M ≈B u. Let M ′ be the marking that results from M by playing as many τ transitions as
possible, i.e., where every token has chosen a commitment set. Because σ satisfies ? in M ′
every token is on an environment place (i.e., has chosen a commitment set). It holds that
M ′ ≈B u.
Since u is maximal, M ′ is final (by bisimulation). Because σ is deadlock avoiding, λ[M ′]
is final as well. Since u can be extended in the underlying automaton there exist an
action a that is enabled in state(u), i.e., state(u) is not final. By Lemma 22 it holds that
ζ(λ[M ′]) = state(u). By construction of the deadlock detection mechanism there hence
is a transition t

λ[M ′]
DL that is enabled in λ[M ′] and can not be averted by strategy. A

contradiction to the assumption.
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Winning Equivalence
Once we established the bisimilar behavior we can show that %σ is indeed winning.

Lemma 36 If σ is winning, %σ is winning

Proof Since σ is winning it is by definition deadlock-avoiding. It, furthermore, avoids all
tMDL transitions so, by Lemma 35, %σ is deadlock-avoiding.
Suppose u ∈ Plays(C, %σ) is a play that reaches a state that contains a bad state. By
bisimulation there is reachable marking M in N σ with M ≈B u. Let M ′ be the marking
where the last τ -transition of ever place is reversed, i.e., M ′ is almost identical to M but
every token is on a system place. It holds thatM ′ ≈B u. (We only need to do this reasoning
because bad places in GC are restricted to the system places. ) Using Lemma 22 we conclude
that ζ(λ[M ′]) = λ[M ′] = state(u) so by construction of GC, M ′ contains a bad place. A
contradiction to the fact that σ is winning.

We can conclude the second half of the Theorem 4.
Proposition 6 If σ is a winning deterministic strategy for GC then %σ is a winning controller
for C and bisimilar to σ.

6.4 Enforcing Commitment

For our previous proofs to work and our results to hold we need strategies that always commit.
In this section we outline how the winning objectives for the system can be used to enforce
commitment.

For safety objectives it is difficult to force commitment since allowing fewer transitions is
in general better. To avoid trivial strategies that refuse everything, strategies for safety games
must be deadlock-avoiding. The system must hence allow some move in the global game if there
is a move possible in the underlying arena. By definition deadlock-avoidance hence describes
a global property of the strategy. In GC we require local deadlock-avoidance in the sense that
the system tokens always have to choose a commitment set. It is important to note that both
are not the same. To be deadlock-avoidant in the original sense it suffices if a single player can
play continuously. In GC such a player would enable others to refuse commitment without being
(globally) deadlocked.

As an example, consider the control game in Fig. 6.10 (a) and the translated Petri game in
(b) (ignoring all grayed out parts). Even though the control game has no winning controller, the
Petri game has a winning strategy: The token in A refuses to commit and the token in D plays
transition c for ever. We can note that if the token in A chooses a commitment set, even if it is
the empty one, the uncontrollable a transitions can occur, causing a loss.

We can use the structure of GC to reduce local deadlock-avoidance to global one. The idea is
to terminate certain player. For every process we add an additional place as a “safe-haven”,
i.e., a place that is neither losing nor has it any outgoing transitions. We allow every token
that is on an environment place, i.e., a place representing a chosen commitment set, to move
to this new place. Every token that behaves as intended, i.e., always commits, can hence be
moved to the haven and is therefore effectively removed from the game. All players that are
locally deadlocked, i.e., refused to commit, could previously do so since some player continued
playing. As soon as all other player terminate the locally deadlocked players do, however, cause
a global deadlock since there no longer is a progressing player that can justify their refusal. If in
Fig. 6.10 the second player corresponding to p2 would be removed from the game the first player
creates a global deadlock. Every strategy where a token is locally deadlocked hence results in
a (globally) deadlocked strategy and is therefore by assumption not winning. We successfully
reduced local deadlock-avoidance to global deadlock-avoidance. Our reduction relies on the fact
that Petri games are conceptually scheduled by an adversary scheduler. While the transition
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Figure 6.10 (Safety) Control game C (a) and our translated Petri game GC (b). Non interesting
commitment sets for places B and C are omitted. The greyed parts model the addition of the challenge
transitions in Gch

C . GC (without the grayed out parts) has a winning strategy. Gch
C does not admit a

winning strategy.

leading to a safe haven is always possible, it might not be executed. Following this high level
explanation we proceed by outlining the precise construction.

Construction
We formally modify GC into a new game Gch

C . For every process p we add an additional place
>p to GC. This place serves as the “safe-haven”. We allow every token to move to this place
whenever it has chosen a commitment set. We hence define a new set of transitions

T ch = {tch(s,A) | s ∈
⋃
p∈P

Sp ∧ A ⊆ act(s) ∩ Σsys}

and add them two the game. There is exactly one such tch(s,A)-transition for every environment
place, i.e., every place with commitment set (s,A). We extend the flow such that these transitions
fire from precisely the commitment set encoded in the transition:

preG
ch
C (tch(s,A)) = {(s,A)}

Every tch(s,A) transition moves the token of the involved process to the safe haven, >p:

postG
ch
C (tch(s,A)) = {>p | where p is the process with s ∈ Sp}

Note that the precondition of all tch(s,A) comprises only environment places and can hence not
be restricted by a strategy. In Fig. 6.10 the added transitions and places are depicted in gray.
From every commitment set a token can always move to the > place. In the modified game
the system no longer has a winning strategy, since the token in D can be stopped at any point
causing the token in A to create a deadlock.

Correctness We can first observe that in any winning strategy σch for Gch
C every system place

always commits. This follows directly from the construction: Suppose there is such a situation
i.e., a marking M in N σch where a system place q ∈M refuses to commit, i.e, postNσch (q) = ∅.
We now consider one possible sequence starting in M : Every system place that can commit
chooses a commitment set and afterwards terminates using a tch-transition. This results in a
final marking M ′ with q ∈M ′. M ′ is, however, a deadlock as in the underlying Petri net since
q could still progress to a commitment set place.
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Following this we can argue that GC has a winning strategy that always commits if and only
if Gch
C has a winning strategy.

It is easy to see that any winning strategy σ for GC that always commits results in a winning
strategy σch for Gch

C : The branching process of σch is just extended by all places and transitions
introduced with the, i.e., from every commitment set place an outgoing tch-transition is added.
Since only the > places are added there is no bad place reachable in σch. Since σ always commits,
firing one of the tch transitions does not result in a deadlock, since every token can always move
to a commitment set and afterwards either progress further or use a tch transition to terminate.
A winning strategy σch for Gch

C results in a winning strategy σ for GC that always commits: The
branching process of σ is obtained by removing all places and transitions that where added in
the construction of Gch

C . The idea is, that, while in σch the player can terminate early using
a tch transitions, there is also the possibility of them just playing as if there is no challenge
transition. As there is no bad place reachable in σch there are no bad places in σ either. Now
assume for contradiction that in σ some place refused to commit in some marking M . Since σ is
obtained by removing parts of σch we get that M is also a marking in σch but by the previous
consideration this is not possible. Finally because every system player always commits, σ is also
deadlock-avoiding.

Proposition 7 Gch
C has a winning strategy iff GC has a winning strategy where every system

place always chooses a commitment set.

We can use this result to justify the assumptions made in our correctness proves (Sec. 6.3.2)
since we can always modify GC to enforce commitment of all system player. We remark that
Gch
C is not strategy-equivalent to C as a deadlock challenges can end a game even though the

controller can continue to play. For every winning strategy for Gch
C there, however, is a “identical”

winning strategy for GC that, itself, is bisimilar to a controller for C. Even though Gch
C and C are

not strategy-equivalent, they are winning equivalent.

6.5 On Size and Lower Bounds

As for our first translation, computation of GC is straightforward and local and the computational
effort hence bounded by the size of the translation: The size of our translated GC is substantially
bigger than the size of our translation from Chapter 5. The main reason for that is the restricted
communication scheme of Petri games which requires us to make every synchronization explicit,
i.e., encode it as a distinct transition. In control game the same action can fire from distinct
preconditions. In our first translation from Chapter 5 we could move most complexity in
the transition function by describing the automaton as the parallel composition and thereby
implicitly build all possible combinations without explicitly encoding them in the actions. The
size of GC hence naturally depends on the number of reachable states in C. Let R(C) be the set
of reachable global states in C that is

R(C) = {s ∈
∏
p∈P

Sp | ∃u ∈ Plays(C), state(u) = s}

We can then observe observe:

|P| |
⋃
p∈P

Sp|+ |
⋃
p∈P

Sp| · 2|Σ| |P | |P |

|T | |Σ| · |R(C)| · 2|Σ|+|P | + |
⋃
p∈P

Sp| · 2|Σ| |R(C)| · 2|Σ|+|P | |
⋃
p∈P

Sp| · 2|Σ|

≤ + +

≤ + +

(1) (2) (3)
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To ease the understanding the size bounds are separated in three parts. The first column (1)
shows the bounds for the original description, the second (2) for the added deadlock-detection
mechanisms and the last (3) for the mechanism used to enforce commitment. Note that all
three parts are needed to obtain even winning equivalent games. The number of places is hence
linear in the number of local states from C and exponential in the size of the alphabet. The
amount of transitions of the from (a,B, {As}p∈dom(a)) is bounded by |Σ| · |R(C)| · 2|Σ|+|P | and
the amount of τ -transitions by |

⋃
p∈P Sp| · 2|Σ|. For the deadlock detection we added a single

place for each process and one transition for every artificial deadlock in DDL. Every marking in
DDL encodes both the current situation of the players as well as their commitment sets. The
number of tMDL-transitions is hence bounded by |R(C)| · 2|Σ|+|P |. For the commitment enforcing
we also added one place per process and added a transition for every commitment set, of which
there are at most |

⋃
p∈P Sp| · 2|Σ| many.

Overall we can note that the size of G is linear in the number of local states, exponential
in the size of the alphabet and number of processes and, furthermore, scales linear with the
number of reachable states in C6.

Lower Bound

x a1 a2 an

Figure 6.11 Control
game family {Cn}n∈N
where every strategy-
equivalent Petri game
(with an equal number
of player) must be of
exponential size. The
dotted action (x) is
uncontrollable. All other
actions a1, · · · , an are
controllable.

We can ask whether we can obtain a strategy-equivalent translation of
polynomial size. In the following we show that a polynomial translation
must either comprise additional player or destroy the structure of the
underlying game, i.e., be not strategy-equivalent. To show this, we
give a family of control games, s.t., every strategy-equivalent Petri
game must be of exponential size (in the size of |Σ|).

In our own translation we had to duplicate actions into multiple
transitions, to overcome the restrictive communication scheme of Petri
games. In our lower bound we offer a Petri game to do the same, i.e.,
allow the same transition to occur from multiple distinct situations. In
particular, our proof does not depend on the fact that any transition
can only occur from a fixed precondition.

Consider the control game family {Cn}n∈N depicted in Fig. 6.11.
We fix n and define C = Cn. The initial state has several outgo-
ing controllable actions (a1, · · · , an) and one outgoing uncontrollable
action (x). Let G be a Petri game that is strategy-equivalent to C
and also contains only one player. For our lower bound we need the
additional assumption that there are no infinite sequences of consec-
utive τ -transitions possible in a winning strategy7. Whereas winning
strategies in reachability games never permit such infinite sequences, we need to assume it
for safety games. Since τ -transitions conceptually correspond to internal computations of a
model (not related to observable behavior), infinite consecutive τ -sequences would correspond
to infinite internal computations. As safety games require progress, infinite local computations
are undesirable.

We can now show that there must be exponentially many places in G. The idea is to consider
any combination of actions from a1 to an, i.e., any subset B ⊆ {a1, · · · , an}. There now is a
controller for C that allows exactly the actions from B and the uncontrollable x. By bisimulation
we can show that there must be place where the observable outgoing transitions correspond to

6Note that the number of reachable states is exponential in |P |
7There is in fact a Petri game that is strategy-equivalent to Fig. 6.11 of polynomial size (it permits possibly
infinite τ -transition sequences).
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B, resulting in exponentially many places.

Lemma 37 For every ∅ 6= B ⊆ {a1, · · · , an} there is a place qB such that

postG(qB) = B ∪ {x}

Proof Choose % as the (winning) controller that allows exactly the controllable actions
in B and σ% as the bisimilar (winning) strategy for G. Now let M = {q} be a marking
that is reached (in the strategy) by firing as many τ -transitions as possible from the initial
marking. This marking may not be unique but, by assumption, it exists.
Since % and σ% are bisimilar and there are no τ -transitions leaving q we can conclude that
postσ%(q) = B ∪ {x} and therefore B ∪ {x} ⊆ postG(λ(q)).
We claim that λ(q) is an environment place. Assume for contradiction it is not, i.e., it is
a system place. We now modify σ% by removing every x transition leaving place q. Call
this modified strategy σ′. Note that, since q is by assumption a system place, the resulting
branching fulfils justified refusal, i.e., is indeed a strategy. It is, furthermore, easy to see
that σ′ is still winning since whenever a token is in place q all the other transitions in
B (B 6= ∅) are still possible and the behavior on them agrees with the behavior of the
(winning) σ%.
By assumption there now is a bisimilar winning controller %σ′ to σ′. This is an immediate
contradiction: In σ′ the place q is still reachable (using only τ -transitions) so it holds that
{q} ≈B ε. We know that x ∈ Plays(C, %σ′) as x is uncontrollable but by construction of
σ′ we get that x 6∈ postσ′(q). A contradiction to the bisimilarity of σ′ and %σ′ . We hence
know that q is an environment place.
As postσ%(q) = B ∪ {x}, q is an environments place and there is only one player it follows
that postG(λ(q)) = B ∪ {x}. qB = λ(q) now has the desired properties.

Theorem 5 There is a family of control games {Cn}n∈N with |Σn| = n such that every
strategy-equivalent Petri Game (with an equal number of players) must have at least Ω(dn)
places for a d > 1.

Proof Follows from Lemma 37 with d = 2.
Our lower bound again indicates an exponential gap between control games and Petri games.
While our translation from Sec. 6.3.2 shows that the difference between controllable and
uncontrollable actions vs. system and environment places can be overcome, the lower bound
outlines limitations and shows an intrinsic difference. Using our lower bound we can even
pinpoint to the main restriction that requires exponentially many places: Places in Petri games
allow for a restriction of either all or none of the behavior. As we saw, e.g., in Fig. 6.11, in
control games a single state can comprise both controllable and uncontrollable behavior. This
can not directly be matched by Petri games but must be explicitly encoded in the places. A
distribution in system and environment places can hence not directly copy controllable and
uncontrollable behavior of control games.
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New Decidable Classes

The main contribution of this work is the unification of control games and Petri games: Concur-
rency preserving Petri Games and asynchronous control games are equivalent. Apart from the
theoretical insights this allows us to transfer existing results between both game types. In this
chapter we exemplary outline newly identified decidable classes that can be obtained using our
translations.

7.1 New Decidable Control Games

We call a process p in a control game an environment process if all its actions are uncontrollable
(Σp ⊆ Σenv). A process that is not environment is called system process1.

Corollary (Safety) control games with at most one environment process are decidable.

Proof We can adopt our translation from Chapter 6 slightly: For every state s that has
no outgoing controllable actions (i.e., act(s) ⊆ Σenv) we do not add a system decision
place as the only available commitment set would be the empty one anyway. Therefore
all environment processes do not introduce any system places to the game. Decidability
follows from [11].

7.2 New Decidable Petri Games

Given a (reachability) Petri game G = (PS ,PE , T ,F , In,W) and a distribution in slices (or SNs)
S = {ςi}i∈I. We can analyse the communication structure between the SNs by building the
(undirected) communication graph (V,E) where V = S and E = {(ς1, ς2) | T ς1 ∩ T ς2 6= ∅}. It is
easy to see that this graph is isomorphic to the communication architecture of the constructed
control game CG (as described in [15]). A slice distribution S = {ςi}i∈I is called acyclic if the
communication graph for this distribution is acyclic. We define the new class of Petri games
Gã as every Petri game that has an acyclic slice distribution. Using [15] we get the following
results2:

Corollary Petri games in Gã are decidable.

Acyclic Petri games are a very broad class of games that captures a lot of interesting situations.
The results of this thesis are the first that allow for the synthesis of Petri games that comprise

1We remark that the following result holds even for the stronger formulation of bad situations used in [11]. We
can hence translate control games where losing situations are defined globally.

2In [15] they imposed additional assumption on the automaton. Namely they required that every winning state
has no outgoing actions. To be formal we can therefore only decide Petri games in Gã where every winning
place has no outgoing transitions.
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two or more system and two or more environment players. Previously the result from [12]
allowed to synthesize distributed startgies that interact on a single source of information.
Opposed to that, [11] enabled synthesis of strategies that are themself not distributed but act
in distributed environment and have to leverage communication to obtain information from
different information sources. Our results allow us to, for the first time, use Petri games to
synthesize strategies that are distributed themself and act in distributed environments. We
can hence model interesting situations where the players need to gather information from
distinct information sources and interact with each other by, e.g., exchanging the newly obtained
information. We note that there are many interesting problems that can be described with an
acyclic communication structure, e.g., client-server structures.

We do, however, need to remake that, while the communication graph of a slice distribution
S and CG agrees, it might differ from the structure in ĈG . We can therefore not generally extend
our result to the synthesis of deterministic strategies but need to manually inspect whether the
resulting ĈG has an acyclic structure3.

Lower Bound
We can also use our translation to transfer hardness results between both classes. In [15] they
showed that deciding control games is non-elementary hard. As our translation is exponential,
we immediately get a new hardness result for Petri games:

Corollary Deciding concurrency-preserving, safe (reachability) Petri games is non-elementary
hard.

There also exist hardness results for Petri games, namely the EXPTIME-hardness for bounded
games with either at most one system or at most one environment player [12, 11]. Since our
translation is exponential itself, this does, however, not yield any non-trivial lower bounds for
control games.

3The added E-actions add communication between processes that previously have not shared an action. While
we can not give a general characteristics of situations where ĈG is acyclic, we can give a sufficient criterion: Let
(V,E) be the communication graph of a distribution S. Define E′ = E ∪ E2, i.e., add all transitive edges to
bridge one transitive connection. If (V,E′) is acyclic then so is the communication architecture of ĈG .
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Conclusion

Synthesis of distributed systems is of great relevance as it allows for automatic construction
of real-world systems which are often of distributed nature. Synthesis in this framework is
particularly hard because of the complicated information flow between the environment and
the system. The existing approaches to identify classes for which the problem is decidable are
either stated in terms of control games [19, 14, 15, 16] or Petri games [12, 11]. In both games,
the system tries to use the limited controllability to restrict the behavior of the asynchronous
system such that an objective is fulfilled. The decisive similarity in both is the transmission of
complete information upon synchronization; the causal memory. In either formalism, general
decidability is an open question.

In this thesis we used the concept of commitment sets, the idea of committing to a set of
moves before they are actually executed, to overcome the different formalism in both games.
We provided exponential translations between the games and showed that resulting games are
strategy-equivalent, i.e., structure-preserving for strategies. In our correctness proofs we showed
that, even if causal memory is modelled fundamentally different in both types, the underlying
primitives are shared. We used partially ordered sets as a unified model of concurrent executions
and showed that poset representations can be obtained for both Petri games as well as control
games. This allowed us to translate the causal information from one player to the corresponding
player in a different game type. As a consequence of our translations, we were able to translate
existing decidability results to the respective different game type. Our findings hence allow for
the unification of results in both types and hopefully lead to a unified effort to investigate the
decidability-boundaries of asynchronous distributed synthesis. On the other hand, our lower
bounds highlight an intrinsic difference between both types.

8.1 Future Work

Translation Extensions A translation, as proposed in this thesis, naturally brings up numerous
questions. A first one being how the results of this work can be extended to a broader class
of winning objectives. As control games previously focused on reachability and Petri games
on safety objectives we presented one translation for safety and one for reachability. Since our
proofs of bisimilarity are invariant under winning objectives it should be easy to extend the
existing proofs to other objectives. We are certain that both translations work for safety and
reachability objectives. In general, for both control games and Petri games it is worth studying
generalisations to more expressive winning conditions such as LTL or Büchi.
Our translation from Petri games to control games (Chapter 5) is, furthermore, limited to
concurrency-preserving games. On the other hand, having non-concurrency-preserving games,
i.e., games modelling spawning and termination of player, enriches the expressiveness of Petri
games. A future direction would be to try and extend the translation to such games, by, e.g.,
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introducing dummy processes. On the side of Petri games there has been some effort to generate
concurrency-preserving Petri games. Having a translation from non-concurrency-preserving
Petri games to control games would immediately allow us to generate concurrency-preserving
Petri games. Neither of both approaches seems easy.

Determinism Determinism is an interesting area for future development in both frameworks, as
both game types, as of right now, restricts to either deterministic or nondeterministic strategies:
While we have not attempted to define a suitable notion of determinism for control games,
doing so and trying to extend existing results is fruitful. As control games do conceptually
not distinguish between system and environment player there are many natural notions of
determinisms: One could, for instance, require that in any situation from every local state at
most one controllable action is possible. Alternatively one can demand that from every local
state there is either at most one action possible or all possible actions are uncontrollable. Both
exemplary attempts can be justified.
On the side of Petri games, the previous results [12, 11] all focused on deterministic strategies.
As a future direction, it would be interesting to relax this notion and try to, e.g., extend existing
results to the nondeterministic setting. Actually one minor side-result of this thesis is a reduction
from deterministic Petri games to nondeterministic ones: We can translate a Petri game G to the
control game ĈG (Chapter 5) and afterwards use our second translation (Chapter 6) to translate
ĈG back into a Petri game G′. It is easy to see that G′ has (possibly nondeterminism) winning
strategy if and only if G has a deterministic winning strategy. We can hence reduce the search
for deterministic strategies to finding nondeterministic ones. While this requires to apply our
translation twice and thus yields games of doubly exponential size, we conjecture that the same
result can be achieved with an at most exponential blow-up.

Deadlock Avoidance Furthermore, it feels natural to extend the definition of deadlock-
avoidance: Especially in the second translation, we noticed that deadlock-avoidance, stated as a
global property, might not be well suited to require progress of a system as it allows players to
terminate in unrealistic situations. In a system consisting of completely disjoint parts deadlocks
are delusive as they entitle entire parts to deadlock as long as there is some, possibly completely
unrelated player, that can continue playing. It might be worth considering stronger, local
variants of deadlock-avoidance that require every player to progress locally1.

Unified Game Types Our lower bounds showed an unavoidable difference between both types.
While this is first and foremost of theoretical interest it motivates the pursue of unified game
models, i.e., models that offer precise control about who can restrict behavior, as in Petri
games, but at the same time allow to define what can be restricted, as in control games. Ideally
one finds intermediate game representations that allow to encode both a Petri game and a
control game without an exponential overhead. As our translations show that results can be
applied to respective different formalisms, it is intriguing to look for minimal game descriptions
that subsume both game types but where existing decidability results still yield interesting,
transferable classes of decidability.

New decidable classes From a practical point of view, our translations allow to transfer
decidability results between both models, two consequences of which were discussed in Chapter 7.
An interesting direction for future work is to observe how the other previous results [19, 14, 16]
relate to the respective different game, i.e., the question whether well defined, intuitive classes
can be obtained. Especially for decomposable games [16], a rather unintuitive class of games,
it is interesting to investigate whether the related class of Petri games is easier to grasp and
offers a more structural definition. We can already give a negative answer to the question of

1Such formalism would allow us to omit the rather complicated mechanism used to enforce commitment from
Sec. 6.4.
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direct transferability of some classes: Petri games with at most one environment player [12]
do not correspond to intuitive classes of control games (when using our presented translation).
One can, however, attempt to modify our translation or find restrictions on control games (e.g.,
∀a ∈ Σ : |domain(δa)| = 1) to obtain transferable classes. This would, most likely, require more
specific translations that are tailored towards one specific class.

Action Based Control Games As we briefly mentioned when summarizing previous work,
control games can be seen as a game played between the actions rather than the process. In
these action-based games all enabling decisions are made by actions, allowing decision that are
based on the combination of the local information of all processes [22]. An interesting future
direction would be to investigate how action-based control games relate to Petri games. That is,
extending our translations to action-based control games. Doing so would, most likely, require to
come up with a different notion of justified refusal that allows transitions to be prohibited based
on the causal past of all involved tokens. A first idea would be to allow a strategy to forbid any
transition as long as there is a system place in its precondition. Attempting a translation similar
to the one done in this thesis is intriguing and would allow us to consider distributed synthesis
from yet another perspective. If such a class of “transition-based” Petri games is found, one can,
furthermore, investigate whether there is a similar relation as shown in [22] between both “types”
of Petri games, i.e., show that ordinary Petri games can be reduced to “transition-based” ones.
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