
Synthesizing Verifiable Code for Large
Specifications Using Few-Shot Learning

Saarland University

Department of Computer Science

Bachelor’s Thesis

submitted by

Benedict Böttger

Saarbrücken, October 2023



Supervisor: Prof. Bernd Finkbeiner, Ph.D.

Advisor: Frederik Schmitt, M.Sc.

Reviewer: Prof. Bernd Finkbeiner, Ph.D.

Dr. Rebekka Burkholz

Submission: October 2, 2023



Abstract

In this work, we present a novel approach which leverages the few-shot learning
capabilities of Large Language Models (LLMs) to address the long-standing challenge of
synthesizing digital circuits from linear-time temporal logic (LTL) specifications. We
concentrate on parameterized specifications in this work, which are common in hardware
specifications, as they can describe a system of arbitrary size dependent on one or more
parameter values. Owing to the computational complexity (2EXPTIME-complete), classic
synthesis algorithms are not able to scale beyond relatively small parameter values.

Using implementations that fulfill the specification for lower parameter values, we will
task different LLMs with generating a satisfying implementation for a larger parameter
value. The smaller implementations can be either generated by classical synthesis tools,
which perform well on smaller specifications, or by using human-written solutions,
in a hybrid approach. For the hardware representation we directly target the Verilog
hardware description language instead of a more low-level representation like AIGER,
in order to leverage the expressiveness of the language in combination with LLMs.

We demonstrate that this approach can, in some cases, successfully synthesize correct
Verilog code using the examples given as well the LTL formula. This works especially
well if based on human-written solutions. In the successful instances, this approach can
scale to several orders of magnitude beyond what classical LTL synthesis tools like Strix
or BoSy can do on their own. Intriguingly, in a limited number of cases, the LLM is able
to accomplish this task zero-shot, not requiring any example implementations. While this
method is not consistent enough to be used on its own, we think that a hybrid approach
may prove useful, by integrating it with existing tools or a programmers workflow.
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Chapter 1
Introduction

Linear-Time Temporal Logic (LTL) specifications [1] are often used to describe the
temporal behavior of digital circuits. As such, they are commonly utilized for verifying
correct behavior of low-level systems like FPGAs or other computer chips. This process
is called model checking [2]. However, it requires building the system as well as the
specification separately, both complex tasks. This essentially amounts to doing the same
work twice, as the specification itself already contains all the information necessary to
build the system. For that reason it has long since been proposed to directly synthesize
an implementation from the specification alone [3]. The synthesis problem1 is intriguing,
since an efficient solution holds the promise of easing the development workflow to
just having to maintain a correct specification. But even though model checking has
been seeing wide use in industry for some time now, synthesis seldom makes an
appearance. This mostly comes down to the computational complexity of the problem.
Regarding LTL for example, the computational complexity of the LTL synthesis problem
is exponentially greater than what is required for LTL model checking [4] (which already
is computationally expensive). Restricting the types of specification has proven useful for
this in the past. Piterman, Pnueli, and Sa’ar [5], for example, restricted the specifications
to a specific subset that has a much lower theoretical complexity.

We, on the other hand, are only going to consider parameterized LTL specification.
Note that this isn’t a restriction in the sense that it reduces the theoretical complexity. It
is instead a practical consideration. Parameterized specifications are typical in hardware
applications and enable us to specify systems of an arbitrary size, dependent on one
or more parameter values. One could, for example, describe an adder circuit for an

1Different specification languages exist, but for the purposes of this work, we will only cover LTL
specifications and their corresponding model checking and synthesis problems
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1. Introduction

arbitrary number of bits n, the parameter in this case2. While classical tools perform
well on smaller parameter values for those specifications, as soon as the parameter value
is increased past a certain point, this will not be possible anymore. This is where we will
be applying the pattern recognition power of large language models (LLMs) to try and
go from these smaller examples to generalizing to larger specifications.

Our aim is to leverage the patterns in the LTL specifications that occur when scaling the
parameter values, which can carry over to the implementations, depending on how they
are generated. This is motivated by the success seen in recent years in utilizing machine
learning generally and LLMs specifically for logical reasoning tasks (see Sect. 2.5) and: Sec. 2.5, p. 11

why we are exploring the application of using LLMs for LTL synthesis. Central to our
work is the question of whether it is possible for an LLM, given some examples for smaller
parameter values, to pick up on the patterns in the code and generate a solution for larger
specifications, for which classical tools will time out. This technique of giving some
reference examples before the actual question is called few-shot learning and has seen a lot
of success recently [6, 7, 8, 9, 10]. For the actual hardware representation we are using the
Verilog hardware description language (HDL) [11], which has a reasonably high-level
syntax allowing for relatively compact modules. For the purposes of synthesizing code
we are especially hoping that the expressiveness of Verilog will give an advantage
compared to more low-level representations like AIGER [12].

In this work, we will first present the relevant background to our work (Chapter 2),:Chapter 2, p. 3

encompassing both formal methods as well as machine learning and LLMs. Afterwards
we will go over how we set up our experiments (Chapter 3), present detailed results:Chapter 3, p. 13

(Chapter 4). We will finally close with a summary, showing how our method can greatly:Chapter 4, p. 19

extend what state-of-the-art synthesis tools can do on their own, as well as giving an
outlook for possible future work (Chapter 5).:Chapter 5, p. 29

2An adder circuit doesn’t possess temporal properties but will be more familiar to most readers. A better
example to also show the temporal restrictions would be an arbiter circuit which sequentially grants
request one at a time.
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Chapter 2
Background

2.1. Linear Temporal Logic (LTL)

LTL was first introduced by Amir Pnueli [1] as a way to formally describe the behavior of
computer programs. It extends propositional logic by the temporal operators ⃝ (Next)
and U (Until). Starting relative from the current time step, ⃝ describes the following
time step, and aU b requires a to hold until b becomes true. Further operators can be
derived from these.

Formally, the syntax of any LTL formula φ is defined by the following grammar:

φ ::= true | p | φ∧φ | ¬φ | ⃝φ | φUφ

Where p comes from a finite set of atomic propositions AP.
We define the semantics of LTL as a language of infinite words, as described by Baier

and Katoen [2]. An LTL formula φ defines a language over the alphabet 2AP:

L(φ) = {δ ∈ (2AP)ω = A0A1A2 . . .
∣∣ δ |= φ}

with |= being the smallest relation satisfying:

σ |= true

σ |= a iff a ∈ A0

σ |= φ1 ∧φ2 iff σ |= φ1 ∧ σ |= φ2

σ |= ¬φ iff σ ̸|= φ

σ |= ⃝φ iff σ[1 . . . ] = A1A2A3 . . . |= φ

σ |= φ1 Uφ2 iff ∃j ⩾ 0. σ[j . . . ] |= φ2 and ∀0 ⩽ i < j. σ[i . . . ] |= φ1

3



2. Background

In practice we also often use the derived operators □ (Forever) and ♢ (Eventually). □
describes a property that has to hold true in every time step (from the current time step)
while ♢ expresses that in some future time step (including the current one), a property
must hold true. They are formally defined as:

♢φ ≡ true Uφ □φ ≡ ¬♢¬φ

As an example we will define a simple specification for a traffic light (controller), ensuring
the following two properties. 1) The red and green lights should never be on at the same
time and 2) in order to ensure traffic flow, there should always be red as well as green
phases. This could be achieved by the formula □((¬r∨ ¬g)∧ ♢r∧ ♢g) where r and g

correspond to the red and green light.
The addition of temporal operators has an interesting effect on the solutions. While

solving a formula in propositional logic only requires finding a single satisfying as-
signment, LTL requires finding a satisfying assignment each for an infinite amount of
discrete time steps, called an infinite trace.

2.1.1. LTL Specifications

LTL formulas are commonly used to model the behavior of digital circuits, where each
input and output signal corresponds to an atomic proposition whose value can change
in each time step. Verifying one of these circuits presents a challenge though, as only
the outputs can be controlled. To represent this notion, we formally define an LTL
specification as a triple (φ, I,O) consisting of an LTL formula together with the two sets I

(inputs) and O (outputs) which partition the set of atomic propositions AP = I ∪̇O. In
order to satisfy a formula φ, any circuit must respond to the inputs and set its outputs
accordingly. This can also be seen in Fig. 2.1, where a detector circuit is described, where:Fig. 2.1, p. 4

the output g is only true if and only if all of the inputs r0, r1, r2, r3 have been true since
the last time.

φ = (□(♢r0)∧□(♢r1)∧□(♢r2)∧□(♢r3)) ↔ □(♢g)

I = {r0, r1, r2, r3}

O = {g}

Figure 2.1.: The LTL specification for a 4-bit input monitor (“detector”), which outputs a
signal once all input signals have been high and then resets.

In practice, we are often going to use the format TLSF [13] to express our LTL
specifications. Not only can it easily be converted into other formats using the tool

4



2.2. Reactive Synthesis

SyfCo [13], it also lets us use some syntactical sugar to make writing LTL specifications
more manageable. It critically also allows us to express parameterized LTL, which
makes it possible to describe systems at different scales by changing a single parameter.
For example, the specification in Fig. 2.1 can be generalized to (

∧
0⩽i<n□♢ri) ↔ □♢g :Fig. 2.1, p. 4

(with I = {ri | 0 ⩽ i < n}, O = {g}). These parameterized LTL specifications can later be
expanded into regular LTL specifications by fixing the parameter values. Setting n = 4

here would result in the exact same specification as in Fig. 2.1. The exact syntax of :Fig. 2.1, p. 4

TLSF and how to express parameterized specifications in it are described in their format
description [13]. Fig. 2.2 provides an example for the aforementioned specification :Fig. 2.2, p. 5

expressed in TLSF.

INFO {

TITLE: "Parameterized Input Monitor"

DESCRIPTION: "Checks whether all input signals are eventually true"

SEMANTICS: Mealy

TARGET: Mealy

}

GLOBAL {

PARAMETERS {

n = 4;

}

}

MAIN {

INPUTS {

r[n]; // request signals

}

OUTPUTS {

g; // grant signal

}

GUARANTEES {

&&[0 <= i < n] G F r[i] <-> G F g;

}

}

Figure 2.2.: The specification for a n-bit parameterized input monitor (“detector”) in
TLSF format. The LTL formula is specified in ASCII characters: G = □, F = ♢

2.2. Reactive Synthesis

The problem of synthesizing a program from a formal specification alone was first stated
in 1957 by Church [3]. Since then many approaches have been put forth in an attempt to
efficiently solve this problem, some of which we will specifically discuss in Sect. 2.2.1. : Sec. 2.2.1, p. 6

The alluring promise is that instead of having to maintain complex code, it is enough to
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2. Background

write just the required specifications. The result is that the synthesized code is provably
correct w.r.t. the specification, making this a powerful technique especially for use in
safety critical systems. A simple example, again, is a traffic light controller, where you
want to ensure that e.g. the red and green lights shouldn’t be on at the same time.

Reactive synthesis specifically refers to the problem of synthesizing a reactive module
(program) such that it satisfies a formal specification [4]. A reactive module is a common
model for hardware circuits, representing a continuously running system which has
a fixed set of inputs and outputs. Since the inputs can change in each discrete time
step, the state and thus output can be dependent on multiple inputs seen over time. In
order to specify the behavior of these reactive modules, LTL is commonly used as a
specification language, though other languages exist as well. In this work, we will focus
on LTL synthesis only.

2.2.1. LTL Synthesis

In practice though, it is hard to synthesize code from an LTL specification. In fact, it
can be proven that the LTL synthesis problem is 2EXPTIME-complete [4] (solvable by a
Turing machine in O(22

nk

) time steps for some fixed k ∈ N where n ∈ N is the input size),
which makes solving the general case infeasible for larger specifications. In comparison,
the act of verifying the correctness of a specification against a problem is called model
checking and is in itself PSPACE-complete [2] (which is a subset of EXPTIME), so it usually
can be performed much faster.

We will now present two widely used LTL synthesis tools, which use distinct ap-
proaches, namely bounded synthesis and game-based synthesis. These tools, both state-of-
the-art in their respective approach, will provide a baseline to our work and is also what
we will be comparing our results against.

BoSy [14, 15] uses an approach called bounded synthesis. In contrast to other approaches,
it always produces a minimal solution (in the number of states). It works by first
translating the formula into a constraint system. It then sets a bound on the number of
states of the implementation and then tries to solve the system using an off-the-shelf
constraint solver. We are using the default, which is RAReQS [16]. If no solution can be
found, the bound is iteratively increased until a solution is reached, or the specification is
found to be unrealizable (by solving for the negation of the formula) [17]. Note that even
though the state space is technically finite for LTL synthesis, the exponential blowup
manifests quickly. From initial observations it also seems like the solutions BoSy provides
scale somewhat predictably.

Strix [18, 19], on the other hand, relies on a technique that goes much further back:
game-based synthesis, originally described by Büchi and Landweber [20]. For LTL, game-
based synthesis translates the LTL formula into a two-player (usually parity) game
between the system and environment. In each round, the environment player chooses
the value of the input variables, after which the system player tries to set the output

6



2.3. Hardware Representations

variables such that it satisfies the specification. If a winning strategy can be found,
the specification is realizable. The strategy can then be translated into e.g. an AIGER
implementation. Strix specifically uses parity games and employs nondeterministic
techniques in solving them. This results in Strix sometimes producing different solutions
on separate runs, which makes the scaling behavior harder to predict. The solutions are
also not necessarily minimal.

At the time of writing, Strix is the state-of-the-art LTL synthesis tool, as measured by
the SYNTCOMP competition [21, 22, 23].

2.3. Hardware Representations

2.3.1. AIGER And-Inverter Graph

An And-Inverter Graph (AIG) is a type of circuit only consisting of AND gates as well
as NOT gates, allowing it to describe any combinational (stateless) circuit [24]. In what
is commonly knows as a Sequential AIG, the representation is extended by a memory
element, e.g. a D-flip-flop or latch [25]. This facilitates model checking due to the
reduced complexity, without sacrificing expressiveness [26].

A common way to store digital circuits as Sequential AIGs is by using the AIGER
And-Inverter Graph Format, which is a file format originally designed as a way to offer a
concise file format for use in model checking competitions [12, 27]. It is often used as
an output format by LTL synthesis tools such as Strix or BoSy. Additionally it allows to
encode LTL properties in the AIG which can then be verified by a model checking tool
like nuXmv [28].

aag 6 3 0 1 3

2

4

6

13

8 6 2

10 4 3

12 11 9

i0 select_0

i1 in_0

i2 in_1

o0 out

2

select_0

4

in_0

6

in_1

8 10

12

out

Figure 2.3.: An exemplary AIGER circuit and its corresponding graph representation
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2.3.2. Verilog

Verilog [11] is a Hardware Description Language (HDL) used to design digital circuits
at an abstraction level close to the actual hardware. Even though the syntax might
look somewhat familiar at first glance (Fig. 2.4), the logic is fundamentally different:Fig. 2.4, p. 8

from higher-level programming languages. Instead of operating on variables, it directly
operates on signals and registers. Signals (carried by e.g. a wire), can be in a high or
low state (binary, i.e. a single bit). Operations are usually performed in synchronization
with a clock signal. Instead of using functions, code is encapsulated in modules, which
can then be reused. An exemplary module implementing the LTL specification laid
out in Fig. 2.1 is shown in Fig. 2.4. As Verilog is widely used in both industry and:Fig. 2.1, p. 4

:Fig. 2.4, p. 8 academia, it provides us with mature preexisting tools to build upon. We can convert
Verilog code to AIGER (for model checking) using the open-source tool Yosys [29]. It
is also possible to apply optimizations and transformations at the same time, which
can reduce the size of the resulting circuit. However due to our reliance on Yosys for
this step, we are limited to the Verilog standard supported by Yosys, which is largely
identical to the Verilog-2005 standard [11]. It additionally supports some features from
SystemVerilog [30] (an extension to Verilog) which are useful for verification, like the
$global_clock variable.

module detector (
input [3:0] r, // 4-bit input wire
input clk, // clock input
output reg g //output register

);

reg [3:0] state; // a 4-bit register
initial state = '0; // initialize the state to all zeroes
always @(posedge clk) begin // perform this on every clock cycle
state = state | r;

g = 0;

if(state == '1) begin
g = 1;

state = '0;

end
end

endmodule

Figure 2.4.: An exemplary Verilog module
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2.4. Large Language Models (LLMs)

2.4. Large Language Models (LLMs)

The problem of natural language processing (NLP) has been a long standing one.
This includes tasks like classification, translation, text completion. A lot of different
approaches and models were proposed over the years. Early examples include n-gram
models [31] and rule-based approaches [32]. Later, Recurrent Neural Networks like
LSTMs [33] were a popular choice for different kinds of sequence processing, including
NLP.

But in 2017, a revolution in the field was kickstarted by [34] with the introduction
of the Transformer model. Recurrent Neural Networks are notoriously difficult to train
due to their high depth which often leads to vanishing and exploding gradients [35].
Transformers mostly solve this due to their unique self-attention mechanism, which
can capture relationships between different tokens, usually within a specified context
window which is limited due to practical considerations (in the standard Transformer
architecture, there is a quadratic scale-up in computational expenditure in regards to the
size of the context window). The discovery of the transformer sparked the development
of numerous model variations, which constantly improved not only in scale, but also
in architecture. This can best be seen by the exponential growth in the number of
parameters, for which we present a selection in Fig. 2.5. :Fig. 2.5, p. 10

Such models are usually trained in a 2-step procedure, beginning with pre-training on
high amounts of unlabeled data, and are afterwards fine-tuned using a smaller amount of
task-specific data. Notable examples include GPT [36], which popularized this paradigm,
BERT [37] or T5 [38]. At this scale, language models became large. There is no standard
definition which sets large language models apart from other language models, but
they are widely understood to have a number of parameters at least in the billions (and
recently even trillions).

2.4.1. Few-Shot Learning

With the release of GPT-3, LLMs reached a scale were a novel emergent property
appeared: few-shot learning and relatedly, prompting [39, 40, §1.1]. No longer did the
models need to be trained on a specific task. Instead, only the task description (zero-shot),
or additionally one (one-shot) or more examples (few-shot) can be given as input (prompt)
to the model. For example, the sentence “question in Pig Latin is estionquay” would
serve as a prior example for the task “What is synthesis in Pig Latin?”. The term few-shot
learning is a bit misleading though, since the model itself isn’t being adjusted. Instead of
learning permanently, the model infers how to solve the task at hand through the given
context information in the examples. This also opened the door to use, what essentially
was only a text completion engine, for other tasks as well, just by altering the natural
language instructions. Note that this doesn’t discount fine-tuning, as both techniques
can be used alongside each other. Fine-tuning especially remains popular for specialized
tasks like code generation or to aid with preventing misuse [41, 38].
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2. Background

Figure 2.5.: The evolution of model size of LLMs over the past few years (selection).

While this technique quickly gained attention, access to state-of-the-art LLMs like
GPT-3 was limited at first. Only after ChatGPT was opened to the public by OpenAI did
these capabilities really enter the public conscience and garner a lot of attention, even in
other disciplines [42, 43]1.

2.4.2. LLMs for Code Generation

Recently, there have been a lot of promising results in using LLMs for code generation.
One of the first successful models specifically tuned for code generation was Codex [44],
delivering results much better than its base model (GPT-3) on the benchmarks used. It
was originally only trained for Python code generation using public code from GitHub.
This was later expanded to other programming languages and commercialized under the
name GitHub Copilot. AlphaCode [45] on the other hand, focused on generating code
for programming competitions. It was first pre-trained on code from several common
programming languages like C++, Java and Python, then fine-tuned on programming
competition exercises, which included natural language descriptions as well as solutions.
The problems found in programming competitions include hard, algorithmic questions,
which presents a challenge not only to human but also AI programmers. The success of

1The GPT-3 API was made public in November 2021, but mostly provided text completion as a paid service.
The much easier, as well as free-to-use ChatGPT was made public in November 2022.
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these models are what motivated us to use LLMs for Verilog code generation, using LTL
instead of natural language specifications.

In this work we will be be using publicly available models from the PaLM2 [9] and
GPT3.5 [10] model families. Details about the exact model architectures and training
data for the specific models we are using are not available in detail, but both are using
pre-trained Transformer architectures and are specifically trained for code understanding
and generation [46, 47]. We presume that Verilog code will only be a small portion of
the training data in comparison to more common programming languages, but at least
Google states that PaLM2 can also generate Verilog code [46]. The only model fine-tuned
for generating Verilog code known to us is the relatively recent VeriGen model, which
has been shown to slightly outperform GPT3.5 and would be interesting to explore in a
follow-up [48, 49].

2.5. Related Work

With the rise of Artificial Neural Networks, and more recently LLMs, there has been
a surge in attempts to effective apply these advanced machine learning techniques for
symbolic reasoning problems.

Austin et al. [50] evaluated LLMs with few-shot learning for use for program synthesis,
by specifying test cases (assertions) alongside the natural language description. While
not dissimilar to our work, we are focusing on hardware synthesis for use with LTL
specifications, which can be formally verified.

Schmitt, Hahn, Rabe, and Finkbeiner [51] directly trained a hierarchical Transformer
on specification patterns to generate satisfying circuits in AIGER format. However they
limited those patterns to a maximum of five inputs and outputs. In a follow-up they
explored repairing partial solutions using a similar approach [52].

Hahn, Schmitt, Kreber, Rabe, and Finkbeiner [53] trained a Transformer model to
generate satisfying traces from LTL formulas directly (and not LTL specifications). While
it can be used to get examples of correct system behavior, no programs can be constructed
from these, as they lack a reactive component.

Efforts have also been made to use machine learning techniques to develop appropriate
heuristics for use in LTL synthesis. This would allow exact solvers to more efficiently
generate solutions. An early attempt was made by Křetínský, Manta, and Meggendorfer
[54] by using Q-learning, a classic technique from reinforcement learning, on the parity
game graph. They compared several different features to be used for the reward function.
A follow-up paper used various semantic features to train a Support Vector Machine as a
classifier to guide the solution constructed. It was also demonstrated how this could be
used to improve the LTL synthesis tool Strix [55]. Camacho and McIlraith [56] similarly
used deep Q-learning, where the Q-function is approximated by a neural network.

Vasudevan et al. [57] used Graph Neural Networks to learn a semantic representation
from Verilog RTL code (a high abstraction level within Verilog) and used this for several
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2. Background

tasks relating to hardware verification, like predicting test coverage and generating
additional tests.

Our approach differentiates itself through three key aspects. (1) The use of pre-trained
LLMs for LTL synthesis, which hasn’t been explored so far. (2) The novel end-to-end
approach going directly from LTL specifications to Verilog. (3) Utilizing the characteristic
of parameterized specifications, we use solutions for smaller parameters to generate ones
for larger parameters.

12



Chapter 3
Experimental Setup

Smaller Examples incl.
Specifications

Text Prompt incl.
larger Specification

LLM Solution

Figure 3.1.: High-level overview of our method

The goal of this work is to investigate whether it is feasible to use LLMs for synthesizing
large instances of parametric specifications. Large here is referring to the parameter
value, not to the size of the raw parameterized specification. The LLM will be shown
up to two implementations for smaller parameter values (usually powers of two) and
their corresponding specifications. Then, it will be tasked to create a solution for a larger
parameter value. A rough overview of this method can be seen in Fig. 3.1. :Fig. 3.1, p. 13

3.1. Detailed Setup

Looking at this process in a bit more detail, several key steps can be identified. The
benchmarks must be carefully selected in a way which allows us to obtain reference
solution to be used in the prompt later. Afterwards, all potential solutions must be
verified for correctness. This process is portrayed in Fig. 3.2. :Fig. 3.2, p. 14
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3. Experimental Setup

SYNTCOMP
Benchmarks

(parametrised)

Obtain Verified
Verilog Solution

Obtain Verified
Verilog Solution

LLM Verification
Toolchain

Text Prompt

Specification
Satisfied

Violation
Found

n = 2

n = 4

n = 8

Response
(Code)

Figure 3.2.: Detailed overview of our method

3.2. Few-Shot Benchmarks

We used the SYNTCOMP benchmarks [23] as a basis for our experiments, deriving
three new benchmarks from it. First, a qualitative benchmark with human-written
parametric solutions we name SC-Parametric-Human (5 specifications) and the two more
quantitative benchmarks SC-Parametric-BoSy (15 specifications) and SC-Parametric-Strix
(23 specifications). Every single entry consists of the TLSF specification file as well as two
implementation parameter values. For SC-Parametric-Human, the examples as well as
parameter values were hand-picked, and there exist reference solutions we implemented
by hand. The parameter values for SC-Parametric-Strix (SC-Parametric-BoSy) were picked
automatically, such that they are the largest power of two for which Strix (BoSy) can
synthesize an implementation in under one minute. We speculate that the restriction to
powers of two will further bring out any patterns in the implementation which might
appear when scaling the parameter value. The benchmarks were additionally filtered
to only contain one parameter as not to introduce additional complexity. The exact
parameter values are listed in Appendix B.1.:Appendix B.1, p. 43

3.2.1. Obtaining a Verified Verilog Solution

We employ several strategies to obtain the examples which will be included in the
prompt. The most straight-forward way is to use classical synthesis tools like Strix [18,
19] or BoSy [14, 15], which will be able to synthesize an implementation for the smaller
parameter values used for the examples.

Strix unfortunately doesn’t provide a built-in option for generating a Verilog imple-
mentation. In order to still be able to use Strix in our experiments we decided to build
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3.3. Prompting Setup

a simple translation tool ourselves. This tool is able to take in the AIGER output from
Strix and convert it to Verilog code. It does this by directly encoding the AIGER graph. :Fig. 2.3, p. 7

The latches are represented by registers which are updated in synchrony with the clock.
The expressions used for updating the state and determining the output values are
recursively built from the graph, translating the AND/NOT gates to the corresponding
operators in Verilog. Only small optimizations, like double negative elimination are
applied. For more details please see the source code provided in Appendix A.2. :Appendix A.2, p. 41

BoSy on the other hand includes a Verilog target option, allowing us to use their
implementation directly. It is generated by directly encoding the DFA, which is the
internal solution representation, into a Verilog module [58]. To that end, the state space
is represented by a multi-bit register (as wide as necessary). The state transitions are a
also a direct translation: By discriminating over the state space and inputs in each time
step (clock tick), we get the next state (implemented through a series of comparisons).
Our experiments have shown that this built-in translation also gave the best results, for
more information see Sect. 4.2. : Sec. 4.2, p. 21

When using the SC-Parametric-Human dataset, we will also be comparing those tools
against our reference solutions, which are easily generalizable, as they are instantiated
from the parametric solutions. We expect that these will result in the best performance, as
the modules are already written with generalization in mind. We believe those solutions
are rather typical for a human programmer without being overly complicated. These
implementations can be viewed in Appendix A.1. :Appendix A.1, p. 39

For a direct comparison of the code generated, please see Fig. 3.3. :Fig. 3.3, p. 16

3.3. Prompting Setup

We primarily used two models from the PaLM2 and GPT3.5 model families in our testing.
Each of those models provides a way of entering structural input, which we used for
each model respectively. Both of those are chat-based models, where each message is a
structural unit representing the past conversation/history.

3.3.1. PaLM2

We used the chat-bison@001, part of the PaLM2 model family from Google [9]. It’s a
chat-based model which provides a maximum of 1024 output tokens as well as a similar
amount for context and examples (though we were not able to find an exact number). It
provides a way to structurally give explicit examples to the model to use as context. The
(usually two) examples were always input in that way, separated from the actual task.
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3. Experimental Setup

module detector(r_0, r_1, g);
input r_0;
input r_1;
output g;
reg [0:0] state;

assign g = ((state == 1) && r_1 ||
(state == 0) && (!r_1 && r_0)) ? 1 :

0;

↪→

↪→

initial
begin
state = 0;

end
always @($global_clock)
begin
case(state)
0: if (!r_0)

state = 0;

else
state = 1;

1: if (!(r_1 && !r_0))
state = 1;

else
state = 0;

endcase
end

endmodule

module detector (
input r_0,
input r_1,
output reg g

);

reg l0;
reg l1;
initial begin
l0 = 0;

l1 = 0;

end
assign g = (!((l1) & (!r_1) & !l0)) &
!l0;↪→

always @(posedge $global_clock) begin
l0 <= (!((!l1) & r_0)) & !((l1) &

!((!((l1) & (!r_1) & !l0)) & !l0));↪→

l1 <= !((!((!l1) & r_0)) & !((l1) &

(!r_1) & !l0));↪→

end
endmodule

module detector(
input [1:0] r,
input clk,
output reg g

);

reg [1:0] state;
initial state = '0;
always @(posedge clk) begin
state = state | r;

g = 0;

if(state == '1) begin
g = 1;

state = '0;

end
end

endmodule

Figure 3.3.: A Verilog implementation as synthesized by BoSy (top left) and Strix (top
right), as well as our reference solution (bottom)
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3.4. Verification Workflow

3.3.2. GPT3.5

From the GPT3.5 model family (OpenAI) we use the gpt-3.5-turbo-16k chat model [10,
59]. It provides a much larger context window of 16k tokens which is useful for some
of the larger examples. Our prompt consists of the system instruction (additional
instructions on how the task should be carried out), the examples (which are passed as
prior messages) and the actual task description with the LTL formula.

We provided an example for the GPT3.5 prompt in Fig. 3.5. The prompt used for :Fig. 3.5, p. 18

PaLM2 only differs slightly and is included in Appendix C.1. :Appendix C.1, p. 73

3.4. Verification Workflow

A suite of open-source tools enables us to verify whether the generated solutions are
actually correct. The inner workings of this toolchain are described here. We also provide
a visual overview in Fig. 3.4. :Fig. 3.4, p. 17

Verilog Impl.

Yosys

combine-aiger

nuXmv model checker

TLSF Specification

SyfCo

smvtoaig

Variable Renaming

Specification satisfied Violating trace generated

Figure 3.4.: Verification Toolchain

We begin by converting the Verilog code to AIGER using Yosys [29]. Next the TLSF
Specification file is converted to standard LTL using SyfCo [13] and then translated into
an AIGER monitor file, which encodes the specification in the AIG. We then fix some
inconsistencies with the variable naming convention to align it to the one Yosys uses.
After that we combine the AIGER files for the implementation and specification into
one using combine-aiger [60]. This file can then be checked using the nuXmv model
checker [28], which will either correctly verify the implementation or output a violating
trace (“counterexample”). If nuXmv is not able to verify the solution for correctness in
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3. Experimental Setup

five minutes, we terminate the process resulting in a timeout. This whole process is
encapsulated in a bash file (see Appendix A.2).:Appendix A.2, p. 41

system You are an expert in writing correct verilog code, which will fulfill
certain formal properties specified in LTL. Only reply with the correct
verilog module matching the specification and nothing else.

user Please write a Verilog module for n=2 fulfilling the following specifica-
tion. Make sure the code is fully synthesizable:
G (F r_0) && G (F r_1) <-> G (F g)

assistant

module detector(r_0, r_1, g);
...

endmodule

user Please write a Verilog module for n=4 fulfilling the following specifica-
tion. Make sure the code is fully synthesizable:
G (F r_0) && G (F r_1) && G (F r_2) && G (F r_3) <-> G (F g)

assistant

module detector(r_0, r_1, r_2, r_3, g);
...

endmodule

user Please write a Verilog module for n=8 fulfilling the following
specification. Make sure the code is fully synthesizable:
G (F r_0) && G (F r_1) && G (F r_2) && G (F r_3) && G (F r_4) &&

G (F r_5) && G (F r_6) && G (F r_7) <-> G (F g)

Figure 3.5.: The prompt used for GPT3.5.
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Chapter 4
Experimental Results

Due to the novel use of LLMs for Reactive Synthesis, this work will be exploring the
feasibility and potential of this technique. To that end, we run several experiments to
examine different dimensions of that technique. We perform a base experiment and then
run several variations that expand on the baseline results. We examine in which cases
our method is successful, trying to answer when and why it fails. For these results, note
that the problems found in SC-Parametric-Strix are in most cases harder than the ones
found in SC-Parametric-BoSy (larger parameter values), since Strix outperforms BoSy in
most instances.

4.1. Baseline Results

In order to establish a baseline, the default prompts were ran on the different datasets,
as detailed in Sect. 3.3. For both PaLM2 and GPT3.5, best-of-k runs (k ∈ {1, 3, 5}) were : Sec. 3.3, p. 15

performed, meaning k different choices were generated from the LLM, from which the
best result was kept. The best result for both SC-Parametric-Human and SC-Parametric-
BoSy was performed by GPT3.5 with k = 5 and k = 3, achieving scores of 4/5 and 3/15.
For SC-Parametric-Strix both PaLM2 and GPT3.5 predicted a correct solution for 2/23
benchmarks (for values of k = 3 and k = 5). In general, these results show GPT3.5
outperforming PaLM2 by a slight margin, which we expected due to the larger context
window. Note that the process of generating a response is not deterministic, so a higher
value for k stabilizes the results between runs and improves the chance of producing a
correct solution. But even with a high k, the overall success rate is still low, which we
will improve upon in other experiments.

Detailed result tables for this section can be found in Appendix B.2.1. :Appendix B.2.1, p. 46
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LLM Benchmarks k = 1 k = 3 k = 5

PaLM2
SC-Parametric-Human 3/5 3/5 3/5
SC-Parametric-BoSy 2/15 2/15 2/15
SC-Parametric-Strix 1/23 2/23 2/23

GPT3.5
SC-Parametric-Human 3/5 3/5 4/5
SC-Parametric-BoSy 2/15 3/15 2/15
SC-Parametric-Strix 1/23 2/23 2/23

Table 4.1.: Baseline results, presenting the absolute success rate of both PaLM2 and
GPT3.5 on the different benchmarks, using a best-of-k approach.

4.1.1. In which cases are correct solutions produced?

Examining for which benchmarks the LLMs actually generate correct solution, a clear
pattern emerges. Unsurprisingly, specifications with simpler solutions work much
better. In fact, with the exception of the human-written code, which is much easier
to scale, it is exclusively “simple” specifications for which correct code is produced.
mux, for example, has a relatively short, stateless solution, while the specification for
collector_v3 is not very restrictive, even allowing a constant solution (e.g. see Fig. 4.3).:Fig. 4.3, p. 22

In fact, only for seven distinct benchmarks was any correct code produced in any
of the experiments: amba_decomposed_encode, collector_v3, detector, full_arbiter,
mux, shift, simple_arbiter.

4.1.2. Why do benchmarks fail?

Benchmarks fail for a variety of reasons, which can largely be grouped into three
categories. (1) the prompt exceeding the context window, (2) no syntactically code was
produced and (3) correct code was produced, but it violated the specification. (1) will
probably improve over time as models expand their context window, but we can also
employ techniques to shorten prompts, e.g. by reducing the number of examples. (2) can
happen when no code was produced at all, syntactical errors were exhibited, features
unsupported by Yosys were used in the code (for example SystemVerilog assertions), or
the module definition did not match what is required for verification. We found this to
be heavily influenced by the prompt used and that this error can be further reduced by
supplying feedback to the model, which would be interesting to explore in the future.
For (3), improving these results is a lot more difficult, as often the errors in the code are
a lot more nuanced and not trivial to fix. There were also miscellaneous issues such
as the model checker timing out, but this only happened in a small number of cases.
To be more specific, these groups correspond to the following result codes (as listed
in Appendix B.2): (1) corresponds to AI_ERROR, (2) to the codes ERROR_COMBINE:Appendix B.2, p. 46
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_AIGER, ERROR_CONVERT_TO_AIGER, NO_CODE, and (3) to FALSE_RESULT.
We compiled the errors from our baseline results for k = 1 and k = 5 (k = 3 is excluded

for brevity) in Tbl. 4.2. Note that for k > 1, the results will be a bit skewed towards error :Tbl. 4.2, p. 21

group (3) as this is preferable to error group (2) and only the better result was kept.

LLM Benchmarks (1) (2) (3) Correct

PaLM2
SC-Parametric-Human 0/5 2/5 0/5 3/5
SC-Parametric-BoSy 4/15 3/15 6/15 2/15
SC-Parametric-Strix 12/23 9/23 0/23 1/23

GPT3.5
SC-Parametric-Human 0/5 2/5 0/5 3/5
SC-Parametric-BoSy 4/15 2/15 7/15 2/15
SC-Parametric-Strix 5/23 16/23 0/23 1/23

(a) k = 1

LLM Benchmarks (1) (2) (3) Correct

PaLM2
SC-Parametric-Human 0/5 2/5 0/5 3/5
SC-Parametric-BoSy 4/15 1/15 8/15 2/15
SC-Parametric-Strix 12/23 9/23 0/23 1/23

GPT3.5
SC-Parametric-Human 0/5 1/5 0/5 4/5
SC-Parametric-BoSy 5/15 2/15 6/15 2/15
SC-Parametric-Strix 12/23 7/23 2/23 2/23

(b) k = 5

Table 4.2.: Baseline error rates of all tools on their respective datasets, grouped by the
failure reason: (1) Exceeded context window, (2) No syntactically correct code
produced and (3) Code is syntactically correct, but violates the specification.

4.2. Comparing Different Methods for Generating Verilog Code
with BoSy

When implementing the AIGER-to-Verilog translation, the question emerged whether it
provided a benefit to use the same translation for BoSy, instead of using the built-in one.
For this we compared four methods of generating Verilog Code.

• Standard: Uses the standard BoSy Verilog target option, which just translates the
finite state machine.

21



4. Experimental Results

module mux (
input in_0,
input in_1,
input in_2,
input in_3,
input select_0,
input select_1,
output reg out

);

assign out = !((!((!((!((select_1) &
(in_2))) & (!((in_0) &

(!select_1))))) & (!select_0))) &

(!((select_0) & (!((!((in_1) &

(!select_1))) & (!((in_3) &

(select_1))))))));

↪→

↪→

↪→

↪→

↪→

endmodule

module collector_v3(finished_0,
finished_1, finished_2, finished_3,

all_finished);

↪→

↪→

input finished_0;
input finished_1;
input finished_2;
input finished_3;
output all_finished;

assign all_finished = 0;
endmodule

Figure 4.3.: On the left: A solution for the mux benchmark, produced by Strix (n = 4)
On the right: A slightly adapted solution for the collector_v3 benchmark,
produced by BoSy (n = 4)

• AIGER (aag): This uses the BoSy AIGER output and converts it into Verilog in the
same way as we do for Strix.

• Optimized AIGER (opt_aag): Similar to the aag option, but an optimization pass is
performed using opt in Yosys before converting to Verilog.

• Optimized Verilog (opt_verilog): For this option, the BoSy Verilog output will first
be translated into AIGER, then an optimization pass will be performed (both using
Yosys), before being converted back into Verilog.

LLM aag opt_aag opt_verilog standard
PaLM2 1/15 1/15 1/15 2/15
GPT3.5 1/15 2/15 1/15 3/15

Table 4.4.: Comparing different Verilog translation methods using BoSy with SC-
Parametric-BoSy and GPT3.5. Presented here are the absolute success rates on
the SC-Parametric-BoSy benchmark, evaluated with k = 5 (best-of-5)

Apart from the Verilog translation method, the procedure is identical to the one used
in Sect. 4.1, with k = 5 being used for increased consistency. Looking at the results in: Sec. 4.1, p. 19

Tbl. 4.4, we can see that the standard method outperforms the others by a slight margin:Tbl. 4.4, p. 22

(both using GPT3.5 as well as PaLM2). GPT3.5, for example, is able to predict 3/15
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4.3. How does the number of examples given influence the results?

solutions correctly. In comparison, opt_aag, aag and opt_verilog only got 2, 1 and 1 out of
15 benchmarks correct. We believe that the way BoSy generates the Verilog code for the
finite state machine makes it more predictable than other methods. The downside of
this translation is that it is more verbose than other methods and thus produces larger
modules (in terms of both character count and token count). This could pose a problem
due to the limited context window in LLMs, however this only occurred for large, complex
solution which could not be solved in any case regardless (see amba_decomposed_lock, for
example). For more detailed results, please refer to Appendix B.2.2. :Appendix B.2.2, p. 60

Note that we didn’t compare the optimized AIGER circuit for Strix, as it already
performs circuit optimization by default [18].

4.3. How does the number of examples given influence the
results?

For all of our experiments so far, the LLM was always given two reference solutions
(two-shot). In this experiment, we varied the number of examples given, evaluating both
one-shot as well as zero-shot performance on the benchmarks. The benefit of only using
one example is that the prompt length is much shorter, which aids with some problems
exceeding the context window. Zero-shot performance is especially interesting, as no
information other than the LTL formula will be available to the LLM. The experimental
setup is otherwise identical to the one used in Sect. 4.1, with k = 3 being fixed for all : Sec. 4.1, p. 19

runs.

LLM Benchmarks Two-shot One-shot Zero-shot

PaLM2
SC-Parametric-Human 3/5 4/5 0/5
SC-Parametric-BoSy 2/15 3/15 2/15
SC-Parametric-Strix 2/23 3/23 1/23

GPT3.5
SC-Parametric-Human 3/5 5/5 1/5
SC-Parametric-BoSy 3/15 4/15 1/15
SC-Parametric-Strix 2/23 2/23 2/23

Table 4.5.: Comparing how the number of examples given in the prompt affects the
performance. Presented here are the absolute success rates on the different
benchmarks, evaluated with k = 3 (best-of-3)

For all runs, one-shot performance matched or surpassed both zero-shot and two-shot
results. This is surprising, as the two-shot prompts contain more information pertaining
to the task. The improvements can also not be explained by the cases where the two-shot
prompt exceeded the context window size, as those benchmarks could not be solved in
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either case. We hypothesize that the substantial improvements over zero-shot are mainly
caused by the fact that the reference solutions contains a module definition as well as
the name of the module, which in itself contains semantic information. This is further
supported by the experiments performed in Sect. 4.5.1. However this does not explain: Sec. 4.5.1, p. 25

the improvement over two-shot prompting. Our hypothesis is that because the shorter
prompt contains less code for the LLM to use for their solution, it is more likely to adapt
a solution it has seen in training instead of using the code snippets in the prompt. The
latter requiring to actually use the patterns in the code to infer a solution. We further
examine the first option (using similar solutions from the training data) in Sect. 4.5.1.: Sec. 4.5.1, p. 25

The detailed zero-shot and two-shot data for this section is available in Appendix B.2.1,:Appendix B.2.1, p. 46

the one-shot data in Appendix B.2.4.:Appendix B.2.4, p. 63

4.4. Up to which parameter value are LLMs able to synthesize
correct code?

In the few cases where we did see correct results, test were ran in order to probe how far
these results could be pushed. For this experiment, all tests were performed with GPT3.5,
as the context limit was reached very quickly with PaLM2. The setup starts out identical
to the one used for Sect. 4.1 (k = 5), trying to generate the solution that was required by: Sec. 4.1, p. 19

the benchmark. Five choices are generated from which the first solution satisfying the
specification is picked (if existing). This message containing the solution is then added
to the message history / context and a new prompt is built with the parameter value
multiplied by two. Afterwards, the same procedure is repeated until the length of the
messages surpass the context length. We then remove the oldest messages one at a time,
until the prompt fits into the context window again. If, at any point, no correct solution
is found, the best parameter value achieved is be returned.

We found that in the cases were solutions for smaller parameter values were found,
we were able to reach solutions for parameters far greater than what is achievable with
either Strix or BoSy (up to n = 512 from the human reference solutions and n = 128 from
BoSy/Strix). We expect that this would scale further as well, as the limits reached here
can be mostly attributed to the limited context size. Not only did the solutions scale in
size, but the expanded specifications did as well.
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Benchmark Self BoSy Strix None
detector 8 0 0 0

full_arbiter 4 0 0 0

mux 128 128 0 128

shift 512 128 128 128

simple_arbiter 16 16 0 0

Table 4.6.: Highest parameter size achieved by GPT3.5 on SC-Parametric-Human. Zero
signifies that no correct solution was produced. Using the parameter values
from SC-Parametric-Human, apart from the human-written solutions, we also
generated prompts with example solutions from both BoSy and Strix. None
refers to a zero-shot prompt.

Another interesting finding is that the example solutions from BoSy performed much
better than Strix. For example, for the benchmarks mux and simple_arbiter the highest
parameter values achieved were 128 and 16, while using the example solutions from Strix
yielded no correct solutions. This additionally supports the hypothesis that the solutions
produced by BoSy are more easily generalizable than the ones generated by Strix. We
present the results using the parameter values from the benchmark SC-Parametric-Human
in Tbl. 4.6. Other results are available in Appendix B.2.3. :Tbl. 4.6, p. 25

:Appendix B.2.3, p. 62

4.5. Examining Semantic Information Contained in the Prompts

4.5.1. To what extent are the example implementations needed for good
results?

Prompted by the results presented in Sect. 4.3, we examined the use of a modified : Sec. 4.3, p. 23

zero-shot prompt containing the module definition and a module name corresponding to
the problem, but lacking any implementation. The module definition and name are the
same as used in the example implementations included in the one- or two-shot prompts.
The modified prompt will additionally contain a module definition in the form of module
detector (r_0, r_1, g);. An full example prompt is available in Appendix C.2. :Appendix C.2, p. 74

Examining the data presented in Tbl. 4.7, it becomes apparent that the modified :Tbl. 4.7, p. 26

zero-shot prompt exhibits performance similar to the two-shot results. This result is
interesting specifically in relation to the one-shot results, which in most cases surpass
our modified zero-shot prompt. The fact that one-shot results still perform better means
that while part of the ability of the LLM to generate correct solutions can be explained
by semantic information contained in the example, we know that this is not exclusively
responsible for all of the positive results.
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LLM Benchmarks Two-shot One-shot Zero-shot
Zero-shot
(Modified)

PaLM2
SC-Parametric-Human 3/5 4/5 0/5 2/5
SC-Parametric-BoSy 2/15 3/15 2/15 3/15
SC-Parametric-Strix 2/23 3/23 1/23 2/23

GPT3.5
SC-Parametric-Human 3/5 5/5 1/5 2/5
SC-Parametric-BoSy 3/15 4/15 1/15 3/15
SC-Parametric-Strix 2/23 2/23 2/23 3/23

Table 4.7.: Comparing the baseline and one-shot results to the modified zero-shot prompt,
which includes the module definition. Presented here are the absolute success
rates on the different benchmarks, evaluated with k = 3 (best-of-3)

4.5.2. Does the LLM exclusively use the information embedded in the LTL
atomic proposition naming to solve the problem in the zero-shot setting?

In the zero-shot setting, the prompt only consists of a task description and the LTL
formula. But the LTL formula already embeds some semantic meaning within some
of the signal names. For example, the multiplexer benchmark has a log(n)-bit select
signal which selects one of the n inputs to connect to the output. This is also one of the
few benchmarks which consistently is solved zero-shot and thus from just the formula.
Both PaLM2 as well as GPT3.5 are able to correctly generate a Verilog module fulfilling
the specification. This begged the question whether this behavior only occurred due
to the hints given by the named signals. To verify whether this is the case we renamed
the select and input signals to a and b respectively. Surprisingly, both PaLM2 and
GPT3.5 were still able to correctly solve the problem. PaLM2 additionally was able to
identify the specification belonging to a multiplexer, as judged by the module name in
the generated solution (see Fig. 4.8 for the PaLM2 Solution, GPT3.5’s solution is available:Fig. 4.8, p. 27

in Appendix A.3.1).:Appendix A.3.1,
p. 42

We tried to examine publicly available datasets that are known to have been used in
training for a lot of LLMs (C4 [61], GitHub), but during a surface-level analysis we were
not able to find anything which presented the LTL specification together with similar
Verilog code.
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module mux16(a_0, a_1, a_2, a_3, b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9,
b_10, b_11, b_12, b_13, b_14, b_15, out);↪→

input a_0, a_1, a_2, a_3;
input b_0, b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, b_9, b_10, b_11, b_12, b_13,

b_14, b_15;↪→

output out;
reg out;
always @(*) begin

case ({a_3, a_2, a_1, a_0})
4'b0000: out = b_0;

4'b0001: out = b_1;

...

4'b1111: out = b_15;

endcase
end
endmodule

Figure 4.8.: The solution that was output by PaLM2 for the zero-shot prompt for mux. The
select and input signals were renamed to a and b in the prompt.

4.6. Limitations / Shortcomings

When performing research on LLMs there usually are two ways to obtain access. The
first way is to run open-source models on your own, either on dedicated hardware or by
using cloud computing providers. Apart from both of those options being expensive or
difficult to implement, open-source models often don’t reach the state-of-the-art. The
second option is to use publicly available APIs, which has a low barrier to entry and
provides access to well-performing models. There are several drawbacks to this method
though. Models can be opaque and change without notice. This actually happened to us
early on with the PaLM2 codechat-bison@001model, where there was an unannounced
change which caused our results to change significantly (we then switched to our current
model, which additionally had a greater context window size). Strict rate-limits can also
slow down the experiments, which was especially apparent when working with GPT3.5.

We also wanted to perform more experiments with the GPT-4 model family, which
is considered state of the art at the moment [62]. Unfortunately, we were not granted
access in time to incorporate these results thoroughly into this work. Early experiments
suggest slightly improved performance, especially with the zero-shot prompt. Some
result tables for GPT-4 are available in Appendix B.2.6. :Appendix B.2.6, p. 69
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Chapter 5
Conclusion

In this work, we presented a new approach for synthesizing digital circuits from LTL
specifications. We used Large Language Models to directly generate high-level solutions
in the Verilog HDL. To this end, we used few-shot learning, presenting example solutions
for a lower parameter value first, before prompting the model to generate solutions for
the same specification, but with an increased parameter value. Our main goal was to
examine the feasibility and potential of this approach, exploring different variations on
the concept.

We developed an environment to test different prompts on the two LLMs PaLM2 and
GPT3.5. This includes a full verification toolchain, which allows us to formally verify the
generated solutions for correctness. In the case that a solution cannot be verified, it is
able to give feedback on which step in the process caused the error. We provide the full
code and datasets in an accompanying git repository (Appendix A.2). :Appendix A.2, p. 41

We derived three new benchmarks from the SYNTCOMP [23] benchmarks to use
for our approach. SC-Parametric-BoSy and SC-Parametric-Strix are both based on the
abilities of the LTL synthesis tools BoSy and Strix respectively. It contains examples for
parameter values up to the highest power of two for which the corresponding tool is able
to synthesize a solution. The LLM is later prompted to generate a solution for the next
highest power of two. SC-Parametric-Human uses reference Verilog implementations we
wrote to investigate whether it could be useful to manually write solutions for smaller
parameter values and then use an LLM to generate solutions for larger values.

Using different prompts, we showed that this approach is able to surpass what a
traditional LTL synthesis tool like Strix is able to achieve (for a limited number of
specifications). In these successful cases, we were often able to increase the parameter
value by several orders of magnitude while still getting correct results, up to n = 512 (in
comparison, the highest power of two the state-of-the-art synthesis tool Strix was able
to achieve is n = 8). This was limited by several factors, including the fact that at these
large parameter values, the expanded LTL formulas can get too large, taking up a large
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5. Conclusion

portion of or even exceeding the context window. We touch on possible solutions in the
outlook (Sect. 5.1).: Sec. 5.1, p. 30

We showed that the best results can be achieved by using a one-shot prompt (containing
one example implementation), which exhibited improved performance over both zero-
shot and two-shot prompts.

We demonstrated that the SC-Parametric-Human benchmarks, in contrast to SC-
Parametric-Strix and SC-Parametric-BoSy, consistently exhibited good performance, pro-
ducing a correct solution for 5/5 benchmarks in the best case. The best cases for
SC-Parametric-BoSy and SC-Parametric-Strix were 4/15 and 3/23 respectively. This is
promising, as it suggests that it might be worthwhile for a human to write a solution for
a small parameter value and then using an LLM to generalize to larger parameter values.

However it should be noted that this approach can not directly be compared to these
classical tools. The fact that the models used are opaque in their architecture and
computational requirements makes a comparison difficult, especially since a solution
is not explicitly computed. For the same reason, generating a correct implementation
is not directly related to the computational expenditure. The production of a correct
implementation cannot be guaranteed, making it unsuitable for use on its own. A
hybrid approach however, e.g. by using it alongside other solvers or integrating it into a
programming environment, might prove useful (Sect. 5.1).: Sec. 5.1, p. 30

The question of why this approach only worked for some specifications and not others
could not be exhaustively answered, but we believe that it is the result of both the
complexity of the specification, as well as the frequency in the training data of the LLMs.
As explainability for LLMs is still an open research question, we hope that future work
will bring further light into the situation.

5.1. Outlook

We identified several ways to further build on our approach, which we will present here.

Explore LLMs fine-tuned on LTL/Verilog. In this work, we have only been using
general-purpose LLMs like PaLM2 and GPT3.5, which have not been specifically fine-
tuned to perform well with Verilog code. Using a fine-tuned model like VeriGen [48,
49] or fine-tuning a model ourselves might boost performance, reducing especially
syntactical errors.

Using the LLM in an integrated environment such as Copilot. The benchmarks
which performed especially well were common circuits (e.g. a multiplexer, bit-shift etc.)
which leads us to believe that a lot of training data for these circuits was available. If there
was more training data available for other common cases this could become a useful
tool for practical applications where the LLM could work hand-in-hand with a human
programmer. As all solutions are formally verified, this cannot produce unreliable code.
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This also ties in to the proposition of using an LLM fine-tuned on Verilog Code and/or
LTL specifications.

Exploring different specification languages. In this work, the prompts only included
LTL formulas in its basic form. With higher parameter values, LTL can get very verbose
and doesn’t leverage the fact that we are only using parameterized specifications. TLSF
in comparison is not only less verbose, but also allows to specify complicated properties
in a compact way. For example, it is common to require mutual exclusion (only one signal
is allowed to be high at the same time). If this was explicitly stated, like is possible in
TLSF, this is information which the LLM could leverage. However, even less training
data exists for TLSF and it is possible that the format might be too complex with its
various sections (given the sparsity of relevant data, the difference between e.g. REQUIRE,
PRESET and ASSUMEmight become difficult to distinguish). Compromising between those
extremes, e.g. by limiting TLSF, might become necessary.

Repairing partial solutions. As the LLMs often produce some sensible results, even
if not completely correct, it might be possible to repair the partial solutions. There has
been some existing work in this regard, like the framework CirFix [63], which already
operates on Verilog code. Similarly, Cosler, Schmitt, Hahn, and Finkbeiner [52] focused
on repairing circuits directly with regard to the formal specification. Using these tools
on our wrong solutions might improve performance in the cases where syntactically
correct code was produced but which violated the specification.
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Appendix A
Verilog Solutions and Source
Code Files

A.1. Parametric Verilog Solutions

A.1.1. Shift (shift.tlsf)

module shift #(parameter n = 2) (
input [n-1:0] in,
input clk,
output [n-1:0] out

);
always @(*) begin
out = {in[n-2:0], in[n-1]};

end
endmodule

A.1.2. Multiplexer (mux.tlsf)

module mux #(parameter n = 4) (
input [n-1:0] in,
input [$clog2(n)-1:0] select,
input clk,
output reg out

);
wire [0:$clog2(n)-1] reversed = select;
assign out = in[reversed];

endmodule
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A. Verilog Solutions and Source Code Files

A.1.3. Detector (detector.tlsf)

module detector #(parameter n = 2) (
input [n-1:0] r,
input clk,
output reg g

);
reg [n-1:0] state;
initial state = '0;
always @(posedge clk) begin
state = state | r;
g = 0;
if(state == '1) begin
g = 1;
state = '0;

end
end

endmodule

A.1.4. Simple Arbiter (simple_arbiter.tlsf)

module simple_arbiter #(parameter n = 4) (
input [n-1:0] r,
input clk,
output reg [n-1:0] g

);
initial g = 1;
always @(posedge clk) begin
g = {g[n-2:0], g[n-1]};

end
endmodule

A.1.5. Full Arbiter (full_arbiter.tlsf)

Please note that the specification for the full arbiter is actually a restriction on the
specification of the simple arbiter. This means that this solution would also be a valid
solution for the simple arbiter.
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A.2. Source Code Repo

module full_arbiter #(parameter n = 4) (
input [n-1:0] r,
input clk,
output reg [n-1:0] g

);
//Needed because of lack of break; statement support
reg brk = 0;
reg [n-1:0] requests = '0;
reg [n-1:0] i = '0;
reg [n-1:0] istop = 0;
initial g = '0;
always @(posedge clk) begin
g = '0;
for (i = 0; i < n; i = i + 1) begin
if(!brk || istop - 1 != i)
requests[i] = requests[i] | r[i];

end
if(istop >= n)
istop = '0;

brk = 0;
for (i = 0; i < n; i = i + 1) begin
//continue where you left off
if(i >= istop &&
//loop "break"
!brk &&
//only act if there is a request
requests[i] == 1) begin

requests[i] = 0;
g[i] = 1;
istop = i + 1;
brk = 1;

end
end
if(brk == 0)
istop = '0;

end
endmodule

A.2. Source Code Repo

All of the used source code can be found in the accompanying git repository (https:
//github.com/Pflyg/ltl-synth-llm). This most notably includes

• aigertoverilog.py, which is responsible for converting the Aiger output to Verilog
code (used primarily with Strix)

• verify.sh, the bash script verifying the verilog code against the specification. We
usually interact with it using the python wrapper script (verify.py)
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A. Verilog Solutions and Source Code Files

A.3. Experiments

A.3.1. Mux Zero-Shot Solution With Renamed Variables

module VerilogModule (
input wire a_3,
input wire a_2,
input wire a_1,
input wire a_0,
output wire out,
input wire [15:0] b

);

assign out = ( ( (!a_3) && (!a_2) && (!a_1) && (!a_0) && b[0] ) ||
( (!a_3) && (!a_2) && (!a_1) && a_0 && b[1] ) ||

( (!a_3) && (!a_2) && a_1 && (!a_0) && b[2] ) ||

( (!a_3) && (!a_2) && a_1 && a_0 && b[3] ) ||

( (!a_3) && a_2 && (!a_1) && (!a_0) && b[4] ) ||

( (!a_3) && a_2 && (!a_1) && a_0 && b[5] ) ||

( (!a_3) && a_2 && a_1 && (!a_0) && b[6] ) ||

( (!a_3) && a_2 && a_1 && a_0 && b[7] ) ||

( a_3 && (!a_2) && (!a_1) && (!a_0) && b[8] ) ||

( a_3 && (!a_2) && (!a_1) && a_0 && b[9] ) ||

( a_3 && (!a_2) && a_1 && (!a_0) && b[10] ) ||

( a_3 && (!a_2) && a_1 && a_0 && b[11] ) ||

( a_3 && a_2 && (!a_1) && (!a_0) && b[12] ) ||

( a_3 && a_2 && (!a_1) && a_0 && b[13] ) ||

( a_3 && a_2 && a_1 && (!a_0) && b[14] ) ||

( a_3 && a_2 && a_1 && a_0 && b[15] ));

endmodule
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Appendix B
Result Tables

B.1. Benchmark Parameter Values

The following tables specify the exact parameter values used for SC-Parametric-Human,
SC-Parametric-BoSy and SC-Parametric-Strix respectively.

Benchmark
Example Parameter
Value 1

Example Parameter
Value 2

Parameter Value to
generate

detector 2 4 8
full_arbiter 2 3 4
mux 4 8 16
shift 4 8 16
simple_arbiter 2 4 8

Table B.1.: Parameter values used for SC-Parametric-Human
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B. Result Tables

Benchmark
Example Parameter
Value 1

Example Parameter
Value 2

Parameter Value to
generate

amba_
decomposed_
arbiter

2 4 8

amba_
decomposed_
encode

4 8 16

amba_
decomposed_
lock

4 8 16

collector_v2 2 4 8
collector_v3 2 4 8
detector 2 4 8
load_balancer 2 4 8
ltl2dba_C2 2 4 8
ltl2dba_alpha 2 4 8
mux 4 8 16
narylatch 2 4 8
prioritized_
arbiter

2 4 8

shift 4 8 16
simple_arbiter 2 4 8
simple_
arbiter_enc

2 4 8

Table B.2.: Parameter values used for SC-Parametric-BoSy
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B.1. Benchmark Parameter Values

Benchmark
Example Parameter
Value 1

Example Parameter
Value 2

Parameter Value to
generate

amba_
decomposed_
arbiter

2 4 8

amba_
decomposed_
encode

4 8 16

amba_
decomposed_
lock

4 8 16

collector_v1 4 8 16
collector_v2 4 8 16
collector_v3 4 8 16
detector 16 32 64
full_arbiter 2 4 8
load_balancer 2 4 8
ltl2dba_C2 16 32 64
ltl2dba_E 4 8 16
ltl2dba_Q 2 4 8
ltl2dba_U1 4 8 16
ltl2dba_alpha 8 16 32
ltl2dba_beta 4 8 16
mux 8 16 32
narylatch 4 8 16
prioritized_
arbiter

4 8 16

prioritized_
arbiter_enc

2 4 8

round_robin_
arbiter

2 4 8

shift 4 8 16
simple_arbiter 8 16 32
simple_
arbiter_enc

2 4 8

Table B.3.: Parameter values used for SC-Parametric-Strix
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B. Result Tables

B.2. Result Tables

The following result tables contain several different results codes. This is a short
explanation of how they should be interpreted:

• SUCCESS : A correct solution was identified.

• FALSE_RESULT: The module matches the required definition (ports) but violated
the specification.

• NO_CODE: No verilog module could be identified in the output from the LLM.

• TIMEOUT: The synthesis tool used wasn’t able to find solutions for the required
examples in time (this is primarily the case when running the SC-Parametric-Strix
dataset together with BoSy, as Strix is usually much faster at identifying solutions).

• AI_ERROR: Unexpected errors occurred with the LLM used. This usually means
that the context length was exceeded.

• AI_RATELIMIT: We weren’t able to get results from the LLM due to rate limiting,
even after several retries.

• ERROR_CONVERT_TO_AIGER: Yosys wasn’t able to convert the Verilog code to
Aiger. This usually happens due to syntax errors or unsupported constructs being
used.

• ERROR_COMBINE_AIGER: The Aiger implementation and monitor files couldn’t
be combined. In our testing this only happened if the module definition was
incorrect, e.g. the ports used had incorrect names / were omitted etc.

• VERIFICATION_TIMEOUT: A solution which matched the required definition was
identified, but the model checker timed out.

B.2.1. Baseline Results

These are the exact results for the baseline experiments. For each dataset we ran all of
the tools (where possible) on the same dataset, to be able to compare results later.
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B.2. Result Tables

Benchmark Self BoSy Strix None
detector SUCCESS FALSE_RESULT ERROR_CONVERT

_TO_AIGER
ERROR_COMBINE
_AIGER

full_arbiter ERROR_COMBINE
_AIGER

NO_CODE ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

mux ERROR_COMBINE
_AIGER

ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

shift SUCCESS SUCCESS SUCCESS ERROR_COMBINE
_AIGER

simple_arbiter SUCCESS FALSE_RESULT FALSE_RESULT ERROR_CONVERT
_TO_AIGER

Table B.4.: Results for SC-Parametric-Human using PaLM2 (single run)

Benchmark Self BoSy Strix None
detector SUCCESS FALSE_RESULT FALSE_RESULT ERROR_COMBINE

_AIGER
full_arbiter ERROR_COMBINE

_AIGER
FALSE_RESULT ERROR_CONVERT

_TO_AIGER
ERROR_COMBINE
_AIGER

mux ERROR_COMBINE
_AIGER

ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

shift SUCCESS SUCCESS SUCCESS FALSE_RESULT
simple_arbiter SUCCESS FALSE_RESULT FALSE_RESULT FALSE_RESULT

Table B.5.: Results for SC-Parametric-Human using PaLM2 (best-of-3)

Benchmark Self BoSy Strix None
detector SUCCESS FALSE_RESULT FALSE_RESULT FALSE_RESULT
full_arbiter ERROR_COMBINE

_AIGER
FALSE_RESULT ERROR_CONVERT

_TO_AIGER
ERROR_CONVERT
_TO_AIGER

mux ERROR_COMBINE
_AIGER

ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

SUCCESS

shift SUCCESS SUCCESS SUCCESS FALSE_RESULT
simple_arbiter SUCCESS SUCCESS FALSE_RESULT FALSE_RESULT

Table B.6.: Results for SC-Parametric-Human using PaLM2 (best-of-5)
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B. Result Tables

Benchmark Self BoSy Strix None
detector SUCCESS FALSE_RESULT ERROR_CONVERT

_TO_AIGER
ERROR_CONVERT
_TO_AIGER

full_arbiter ERROR_COMBINE
_AIGER

FALSE_RESULT NO_CODE FALSE_RESULT

mux ERROR_COMBINE
_AIGER

ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

shift SUCCESS SUCCESS SUCCESS ERROR_CONVERT
_TO_AIGER

simple_arbiter SUCCESS SUCCESS ERROR_CONVERT
_TO_AIGER

NO_CODE

Table B.7.: Results for SC-Parametric-Human using GPT3.5 (single run)

Benchmark Self BoSy Strix None
detector SUCCESS FALSE_RESULT FALSE_RESULT ERROR_COMBINE

_AIGER
full_arbiter ERROR_COMBINE

_AIGER
FALSE_RESULT NO_CODE FALSE_RESULT

mux ERROR_COMBINE
_AIGER

ERROR_COMBINE
_AIGER

ERROR_CONVERT
_TO_AIGER

SUCCESS

shift SUCCESS SUCCESS SUCCESS FALSE_RESULT
simple_arbiter SUCCESS SUCCESS SUCCESS ERROR_CONVERT

_TO_AIGER

Table B.8.: Results for SC-Parametric-Human using GPT3.5 (best-of-3)

Benchmark Self BoSy Strix None
detector SUCCESS FALSE_RESULT FALSE_RESULT FALSE_RESULT
full_arbiter ERROR_COMBINE

_AIGER
FALSE_RESULT FALSE_RESULT FALSE_RESULT

mux SUCCESS ERROR_CONVERT
_TO_AIGER

FALSE_RESULT SUCCESS

shift SUCCESS SUCCESS SUCCESS SUCCESS
simple_arbiter SUCCESS SUCCESS SUCCESS ERROR_CONVERT

_TO_AIGER

Table B.9.: Results for SC-Parametric-Human using GPT3.5 (best-of-5)
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B.2. Result Tables

Benchmark BoSy Strix None
amba_
decomposed_
arbiter

AI_ERROR AI_ERROR NO_CODE

amba_
decomposed_
encode

AI_ERROR AI_ERROR ERROR_COMBINE_AIGER

amba_
decomposed_
lock

AI_ERROR NO_CODE FALSE_RESULT

collector_v2 FALSE_RESULT NO_CODE ERROR_COMBINE_AIGER
collector_v3 SUCCESS SUCCESS VERIFICATION_TIMEOUT
detector FALSE_RESULT NO_CODE SUCCESS
load_balancer NO_CODE AI_ERROR ERROR_COMBINE_AIGER
ltl2dba_C2 NO_CODE NO_CODE FALSE_RESULT
ltl2dba_alpha FALSE_RESULT FALSE_RESULT FALSE_RESULT
mux NO_CODE NO_CODE ERROR_COMBINE_AIGER
narylatch AI_ERROR NO_CODE FALSE_RESULT
prioritized_
arbiter

FALSE_RESULT NO_CODE FALSE_RESULT

shift SUCCESS SUCCESS SUCCESS
simple_arbiter FALSE_RESULT FALSE_RESULT ERROR_COMBINE_AIGER
simple_arbiter_
enc

FALSE_RESULT AI_ERROR ERROR_CONVERT
_TO_AIGER

Table B.10.: Results for SC-Parametric-BoSy using PaLM2 (single run)
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B. Result Tables

Benchmark BoSy Strix None
amba_
decomposed_
arbiter

AI_ERROR AI_ERROR NO_CODE

amba_
decomposed_
encode

AI_ERROR AI_ERROR ERROR_CONVERT
_TO_AIGER

amba_
decomposed_
lock

AI_ERROR NO_CODE FALSE_RESULT

collector_v2 FALSE_RESULT NO_CODE ERROR_COMBINE_AIGER
collector_v3 SUCCESS SUCCESS VERIFICATION_TIMEOUT
detector FALSE_RESULT ERROR_CONVERT

_TO_AIGER
SUCCESS

load_balancer NO_CODE AI_ERROR ERROR_COMBINE_AIGER
ltl2dba_C2 NO_CODE NO_CODE FALSE_RESULT
ltl2dba_alpha FALSE_RESULT FALSE_RESULT FALSE_RESULT
mux NO_CODE SUCCESS ERROR_COMBINE_AIGER
narylatch AI_ERROR NO_CODE FALSE_RESULT
prioritized_
arbiter

FALSE_RESULT NO_CODE FALSE_RESULT

shift SUCCESS SUCCESS SUCCESS
simple_arbiter FALSE_RESULT FALSE_RESULT ERROR_COMBINE_AIGER
simple_arbiter_
enc

FALSE_RESULT AI_ERROR ERROR_CONVERT
_TO_AIGER

Table B.11.: Results for SC-Parametric-BoSy using PaLM2 (best-of-3)
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B.2. Result Tables

Benchmark BoSy Strix None
amba_
decomposed_
arbiter

AI_ERROR AI_ERROR ERROR_CONVERT
_TO_AIGER

amba_
decomposed_
encode

AI_ERROR AI_ERROR SUCCESS

amba_
decomposed_
lock

AI_ERROR ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

collector_v2 FALSE_RESULT NO_CODE FALSE_RESULT
collector_v3 SUCCESS SUCCESS ERROR_CONVERT

_TO_AIGER
detector FALSE_RESULT FALSE_RESULT FALSE_RESULT
load_balancer NO_CODE AI_ERROR ERROR_CONVERT

_TO_AIGER
ltl2dba_C2 FALSE_RESULT FALSE_RESULT ERROR_COMBINE_AIGER
ltl2dba_alpha FALSE_RESULT FALSE_RESULT ERROR_CONVERT

_TO_AIGER
mux FALSE_RESULT FALSE_RESULT SUCCESS
narylatch AI_ERROR ERROR_CONVERT

_TO_AIGER
FALSE_RESULT

prioritized_
arbiter

FALSE_RESULT NO_CODE FALSE_RESULT

shift SUCCESS SUCCESS FALSE_RESULT
simple_arbiter FALSE_RESULT FALSE_RESULT FALSE_RESULT
simple_arbiter_
enc

FALSE_RESULT AI_ERROR ERROR_CONVERT
_TO_AIGER

Table B.12.: Results for SC-Parametric-BoSy using PaLM2 (best-of-5)
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B. Result Tables

Benchmark BoSy Strix None
amba_
decomposed_
arbiter

AI_ERROR NO_CODE ERROR_CONVERT
_TO_AIGER

amba_
decomposed_
encode

AI_ERROR NO_CODE NO_CODE

amba_
decomposed_
lock

AI_ERROR NO_CODE ERROR_CONVERT
_TO_AIGER

collector_v2 FALSE_RESULT ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

collector_v3 SUCCESS ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

detector FALSE_RESULT ERROR_CONVERT
_TO_AIGER

NO_CODE

load_balancer ERROR_CONVERT
_TO_AIGER

NO_CODE NO_CODE

ltl2dba_C2 FALSE_RESULT ERROR_CONVERT
_TO_AIGER

NO_CODE

ltl2dba_alpha FALSE_RESULT ERROR_CONVERT
_TO_AIGER

NO_CODE

mux ERROR_CONVERT
_TO_AIGER

FALSE_RESULT SUCCESS

narylatch AI_ERROR ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

prioritized_
arbiter

FALSE_RESULT ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

shift SUCCESS SUCCESS FALSE_RESULT
simple_arbiter FALSE_RESULT FALSE_RESULT NO_CODE
simple_arbiter_
enc

FALSE_RESULT NO_CODE ERROR_CONVERT
_TO_AIGER

Table B.13.: Results for SC-Parametric-BoSy using GPT3.5 (single run)
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B.2. Result Tables

Benchmark BoSy Strix None
amba_
decomposed_
arbiter

AI_ERROR NO_CODE ERROR_CONVERT
_TO_AIGER

amba_
decomposed_
encode

AI_ERROR ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

amba_
decomposed_
lock

AI_ERROR ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

collector_v2 FALSE_RESULT FALSE_RESULT ERROR_CONVERT
_TO_AIGER

collector_v3 SUCCESS ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

detector FALSE_RESULT FALSE_RESULT ERROR_CONVERT
_TO_AIGER

load_balancer ERROR_CONVERT
_TO_AIGER

NO_CODE ERROR_COMBINE_AIGER

ltl2dba_C2 FALSE_RESULT ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

ltl2dba_alpha FALSE_RESULT ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

mux FALSE_RESULT FALSE_RESULT ERROR_CONVERT
_TO_AIGER

narylatch AI_ERROR ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

prioritized_
arbiter

FALSE_RESULT ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

shift SUCCESS SUCCESS SUCCESS
simple_arbiter SUCCESS ERROR_CONVERT

_TO_AIGER
ERROR_CONVERT
_TO_AIGER

simple_arbiter_
enc

FALSE_RESULT ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

Table B.14.: Results for SC-Parametric-BoSy using GPT3.5 (best-of-3)
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B. Result Tables

Benchmark BoSy Strix None
amba_
decomposed_
arbiter

AI_ERROR AI_ERROR FALSE_RESULT

amba_
decomposed_
encode

AI_ERROR AI_ERROR ERROR_CONVERT
_TO_AIGER

amba_
decomposed_
lock

AI_ERROR FALSE_RESULT ERROR_COMBINE_AIGER

collector_v2 FALSE_RESULT ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

collector_v3 SUCCESS SUCCESS ERROR_COMBINE_AIGER
detector FALSE_RESULT FALSE_RESULT FALSE_RESULT
load_balancer NO_CODE AI_ERROR ERROR_CONVERT

_TO_AIGER
ltl2dba_C2 FALSE_RESULT FALSE_RESULT ERROR_CONVERT

_TO_AIGER
ltl2dba_alpha AI_ERROR FALSE_RESULT ERROR_COMBINE_AIGER
mux ERROR_CONVERT

_TO_AIGER
FALSE_RESULT SUCCESS

narylatch AI_ERROR ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

prioritized_
arbiter

FALSE_RESULT NO_CODE SUCCESS

shift SUCCESS SUCCESS FALSE_RESULT
simple_arbiter FALSE_RESULT FALSE_RESULT FALSE_RESULT
simple_arbiter_
enc

FALSE_RESULT AI_ERROR ERROR_CONVERT
_TO_AIGER

Table B.15.: Results for SC-Parametric-BoSy using GPT3.5 (best-of-5)
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B.2. Result Tables

Benchmark BoSy Strix None
amba_
decomposed_
arbiter

AI_ERROR AI_ERROR NO_CODE

amba_
decomposed_
encode

AI_ERROR AI_ERROR ERROR_COMBINE_AIGER

amba_
decomposed_
lock

AI_ERROR NO_CODE FALSE_RESULT

collector_v1 NO_CODE AI_ERROR ERROR_COMBINE_AIGER
collector_v2 TIMEOUT AI_ERROR ERROR_COMBINE_AIGER
collector_v3 TIMEOUT ERROR_CONVERT

_TO_AIGER
VERIFICATION_TIMEOUT

detector TIMEOUT NO_CODE VERIFICATION_TIMEOUT
full_arbiter NO_CODE AI_ERROR NO_CODE
load_balancer NO_CODE AI_ERROR ERROR_COMBINE_AIGER
ltl2dba_C2 TIMEOUT NO_CODE NO_CODE
ltl2dba_E TIMEOUT VERIFICATION_TIMEOUT ERROR_COMBINE_AIGER
ltl2dba_Q TIMEOUT AI_ERROR ERROR_COMBINE_AIGER
ltl2dba_U1 TIMEOUT AI_ERROR FALSE_RESULT
ltl2dba_alpha TIMEOUT NO_CODE NO_CODE
ltl2dba_beta TIMEOUT AI_ERROR ERROR_COMBINE_AIGER
mux TIMEOUT NO_CODE ERROR_COMBINE_AIGER
narylatch TIMEOUT NO_CODE ERROR_CONVERT

_TO_AIGER
prioritized_
arbiter

TIMEOUT NO_CODE FALSE_RESULT

prioritized_
arbiter_enc

TIMEOUT AI_ERROR ERROR_COMBINE_AIGER

round_robin_
arbiter

TIMEOUT AI_ERROR ERROR_COMBINE_AIGER

shift SUCCESS SUCCESS SUCCESS
simple_arbiter TIMEOUT NO_CODE NO_CODE
simple_arbiter_
enc

FALSE_RESULT AI_ERROR ERROR_COMBINE_AIGER

Table B.16.: Results for SC-Parametric-Strix using PaLM2 (single run)
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Benchmark BoSy Strix None
amba_
decomposed_
arbiter

AI_ERROR AI_ERROR ERROR_CONVERT
_TO_AIGER

amba_
decomposed_
encode

AI_ERROR AI_ERROR ERROR_COMBINE_AIGER

amba_
decomposed_
lock

AI_ERROR NO_CODE FALSE_RESULT

collector_v1 NO_CODE AI_ERROR ERROR_COMBINE_AIGER
collector_v2 TIMEOUT AI_ERROR ERROR_COMBINE_AIGER
collector_v3 TIMEOUT SUCCESS VERIFICATION_TIMEOUT
detector TIMEOUT NO_CODE ERROR_COMBINE_AIGER
full_arbiter NO_CODE AI_ERROR ERROR_COMBINE_AIGER
load_balancer NO_CODE AI_ERROR ERROR_COMBINE_AIGER
ltl2dba_C2 TIMEOUT NO_CODE ERROR_COMBINE_AIGER
ltl2dba_E TIMEOUT ERROR_CONVERT

_TO_AIGER
FALSE_RESULT

ltl2dba_Q TIMEOUT AI_ERROR ERROR_COMBINE_AIGER
ltl2dba_U1 TIMEOUT AI_ERROR FALSE_RESULT
ltl2dba_alpha TIMEOUT NO_CODE FALSE_RESULT
ltl2dba_beta TIMEOUT AI_ERROR ERROR_COMBINE_AIGER
mux TIMEOUT NO_CODE ERROR_COMBINE_AIGER
narylatch TIMEOUT NO_CODE FALSE_RESULT
prioritized_
arbiter

TIMEOUT NO_CODE VERIFICATION_TIMEOUT

prioritized_
arbiter_enc

TIMEOUT AI_ERROR ERROR_COMBINE_AIGER

round_robin_
arbiter

TIMEOUT AI_ERROR ERROR_COMBINE_AIGER

shift SUCCESS SUCCESS SUCCESS
simple_arbiter TIMEOUT NO_CODE ERROR_COMBINE_AIGER
simple_arbiter_
enc

FALSE_RESULT AI_ERROR FALSE_RESULT

Table B.17.: Results for SC-Parametric-Strix using PaLM2 (best-of-3)
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Benchmark BoSy Strix None
amba_
decomposed_
arbiter

AI_ERROR AI_ERROR ERROR_CONVERT
_TO_AIGER

amba_
decomposed_
encode

AI_ERROR AI_ERROR ERROR_CONVERT
_TO_AIGER

amba_
decomposed_
lock

AI_ERROR NO_CODE FALSE_RESULT

collector_v1 NO_CODE AI_ERROR ERROR_COMBINE_AIGER
collector_v2 TIMEOUT AI_ERROR ERROR_COMBINE_AIGER
collector_v3 TIMEOUT SUCCESS VERIFICATION_TIMEOUT
detector TIMEOUT NO_CODE SUCCESS
full_arbiter NO_CODE AI_ERROR ERROR_CONVERT

_TO_AIGER
load_balancer NO_CODE AI_ERROR ERROR_COMBINE_AIGER
ltl2dba_C2 TIMEOUT NO_CODE NO_CODE
ltl2dba_E TIMEOUT ERROR_CONVERT

_TO_AIGER
FALSE_RESULT

ltl2dba_Q TIMEOUT AI_ERROR ERROR_COMBINE_AIGER
ltl2dba_U1 TIMEOUT AI_ERROR FALSE_RESULT
ltl2dba_alpha TIMEOUT NO_CODE ERROR_CONVERT

_TO_AIGER
ltl2dba_beta TIMEOUT AI_ERROR FALSE_RESULT
mux TIMEOUT NO_CODE ERROR_COMBINE_AIGER
narylatch TIMEOUT NO_CODE ERROR_CONVERT

_TO_AIGER
prioritized_
arbiter

TIMEOUT NO_CODE FALSE_RESULT

prioritized_
arbiter_enc

TIMEOUT AI_ERROR ERROR_CONVERT
_TO_AIGER

round_robin_
arbiter

TIMEOUT AI_ERROR ERROR_COMBINE_AIGER

shift SUCCESS SUCCESS SUCCESS
simple_arbiter TIMEOUT NO_CODE ERROR_COMBINE_AIGER
simple_arbiter_
enc

FALSE_RESULT AI_ERROR FALSE_RESULT

Table B.18.: Results for SC-Parametric-Strix using PaLM2 (best-of-5)
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Benchmark BoSy Strix None
amba_
decomposed_
arbiter

AI_ERROR NO_CODE NO_CODE

amba_
decomposed_
encode

AI_ERROR NO_CODE ERROR_CONVERT
_TO_AIGER

amba_
decomposed_
lock

AI_ERROR NO_CODE ERROR_CONVERT
_TO_AIGER

collector_v1 NO_CODE AI_ERROR ERROR_CONVERT
_TO_AIGER

collector_v2 TIMEOUT AI_ERROR ERROR_CONVERT
_TO_AIGER

collector_v3 TIMEOUT ERROR_CONVERT
_TO_AIGER

NO_CODE

detector TIMEOUT NO_CODE ERROR_COMBINE_AIGER
full_arbiter ERROR_CONVERT

_TO_AIGER
NO_CODE ERROR_CONVERT

_TO_AIGER
load_balancer ERROR_CONVERT

_TO_AIGER
ERROR_CONVERT
_TO_AIGER

NO_CODE

ltl2dba_C2 TIMEOUT ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

ltl2dba_E TIMEOUT VERIFICATION_TIMEOUT ERROR_COMBINE_AIGER
ltl2dba_Q TIMEOUT NO_CODE ERROR_CONVERT

_TO_AIGER
ltl2dba_U1 TIMEOUT AI_ERROR ERROR_CONVERT

_TO_AIGER
ltl2dba_alpha TIMEOUT ERROR_CONVERT

_TO_AIGER
FALSE_RESULT

ltl2dba_beta TIMEOUT AI_ERROR ERROR_COMBINE_AIGER
mux TIMEOUT ERROR_CONVERT

_TO_AIGER
ERROR_CONVERT
_TO_AIGER

narylatch TIMEOUT NO_CODE FALSE_RESULT
prioritized_
arbiter

TIMEOUT NO_CODE NO_CODE

prioritized_
arbiter_enc

TIMEOUT NO_CODE ERROR_CONVERT
_TO_AIGER

round_robin_
arbiter

TIMEOUT AI_ERROR ERROR_CONVERT
_TO_AIGER

shift SUCCESS SUCCESS NO_CODE
simple_arbiter TIMEOUT ERROR_CONVERT

_TO_AIGER
ERROR_CONVERT
_TO_AIGER

simple_arbiter_
enc

FALSE_RESULT ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

Table B.19.: Results for SC-Parametric-Strix using GPT3.5 (single run)
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Benchmark BoSy Strix None
amba_
decomposed_
arbiter

AI_ERROR NO_CODE ERROR_CONVERT
_TO_AIGER

amba_
decomposed_
encode

AI_ERROR ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

amba_
decomposed_
lock

AI_ERROR ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

collector_v1 FALSE_RESULT AI_RATELIMIT ERROR_COMBINE_AIGER
collector_v2 TIMEOUT AI_ERROR ERROR_CONVERT

_TO_AIGER
collector_v3 TIMEOUT ERROR_CONVERT

_TO_AIGER
SUCCESS

detector TIMEOUT ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

full_arbiter ERROR_CONVERT
_TO_AIGER

NO_CODE ERROR_CONVERT
_TO_AIGER

load_balancer FALSE_RESULT NO_CODE ERROR_CONVERT
_TO_AIGER

ltl2dba_C2 TIMEOUT ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

ltl2dba_E TIMEOUT FALSE_RESULT ERROR_CONVERT
_TO_AIGER

ltl2dba_Q TIMEOUT ERROR_CONVERT
_TO_AIGER

ERROR_COMBINE_AIGER

ltl2dba_U1 TIMEOUT AI_RATELIMIT ERROR_CONVERT
_TO_AIGER

ltl2dba_alpha TIMEOUT ERROR_CONVERT
_TO_AIGER

VERIFICATION_TIMEOUT

ltl2dba_beta TIMEOUT AI_ERROR ERROR_CONVERT
_TO_AIGER

mux TIMEOUT ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

narylatch TIMEOUT ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

prioritized_
arbiter

TIMEOUT ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

prioritized_
arbiter_enc

TIMEOUT NO_CODE FALSE_RESULT

round_robin_
arbiter

TIMEOUT AI_ERROR ERROR_CONVERT
_TO_AIGER

shift SUCCESS SUCCESS SUCCESS
simple_arbiter TIMEOUT FALSE_RESULT FALSE_RESULT
simple_arbiter_
enc

FALSE_RESULT NO_CODE FALSE_RESULT

Table B.20.: Results for SC-Parametric-Strix using GPT3.5 (best-of-3)
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Benchmark BoSy Strix None
amba_
decomposed_
arbiter

AI_ERROR AI_ERROR ERROR_CONVERT
_TO_AIGER

amba_
decomposed_
encode

AI_ERROR AI_ERROR FALSE_RESULT

amba_
decomposed_
lock

AI_ERROR ERROR_COMBINE_AIGER ERROR_COMBINE_AIGER

collector_v1 NO_CODE AI_ERROR ERROR_COMBINE_AIGER
collector_v2 TIMEOUT AI_ERROR ERROR_COMBINE_AIGER
collector_v3 TIMEOUT SUCCESS ERROR_CONVERT

_TO_AIGER
detector TIMEOUT NO_CODE FALSE_RESULT
full_arbiter NO_CODE AI_ERROR ERROR_COMBINE_AIGER
load_balancer NO_CODE AI_ERROR ERROR_CONVERT

_TO_AIGER
ltl2dba_C2 TIMEOUT NO_CODE ERROR_COMBINE_AIGER
ltl2dba_E TIMEOUT FALSE_RESULT ERROR_COMBINE_AIGER
ltl2dba_Q TIMEOUT ERROR_COMBINE_AIGER ERROR_COMBINE_AIGER
ltl2dba_U1 TIMEOUT AI_ERROR ERROR_COMBINE_AIGER
ltl2dba_alpha TIMEOUT NO_CODE ERROR_CONVERT

_TO_AIGER
ltl2dba_beta TIMEOUT AI_ERROR FALSE_RESULT
mux TIMEOUT FALSE_RESULT FALSE_RESULT
narylatch TIMEOUT AI_ERROR FALSE_RESULT
prioritized_
arbiter

TIMEOUT NO_CODE FALSE_RESULT

prioritized_
arbiter_enc

TIMEOUT AI_ERROR ERROR_COMBINE_AIGER

round_robin_
arbiter

TIMEOUT AI_ERROR FALSE_RESULT

shift SUCCESS SUCCESS FALSE_RESULT
simple_arbiter TIMEOUT NO_CODE FALSE_RESULT
simple_arbiter_
enc

FALSE_RESULT AI_ERROR ERROR_CONVERT
_TO_AIGER

Table B.21.: Results for SC-Parametric-Strix using GPT3.5 (best-of-5)

B.2.2. Comparison of Different Verilog Translations with BoSy

A comparison of how the different translation methods compare.

• standard: The standard Verilog output option BoSy provides.
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• aag: Directly translating the Aiger output from BoSy.

• opt_aag: As above, but before translating an optimisation pass is done with Yosys.

• opt_verilog: The BoSy verilog output is first translated into Aiger, then optimised
using Yosys, and then translated back into Verilog.

Benchmark aag opt_aag opt_verilog standard
amba_
decomposed_
arbiter

NO_CODE NO_CODE NO_CODE NO_CODE

amba_
decomposed_
encode

NO_CODE NO_CODE NO_CODE NO_CODE

amba_
decomposed_
lock

NO_CODE NO_CODE NO_CODE NO_CODE

collector_v2 ERROR_CONVERT
_TO_AIGER

NO_CODE ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

collector_v3 FALSE_RESULT FALSE_RESULT FALSE_RESULT SUCCESS
detector FALSE_RESULT FALSE_RESULT ERROR_CONVERT

_TO_AIGER
FALSE_RESULT

load_balancer NO_CODE NO_CODE NO_CODE NO_CODE
ltl2dba_C2 FALSE_RESULT NO_CODE NO_CODE FALSE_RESULT
ltl2dba_alpha FALSE_RESULT FALSE_RESULT NO_CODE FALSE_RESULT
mux FALSE_RESULT FALSE_RESULT FALSE_RESULT ERROR_CONVERT

_TO_AIGER
narylatch NO_CODE NO_CODE NO_CODE NO_CODE
prioritized_
arbiter

ERROR_CONVERT
_TO_AIGER

NO_CODE NO_CODE FALSE_RESULT

shift FALSE_RESULT SUCCESS SUCCESS SUCCESS
simple_arbiter FALSE_RESULT FALSE_RESULT ERROR_CONVERT

_TO_AIGER
FALSE_RESULT

simple_arbiter_
enc

ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

Table B.22.: PaLM2
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Benchmark aag opt_aag opt_verilog standard
amba_
decomposed_
arbiter

AI_ERROR AI_ERROR AI_ERROR AI_ERROR

amba_
decomposed_
encode

AI_ERROR AI_ERROR AI_ERROR AI_ERROR

amba_
decomposed_
lock

NO_CODE NO_CODE AI_ERROR AI_ERROR

collector_v2 NO_CODE ERROR_CONVERT
_TO_AIGER

NO_CODE NO_CODE

collector_v3 SUCCESS SUCCESS SUCCESS SUCCESS
detector NO_CODE NO_CODE NO_CODE NO_CODE
load_balancer NO_CODE NO_CODE NO_CODE ERROR_CONVERT

_TO_AIGER
ltl2dba_C2 ERROR_CONVERT

_TO_AIGER
NO_CODE ERROR_CONVERT

_TO_AIGER
NO_CODE

ltl2dba_alpha NO_CODE NO_CODE NO_CODE NO_CODE
mux NO_CODE ERROR_CONVERT

_TO_AIGER
NO_CODE SUCCESS

narylatch AI_ERROR AI_ERROR AI_ERROR ERROR_CONVERT
_TO_AIGER

prioritized_
arbiter

NO_CODE NO_CODE NO_CODE FALSE_RESULT

shift ERROR_CONVERT
_TO_AIGER

SUCCESS ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

simple_arbiter NO_CODE FALSE_RESULT ERROR_CONVERT
_TO_AIGER

SUCCESS

simple_arbiter_
enc

NO_CODE NO_CODE NO_CODE NO_CODE

Table B.23.: GPT3.5

B.2.3. Scaling Solutions to their Highest Parameter Values

Benchmark Self BoSy Strix None
detector 8 0 0 0

full_arbiter 4 0 0 0

mux 128 128 0 128

shift 512 128 128 128

simple_arbiter 16 16 0 0

Table B.24.: Highest parameter value for which a correct solution was produced by
GPT3.5 on SC-Parametric-Human
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Benchmark BoSy Strix None
amba_
decomposed_
arbiter

0 0 0

amba_
decomposed_
encode

0 0 0

amba_
decomposed_
lock

0 0 0

collector_v2 0 0 0

collector_v3 128 0 0

detector 0 0 0

load_balancer 0 0 0

ltl2dba_C2 0 0 0

ltl2dba_alpha 0 0 0

mux 0 0 64

narylatch 0 0 0

prioritized_
arbiter

0 0 0

shift 64 256 0

simple_arbiter 16 0 0

simple_arbiter_
enc

0 0 0

Table B.25.: Highest parameter value for which a correct solution was produced by
GPT3.5 on SC-Parametric-BoSy

B.2.4. One-shot Results

Benchmark Self BoSy Strix
detector SUCCESS FALSE_RESULT NO_CODE
full_arbiter ERROR_COMBINE_AIGER NO_CODE NO_CODE
mux SUCCESS FALSE_RESULT SUCCESS
shift SUCCESS SUCCESS SUCCESS
simple_arbiter SUCCESS SUCCESS FALSE_RESULT

Table B.26.: One-shot results for SC-Parametric-Human using PaLM2 (best-of-3)
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Benchmark Self BoSy Strix
detector SUCCESS FALSE_RESULT ERROR_CONVERT

_TO_AIGER
full_arbiter SUCCESS FALSE_RESULT NO_CODE
mux SUCCESS ERROR_CONVERT

_TO_AIGER
ERROR_CONVERT
_TO_AIGER

shift SUCCESS SUCCESS SUCCESS
simple_arbiter SUCCESS SUCCESS FALSE_RESULT

Table B.27.: One-shot results for SC-Parametric-Human using GPT3.5 (best-of-3)

Benchmark BoSy Strix
amba_
decomposed_
arbiter

AI_ERROR AI_ERROR

amba_
decomposed_
encode

AI_ERROR NO_CODE

amba_
decomposed_
lock

AI_ERROR NO_CODE

collector_v2 AI_ERROR AI_ERROR
collector_v3 SUCCESS SUCCESS
detector FALSE_RESULT NO_CODE
load_balancer NO_CODE AI_ERROR
ltl2dba_C2 FALSE_RESULT NO_CODE
ltl2dba_alpha FALSE_RESULT FALSE_RESULT
mux FALSE_RESULT SUCCESS
narylatch AI_ERROR NO_CODE
prioritized_
arbiter

FALSE_RESULT NO_CODE

shift SUCCESS SUCCESS
simple_arbiter SUCCESS FALSE_RESULT
simple_arbiter_
enc

FALSE_RESULT AI_ERROR

Table B.28.: One-shot results for SC-Parametric-BoSy using PaLM2 (best-of-3)
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Benchmark BoSy Strix
amba_
decomposed_
arbiter

AI_ERROR NO_CODE

amba_
decomposed_
encode

AI_ERROR ERROR_CONVERT_TO_AIGER

amba_
decomposed_
lock

AI_ERROR ERROR_CONVERT_TO_AIGER

collector_v2 FALSE_RESULT ERROR_CONVERT_TO_AIGER
collector_v3 SUCCESS SUCCESS
detector FALSE_RESULT FALSE_RESULT
load_balancer ERROR_CONVERT_TO_AIGER ERROR_CONVERT_TO_AIGER
ltl2dba_C2 FALSE_RESULT ERROR_CONVERT_TO_AIGER
ltl2dba_alpha FALSE_RESULT ERROR_CONVERT_TO_AIGER
mux SUCCESS FALSE_RESULT
narylatch AI_ERROR ERROR_CONVERT_TO_AIGER
prioritized_
arbiter

FALSE_RESULT ERROR_CONVERT_TO_AIGER

shift SUCCESS SUCCESS
simple_arbiter SUCCESS FALSE_RESULT
simple_arbiter_
enc

FALSE_RESULT ERROR_COMBINE_AIGER

Table B.29.: One-shot results for SC-Parametric-BoSy using GPT3.5 (best-of-3)
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Benchmark BoSy Strix
amba_
decomposed_
arbiter

AI_ERROR AI_ERROR

amba_
decomposed_
encode

AI_ERROR NO_CODE

amba_
decomposed_
lock

AI_ERROR NO_CODE

collector_v1 ERROR_CONVERT_TO_AIGER AI_ERROR
collector_v2 TIMEOUT AI_ERROR
collector_v3 TIMEOUT SUCCESS
detector TIMEOUT NO_CODE
full_arbiter NO_CODE AI_ERROR
load_balancer NO_CODE AI_ERROR
ltl2dba_C2 TIMEOUT NO_CODE
ltl2dba_E TIMEOUT ERROR_CONVERT_TO_AIGER
ltl2dba_Q TIMEOUT NO_CODE
ltl2dba_U1 TIMEOUT AI_ERROR
ltl2dba_alpha TIMEOUT VERIFICATION_TIMEOUT
ltl2dba_beta TIMEOUT AI_ERROR
mux TIMEOUT SUCCESS
narylatch TIMEOUT NO_CODE
prioritized_
arbiter

TIMEOUT NO_CODE

prioritized_
arbiter_enc

TIMEOUT AI_ERROR

round_robin_
arbiter

TIMEOUT AI_ERROR

shift SUCCESS SUCCESS
simple_arbiter TIMEOUT NO_CODE
simple_arbiter_
enc

FALSE_RESULT AI_ERROR

Table B.30.: One-shot results for SC-Parametric-Strix using PaLM2 (best-of-3)
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Benchmark BoSy Strix
amba_
decomposed_
arbiter

AI_ERROR ERROR_CONVERT_TO_AIGER

amba_
decomposed_
encode

AI_ERROR NO_CODE

amba_
decomposed_
lock

AI_ERROR ERROR_CONVERT_TO_AIGER

collector_v1 ERROR_CONVERT_TO_AIGER AI_RATELIMIT
collector_v2 TIMEOUT AI_ERROR
collector_v3 TIMEOUT SUCCESS
detector TIMEOUT FALSE_RESULT
full_arbiter FALSE_RESULT NO_CODE
load_balancer ERROR_CONVERT_TO_AIGER NO_CODE
ltl2dba_C2 TIMEOUT ERROR_CONVERT_TO_AIGER
ltl2dba_E TIMEOUT ERROR_CONVERT_TO_AIGER
ltl2dba_Q TIMEOUT ERROR_CONVERT_TO_AIGER
ltl2dba_U1 TIMEOUT AI_RATELIMIT
ltl2dba_alpha TIMEOUT ERROR_CONVERT_TO_AIGER
ltl2dba_beta TIMEOUT AI_ERROR
mux TIMEOUT ERROR_CONVERT_TO_AIGER
narylatch TIMEOUT ERROR_CONVERT_TO_AIGER
prioritized_
arbiter

TIMEOUT FALSE_RESULT

prioritized_
arbiter_enc

TIMEOUT NO_CODE

round_robin_
arbiter

TIMEOUT AI_ERROR

shift SUCCESS SUCCESS
simple_arbiter TIMEOUT FALSE_RESULT
simple_arbiter_
enc

FALSE_RESULT ERROR_CONVERT_TO_AIGER

Table B.31.: One-shot results for SC-Parametric-Strix using GPT3.5 (best-of-3)

B.2.5. Zero-shot Results with the Prompt Containing the Module Definition

All experiments here were performed as a best-of-3 using the prompt described in
Sect. 4.5.1. Because we are only listing zero-shot results, the columns in these tables : Sec. 4.5.1, p. 25

contain the LLM which was used. Here we only evaluated each benchmark using the
reference solution provided by its corresponding tool (e.g. SC-Parametric-BoSy only uses
BoSy for its examples).
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Benchmark GPT3.5 PaLM2
detector ERROR_CONVERT_TO_AIGER ERROR_CONVERT_TO_AIGER
full_arbiter ERROR_CONVERT_TO_AIGER FALSE_RESULT
mux SUCCESS SUCCESS
shift SUCCESS SUCCESS
simple_arbiter NO_CODE FALSE_RESULT

Table B.32.: Zero-shot results for SC-Parametric-Human using the prompt containing the
module definition for (best-of-3)

Benchmark GPT3.5 PaLM2
amba_
decomposed_
arbiter

ERROR_CONVERT_TO_AIGER ERROR_COMBINE_AIGER

amba_
decomposed_
encode

FALSE_RESULT ERROR_CONVERT_TO_AIGER

amba_
decomposed_
lock

ERROR_CONVERT_TO_AIGER FALSE_RESULT

collector_v2 FALSE_RESULT FALSE_RESULT
collector_v3 SUCCESS SUCCESS
detector FALSE_RESULT ERROR_CONVERT_TO_AIGER
load_balancer FALSE_RESULT ERROR_CONVERT_TO_AIGER
ltl2dba_C2 FALSE_RESULT ERROR_CONVERT_TO_AIGER
ltl2dba_alpha FALSE_RESULT ERROR_CONVERT_TO_AIGER
mux SUCCESS SUCCESS
narylatch FALSE_RESULT FALSE_RESULT
prioritized_
arbiter

FALSE_RESULT ERROR_COMBINE_AIGER

shift SUCCESS SUCCESS
simple_arbiter ERROR_CONVERT_TO_AIGER NO_CODE
simple_arbiter_
enc

FALSE_RESULT ERROR_CONVERT_TO_AIGER

Table B.33.: Zero-shot results for SC-Parametric-BoSy using the prompt containing the
module definition for (best-of-3)
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Benchmark GPT3.5 PaLM2
amba_
decomposed_
arbiter

ERROR_CONVERT_TO_AIGER ERROR_CONVERT_TO_AIGER

amba_
decomposed_
encode

FALSE_RESULT FALSE_RESULT

amba_
decomposed_
lock

FALSE_RESULT FALSE_RESULT

collector_v1 FALSE_RESULT FALSE_RESULT
collector_v2 FALSE_RESULT FALSE_RESULT
collector_v3 SUCCESS ERROR_CONVERT_TO_AIGER
detector ERROR_CONVERT_TO_AIGER NO_CODE
full_arbiter FALSE_RESULT FALSE_RESULT
load_balancer FALSE_RESULT ERROR_CONVERT_TO_AIGER
ltl2dba_C2 FALSE_RESULT NO_CODE
ltl2dba_E FALSE_RESULT ERROR_CONVERT_TO_AIGER
ltl2dba_Q FALSE_RESULT ERROR_CONVERT_TO_AIGER
ltl2dba_U1 FALSE_RESULT ERROR_CONVERT_TO_AIGER
ltl2dba_alpha FALSE_RESULT ERROR_CONVERT_TO_AIGER
ltl2dba_beta ERROR_CONVERT_TO_AIGER ERROR_CONVERT_TO_AIGER
mux SUCCESS SUCCESS
narylatch FALSE_RESULT FALSE_RESULT
prioritized_
arbiter

ERROR_CONVERT_TO_AIGER ERROR_CONVERT_TO_AIGER

prioritized_
arbiter_enc

FALSE_RESULT ERROR_CONVERT_TO_AIGER

round_robin_
arbiter

ERROR_CONVERT_TO_AIGER ERROR_CONVERT_TO_AIGER

shift SUCCESS SUCCESS
simple_arbiter FALSE_RESULT NO_CODE
simple_arbiter_
enc

FALSE_RESULT ERROR_CONVERT_TO_AIGER

Table B.34.: Zero-shot results for SC-Parametric-Strix using the prompt containing the
module definition for (best-of-3)

B.2.6. Initial GPT-4 results

These are the results from initial experiments we performed using GPT-4.
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Benchmark Self BoSy Strix None
detector SUCCESS FALSE_RESULT FALSE_RESULT ERROR_CONVERT

_TO_AIGER
full_arbiter ERROR_COMBINE

_AIGER
FALSE_RESULT FALSE_RESULT FALSE_RESULT

mux SUCCESS SUCCESS SUCCESS SUCCESS
shift SUCCESS SUCCESS SUCCESS SUCCESS
simple_arbiter SUCCESS SUCCESS SUCCESS NO_CODE

Table B.35.: Results for SC-Parametric-Human using GPT-4 (best-of-3)

Benchmark BoSy Strix None
amba_
decomposed_
arbiter

AI_ERROR AI_ERROR NO_CODE

amba_
decomposed_
encode

AI_RATELIMIT AI_ERROR FALSE_RESULT

amba_
decomposed_
lock

AI_ERROR AI_ERROR ERROR_CONVERT
_TO_AIGER

collector_v2 FALSE_RESULT ERROR_CONVERT
_TO_AIGER

FALSE_RESULT

collector_v3 SUCCESS SUCCESS SUCCESS
detector FALSE_RESULT FALSE_RESULT FALSE_RESULT
load_balancer FALSE_RESULT AI_ERROR FALSE_RESULT
ltl2dba_C2 SUCCESS FALSE_RESULT SUCCESS
ltl2dba_alpha FALSE_RESULT FALSE_RESULT ERROR_CONVERT

_TO_AIGER
mux SUCCESS SUCCESS SUCCESS
narylatch AI_RATELIMIT SUCCESS FALSE_RESULT
prioritized_
arbiter

FALSE_RESULT FALSE_RESULT NO_CODE

shift SUCCESS SUCCESS SUCCESS
simple_arbiter SUCCESS SUCCESS ERROR_COMBINE_AIGER
simple_arbiter_
enc

FALSE_RESULT AI_ERROR FALSE_RESULT

Table B.36.: Results for SC-Parametric-BoSy using GPT-4 (best-of-3)
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Benchmark Strix None
amba_
decomposed_
arbiter

AI_ERROR ERROR_CONVERT_TO_AIGER

amba_
decomposed_
encode

AI_ERROR FALSE_RESULT

amba_
decomposed_
lock

AI_ERROR ERROR_CONVERT_TO_AIGER

collector_v1 AI_RATELIMIT ERROR_CONVERT_TO_AIGER
collector_v2 AI_RATELIMIT ERROR_CONVERT_TO_AIGER
collector_v3 SUCCESS ERROR_CONVERT_TO_AIGER
detector FALSE_RESULT ERROR_CONVERT_TO_AIGER
full_arbiter AI_ERROR FALSE_RESULT
load_balancer AI_ERROR FALSE_RESULT
ltl2dba_C2 FALSE_RESULT VERIFICATION_TIMEOUT
ltl2dba_E FALSE_RESULT ERROR_CONVERT_TO_AIGER
ltl2dba_Q NO_CODE ERROR_CONVERT_TO_AIGER
ltl2dba_U1 AI_RATELIMIT ERROR_CONVERT_TO_AIGER
ltl2dba_alpha ERROR_CONVERT_TO_AIGER ERROR_CONVERT_TO_AIGER
ltl2dba_beta AI_RATELIMIT ERROR_CONVERT_TO_AIGER
mux SUCCESS SUCCESS
narylatch AI_ERROR FALSE_RESULT
prioritized_
arbiter

NO_CODE ERROR_CONVERT_TO_AIGER

prioritized_
arbiter_enc

AI_ERROR FALSE_RESULT

round_robin_
arbiter

AI_RATELIMIT FALSE_RESULT

shift SUCCESS SUCCESS
simple_arbiter VERIFICATION_TIMEOUT FALSE_RESULT
simple_arbiter_
enc

AI_ERROR FALSE_RESULT

Table B.37.: Results for SC-Parametric-Strix using GPT-4 (best-of-3)
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Appendix C
Prompts Used

C.1. PaLM2 Prompt

In the below figure you can see the default prompt given to PaLM2. Note that it only
differs from the GPT3.5 prompt in the way that the examples are presented to the model.
Instead of being part of the message history, they are structurally separated.
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C. Prompts Used

System Example 1
user Please write a Verilog module for n=2 fulfilling the following specifica-

tion. Make sure the code is fully synthesizable.:
G (F r_0) && G (F r_1) <-> G (F g)

assistant

module detector(r_0, r_1, g);
...
endmodule

System Example 2
user Please write a Verilog module for n=4 fulfilling the following specifica-

tion. Make sure the code is fully synthesizable.:
G (F r_0) && G (F r_1) && G (F r_2) && G (F r_3) <-> G (F g)

assistant

module detector(r_0, r_1, r_2, r_3, g);
...
endmodule

Prompt
user Please write a Verilog module for n=8 fulfilling the following

specification. Make sure the code is fully synthesizable.:
G (F r_0) && G (F r_1) && G (F r_2) && G (F r_3) && G (F r_4) && G (F r_5) && G

(F r_6) && G (F r_7) <-> G (F g)

Figure C.1.: The prompt used for PaLM2. Terminology slightly adjusted for consistency.

C.2. Module Definition Prompt

This is the modified zero-shot prompt used in Sect. 4.5.1. For the sake of brevity we will: Sec. 4.5.1, p. 25

not distinguish between PaLM2 and GPT3.5 here.
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C.2. Module Definition Prompt

You are an expert in writing correct Verilog code, that fulfill certain formal properties
specified in LTL.
Please write a Verilog module for n=4 using the following module definition as a basis.

module detector(r_0, r_1, r_2, r_3, g)

The code needs to be fully synthesizable and follow the following LTL specification:
G (F r_0) && G (F r_1) && G (F r_2) && G (F r_3) <-> G (F g)

Figure C.2.: The zero-shot prompt additionally containing the module definitifon
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