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Abstract—Temporal causality defines what property causes
some observed temporal behavior (the effect) in a given computa-
tion, based on a counterfactual analysis of similar computations.
In this paper, we study its closure properties and the complexity
of computing causes. For the former, we establish that safety,
reachability, and recurrence properties are all closed under causal
inference: If the effect is from one of these property classes,
then the cause for this effect is from the same class. We also
show that persistence and obligation properties are not closed in
this way. These results rest on a topological characterization of
causes which makes them applicable to a wide range of similarity
relations between computations. Finally, our complexity analysis
establishes improved upper bounds for computing causes for
safety, reachability, and recurrence properties. We also present
the first lower bounds for all of the classes.

Index Terms—Automata, counterfactual reasoning, infinite
words, temporal properties, topology

I. INTRODUCTION

Temporal causality is a flavor of counterfactual reasoning
that causally relates temporal properties of a given system
computation. Given, for instance, the system computation

{start}{request1}{request2}{failure}ω ,

temporal causality can tell us whether the property request1
or request2 is the cause for the property failure.
It generalizes the concept of actual causality [20], [21] to
symbolic temporal properties and provides a logician’s lens
to study reasoning used in a plethora of applications such as
explaining verification results [1], [6], [9], attribution of blame
in multi-agent systems [12] and explainable AI [5], [35].

According to the theory [10], a causal relationship holds
between two properties on a given computation, with respect to
a given similarity relation, if both properties are satisfied by the
computation, the most similar computations that do not satisfy
the cause property do not satisfy the effect property either,
and the cause property is the minimal set that qualifies for the
previous two conditions. Finkbeiner et al. [15] have recently
presented an intuitive order-theoretic reformulation of this:
Causes are exactly the largest downward closed set of system
computations that satisfy the effect, or – more informally
speaking – they describe the set of computations most similar
to the given observed computation that continuously satisfy
the effect property. With this reformulation, they show that ω-
regular effects imply ω-regular causes by giving an algorithm
that synthesizes the cause property as a nondeterministic Büchi
automaton from a system, computation and effect property
with respect to a given (effectively ω-regular) similarity re-
lation. Besides showing that ω-regular properties are in this

way closed under causal inference, this construction also gives
an upper bound on the size of the causal automaton that is
roughly exponential in the system size and doubly exponential
in the effect size (see Table I for the exact complexity). This
blow-up mainly stems from Büchi complementation that is
performed twice during the cause synthesis algorithm. In this
work, we spin the theoretical aspects of this problem further
and conduct a detailed investigation of property classes that
are closed under temporal causality, as well as the complexity
of constructing temporal causes as automata.

A. Closure Under Temporal Causality

While the closure of ω-regular properties under causal
inference is of high practical significance because it sug-
gest a general algorithm for, e.g., constructing explanations
of model-checking counterexamples, it also raises intriguing
philosophical questions regarding the temporal structure of
cause-effect relationships in reactive systems that interact
with their environment over a possibly infinite duration. For
instance, a fundamental temporal aspect of causal relationships
between events is that the cause happens before the effect.
A similar trait holds for temporal causality: If the effect is
given as a temporal logic formula containing n -operators
(which is a way of describing a set of concrete events), then
the cause can be described by a formula containing at most n

-operators [3]. Hence, the events described by the cause are
guaranteed to happen earlier or at the same time as the events
described by the effect. Besides demonstrating this temporal
aspect of causal relationships between events, this also gives
a complete cause-synthesis algorithm for this fragment based
on enumeration [3].

In this paper, we go beyond events as described by the
fragment containing only -operators to general temporal
properties. In this general setting, a comparable notion of
temporal precedence does not exist, as general temporal prop-
erties may place conditions over a full infinite word: For
instance, it is impossible to say that a happens before

b. Therefore, we study closure properties along the lines
of Manna and Pneuli’s hierarchy of temporal properties [31].
The hierarchy organizes temporal properties into classes based
on language-theoretic considerations that have a tight connec-
tion to concepts in topology, temporal logic, and automata
theory. We analyze for which classes membership of the
effect property implies membership in the same class for
the resulting cause property. Our results and previous ones
are illustrated along a recapitulation of the hierarchy of ω-
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Fig. 1: Results on closure under causality of property classes
in Manna and Pneuli’s hierarchy of temporal properties [31].
Classes colored green are closed under causal inference, while
classes colored in red are not. Note that φ and ψ are formulas
containing no future operators.

regular properties in Figure 1. Note that we follow Manna
and Pneuli in using LTL operators for the sake of illustration,
but mean all ω-regular properties in the respective classes. On
the highest level the class of reactivity properties, which is
equivalent to the class of ω-regular properties [31], is closed
under causality as already shown by Finkbeiner et al. [15]. One
level below, things are less clear-cut: While every recurrence
effect indeed has a recurrence cause, we show that this is
not the case for the class of persistence properties. On the
lower levels, we have that safety and guarantee properties are
both closed under causality, while obligation properties, which
correspond to Boolean combinations of properties from these
classes as indicated in the figure, are not closed in the same
way. Interestingly, the unnamed class of properties that are
both safety and guarantee properties corresponds exactly to the
fragment containing only -operators for which Beutner et al.
have shown closure under causality [3]. Notably, our results
require only general assumptions on the similarity relation,
such that they can accommodate different relations that may
be desirable in different problem settings.

B. Complexity of Temporal Causality

Our study of closure properties along the lines of the hi-
erarchy of temporal properties suggest possible improvements
for the synthesis of temporal causes from effects belonging
to certain fragments. For instance, since we now know that a
cause for a safety effect is itself a safety property, opting for
a representation via bad prefixes promises a cheaper comple-
mentation operation than in the general case. Therefore, we

conduct a detailed inquiry into the complexity of constructing
temporal causes for effects from the varying classes.

The main results of this inquiry are shown in Figure I. The
exact upper bound obtained from the cause synthesis algorithm
of Finkbeiner et al. [15] is also listed in the table. As one of our
main results, we can show that there is a family of problems
where the cause automaton scales doubly exponential in the
size of the effect. While there is still a logarithmic gap
between our lower bounds and the upper bound of Finkbeiner
et al. [15], this demonstrates that the number of exponents of
the upper bounds is already optimal. We have a tight bound
for the size of the cause with respect to the size of the system,
which is exponential with an additional logarithmic factor in
the exponent. These results are particularly valuable because in
practical instances such as explaining model-checking results,
the system size tends to be much bigger than the effect size.

We can also confirm our initial intuition regarding classes
of effects for which cause automata can be synthesized more
efficiently than with the general algorithm. As may be ex-
pected, this concerns the two classes on the lower level of the
hierarchy: guarantee and safety properties. Since properties
from these classes can effectively be described by finite word
automata for good and bad prefixes, respectively, it is also
possible to use the cheaper complementation operations for
finite word automata in the general algorithm. We show that
this approach results in an upper bound on the size of the
cause automaton absent of logarithmic factors, and is mirrored
by tight lower bounds in the size of the system and the effect.
While the improvement in the upper bound is only by a
logarithmic factor, this is still of high practical significance
because the classes of guarantee and safety properties are
ubiquitous in verification problems.

C. Outline

The paper is structured as follows. We first establish some
basic preliminaries (Section II). We then introduce background
on temporal causality in Section III. Our contributions are
then split into two main parts: In Section IV we establish our
results on closure under causal inference using a topological
argument, and in Section V we prove lower and upper bounds
on the size of causes. We discuss related results in Section VI
and end with a short summary and outlook on possible future
applications of our results (Section VII).

II. PRELIMINARIES

We recall some general background on infinite words,
temporal properties, automata, and temporal logic.

A. Words and Properties

We model computations by words over some alphabet Σ.
If not discussed explicitly, we assume Σ to be finite. A word
π = π0π1 . . . then is a sequence of letters πi ∈ Σ from the
alphabet. For some word π, its prefix of length n is denoted
by π(n). The set of all prefixes of a given length is defined as
pref (π) := {π(n) | n ∈ N}. We denote by Σ∗ the set of finite
words and by Σω the set of infinite words. Σ∞ = Σ∗ ∪ Σω



TABLE I: Highlights of our analysis of upper and lower bounds on the size of cause automata synthesized from a system T ,
computation π, a fixed similarity relation ≤ and an effect E, which belongs to a certain class as outlined in the first column.

Effect Class Lower bound in E Lower bound in T Upper bound

Reactivity 22
Ω(|E|)

(Thm. 6) 2Ω(|T |·log(T |)) (Thm. 5.1) |π| · 22O(|E|·log(|E|))·|T |·log(|T |) [15]

Persistence 22
Ω(|E|)

(Thm. 6) 2Ω(|T |·log(T |)) (Thm. 5.1) |π| · 22O(|E|·log(|E|))·|T |·log(|T |) [15]

Recurrence 22
Ω(|E|)

(Thm. 6) Ω(3|T |) (Thm. 5.2) |π| · 32O(|E|·log(|E|))·|T | (Thm. 7)

Safety 22
Ω(|E|)

(Thm. 6) Ω(2|T |) (Thm. 5.3) |π| · 22O(|E|)·|T | (Thm. 8)

Guarantee 22
Ω(|E|)

(Thm. 6) Ω(2|T |) (Thm. 5.3) |π| · 22O(|E|)·|T | (Thm. 9)

is the set of both finite and infinite words. A language L
is a subset of Σ∞. We denote by L the complement of a
language L. We model properties as finite or infinite word
languages L ⊂ Σ∗ or L ⊂ Σω , respectively. For L ⊆ Σω

the set of prefixes of words from L of length n is denoted
as pref n(L) := {π(n) | π ∈ L} and the set of all prefixes of
words in L is denoted as: pref (L) = {π(n) | π ∈ L, n ∈ N}.

We now recall Manna and Pneuli’s formal categorization of
infinite word languages based on construction rules from finite
world languages, which is illustrated in Figure 1.

Definition 1 (Manna and Pneuli [31]). An infinite word
language is a safety, guarantee, recurrence or persistence
property, if the following holds:

• An infinite word language L is a safety property if there
exists a finite words language Φ such that L consists of
all infinite words π such that every prefix of π is in Φ.

• An infinite word language L is a guarantee property if
there exists a finite words language Φ such that L consists
of all infinite words π such that there exists a prefix of π
that is in Φ.

• An infinite word language L is a recurrence property if
there exists a finite words language Φ such that L consists
of all infinite words π such that infinitely many prefixes
of π are in Φ.

• An infinite word language L is a persistence property if
there exists a finite words language Φ such that L consists
of all infinite words π such that finitely many prefixes of
π are in Φ.

• An infinite word language L is an obligation property
if it is a Boolean combination of safety and guarantee
properties.

• An infinite word language L is a reactivity property if it
is a Boolean combination of recurrence and persistence
properties.

Moreover, the obligation class is precisely the intersection
of the recurrence and persistence classes, and the reactivity
class contains all ω-regular properties [31].

B. Automata and Systems

An automaton is a tuple A = (Q,Σ, Q0, F,∆), where Q
denotes a finite set of states, Σ is an alphabet, Q0 ⊆ Q is

a set of initial states, F ⊆ Q is the set of accepting states,
and ∆ : (Q × Σ) × Q is a transition relation that maps a
state and a letter to a set of possible successor states. For
an automata A the number of states of A is denoted as |A|.
An automaton A = (Q,Σ, Q0, F,∆) is deterministic if the
transition relation ∆ is a function and Q0 is a singleton,
otherwise it is a nondeterministic automaton. A run of A on
a word π = π0π1 . . . ∈ Σ∞ is a sequence r = q0q1 . . . of
states qi ∈ Q with q0 ∈ Q0 and

(
(qi, wi), qi+1

)
∈ ∆ for

all i. Universal automata are nondeterminstic automata that
accept a word π if all of the runs on π fulfill the automatons
acceptance condition, for all other automata only one run
needs to fulfill this condition. In a finite word automaton
the acceptance condition for a run r = q0q1 . . . qk is that
qk ∈ F . We use the shorthands DFW, NFW and UFW
for determinstic, nondeterminstic and universal finite word
automata, respectively, and analogous shorthands for all other
automata types. In a Büchi word automaton (DBW, etc.), an
infinite run r = q0q1 . . . fulfills the acceptance condition if
there exist infinitely many i ∈ N such that qi ∈ F . Lastly,
in a Co-Büchi word automaton (DCW, etc.), an infinite run
r = q0q1 . . . is accepting if all states appearing infinitely often
are not in F , i.e., there is an j ∈ N such that all i > j
have qi /∈ F . The language L(A) of an automaton A is
the set of all words that have an accepting run. An infinite
word language L ⊂ Σω is ω-regular, if it is recognized by a
nondeterministic Büchi word automaton (NBW) A such that
we have L(A) = L.

A systems is a tuple T = (S, s0,AP , δ, l) where S is a finite
set of states, s0 ∈ S is the initial state, AP = I ∪· O consists
of inputs I and outputs O , δ : S × 2I → 2S is the transition
function describing the successor states for some state and
input, and l : S → 2O is the labeling function labeling each
state with a set of outputs. A trace of T is an infinite sequence
π = π0π1 . . . ∈ (2AP )ω , with πi = A ∪ l(si+1) for some
A ⊆ I and si+1 ∈ δ(si, A) for all i ≥ 0. Note that the label
of the initial state is omitted in the first position. traces(T ) is
the set of all traces of T . A zipped trace of the three traces
π0,1,2 is then defined as zip(π0, π1, π2)i = {ak | a ∈ πk

i },
i.e., we construct the zipped trace from disjoint unions of the
positions of the three traces, where inputs and outputs from the



traces π0,1,2 are distinguished through superscripts. We also
define projection and equivalence on traces: for A,B ⊆ I ∪O
and traces π, π′, let A|B = A ∩ B, π|B = π0|Bπ1|B . . . and
π =A π′ iff π|A = π′|A.

C. Linear-time Temporal Logic

We will use Linear-time Temporal Logic (LTL) [40] when
we want to describe a property more conveniently than with
automata in this paper (even though not every ω-regular
property can be expressed this way). The grammar for LTL
formulas is as follows, where a ∈ Σ:

φ ::= a | ¬φ | φ ∧ φ | φ | φU φ | − φ | U− φ .

All temporal operators with a minus superscript are past
operators [30], the others are future operators. The semantics
of LTL are given as follows.

π, i ⊨ a iff a = πi
π, i ⊨ ¬φ iff π, i ⊭ φ
π, i ⊨ φ ∧ ψ iff π, i ⊨ φ and π, i ⊨ ψ
π, i ⊨ φ iff π, i+ 1 ⊨ φ
π, i ⊨ − φ iff i > 0 ∧ π, i− 1 ⊨ φ
π, i ⊨ φU ψ iff ∃j ≥ i such that π, j ⊨ ψ and

∀i ≤ k < j. π, k ⊨ φ
π, i ⊨ φU− ψ iff ∃k ≤ i such that π, k ⊨ ψ and

∀i ≥ j > k : π, j ⊨ φ .

A word π satisfies a formula φ, denoted by π ⊨ φ iff π, 0 ⊨
φ, i.e., the formula holds at the first position. The language
L(φ) of a formula φ is the set of all traces that satisfy it.
We also use the derived Boolean connectives (∨, →, ↔) and
temporal operators (φRψ ≡ ¬(¬φU ¬ψ), φ ≡ true U φ,
φ ≡ falseRφ, − φ ≡ true U− φ, − φ ≡ ¬ − ¬φ).

III. TEMPORAL CAUSALITY

We now present a comprehensive primer on previous work
regarding temporal causality that is relevant to this paper.
Temporal causality is concerned with analyzing the cause for
some effect emerging on an observed computation of a reactive
system. In particular, this observed computation can be infinite,
such as obtained as a counterexample from model checking.
Informally speaking, the conditions for a causal relationship
between two properties are as follows [10]:

• Both the cause property and the effect property are
satisfied by the observed computation (SAT condition).

• The closest, i.e., most similar traces that do not satisfy
the cause also do not satisfy the effect (CF condition).

• No subset of the cause property satisfies the previous two
conditions (MIN condition).

More formally, the definition of such a causal relationship
requires fixing a notion of closeness between system compu-
tations based on a similarity relation ≤π ⊆ Σω × Σω , which
orders two traces (π1, π2) ∈ ≤π if π1 is at least as similar to
π than π2. Such a relation can be expressed by a (relational)
temporal formula such that, for instance, π1 ≤subset

π0 π2 iff:

zip(π0, π1, π2) ⊨
∧
i∈I

(
(i0 ̸↔ i1) → (i0 ̸↔ i2)

)
.

Note that while we allow similarity relations over the
full alphabet, we are usually interested in similarity of the
input sequences [10], such as defined by ≤subset . With these
similarity relations at hand, we can now recall the formal
definition of temporal causality.

Definition 2 (Temporal Cause [15]). Let T be a system,
π ∈ traces(T ) a computation of the system, ≤π a similarity
relation, and E ⊆ (2AP )ω an effect property. We say that
C ⊆ (2I)ω is a cause of E on π in T if the following holds.

SAT: ∀π′ ∈ traces(T ) : π′ =I π → π′|I ∈ C ∧ π′ ∈ E.
CF: ∀π′ ∈ C : ∃π′′ ∈ traces(T ) : π′′ ≤π π

′ ∧ π′′ ∈ E.
MIN: ∄C ′ ⊂ C : C ′ satisfies SAT and CF.

There are two details that stand out over our earlier, informal
definition: First, the SAT condition requires that all traces that
are input-equivalent to the observed trace satisfy cause and
effect, which ensures that there is no causal property in the
case of nondeterminism on the observed trace. Second, the
CF condition is realized through a ∀∃-quantifier alternation
because there are cases where (traces(T ),≤π) is not well-
founded, such that no “closest” traces exist and the limit
assumption for counterfactual reasoning is not met [15], [29].

Example 1. Consider the reactive system T illustrated in
Figure 2a, the trace π = {i}{i, o}{o}ω , and the effect
E = o, with similarity relation ≤subset . The cause Cπ for
E on π is characterized by the formula Cπ = L(i∧ i). It is
easy to see that the SAT condition is met, let us take a closer
look at the other two. For CF, we can find for any π′ /∈ Cπ

either {}{i}{}ω or {i}{}{}ω as a π′′ /∈ E, in particular for
traces such as π′′′ = {i}{}{i}{i, o}ω that satisfy E but are
less similar to π, e.g., {i}{}{}ω ≤subset

π π′′′. For MIN, we
can see that restricting Cπ further in any way that satisfies
SAT leads to violation of the CF condition: For instance,
if we had C ′

π = L(i ∧ i ∧ ¬ i), then there would be
the trace {i}{i, o}{i, o}{o}ω /∈ C ′

π for which no at least as
similar trace exists that does not satisfy the effect. It gets more
complex when we have a trace such as σ = {i}{i, o}ω where
no finite number of inputs is responsible for obtaining the
effect E. We can perform a similar analysis as above to show
that Cσ = L

(
(i ∧ (i ∨ i))

)
is the cause for E on σ.

While Definition 2 with its three conditions closely mirrors
Halpern and Pearl’s definition of actual causality [21] by
which it is inspired, Finkbeiner at al. [15] have shown recently
that causes can be characterized much more succinctly. This
is because they directly correspond to the largest downward
closed set of traces in (traces(T ),≤π) that satisfy the effect
E. Vice versa, they are also the complement of the upward
closure of E. This stems from the balance of the CF and
MIN conditions: If there was a trace in the cause that does
not satisfy the effect, its upward closure could be removed
– including other traces that do in fact satisfy the effect. As
pictured in Figure 2b, this results in a cause (framed by the
blue border) that, in essence, describes the local continuous
neighborhood of traces that are similar to the observed trace
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(a) An example reactive system T .
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(b) Cause C as the complement of the upward closure of E [15].

Fig. 2: Figure 2a illustrated the reactive system with the input i and output o that is used to outline temporal causality in
Example 1. The system sets the output o continuously whenever the input i is enabled less than three time units apart. Figure 2b
pictures a chain in (traces(T ),≤πa

) to illustrate that the cause C (enclosed by the blue frame) on πa is the largest downward
closed set of traces satisfying the effect E (shaded yellow), which is the complement of the upward closure of E.

πa and satisfy the effect E colored by the yellow area. More
formally, this is captured by the following lemma.

Lemma 1 (Finkbeiner et al. [15]). Let T be a system,
π ∈ traces(T ) a computation of the system, ≤π a similarity
relation, and E ⊆ Σω an effect property. If there is a cause
C of E on π in T then it is the largest downward closed set
of system computations, i.e.,

C = { ρ ∈ (2I)ω | ∀σ ∈ traces(T ) σ ≤π ρ→ σ ∈ E } .

Moreover, the above set is empty iff there is no cause

Notably, Lemma 1 also means a cause is unique if it exists.
In the following, we use this convenient characterization for a
detailed study of the closure of property classes under causal
inference and of complexity bounds on the size of automata
representations for causes.

IV. CLOSURE UNDER CAUSAL INFERENCE

In this section, we investigate the closure under causal
inference of classes in the temporal hierarchy. As can be seen
in Lemma 1, causes can be directly defined via universal
quantification over the system traces to express that they
are downward closed in (traces(T ),≤π) and all satisfy the
effect E. Speaking more abstractly, we are hence interested in
whether properties X for which membership of some word is
decided based on whether all associated words satisfy some
other property Y inherit the hierarchy property classes from
Y . We introduce a more convenient yet more general concept
to facilitate this abstract analysis: the universal preimage. This
concept essentially formalizes set membership based on uni-
versal quantification and makes our results applicable beyond
closure under causal inference, i.e., to quantifier elimination
in automata-based model checking of hyperproperties [7], [16]
and synthesis from partial information [25].

Definition 3. Let X and Y be sets, and let f : X → P(Y )
be a function. The universal preimage of S under f , denoted

f−1
U (S), is the set of elements whose images under f are

subsets of S: f−1
U (S) := {x ∈ X | f(x) ⊆ S}.

Informally, for an element x ∈ X the function f determines
the set of values of Y over which our universal quantifier
ranges (e.g., all traces at least as similar as ρ in Lemma 1).
If all of them are included in the set S, then x is included in
the universal preimage f−1

U (S).
Causality can be defined via a universal preimage: The cause

of E on π in T with similarity relation ≤ is the universal
preimage of the effect under the map that sends a trace π′′ to
the set of at least as similar traces π′ ∈ T , such that π′ ≤π π

′′.
The choice of similarity relation heavily influences the

closure of temporal hierarchy classes under causality. Different
similarity relations produce different functions f . Instead of
proving closure under causal inference for one specific simi-
larity relation, we identify general assumptions on the relation,
and hence the function f , that facilitate our closure results,
such that they can be transferred to a variety of use cases and
similarity relations.

The primary goal for the rest of this section is to formulate
and prove the closure of temporal classes under the universal
preimage. Section IV-A introduces the Universal Closure
Theorem and provides a linguistic perspective on the main defi-
nitions. Section IV-B then provides a more abstract topological
interpretation of the theorem and proves it using results from
general topology. The last subsection (Section IV-C) presents
the concept of the existential projection and discusses the parts
of the temporal hierarchy which are not closed.

A. Linguistic Formulation

In general, temporal classes are not be closed under the
universal preimage for an arbitrary f : Σω

1 → P(Σω
2 ). To

ensure closure, we impose certain restrictions on f .
Informally, to show that reachability is closed under f−1

U ,
we need to show that if for some π′′ every trace π′ ∈ f(π′′)
has a good prefix, then π′′ must also have a good prefix.



The first property of f , which we need, is that we can build a
prefix tree of f(π′′) while reading π′′. It could be the case, for
example, that the second level of the tree (the set of prefixes
of f(π′′) of the length 2) cannot be determined unless the
whole word π′′ is observed. If such a case, the reachability
class might not be closed under the universal preimage, since
we do not know if every trace from f(π′′) has a good prefix
unless we observe the whole π′′.

Definition 4. A function f : Σω
1 → P(Σω

2 ) is called prefix-
continuous if for every n ∈ N and π ∈ Σω

1 there exists m ∈ N
such that, for every π′ ∈ Σω

1 if π′
(m) = π(m), then

pref n(f(π)) = pref n(f(π
′)) .

Informally, this ensures that the prefix tree of f(π′′) can be
constructed incrementally.

The second property that we need is that every infinite trace
in the prefix tree corresponds to some trace in f(π′′).

Definition 5. A function f : Σω
1 → P(Σω

2 ) is called prefix-
closed if for every π ∈ Σω

1 and π′ ∈ Σω
2 :

pref (π′) ⊆ pref (f(π)) ⇒ π′ ∈ f(π) .

We already have everything that we need for the case of a
finite alphabet Σ2, but if it is infinite then we set one additional
restriction. The last property that we require from f is the finite
branching of the prefix tree. Clearly, this is trivially satisfied
for a finite alphabet.

Definition 6. A function f : Σω
1 → P(Σω

2 ) is called prefix-
compact if for every n ∈ N and π ∈ Σω

1 the set pref n(f(π))
is finite.

Remark 1. If the alphabet Σ2 is finite, then any function
f : Σω

1 → P(Σω
2 ) is prefix-compact.

Now everything is ready to formulate the main Theorem
of this section, which formally states that several classes from
the temporal hierarchy are closed under the universal preimage
operation, for functions that satisfy the previously introduced
requirements.

Theorem 1 (Universal Closure). Let Σ1 and Σ2 be alphabets.
Assume a function f : Σω

1 → P(Σω
2 ) is prefix-continuous,

prefix-closed, and prefix-compact, then:
1) If L is a safety property, then f−1

U (L) is a safety property.
2) If L is a guarantee property, then f−1

U (L) is a guarantee
property.

3) If L is a recurrence property, then f−1
U (L) is a recurrence

property.

The proof of Theorem 1 requires establishing some auxiliary
results using a topological argument, which we formulate in
Section IV-B. With the theorem at hand, we can show that the
general result in particular covers the previously introduced
similarity relation ≤subset, since this relation satisfies all the
introduced requirements.

Proposition 1. Let T be a finite state system, π ∈ traces(T )
a trace, ≤subset a subset similarity relation, and E ⊆ (2AP )ω

an effect property. Suppose C is a cause of E on π. Then C is
a universal preimage of E under a prefix-continuous, prefix-
closed, and prefix-compact function.

The immediate corollary from Theorem 1 and Proposition 1
is the closure of temporal hierarchy under causality.

Corollary 1 (Causality Closure). Let T be a finite state
system, π ∈ traces(T ) a trace, ≤subset a subset similarity
relation, and E ⊆ (2AP )ω an effect property. Suppose C is a
cause of E on π in T . Then the following statements hold.

1) If E is a safety property, then C is a safety property.
2) If E is a guarantee property, then C is a guarantee

property.
3) If E is a recurrence property, then C is a recurrence

property.

Note that we will discuss the classes that are not closed in
this way in Section IV-C, after proving Theorem 1 with results
from general topology in the next section.

B. Proof via Topology
This section is dedicated to a topological characterization

of the concepts presented before and proves Theorem 1 using
results from general topology. We first introduce the basic
topological definitions. In parallel, we define the Cantor metric
and Cantor topology on the space of words.

1) Metric spaces: A metric space is a set equipped with
a notion of distance between its elements. Formally, a metric
space is a pair (M,d), where M is a set and d :M×M → R is
a non-negative, symmetric function, which satisfies the triangle
inequality and d(x, y) = 0 ⇐⇒ x = y.

The set of words over an alphabet Σ can be equipped with
a distance function dC called the Cantor distance. The Cantor
distance between two words π1 and π2 is defined as 0 if they
are identical, and as dC(π1, π2) := 2−j otherwise, where j
is the length of the longest common prefix of π1 and π2.
Intuitively, the closer two words are in the Cantor metric, the
longer their common prefix. Note that the Cantor distance is
bounded by 1.

For a metric space M , a set O ⊆ M is open if, for every
x ∈ O there exists ϵ > 0, such that the ball Bϵ(x) of radius ϵ
with the center in x lies entirely in O.

Bϵ(x) := {x′ ∈M | d(x, x′) ≤ ϵ} ⊆ O .

The complement of an open set is called closed. The
collection of open sets forms a topology on M , induced by
the metric d.

For Σω with the Cantor metric, open sets are of the form
XΣω , where X ⊆ Σ∗ is a finite word language according
to Proposition 3.1 in [37]. Intuitively, a set L ⊆ Σω is open
if, for every π ∈ L, there exists n ∈ N, such that any π′

coinciding with π in the first n letters also belongs to L. This
is equivalent to saying that the ball of radius 2−n centered
at π is contained in L. The topology induced by the Cantor
distance is called the Cantor topology.

According to Proposition 3.5 in [37], a set L ⊆ Σω is closed
if for every π ∈ Σω: pref (π) ⊆ pref (L) ⇒ π ∈ L.



The function f : M1 → M2 between two metric spaces
(M1, d1) and (M2, d2) is continuous if for every x ∈M1 and
every ϵ > 0, there exists δ > 0 such that:

∀x′ ∈M1 : if d1(x, x′) < δ, then d2(f(x), f(x′)) < ϵ .

Cantor topology derives its name from the fact that the space
of words with this topology can be continuously injected into
the Cantor space, as shown by Plotkin [38].

2) Borel hierarchy: In a metric space M the union of any
collection of open sets is also open and the intersection of
a finite number of open sets remains open. However, the
intersection of a countable collection of open sets may no
longer be open. The set of countable intersections of open
sets is noted as Π2.

Symmetrically, the set of closed sets is closed under arbi-
trary intersections but only finite unions. The set of countable
unions of closed sets is denoted as Σ2. Together, Σ2 and Π2

form the second level of the Borel hierarchy.
The Borel hierarchy organizes subsets of the metric space

M into classes. A set is called Borel if it belongs to some level
of the Borel hierarchy. The first level of the Borel hierarchy
consists of the set of open sets Σ1 and the set of closed sets
Π1. The higher levels are defined recursively as follows:

Σn := {∪i∈NXi | Xi ∈ Πn−1},

Πn := {X |M \X ∈ Σn},

∆n := Σn ∩Πn.

The first two and a half levels of the Borel hierarchy for
the set of infinite words Σω with the Cantor topology corre-
spond to the temporal hierarchy, as established by Mana and
Pnueli [31].

Theorem 2 (Mana and Pnueli [31]). Let L ⊆ Σω be an infinite
word language.

1) L is a safety property iff L is a closed set.
2) L is a guarantee property iff L is an open set.
3) L is a obligation property iff L ∈ ∆2.
4) L is a recurrence property iff L ∈ Π2.
5) L is a persistence property iff L ∈ Σ2.
6) L is a reactivity property iff L ∈ ∆3.

Thus, the problem of the closure of temporal classes is
equivalent to the problem of the closure of Borel classes.

A fundamental fact about Borel classes is that they are
closed under the continuous preimage of a function [37].

Proposition 2 ( [37]). The preimage of a Borel set under a
continuous function is a Borel set of the same Borel class.

3) Hausdorff metric: A set X ⊆M is compact if for every
collection of open sets {Yi}i∈α that covers X: X ⊆

⋃
i∈α Yi

there exists a finite subset of {Yi}i∈α that also covers X . Every
compact subset of a metric space is closed.

According to Proposition 3.12 in [37], a set L ⊆ Σω is
compact in the Cantor topology if it is closed and for every
n ∈ N the set pref n(L) is finite.

Since we are addressing the problem of closure of Borel
classes under the preimages of a function f : Σω

1 → P(Σω
2 ),

which maps traces to sets of traces, it is essential to define
a metric on the set of sets of traces. If f is prefix-closed
and prefix-compact it maps traces to compact sets of traces.
Therefore, it suffices to define a metric on the set of compact
sets. For a set X ⊆ M , we denote the set of all nonempty
compact subsets of X as K(X). The Hausdorff distance
between two nonempty sets X,Y ⊆M is defined as follows:

dH(X,Y ) = max(sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)) ,

where d(a,B) = inf
b∈B

d(a, b) for B ⊆M and a ∈M.

On the set K(M), the Hausdorff distance dH is a metric,
which induces a topology known as the Hausdorff topol-
ogy [18]. The next proposition shows that prefix-continuous
functions are essentially functions that are continuous in
Hausdorff topology.

Proposition 3. A function f : Σω
1 → P(Σω

2 ) is prefix-
continuous, prefix-closed and prefix-compact if and only if it is
a continuous function from the metric space Σω

1 to the metric
space K(Σω

2 ) with the Hausdorff metric dH .

4) Borel Classes in Hausdorff topology: Combining Propo-
sitions 2 and 3 we find that prefix-closed, prefix-compact,
and prefix-continuous functions preserve Borel classes of the
Hausdorff topology. Therefore, it remains to determine how
Borel classes behave when lifted from Σω to K(Σω).

Lemma 2. Let M be a metric space with a subset X ⊆ M .
Then the following statements are true.

1) If X is open in M , then K(X) is open in K(M).
2) If X is closed in M then K(X) is closed in K(M).
3) If X ∈ Π2 in M then K(X) ∈ Π2 in K(M).

Proof. The first two statements can be demonstrated through
the equivalence of the Hausdorff topology and the Vietoris
topology on the space of compact subsets [33]. However, for
the sake of clarity, we present an explicit proof.

1): Let X ⊆ M be an open set and let K ∈ K(X) be
a compact subset of X . Define a continuous function f on
K for every x ∈ K as follows: f(x) := d(x,M \ X). This
is a continuous function from the compact set to R. By the
Extreme Value Theorem [41], f is bounded, and there exists
q ∈ K such that f(q) = inf x∈Kf(x). Since q /∈ M \X and
M \X is closed, we conclude that f(q) = d(q,M \X) > 0.

By the definition of Hausdorff distance, for every set Z ∈
K(M) with dH(K,Z) < f(q), it follows that for every x ∈ Z,
d(x,K) < f(q). Consequently, x /∈ M \ X , thus, Z ⊆ X .
Therefore the ball Bf(q)(K), of radius f(q) centered at K lies
entirely within K(X). Since this holds for any K ∈ K(X),
we have shown that K(X) is open.

2): Let X ⊆ M be a closed set and let K ∈ K(M) a
compact set not in K(X). Then there exists x ∈ K, such that
x /∈ X , and since X is closed, d(x,X) > 0.



For any Z ∈ K(M) with dH(Z,K) < d(x,X)/2, there
exists z ∈ Z, such that d(x, z) < d(x,X). This implies z /∈ X ,
thus, Z /∈ K(X). Therefore, the ball Bd(x,X)/2(K), of radius
d(x,X)/2 centered at K, lies entirely within K(M) \ K(X).
Since this holds for any K ∈ K(M) \ K(X), we have shown
that K(M) \ K(X) is open. Thus, K(X) is closed.

3): Let X be a set from the Borel class Π2 in M . Then by
definition of Π2:

X =
⋂
n∈N

Yn ,

where each Yn is an open set. Thus,

K(X) =
⋂
n∈N

K(Yn) .

Each K(Yn) is open in K(M) by the first statement, complet-
ing the proof.

Finally, we combine all the results to prove Theorem 1.

Proof of Theorem 1. By Proposition 3, f can be viewed as
a continuous function between two metric spaces f : Σω

1 →
K(Σω

2 ). By the definition of the universal preimage, we get

f−1
U (L) = f−1(K(L)) .

By Lemma 2, we know that K preserves open, closed, and
Π2 subsets. By Proposition 2 we know that f−1 preserves
all Borel classes, as f is continuous. Thus, we prove all
three statements of the theorem, since by Theorem 2 safety,
guarantee, and recurrence properties are exactly open, closed,
and Π2 sets.

C. Existential preimage and non-closure of persistence

Since the universal preimage formalizes the universal quan-
tification inherent in temporal causes, it is natural to seek a
similar formalization for existential quantification. To this end,
we introduce the concept of the existential preimage.

Definition 7. Let X and Y be sets, and let f : X → P(Y )
be a function. The existential preimage of the set S under f ,
denoted f−1

E (S), is the set of elements whose images under f
intersect S: f−1

E (S) := {x ∈ X | f(x) ∩ S ̸= ∅}.

The existential preimage is dual to the universal preimage
in the sense that, for a set S ⊆ Y , f−1

E (S) = X \(f−1
U Y \S)).

Using this duality we immediately get the following corollary
from Theorem 1.

Corollary 2. Assume a function f : Σω
1 → P(Σω

2 ) is prefix-
continuous, prefix-closed, and prefix-compact. Then the safety,
guarantee, and persistence classes are closed under f−1

E .

Hence, the persistence class is closed under the existential
preimage, but as we show in the following, it is not closed
under the dual universal preimage which encodes causal
inference. The rest of the subsection discusses its behavior
under the universal preimage, along with the obligation class
which also is not closed under the universal preimage.

First, we consider causal inference with the subset similarity
relation ≤subset, a special case of the universal preimage by

Proposition 1. We prove that an obligation effect can have a
non-obligation cause.

Theorem 3. There exists a system T , a trace π, and an
obligation ω-regular effect E, such that the cause of E on
π in T with similarity relation ≤subset is not an obligation
property.

Proof. Define the input alphabet I := {a}. The output
alphabet is empty, i.e., O := ∅. The system is the trivial set
of all possible traces: traces(T ) := (2I∪O)ω. The observed
trace enables a continuously: π := aω . Consider the effect
E := ( a) ∨ ( (¬a ∧ ( a))). E is an obligation property
since it is a disjunction of safety and guarantee properties. In
essence, E does allow any trace but a+(¬a)ω . The cause of
E on π in T is a, since if π′′ satisfies a, then clearly
any π′ ≤subset

π π′′ satisfies a, and hence E. If π′′ does
not satisfy a that π′′ ∈ (2I)n(¬a)ω for some n, hence
an(¬a)ω ≤subset

π π′′, thus π′′ is not in the cause.

Together with Theorem 1 that states that recurrence is
closed, this immediately implies that persistence also is not
closed under causality. This is because from Theorem 1 it
follows that cause for the obligation property is a recurrence
property, so the only way it cannot be an obligation property
is by not being a persistence property.

Corollary 3. There exists a system T , a trace π, and a
persistence ω-regular effect E, such that the cause of E on
π in T with similarity relation ≤subset is not a persistence
property.

Besides the fact that persistence is not closed under causality
and consequently under the universal preimage, we want to
investigate for how many Borel classes we can find similar
counterexamples. Clearly, we must go beyond the ω-regular
setting, as ω-regular properties are contained in ∆3 and are
themselves closed under causal inference.

Existential and universal preimages are dual to each other,
as recurrence (Π2) and persistence (Σ2) classes. Thus, it
suffices to examine the behavior of recurrence properties under
existential preimage.

Lemma 3. Let A ⊆ Σ∗ be a finite word language. Then
the infinite word language Aω is an existential preimage of a
recurrence property under a prefix-continuous, prefix-closed,
and prefix-compact function.

Proof. Define the alphabet Σ′ as consisting of primed copies
of symbols from Σ.

The language A′ ⊆ (Σ ∪ Σ′)ω consists of words from A
in which the last letter is replaced with its primed version.
Formally:

A′ := {π(|π|−1)π
′
|π| | π ∈ A} .

Clearly, (A′)ω is a recurrence property, as a word π is in
(A′)ω if and only if it has infinitely many prefixes from (A′)∗.

Define a prefix-continuous, prefix-closed, and prefix-
compact function f : Σω → (Σ∪Σ′)ω for π ∈ Σω as follows:

f(π) := {π′ | ∀i : π(i) = π′(i) or π(i)′ = π′(i)} .



Essentially, f randomly replaces each symbol in π with its
primed version. Intuitively it tries to split π into words from
A, with primed letters representing the endings of words from
A. If f can split π into the words from A, this splitting is in
f(π) ∩ (A′)ω . Hence, Aω = f−1

E ((A′)ω).

Theorem 4. There exists a recurrence property L and a prefix-
continuous, prefix-closed, and prefix-compact function f , such
that f−1

E (L) is not a Borel set.

Proof. There exists a finite language A, such that Aω is
not Borel, as shown in [17]. Therefore, the theorem follows
directly from Lemma 3.

V. COMPLEXITY

In this section, we take a closer look at the complexity of
synthesizing causes as automata and study bounds for the size
of these automata. We show lower bounds for all property
classes, which are the first lower bounds for the problem
and witness that the exponential scaling in the algorithm of
Finkbeiner et al. [15] cannot be avoided. However, we also
show that the upper bounds can still be improved for several
property classes as logarithmic factors can be avoided. We
focus our attention to the case of subset similarity relation
≤subset. The presented characterization is precise with respect
to the system size, but with respect to the effect size, there
remains a minor gap between the lower and upper bounds on
the higher levels of the hierarchy.

We heavily use the characterization of causes as downward
closed sets of traces satisfying the effect (cf. Lemma 1). For
the upper bounds, we present the algorithms that output the
set from Lemma 1 matching a cause when it exists.

A. Lower bounds

First, we prove that the NBW and NCW complementation
problems can be reduced to the cause synthesis problem
linearly in the size of the system with persistence or recurrence
effects, respectively.

The complement of an NBW can be expressed as a UCW
(universal co-Büchi automaton) with the same structure. Hence
it can be viewed as a universal quantification over a DCW
automaton. Similarly, the complement of an NCW can be
viewed as a universal quantification over a DBW automaton.

The trick in the proof is now to interpret the automaton to
be complemented as the system in a causal inference tasks.
The acceptance condition of the complement automaton can
be encoded as a recurrence/persistence property for Büchi and
Co-Büchi acceptance, respectively. It remains to ensure that
only identical words are related in the similarity relation, such
that the universal quantification as described in Lemma 1
only ranges over the same word. In the end, a word is
then in the cause automaton only if all runs satisfy the
complementary acceptance condition. Hence, the language of
the cause automaton is exactly the complement of the original
automaton language. Technical details of this construction are
provided in the proof of the following lemma.

Lemma 4. For every NBW (NCW) A there exists a system T
with |A|+1 states, an effect E represented by a DCW (DBW)
of constant size and a trace π of constant size, such that if the
cause of E on π in T is expressed as a NBW C then there
exists a NBW for the complement of L(A) of the size O(|C|).

Proof. Denote A = (Q,Σ, q0, F,∆), with Σ = {1, . . . ,m}
and |Q| = n. Let us define a system T = (S, s0, AP, δ, l),
where AP = I

⋃
O.

I := {i1, . . . , ik, j1, . . . , j⌈log(n)⌉}.

Here k is a minimal integer such that
(

k
k/2

)
≥ m. Outputs and

states are defined as follows.

O := {o}, S := Q ∪ {s⊤}, s0 := q0.

To define δ at first we need to encode pairs q, σ ∈ Q× Σ as
elements from 2I . We fix an injective function encQ from Q
to the set of subsets of {j1, . . . , j⌈log(n)⌉}.

encQ : Q→ P(j1, . . . , j⌈log(n)⌉).

Additionally, we fix an injective function encΣ from Σ to the
set of subsets of {i1, . . . , ik} of the size k/2. The number of
such subsets is

(
k

k/2

)
≥ m by choice of k, hence such injective

function exists.

encΣ : Σ → {V ⊆ {i1, . . . , ik} | |V | = k/2}

Please note that for every two different σ, σ′ ∈ Σ subsets
encΣ(σ) and encσ(σ

′) are incomparable.

∀σ, σ′ ∈ Σ : σ ̸= σ′ ⇒ encΣ(σ) ̸⊆ encΣ(σ
′). (*)

We define the transition function δ as follows.

δ(q, encQ(q
′) ∪ encΣ(σ)) :=

{
q′, if q′ ∈ ∆(q, σ),

s⊤, otherwise.

For every q ∈ Q and W ⊆ I which cannot be presented as
encQ(q

′) ∪ encΣ(σ) for q′ ∈ Q and σ ∈ Σ:

δ(q,W ) := s⊤ and δ(s⊤,W ) := s⊤ .

If A is an NBW labeling lNBW is defined as follows:

lNBW (s) :=

{
{o} if s ∈ F ,

∅ if s ∈ Q \ F ∪ {s⊤} .

If A is an NCW the labeling lNCW is defined differently:

lNCW (s) :=

{
{o} if s ∈ Q \ F ,

∅ if s ∈ F ∪ {s⊤} .

Trace π = ∅ω does not depend on the automaton. We define
the effect depending on whether A is an NBW or an NCW:

ENBW := ¬o or ENCW := ¬o .

For a word σ ∈ Σω we denote the encoding of σ with 2I as
EncI(σ) ∈ (2I)ω . For every k the k-th letter of EncI(σ) is
defined as follows:

EncI(σ)k = encΣ(σk) ∪ {j1, . . . , j⌈log(n)⌉} .



Claim: For every word σ ∈ Σω: σ ∈ A⇐⇒ EncI(σ) ∈ C.

The first direction: σ ∈ A =⇒ EncI(σ) ∈ C. Assume a
word σ ∈ A. All runs of A on σ must be rejecting, hence
they must visit F finitely many times if A is an NBW or
infinitely many times if A is an NCW.

Assume a trace π′ ∈ (2I∪O)ω , such that π′ ≤subset
π

EncI(σ). If while producing π′ the system T visits state s⊤,
then π′ satisfies E. Suppose while producing π′ system T does
not visit s⊤. Thus, by the definition of the transition system
for every k: π′

k(I) = encQ(qk) ∪ encΣ(σk), where {qj}j∈N
is a run of A on σ. Please note that the Σ part of π′ in this
case is the encoding of σ and not an encoding of any other
trace from Σω , by the fact that π′ ≤subset

π EncI(σ) and the
property of encoding (*).

As we noted before, {qj}j∈N must be rejecting, hence it
cannot visit F infinitely many times in the case of NBW or it
must visit F infinitely many times in the case of NCW. Thus
π′ satisfies E. We proved that EncI(σ) ∈ C, since for any
π′ ≤subset

π EncI(σ): π′ ∈ E.

The second direction: σ ∈ A ⇐= EncI(σ) ∈ C. Assume
a word σ ∈ Σω such that EncI(σ) ∈ C. Let us take a run
{qk}k∈N of A on σ. Let us define the word π′ ∈ (2I)ω as
follows. For every k:

π′
k := encQ(qk) ∪ encΣ(σk) .

By the definition of ≤subset we get π′ ≤subset
π EncI(σ).

Hence, T (π′) satisfies E by the definition of the cause, since
EncI(σ) ∈ C. Hence, by the definition of E {qk}k∈N does
not visit F infinitely often in the case of NBW or visits F
infinitely often in the case of NCW, thus it is a rejecting
run of A. Therefore, σ ∈ A since every run of A on σ is
rejecting.

Similarly, we provide the linear encoding of the NFW
complementation problem into the cause synthesis problem
with safety or reachability effect.

Lemma 5. For every NFW A there exists a system T with
|A| + 1 states, an effect E in the form of a safety (or
reachability) DBW of constant size and a trace π of constant
size, such that if the cause of E on π in T expressed as a
NBW C then there exists a NFW for the complement of L(A)
of the size O(|C|).

Proof. Similar to Lemma 4. We add to the alphabet of A one
additional symbol #, which represents the end of the word.
Then we construct T ,E, and π in the same way as we did in
the Lemma 4 to track all possible executions of A. The only
difference is that now E detects if the last state that appeared
before the first occurrence of # was accepting in A or not.

Please note that E in this case can be a safety or reachability
DBW since we can either accept or reject words without
occurrences of #. If C is the NBW for the cause, we can
easily turn it into NFW for A just by calling a state accepting
if C accepts #ω from this state.

Using the provided reductions of complementation problems
we derive the lower bounds of the cause size with respect to the
system T for different temporal classes from the well-known
lower bounds on the automata complementation problems.

Theorem 5. The following states lower bounds for the cause
automaton with respect to the size of the system.

1) An NBW for the cause of a persistence effect in a system
T requires at least 2Ω(|T |log|T |) states in the worst case.

2) An NBW for the cause of a recurrence effect in a system
T requires at least Ω(3|T |) states in the worst case.

3) An NBW for the cause of a safety or guarantee effect in
a system T requires at least Ω(2|T |) states in the worst
case.

Proof. 1) For an NBW with n states, an NBW for the comple-
ment requires at least 2Ω(nlogn) states in the worst case [45].
By Lemma 4 NBW complementation can be reduced to cause
synthesis with persistence effect linearly in the size of T .

2) For an NCW with n states, an NBW for the complement
requires at least Ω(3n) states in the worst case [4]. By
Lemma 4, NCW complementation can be reduced to cause
synthesis with a recurrence effect linearly in the size of the
system T .

3) For an NFW with n states, an NFW for the complement
requires at least Ω(2n) states in the worst case [23]. By
Lemma 5, NFW complementation can be reduced to cause
synthesis with a safety or guarantee effect linearly in the size
of the system.

We turn our focus to the complexity with respect to the
effect E. We prove a doubly exponential lower bound. For
that purpose for every n ∈ N, we define a language that is the
cause of an effect of size O(n), while any NBW recognizing
this language requires at least 22

Ω(n)

states.
For n ∈ N and π ∈ Σ∗ let us denote as subwordn(π) the

set of words of length n that appear in π from a position
divisible by n.

subwordn(π) := {πkn, πkn+1, . . . , π(k+1)n−1 | k ∈ N}

Let us define a finite word language Ln ⊆ {0, 1,#}∗ for
n ∈ N as follows.

Ln := {π ∈ {0, 1,#}∗ | ∀w ∈ {0, 1}n, w ∈ subwordn(π)}

In other words, Ln consists of words π such that {0, 1}n ⊆
subwordn(π). We prove the doubly exponential lower bound
on the NBW which recognizes Ln.

Lemma 6. An NFW for Ln requires at least 22
Ω(n)

states.

Now we show that Ln is the cause of an effect of size O(n).
The idea uses that a word π belongs to Ln if subwordn(π)
contains every word w ∈ {0, 1}n.

For any single w consider the infinite word wω . For such a
word there exists a position kn such that π and wω coincide
for n consecutive symbols starting at kn. This position marks
where w appears in π.



To verify this, an automaton with O(n) states suffices.
It tracks the position modulo n and nondeterministically
selects kn as the starting point where π and wω coincide.
Hence, universally quantifying this check over all w we get a
construction that recognizes Ln.

Lemma 7. For every n there is a system T and a trace π∅
of constant sizes and a safety (or reachability) effect of size
O(n), such that if the cause of E on π∅ in T expressed as a
NBW C then there exists a NFW for Ln with O(|C|) states.

Proof. Let us define an input alphabet consisting of four letters
I = {i0, i1, i#, i∗} and an output alphabet consisting of one
letter O = {o}. The system is trivial and models every trace
over the alphabet. The trace is the trivial trace without enabled
atomic propositions: traces(T ) := (2I∪O)ω, π∅ := ∅ω . The
effect E is defined as the union E := E1 ∪ E2 ∪ E3. The
first part E1 requires that at some position all input variables
i0, i1, i#, i∗ become false.

E1 := {π ∈ (2I∪O)ω | ∃k :¬(πk(i0) ∨ πk(i1)
∨ πk(i#) ∨ πk(i∗)))}

E2 requires that the output part of the trace does not repeat
every n states, in other words, there is a position such that
after n positions the output variable takes a different value.

E2 := {π ∈ (2I∪O)ω|∃k : πk(o) ̸= πk+n(o)}

E3 requires that from some position divisible by n before i∗
becomes true for the first time variables i1 and o take the same
value n steps in the row.

E3 := {π ∈ (2I∪O)ω|∃k ∀l < kn ∀j < n :

¬πl(i∗) ∧ (πkn+j(i1) = πkn+j(o))}

Since E must remember only the number of the steps modulo
n it can be modeled by an NBW with n states which nonde-
terministically decides on which step E2 or E3 is satisfied.

For a word σ ∈ {0, 1,#}∗ we denote the encoding of σ
with 2I as EncI(σ) ∈ (2I)ω . For every k the k-th letter of
EncI(σ) is defined as follows:

EncI(σ)k =

{
{ic} if k < |σ| and σk = c ,

{i∗} if k ≥ |σ| .

Claim: ∀σ ∈ {0, 1,#}∗: σ ∈ Ln ⇐⇒ EncI(σ) ∈ C.
Assuming the Claim, given a NBW for the cause C an

NFW of size O(|C|) for Ln can be easily constructed by
d combining C with encoding EncI and defining accepting
states as the states from which C accepts {i∗}ω . The rest of
the proof is devoted to proving the claim.

The first direction: σ ∈ Ln =⇒ EncI(σ) ∈ C. Let σ be
a word from Ln. Let us prove that EncI(σ) ∈ C. For that,
we need to prove that for every π′ ≤subset

π∅
EncI(σ): π′ ∈ E.

If π′
I ̸= EncI(σ), then by the definition of ≤subset and the

encoding for some k:

π′
k(i0) = π′

k(i1) = π′
k(i#) = π′

k(i∗) = ⊥, hence π′ ∈ E1.

If π′(o) does not repeat every n states π′ ∈ E2: Assume
that π′ /∈ E1 ∪ E2. Then the prefix π′(o)(n) repeats in π′(o)
every n states. Since σ ∈ Ln the word π′(o)(n) considered as
a word over {0, 1} must appear in σ from the position kn for
some k. Hence, π′(o) and EncI(σ)(i1) take the same value
n steps in the row from position kn. Since π′ /∈ E1, we can
conclude that EncI(σ(i1)) = π′(i1). Thus, π′ ∈ E3.

The second direction: σ ∈ Ln ⇐= EncI(σ) ∈ C. Assume
that EncI(σ) ∈ C. Let us prove that σ ∈ Ln. For that, we
need to prove that for every w ∈ {0, 1}n: w ∈ subwordn(π).

Consider π′ ∈ (2I∪O)ω such that π′
I = EncI(σ) and for

every k: π′
k(o) = wk%n, where k%n is k modulo n. Obviously

π′ ≤subset
π∅

EncI(σ), hence π′ ∈ E. Moreover, π′ ∈ E3, since
π′ /∈ E1 ∪ E2.

Hence, there exists k, such that π′(o) and π′(i1) take the
same value n steps in a row from the step kn. Thus, w appears
in π from the position kn.

The lower bound in the size of the effect then immediately
follows from the last two lemmas.

Theorem 6. An NBW for the cause of a safety or reachability
effect, given as an NBW E requires at least 22

Ω(|E|)
states in

the worst case.

B. Upper bounds

This subsection establishes upper bounds that match the
lower bounds presented in the previous subsection. With
respect to the system size |T | all the bounds are tight.

The first upper bounds presented in Theorem 7 is O(|π| ·
3(|T |·|E|)) for the recurrence effect. Note that this assumes
that E is provided as a DBW. Converting a recurrence NBW
to a DBW requires a blow-up of 2Ω(n logn) [11]. Hence,
the combined upper bound for the cause synthesis for the
recurrence effect presented as NBW becomes 22

O(|E| log |E|)
.

In contrast, the lower bound established in Theorem 6 is
22

Ω(|E|)
, leaving a question about the tight bound unresolved.

The same applies to the persistence class, as the upper bound
on the effect derived from [15] is also 22

O(|E| log |E|)
.

Theorem 7. For a system T , a similarity relation ≤subset , a
trace π and an effect E given as a DBW, there exists a DBW
for the cause of the size O(|π| · 3(|T |·|E|)).

Sketch of Proof. We construct a universal Büchi automaton of
the size |T | · |E| for the cause. Using the fact that a universal
Büchi automaton of the size n can be translated to a non-
deterministic one of the size 3n [34], we derive the stated
upper bound. For the construction details of the UBW and the
handling of π please see the full version of the proof.

Next, we present upper bounds for safety (Theorem 8)
and guarantee (Theorem 9) properties. Both results assume
the effect is given as a DFW for the good or bad prefixes
respectively. Since translating safety (or guarantee) NBW to
the DFW for good (or bad) prefixes requires an exponential
blowup [24], these upper bounds match the lower bound



established in Theorem 6, with respect to the size of the effect
given as an NBW.

Theorem 8. For a system T , a similarity relation ≤subset , a
trace π and a safety effect E given as a DFW Ebad pref for
the bad prefixes of E, there exists a DFW for the bad prefixes
of the cause of the size O(|π| · 2(|T |·|Ebad pref |)).

Sketch of Proof. We construct a NFW which recognizes pairs
of finite traces between which a bad prefix exists. The non-
deterministic choice represents the selection of such traces.
Subsequently, we convert it to a DFW and combine it with a
trace π. For details, please refer to the full proof.

Theorem 9. For a system T , a similarity relation ≤subset, a
trace π and a guarantee effect E given as a DFW Egood pref

for the good prefixes of E, there exists a DFW for the good
prefixes of the cause of the size O(|π| · 2(|T |·|Egood pref |)).

Sketch of Proof. By the definition a finite word w is a good
prefix of the cause C if every continuation of it is in C. And
for that we need that all finite words between w and π have a
good prefix of E. We construct a UFW of size |T |·|Egood pref |
that recognizes the good prefixes of the cause and the convert
it into a DFW. For the details on this construction please refer
to the full version of the proof.

VI. RELATED WORK

Methodology: The topological concepts used in Sec-
tion IV have long been established in mathematics. The
Hausdorff distance was introduced by Felix Hausdorff in [22].
The Vietoris topology [46] is another topology on the space of
subsets. It coincides with the Hausdorff topology on compact
subsets but differs when generalized to arbitrary closed sub-
sets [33]. These concepts are employed in the Powerdomain
theory, studied by Plotkin [38], [39] and Smyth [42]. The
relation between Powerdomains and the Vietoris topology
is discussed in [43]. The Vietoris topology can be split
into the upper and lower Vietoris topologies. The lower
Vietoris topology was applied by Clarkson and Schneider in
[8] to characterize different classes of hyperproperties. The
established connection between these topological concepts,
universal preimages, and causality enable us to use the existing
mathematical theory to study the framework.

Causality: The complexity of checking and computing
actual causes in finite, so-called structural equation mod-
els [21] has been studied extensively [13], [14], [19]. In that
framework, causes are essentially finite sets of explicit events
(comparable to ∆0 in Figure 1) and not arbitrary properties
as considered in this paper. Moreover, the structural equation
approach does not model time explicitly and can only be
used to model system executions up to a fixed bound [9]. An
extension to a state-based attribution method for transitions
systems has been studied recently [32]. For approaches that
combine counterfactual reasoning with temporal properties,
there are a number of related complexity results not pertaining
to temporal causality as considered in this paper. Event Order
Logic [28] is an approach that expresses what order of events

is causal for some property violation. Upper bounds for the
time needed to compute causes in this logic are known to be
exponential in the system size [27]. Parreuax et al. [36] define
causes for reachability and safety effects in transition systems
and two-player games and show that causes can be checked
in polynomial time, but they do not consider the problem of
cause synthesis or more complex effects. To the best of our
knowledge, our paper is the first to establish explicit results on
the closure under causal inference. We believe this is because
temporal causality is the first formalism in this domain that
uses the same language for both cause and effect, in the spirit
of earlier work on counterfactual modal logic [29], [44].

VII. SUMMARY & CONCLUSION

We have conducted a detailed investigation of closure
under causal inference and complexity of cause synthesis for
properties belonging to all classes of the hierarchy of temporal
properties [31]. Our discoveries can be summarized as follows:

1) Reachability, guarantee, and recurrence properties are
closed under causal inference: An effect from these
classes always has a cause from the same class. This com-
plements previous results on ω-regular properties [15] and
the intersection of safety and guarantee properties [3].

2) Obligation and recurrence properties are not closed in
the same way, which completes the picture regarding the
hierarchy of ω-regular properties.

3) Based on 1), we provide improved upper bounds for
the size of causes synthesized from reachability and
guarantee properties.

4) We show lower bounds on the size of causes for all
classes from the hierarchy, which confirm that the known
algorithms are optimal in the number of exponents and
with respect to the system size. For some classes, a gap in
the logarithmic factors with respect to the effect remains.

Contribution 3) is of high practical relevance for explaining
model-checking results of safety and guarantee properties,
which are common in verification tasks. Contributions 1 and 2
were proven via results for a more abstract mathematical
operation that promises to generalize beyond cause synthesis
to other problems that involve trace-quantifier alternations.
This includes synthesis with incomplete information [25], [26]
and automata-based algorithms for hyperproperties [2], [16].
We plan on investigating these connections in future work.
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APPENDIX

A. Detailed Proofs

Lemma 6. An NFW for Ln requires at least 22
Ω(n)

states.

Proof. Assume A is an NFW that recognizes language Ln.
Let Y be a set of sets of binary words of length n of size
2n−1:

Y = {S ⊆ {0, 1}n | |S| = 2n−1} .

For each y ∈ Y after reading a finite word π with
subwordn(π) = y the NFW A must reach at least one such
state from which it accepts a word π with subwordn(π) =
{0, 1}n\y. Such states must be different for different y, hence
|A| ≥ |Y | =

(
2n

2n−1

)
= 22

Ω(n)

.

Theorem 7. For a system T , a similarity relation ≤subset , a
trace π and an effect E given as a DBW, there exists a DBW
for the cause of the size O(|π| · 3(|T |·|E|)).

Proof. We construct a UBW U of the size |T | · |E|, such
that U accepts pairs of traces π1 ∈ (2I)ω and π2 ∈ (2I∪O)ω ,
where π1 is in the cause of E on π2 in T . Afterward, U
can be translated to the DBW of the size O(3|U |) by [34].
Combining it with π we get an automaton for the cause. We
denote T = (S, s0, AP, δ, l) and E = (Q, 2AP , q0, F,∆). Let
us define U := (S×Q,Σ, s0×q0,∆U , S×F ) over the alphabet
Σ := 2I × 2AP . Here transition relation ∆U is defined for
s ∈ S, q ∈ Q, I ′1, I

′
2 ⊆ I and O′ ⊆ O as follows:

∆U ((s, q), (I
′
1, I

′
2, O

′))

:= {(s′, q′) | ∃I ′ ⊆ I : I ′1 ∩ I ′2 ⊆ I ′ ⊆ I ′1 ∪ I ′2,

s′ ∈ δ(s, I ′), ∆(q, I ′, l(s′)) = q′} .

It is easy to see that runs of U on π1, π2 correspond to runs of
E on traces π3 such that π3 ≤π2

π1. Hence, U accepts π1, π2
iff E accepts all such π3, which means that π2 is in the cause
of E on π1.

Theorem 8. For a system T , a similarity relation ≤subset , a
trace π and a safety effect E given as a DFW Ebad pref for
the bad prefixes of E, there exists a DFW for the bad prefixes
of the cause of the size O(|π| · 2(|T |·|Ebad pref |)).

Proof. The proof is similar to the proof of Theorem 7, but
now we work with finite word languages.

First, we construct the NFW A over the alphabet (2I)∗ ×
(2I∪O)∗, which recognizes such pairs of words w1 ∈ (2I)∗

and w2 ∈ (2I∪O)∗, that there exists a trace w ≤subset
w2

w1 and
w ∈ Ebad pref .

Denote the system T = (S, s0, AP, δ, l) and the effect
Ebad pref = (Q, 2AP , q0, F,∆) and denote the cause as C.

A := (S ×Q, (2I)∗ × (2I∪O)∗, s0 × q0,∆U , S × F )

The transition function ∆U is defined as follows:

∆U ((s, q), (I
′
1, I

′
2, O

′))

:= {(s′, q′) | ∃I ′ ⊆ I : I ′1 ∩ I ′2 ⊆ I ′ ⊆ I ′1 ∪ I ′2,

s′ ∈ δ(s, I ′), ∆(q, I ′, l(s′)) = q′} .

We build the DFW of the size 2|A| = 2|T |·|Ebad pref | which
recognizes the same language as A and combine it with π
getting the automaton C ′

bad pref . Obviously, C ′
bad pref accepts

only bad prefixes of C. But unfortunately, there may be some
bad prefixes of C which C ′

bad pref does not accept.
For every π′′ /∈ C there exists a trace π′ ≤subset

π π′′, such
that π′ /∈ E. Hence, π′ has a prefix from Ebad pref . Thus, π′′

has a prefix from C ′
bad pref .

The last step is to denote accepting all states of C ′
bad pref

from which every infinite trace eventually visits an accepting
state getting the automaton Cbad pref .

Theorem 9. For a system T , a similarity relation ≤subset, a
trace π and a guarantee effect E given as a DFW Egood pref

for the good prefixes of E, there exists a DFW for the good
prefixes of the cause of the size O(|π| · 2(|T |·|Egood pref |)).
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Proof. By Corollary 1 the cause must also be a guarantee
property. Moreover, by Theorem 1 the set Cpairs of pairs
of traces π1 ∈ (2I) and π2 ∈ (2I∪O)ω , such that π1 is in
the cause of π2, is also a guarantee property, since it can be
universally projected on the set E in the similar way as in
Proposition 1.

First, we construct the UFW U of the size |T | · |Egood pref |
that recognizes the good prefixes of Cpairs.

Denote T = (S, s0, AP, δ, l) and Egood pref =
(Q, 2AP , q0, F,∆) and denote the cause as C.

Let us define U = (S × Q,Σ, s0 × q0,∆U , S × F ) over
the alphabet Σ := 2I × 2AP . Here transition relation ∆U is
defined for s ∈ S, q ∈ Q, I ′1, I

′
2 ⊆ I and O′ ⊆ O as follows:

∆U ((s, q), (I
′
1, I

′
2, O

′))

:= {(s′, q′) | ∃I ′ ⊆ I : I ′1 ∩ I ′2 ⊆ I ′ ⊆ I ′1 ∪ I ′2,

s′ ∈ δ(s, I ′), ∆(q, I ′, l(s′)) = q′} .

Turning this U to DFW of the size 2|U | = 2|T |·|Egood pref | and
combining it with π we get the DFW for the good prefixes of
the cause.
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