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Abstract

Bounded Synthesis is the construction of an implementation that satisfies a
given temporal specification and a bound on the size of the implementation. The
approach presented by Schewe and Finkbeiner introduces Bounded Synthesis of
transition systems such as Mealy machines which improves on classic synthesis in
that the reduced search space only contains implementations of the specified size.

However, transitions systems are often derived as synthesis artifacts which are
too large and structurally complex to be considered comprehensible and there-
fore motivate the synthesis of more succinct representations of implementations.
Programs that are compact and naturally comprehensible are such a desirable
representation. Additionally, systems are usually designed by means of high-level
representations such as programs.

In this thesis we revisit the bounded synthesis approach and a solution to program
synthesis. We then introduce a solution for the bounded synthesis problem for
reactive programs based on the revisited approaches.
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Chapter 1

Introduction

Reactive systems are implementations that infinitely often interact with their environ-
ment, which means receiving input and corresponding with some output. The systems
we consider are input-deterministic and synchronous, i.e., for some sequence of inputs
they always respond with the same sequence of outputs and every input is answered by
an output before the next input is received.

One desires implementations to fulfill some specification that restricts the behavior of the
implementation. Such specifications in our setting are given as a temporal logic formula
over the inputs and outputs of the system. There are two approaches to guarantee the
satisfaction of such a specification, namely verification and synthesis. The verification
approach requires a programmer to first implement the system. The implementation is
then verified against the specification, i.e., it is checked whether the implementation
satisfies the specification for all possible inputs. When the implementation does not
fulfill the specification the programmer tries to fix the implementation and verifies
the new implementation. This procedure however needs to be repeated until finally
an implementation is successfully verified or in the worst-case scenario is repeated
forever for an unsatisfiable specification. The synthesis approach eliminates the need to
manually design systems. An implementation is synthesized for a given specification
such that the synthesized system by construction satisfies the specification. The problem
to construct a satisfying implementation for a given specification was first introduced
as the synthesis problem by Alonzo Church [3].

However, since the specification only restricts the behavior and not the structure of an
implementation, synthesized implementations are often much larger and structurally
more complex than manually written implementations. The bounded synthesis approach
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CHAPTER 1. INTRODUCTION

introduced in [2] synthesizes implementations for a given specification and a given
bound on the size of the implementation. Small implementations are often better
comprehensible than larger counterparts and often of simpler structure. Also is the
synthesis process itself faster since only implementations of bounded size are considered.
This approach is further improved towards simple structured implementations in [1],
where an additional bound on the contained cycles of an implementation is introduced.

The mentioned synthesis approaches focus on the synthesis of transition systems such as
Mealy or Moore machines. However, for some specifications that require more complex
implementations, even the smallest satisfying transition systems are incomprehensible.
For example are there specifications, that guarantee some properties for a fixed number
of clients that interact with the system, such that the size of a valid transition system
grows exponential in the size of participating clients. This motivates for the synthesis
of more succinct representations of implementations that in some cases can avoid such
exponential growth of the synthesized system. Programs for example are a more succinct
representation that are naturally used as a high-level description language. An approach
that solves the synthesis problem of reactive programs is introduced in [8], where reactive
programs over a fixed set of boolean variables that satisfy a given specification are
synthesized.

In this thesis we introduce a solution to the bounded synthesis approach for reactive
programs. In Chapter 2 we formally define the synthesized implementations, the used
automata, the temporal logic used to represent specifications and the synthesis problem.
In Chapter 3 we generalize the bounded synthesis approach presented in [2] to be
applicable to arbitrary implementation representations. In Chapter 4 we revisit the
reactive program synthesis approach introduced in [8] that we then base our construction
of an automaton on, that precisely accepts reactive programs over a fixed set of boolean
variables and is suitable for the generalized bounded synthesis approach. The construc-
tion of this automaton as well as the application of the introduced bounded synthesis
approach is then presented in Chapter 5. The last chapter contains the conclusion and
further work.
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Chapter 2

Preliminaries

We begin with some basic definitions, then introduce the representations of implementa-
tions we synthesize, automata over infinite words as well as finite trees and a temporal
logic to represent specifications in. Finally we define the synthesis problem for temporal
specifications and the bounded synthesis problem with an additional bound on the
implementation size, that we solve in thesis for reactive programs.

We denote with N the set of non-negative integers and for a, b ∈ N the set {a, a+1, . . . b}
is denoted by [a, b]. With [a] we denote [0, a− 1]. An alphabet Σ is a non-empty finite
set of symbols. The elements of an alphabet are called letters. A word over an alphabet
Σ is a concatenation w = w0w1 . . . wn−1 of letters of Σ, where n defines the length of the
word also denoted by |w|. The word of length 0 is denoted with ε. Σ∗ and Σω denote
the set of finite and infinite words, respectively. We usually denote finite words with
w ∈ Σ∗ and infinite words with α ∈ Σω. For an infinite word α ∈ Σω we access with
αn ∈ Σ the n-th letter of the word, similar for finite words wn accesses the n-th letter of
some finite word w ∈ Σ∗. For an infinite word α ∈ Σω we define with Inf(α) the set of
states that appear infinitely often in α. A subset of Σ∗ or Σω is a language over finite
words or a language over infinite words, respectively.

For some set A. A prefix closed set X ⊆ A∗ is a set that contains for every element also
all its prefixes, i.e., ∀x = x0x1 . . . xn ∈ X, i ∈ [n] : x0x1 . . . xi ∈ X.

Carsten Gerstacker 3
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2.1 Implementations

Implementations are input-deterministic systems that respond to some input from the
environment with some output, i.e., given a sequence of inputs over some input-alphabet
they produce a sequence of outputs over some output-alphabet. For this thesis, we fix
a finite input-alphabet I and a finite output-alphabet O. We want to synthesize such
systems that additionally fulfill a desired input/output behavior given in the form of a
specification. We especially focus on reactive systems, i.e., systems that infinitely often
interact with the environment.

We introduce two kinds of implementations. Mealy Machines that are synthesized in
the bounded synthesis approach and programs over a fixed set of boolean variables that
are the target representation of implementations we synthesize in this thesis.

2.1.1 Mealy Machines

Mealy machines are transition systems that respond to input over the input-alphabet I
with output over the output-alphabet O.

Definition 2.1 (Mealy Machines)
A Mealy machine is a tupleM = (I,O,M,m0, τ, o) where

• I is an input-alphabet,

• O is an output-alphabet,

• M is a finite set of states,

• m0 ∈M is an initial state,

• τ : M × 2I →M is a transition function and

• o : M × 2I → 2O is an output function.

Let αI ∈ (2I)ω be a infinite input sequence. A system path over αI is the sequence
m0m1 . . . ∈ Mω such that ∀i ∈ N : τ(mi, α

I
i ) = mi+1. The thereby produced infinite

output sequence is defined as αO = αO0 α
O
1 . . . ∈ (2O)ω, where every element has to

match the output function, i.e., ∀i ∈ N : αOi = o(mi, α
I
i ). Note that since the transition
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2.1. IMPLEMENTATIONS

0 1

∗/g1

∗/g2

Figure 2.1: Mealy machine of 2-bit arbiter

and output function are deterministic, the system path and the produced output are
input-deterministic. We say a Mealy machineM can produce a word α = (αI0 ∪αO0 )(αI1 ∪
αO1 ) . . . ∈ (2I∪O)ω, iff the output αO is produced for input αI . We refer to the set of all
producible words as the language ofM, denoted by L(M) ⊆ (2I∪O)ω.

As an example we use a 2-bit arbiter, i.e., an arbiter for two clients. An arbiter is a
system that receives requests from clients and responds with grants to a shared resource,
i.e., a system over an input-alphabet I = {r1, r2}, where r1 and r2 are the requests for
the first and second client, and an output-alphabet O = {g1, g2}, where g1 and g2 are
the grant to access the shared good, respectively. An arbiter adheres to two rules: Every
request has to eventually be answered with the corresponding grant and there can never
be more than one client accessing the resource at a time. We refer to these rules as the
specification for the Mealy machine.

A possible implementation represented as a Mealy machine is shown in Figure 2.1.
The two circles represent the states and the labeled arrows between states depict the
transition and output function. Each label consists of the input and corresponding output
separated by a ’/’-symbol, i.e., an arrow between two statesm,m′ ∈M with label ’in/out’
represents the transition τ(m, in) = m′ and corresponding output o(m, in) = out. A
’∗’-symbol as input means that for every input this transition is valid.
The depicted implementation keeps alternating between its two states and thereby
alternates between outputting g1 and g2. Every request is granted after maximally two
steps and there are never multiple simultaneous grants, therefore the given specification
is satisfied. This implementation is easily extended to an arbitrary amount of clients.
One simply introduces a new state for each client as well as the corresponding input
and output signal. The implementation then is altered such that it cycles through all
states giving the grant to a different client in each step. It is easy to see that for this
specification of an arbiter the size of the Mealy machine corresponding to a correct
implementation grows only linear in the number of clients. So, for this specification
a satisfying Mealy machine of acceptable size is easily constructed and also simple
structured.
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However, this implementation now gives access to every client after a fixed number of
steps independently whether the grant was requested or not. An extended version of an
arbiter that additionally requires grants to only be given after they have been requested
is called a full arbiter. A Mealy machine satisfying such a specification is required to
remember for each client whether an open request exists or not. Since the encoding of
this information requires one state per combination of open requests, the size of the
implementation exponentially grows in the number of clients. For a larger amount of
clients such a implementation becomes incomprehensible for humans and therefore a
more succinct and simpler structured implementation is desirable.

2.1.2 Programs

A more succinct representation of implementations are programs. This naturally arises
due to the usage of variables such that even though the state space of a program, that
contains all possible variable valuations, is exponential in the number of variables the
size of the program — measured in lines of code — can be more succinct.

The programs we are working with are imperative programs over a fixed set of boolean
variables B and fixed input/output aritys NI , NO. Where NI and NO correspond to
the size of I and O, respectively. We again consider reactive programs, that infinitely
often interact with their environment by receiving input and producing output over
said aritys.

Syntax and Semantics

Our programs are defined with the following syntax, where b ∈ B is a variable and ~bI

and ~bO are vectors over multiple variables with size NI and NO to match the input
and output arities, respectively. The syntax is split into statements (stmt) and boolean
expressions (expr).

6 Carsten Gerstacker



2.1. IMPLEMENTATIONS

〈stmt〉 ::= 〈stmt〉 ; 〈stmt〉
| skip
| b := 〈expr〉
| input ~bI
| output ~bO

| if(〈expr〉) then {〈stmt〉} else {〈stmt〉}
| while(〈expr〉){〈stmt〉}

〈expr〉 ::= b | tt | ff | (〈expr〉 ∨ 〈expr〉) | (¬ 〈expr〉)

The semantics are the natural one. Our programs start with an initial variable valuation
we define to be 0 for all variables. The program then interacts with the environment by
the means of input and output statements, i.e., for a vector over boolean variables ~b
the statement “input ~b” takes an input in {0, 1}NI from the environment and updates
the values of ~b. The statement “output ~b” outputs the values stored in ~b, that is an
output in {0, 1}NO . Therefor a program with input/output arity NI/NO requires at
least max(NI , NO) many variables, i.e., |B| ≥ max(NI , NO). Between two input and
output statements the program can internally do any number of steps and manipulate
the variables using assignments, conditionals and loops. Note that programs also are
input-deterministic, i.e., a program maps an infinite input sequence αI ∈ ({0, 1}NI )ω

to an infinite output sequence αO ∈ ({0, 1}NO)ω and we say a program can produce a
word α = (αI0αO0 )(αI1αO1 ) . . . ∈ ({0, 1}NI+NO)ω, iff it maps αI to αO. Also do we assume
programs to be synchronous, i.e., to alternate between input and output statements.

Mealy machines and the programs are equally expressive. By that we mean that for
every program that can produce a precise set of words there exists a Mealy machine
that can also precisely produce this set of words and vice versa. Note that we defined
the words produced by Mealy machines to be over the alphabet 2I∪O and the words of
programs over {0, 1}NI+NO . The first alphabet assumes an input or output letter to be
set to 1 or 0 when it is an element of 2I∪O or not, respectively. The later encodes this
explicitly, i.e., every position corresponds to an input or output letter. Therefor both
implementations are defined over the same input alphabet I and output alphabet O.
We define the language of T , denoted by L(T ), as the set of all producible words.

For example could the full arbiter represented as a program be implemented by remem-
bering for each client whether a request is still open and cycling through the clients
step by step. We therefor introduce the variables s0, s1, . . . , sn where si corresponds to
a place for the i-th client, that is set to 1 iff the client has an open request. We also
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introduce the variables c0, c1, . . . , cn that represent the current position of a token that
is moved to the next place in each step, i.e., ci is set to 1, iff the token is in the i-th
place. The algorithm is then straight forward:

• Read input

• Update the requests s0, s1, . . . , sn

• Output grant gi iff ci ∧ si, i.e., the token is in the i-th place and the i-th client
stated a request

• Move the token

Figure 2.2 depicts a 3-bit full arbiter represented as an implementation in the defined
syntax. This however can easily be extended to an arbitrary amount of clients. The
corresponding n-bit full arbiter is schematically depicted in Figure 2.3.

Since for every new client introduced only a constant number of lines is needed to adapt
the program, the implementation remains linear in the number of lines, while the Mealy
machine exploded exponentially. The program also remains comprehensible for humans
even for large amounts of clients because of its simple structure. Note that in this thesis
we do not focus on the structure of synthesized programs but rather refer to the implicit
comprehensibility programs provide as a high-level description language. But as further
work it might be desirable to consider synthesis of structurally simple programs. For
Mealy machines as implementations such a structurally-sensitive approach was already
introduced in [1].

Labeled Binary Trees

We represent our programs as ΣP -labeled binary trees, where the set of labels is

ΣP = {¬,∧, ; , if , then,while} ∪B ∪ {assign-b | b ∈ B}
∪{input ~b | ~b ∈ BNI} ∪ {output ~b | ~b ∈ BNO}.

Definition 2.2 (Labeled Binary Trees)
A Σ-labeled binary tree is represented as a tuple (T, τ) where

• T ⊆ {L,R}∗ is a finite and prefix closed set of nodes and

• τ : T → Σ is a labeling function.

8 Carsten Gerstacker



2.1. IMPLEMENTATIONS

c1 = 1
while (tt ){

input r1 , r2 , r3
s1 = s1∨r1
s2 = s2∨r2
s3 = s3∨r3
output s1∧c1 , s2∧c2 , s3∧c3
if c1 then{

c1 = 0; c2 = 1; s1 = 0;
}else{

if c2 then{
c2 = 0; c3 = 1; s2 = 0;

}else{
if c3 then{

c3 = 0; c1 = 1; s3 = 0;
}else{

skip;
}

}
}

}

Figure 2.2: 3-bit full arbiter

c1 = 1
while (tt ):

input r1 , r2 , . . ., rn

s1 = s1∨r1
s2 = s2∨r2

. . .
sn = sn∨rn

output s1∧c1 , s2∧c2 , . . . ,sn∧cn

if c1: c1 = 0; c2 = 1; s1 = 0;
elif c2: c2 = 0; c3 = 1; s2 = 0;

. . .
elif cn: cn = 0; c1 = 1; sn = 0;

Figure 2.3: n-bit full arbiter

Carsten Gerstacker 9
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Labeled binary trees are essentially 2-ary trees but instead of nodes being a subset of
{1, 2}∗ we use L and R for the left and right child, respectively. We define the mapping
from a program defined with our syntax to a labeled program tree with the following
function tree. If a node has only one subtree we define it to be a the left subtree. Note
that our program trees do therefore not contain nodes with only a right subtree.
A term f(t1, t2) corresponds to a tree with a f -labeled root where the trees corresponding
to t1 and t2 are the left and right subtree of the root, respectively. A term f(t1)
corresponds to a tree with a f -labeled root and the tree corresponding to t1 as left
subtree. A term consisting only of a single label f corresponds to a tree with a f -labeled
root without any subtrees.

tree(b) = b

tree(tt) = tt

tree(ff) = ff

tree(ϕ1 ∨ ϕ2) = ∨(tree(ϕ1), tree(ϕ2))

tree(¬ϕ) = ¬(tree(ϕ))

tree(s; s′) =; (tree(s), tree(s′))

tree(skip) = skip

tree(input ~b) = input ~b

tree(output ~b) = output ~b

tree(b := e) = assign-b(tree(e))

tree(if (e) then s1 else s2) = if (tree(e), then (tree(s1), tree(s2)))

tree(while (e){s}) = while (tree(e), tree(s))

Definition 2.3 (Program trees)
A program tree T = (T, τ) is a ΣP -labeled binary tree.

As an example we depict in Figure 2.4 some arbitrary code we then transform into a
program tree. The corresponding program tree is depicted in Figure 2.5.

10 Carsten Gerstacker



2.1. IMPLEMENTATIONS

while (tt ){
input r1 , r2;
if(r1) then{

r2 = ff;
}else{

skip;
}
output r1 , r2;

}

Figure 2.4: Example-Code

while

tt ;

input r1r2 ;

output r1r2if

r1 then

assign-r2

ff

skip

Figure 2.5: Example-Program-Tree

Carsten Gerstacker 11
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2.2 Automata

In this section we introduce the automata used in this thesis. We first define automata
over infinite words as well as their acceptance behavior for both non-deterministic
and universal choices. We then use alternating automata to combine both concepts of
choices.
We introduce common acceptance conditions of the introduced automata, such as Büchi,
co-Büchi and Streett acceptance.
Furthermore we introduce tree automata over finite trees. Usually tree automata like
non-deterministic finite tree automata only walk down on a tree. Since our programs
are finite labeled binary trees we want to walk over in a reactive manner, that is we
want to produce infinite sequences of output based on some infinite input sequence, we
need to do infinite steps on an finite tree, that is walking the tree up again. For this
purpose we introduce two-way tree automata.

The language of a word/tree automaton A, denoted by L(A), is the set of all words/trees
accepted by that automaton.

2.2.1 Automata on Infinite Words

Definition 2.4 (Automata over Infinite Words)
An automaton over infinite words is a tuple A = (Σ, Q, q0, δ, Acc), where

• Σ is a finite alphabet,

• Q is a finite set of states,

• q0 ∈ Q is an initial state,

• δ : Q× Σ→ 2Q is a transition function and

• Acc ⊆ Qω is a accepting condition.

We call A deterministic, if ∀q ∈ Q, σ ∈ Σ : |δ(q, σ)| ≤ 1, that is for every state and
input A has at most one successor state. Otherwise we call A non-deterministic.

12 Carsten Gerstacker



2.2. AUTOMATA

Definition 2.5 (Run on Infinite Words)
For some infinite input word α ∈ Σω and an automaton A = (Σ, Q, q0, δ, Acc), we define
a run r of A on α as

r = r0r1r2 . . . = (q0, α0)(q1, α1)(q2, α2) . . . ∈
(
Q× Σ

)ω
where ∀i ∈ N : qi+1 ∈ δ(qi, αi).

Definition 2.6 (Non-Deterministic Acceptance of Infinite Words)
A non-deterministic automaton A accepts an infinite word α, if

• there is a run r of A on α and

• r is accepting, i.e., π1(r) ∈ Acc.

Where π1(r) is the projection of r to its first tuple elements, i.e., π1(r) = q0q1q2 . . . ∈ Qω.

Non-deterministic automata accept an infinite word iff there exists an accepting run,
i.e., in every state of the run there exists a successor that accepts the suffix of the input
word. Dually, we introduce universal choices, that is that every possible successor needs
to accept the suffix of the input word. Universal automata are equally defined but their
acceptance is altered.

Definition 2.7 (Universal Acceptance of Infinite Words)
An universal automaton A accepts an infinite word α, if all runs r of A on α are
accepting, i.e., π1(r) ∈ Acc.

Alternating Automata

Alternating automata combine the concept of non-deterministic and universal choices.
Where non-deterministic choices are understood as guessing some accepting run for
an infinite input word, universal choices can be understood as sending a copy of the
automaton in each subsequent state and all of those copies then must accept the
remainder of the input word. Intuitively, non-deterministic choices can be seen as
disjunctions, that accept whenever one of the subsequent states accepts and universal

Carsten Gerstacker 13
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choices as conjunctions where every subsequent state has to accept. This intuition leads
to a transition function that maps to not a set of states, but rather to a positive boolean
combination over states B+(Q), i.e the set defined by the grammar:

φ ::= true | false | q | φ ∨ φ | φ ∧ φ

We say a set of states M ⊆ Q satisfies such a positive boolean formula iff the boolean
combination evaluates to true if all states q ∈M are set to true and all states q′ ∈ Q\M
not contained in M are set to false. We can now define alternating automata.

Definition 2.8 (Alternating Automata over Infinite Words)
An alternating automaton is a tuple A = (Σ, Q, q0, δ, Acc) where

• Σ is a finite alphabet,

• Q is a finite set of states,

• q0 ∈ Q is an initial state,

• δ : Q× Σ→ B+(Q) is a transition function and

• Acc ⊆ Qω is an acceptance condition.

Notation 2.9 (Membership for Transition Functions of Alternating Automata)
We refer to an alternating automaton as non-deterministic or universal automaton
if the positive boolean formulas the transition function δ : Q × Σ → B+(Q) maps
to consists of only disjunctions or conjunctions, respectively. For such automata we
notate by q′ ∈ δ(q, σ) for some states q, q′ ∈ Q and a letter σ ∈ Σ that q′ is an atom
of the conjunction or disjunction δ(q, σ) for universal or non-deterministic automata,
respectively.

We define the acceptance of some infinite word by an alternating automaton with the
help of a run tree.

Definition 2.10 (Run Tree)
For a word α ∈ Σω and an alternating automaton A = (Σ, Q, q0, δ, Acc), a run tree of
A on α is an infinite k-ary (Q× Σ)-labeled tree represented as a tuple (T, τ) where

14 Carsten Gerstacker
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• T ⊆ {1, . . . , k}∗ ∪ {1, . . . , k}ω is a infinite and prefix closed set of nodes,

• τ : T → Q× Σ is a labeling function and

• let for every node t ∈ T and τ(t) = (q, α|t|) the set of all successors of t be
St =

{
t.i ∈ T | i ∈ {1, . . . , k}

}
. This set needs to satisfy the transition function,

that is for the current character α|t| we need
{
q′ | s ∈ St, τ(s) = (q′, α|t|+1)

}
to

satisfy δ(q, α|t|).

Definition 2.11 (Alternating Acceptance of Run Trees)
We say a run tree (T, τ) contains an infinite run r = r0r1r2 . . . ∈ (Q × Σ)ω, if there
exists a path t = t0t1t2 . . . ∈ T with τ(t0)τ(t0t1)τ(t0t1t2) . . . = r0r1r2 . . .

A run tree is accepting if all infinite runs it contains are accepting.

An infinite word α ∈ Σω is accepted by an alternating automaton A, iff there exists an
accepting run tree of A on α.

Note that accepting run trees of non-deterministic automata are 1-ary trees, representing
one accepting run, and run trees of universal automata are unique, representing all
accepting runs.

Acceptance Conditions

We now define the acceptance conditions that are used in this thesis.

Definition 2.12 (Büchi Acceptance)
The Büchi condition BÜCHI(F ) on a set of states F ⊆ Q is defined as

BÜCHI(F ) =
{
q0q1 . . . ∈ Qω | Inf(α) ∩ F 6= ∅

}
.

We call F the set of accepting states.

Intuitively, Büchi acceptance accepts a run, iff it hits the set of accepting states infinitely
often.
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Definition 2.13 (Co-Büchi Acceptance)
The co-Büchi condition COBÜCHI(F ) on a set of states F ⊆ Q is defined as

COBÜCHI(F ) =
{
q0q1 . . . ∈ Qω | Inf(α) ∩ F = ∅

}
We call F the set of rejecting states.

Intuitively, co-Büchi acceptance accepts a run, iff it hits the set of rejecting states only
finitely often.

Büchi and co-Büchi automata are dual, i.e., an alternating Büchi automaton can be
complemented by making the acceptance condition co-Büchi and dualizing the transition
function. Dualizing means to interpret universal choices as non-deterministic ones and
vice versa. For example the complementation of an non-deterministic Büchi automaton
A yields an universal co-Büchi automaton A, that accepts all words rejected by A. This
conversion becomes intuitive when translated in natural language: “A accepts, iff on
some path a set of states is visited infinitely often and A accepts, iff on all paths a set
of states is visited only finitely often.”

Definition 2.14 (Streett Acceptance)
The Streett condition STREETT

(
F
)
on a set of tuples F = {(Ai, Gi)}i∈[k] ⊆ Q×Q is

defined as

STREETT(F ) =
{
q0q1 . . . ∈ Qω | ∀i ∈ [k] : Inf(α) ∩ Ai 6= ∅ → Inf(α) ∩Gi 6= ∅

}

For Streett acceptance a run is accepted, iff for all tuples (Ai, Gi), the set Ai is hit only
finitely often or the set Gi is hit infinitely often.

2.2.2 Automata on Finite Trees

The only trees in this thesis used as input trees for tree automata are finite labeled
binary trees, i.e., our program trees defined in Definition 2.3. Therefore we define tree
automata only for those labeled binary trees.
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Non-Deterministic Finite Tree Automata

We first define non-deterministic tree automata on finite trees. Such an automaton
intuitively walks down on a tree by sending a copy of the automaton into every subtree
and the states of those copies are chosen non-deterministically.

Definition 2.15 (Non-Deterministic Finite Tree Automata)
A non-deterministic finite tree automata on Σ-labeled trees is a tuple A =
(Σ, Q, q0, δL, δR, δLR, F ) where

• Σ is an input alphabet,

• Q is a finite set of states,

• q0 ∈ Q is an initial state,

• δL, δR : Q× Σ→ 2Q are transition functions for nodes with only a left or right
child,

• δLR : Q× Σ→ 2Q×Q is a transition function for nodes with two children and

• F ⊆ Q is a set of accepting states.

Definition 2.16 (Acceptance of Non-Deterministic Tree Automata)
For a non-deterministic tree automaton A = (Σ, Q, q0, δL, δR, δLR, F ) and a Σ-labeled
binary tree T = (T, τ) a run of A on T is a Q-labeled binary tree Tr = (T, τr), where

• τr(ε) = q0 and

• for all t ∈ T with label τr(t) = q, if

– t has only a left subtree, then τr(t.L) ∈ δL(q, τ(t)),

– t has only a right subtree, then τr(t.R) ∈ δR(q, τ(t)) and

– t has both a left and a right subtree, then (τr(t.L), τr(t.R)) ∈ δLR(q, τ(t)).

Note that the structure of the run tree is equal to the input tree and only the labeling
function is altered.

A run Tr is accepted, iff for all leaves t ∈ T of Tr: τr(t) ∈ F . An input tree T is accepted
by A, iff there exists a accepting run tree of A on T .
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Two-Way Alternating Tree Automata

Definition 2.17 (Two-Way Alternating Tree Automata)
A two-way alternating tree automaton is a tuple (Σ, Q, q0, δL, δR, δLR, δ∅, Acc) where

• Σ is an input alphabet,

• Q is a finite set of states,

• q0 ∈ Q is an initial state,

• Acc is an acceptance condition,

• δ are transition functions:

– δLR : Q× Σ× {L,R,D} → B+(Q× {L,R, U})

– δL : Q× Σ× {L,D} → B+(Q× {L,U})

– δR : Q× Σ× {R,D} → B+(Q× {R,U})

– δ∅ : Q× Σ× {D} → B+(Q× {U})

Two-way automata allow us to walk up on our input tree, so instead of only walking
down on a tree as it is usually done for tree automata it allows us to repeatedly walk
over our program tree. Therefor in addition to the current position and the label we
currently read in our program tree, the transition function also takes the direction we
came from into account and maps to positive boolean formulas over not just states but
tuples of states and directions. We also have four transition functions δLR, δL, δR and δ∅
for nodes with a left and right subtree, only a left subtree, only a right subtree – which
we won’t need since our programs trees do not contain nodes with only a right subtree –
and leafs, respectively. Since the applicable transition function depends on the current
node in the program tree t ∈ T we for simplicity denote with δt the corresponding
transition function, i.e., if t has two subtrees, only a left subtree, only a right subtree or
is a leaf, then δt refers to δLR, δL, δR and δ∅, respectively.
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Definition 2.18 (Run Tree of Two-Way Alternating Tree Automata)
A run of a two-way alternating tree automaton A = (Σ, Q, q0, δ, Acc) on a program
tree T = (T, τ) is an infinite labeled binary tree TR = (TR, τR), where τR : TR →
T ×Q×{L,R,D} is a labeling function, where labels are tuples that contain the current
state of the automaton and program tree as well as the direction it came from. For TR
it holds that

• ε ∈ TR, τR(ε) = (ε, q0, D) and

• ∀y ∈ TR with τR(y) = (t, q, d) and δt(q, τ(t), d) = θ :
Let S =

{
(q1, d1), . . . , (qn, dn)

}
⊆ Q× {L,R, U} for n ≤ 2 be a set that satisfies

θ. Then ∀1 ≤ i ≤ n : y · i ∈ TR and τR(y · i) =
(
t′, qi, d

′
)
with (t′, d′) = µ(t, di).

Where µ is a function that maps from a tuple, consisting of a node in our program tree
and a direction, to a tuple, containing the node we reach by performing a move in that
direction and the direction we came from.

µ : T × {L,R, U} → T × {L,R,D}
µ(t, L) = (t · L,D)
µ(t, R) = (t ·R,D)
µ(t.L, U) = (t, L)
µ(t.R, U) = (t, R)

We define run trees as binary trees since the automata we use in this thesis do not have
more than two children, but note that in general run trees are of arbitrary arity.

Similar to Definition 2.11 a run tree is accepting, iff all infinite runs it contains are
accepting and a tree is accepted when there exists an accepting run tree.

2.3 Linear-Time Temporal Logic

Specifications that our synthesized implementations are to fulfill are usually given
in Linear-time Temporal Logic(LTL) [9]. LTL is a boolean logic over a set of atomic
propositions I ∪ O extended with temporal operators.

ϕ = true | a ∈ I ∪ O | ¬ϕ | ϕ ∨ ϕ | ©ϕ | ϕUϕ
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q0

⊥q1 q2

*

r1 r2g1g2

ḡ1 ḡ2

Figure 2.6: Arbiter specification as universal co-Büchi automaton

We denote satisfaction of an LTL-formula ϕ at a position n ∈ N for a word α ∈ Σω over
the alphabet Σ = 2I∪O by α, n |= ϕ. Satisfaction is defined by:

• α, n |= true

• α, n |= a iff a ∈ αn

• α, n |= ¬ϕ iff α, n 6|= ϕ

• α, n |= ϕ1 ∨ ϕ2 iff α, n |= ϕ1 or α, n |= ϕ2

• α, n |=©ϕ iff α, n+ 1 |= ϕ

• α, n |= ϕ1 Uϕ2 iff ∃m ≥ n : α,m |= ϕ2 and ∀n ≤ i < m : α, i |= ϕ1

Based on these basic operators we define three additional operators:

• Eventually: ♦ϕ ≡ trueUϕ

• Globally: �ϕ ≡ ¬♦¬ϕ

• Weak-Until: ϕ1 Wϕ2 ≡ (ϕ1 Uϕ2) ∨�ϕ1

A word α satisfies an LTL-formula ϕ, iff α, 0 |= ϕ. We define the language of an LTL
formula ϕ to be the set of all infinite words that satisfy ϕ.
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2.3.1 Automata Connection

In this subsection we connect LTL formulas with automata over infinite words and
finally with implementations. We first introduce the translation of a formula into a
non-deterministic Büchi word automaton.

Theorem 2.19 ([11])
Given an LTL-specification ϕ. One can construct a non-deterministic Büchi automaton
Aϕ in time exponential in |ϕ| and of size exponential in |ϕ| that accepts the same
language as ϕ.

By first negating the formula to ¬ϕ and then dualizing the constructed automaton
we can also construct an universal co-Büchi word automaton that accepts the same
language as ϕ.

For example, the specification of an 2-bit arbiter given as LTL formula is

ϕ = �(r1 → ♦g1) ∧�(r2 → ♦g2) ∧�¬(g1 ∧ g2)

where �(ri → ♦gi) expresses that whenever a request occurs, it has to eventually
be granted. The subformula �¬(g1 ∧ g2) expresses that two different clients never
get granted simultaneously. Figure 2.6 depicts the corresponding universal co-Büchi
automaton, where double circled nodes represent rejecting states and transitions to ⊥
represent instant rejection of a word.

2.4 Synthesis Problem

The synthesis problem for LTL specifications is to synthesize an implementation that
fulfills a given specification. A implementation satisfies a specification, iff all words
producible by the implementation are accepted by the specification, i.e., the language
of the implementation is a subset of the specifications language. In Theorem 2.19 it is
stated that such a specification ϕ can be represented by an universal co-Büchi word
automaton Aϕ with the same language. Therefore, we can express the satisfaction of
a specification ϕ by an arbitrary Mealy machineM by the means of the constructed
automaton Aϕ, i.e.,M satisfies ϕ, iff L(M) ⊆ L(Aϕ). Similar for an arbitrary program
tree T it holds T satisfies ϕ, iff L(T ) ⊆ L(Aϕ).
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Since our implementations are input-deterministic and synchronous such that they
produce a deterministic output after every input received, the set of possible produced
words can be represented as an infinite 2I∪O-labeled tree, where for every node there
exists a child for every possible input and that node is labeled with the received input
and the corresponding output of the implementation. Every infinite path in this tree then
represents one word producible by the implementation. Note that every implementation
corresponds to exactly one tree. One can now lift the universal co-Büchi word automaton
Aϕ to an universal co-Büchi tree automaton ATϕ that accepts such trees, iff every word
in the tree is accepted by Aϕ. The construction of ATϕ with size exponential in |ϕ| for a
given LTL specification ϕ is shown in [7]. An implementation is then accepted by ATϕ ,
iff the produced tree of the implementation is accepted by ATϕ . For classic synthesis of
transition systems such as Mealy machines, where a transition function directly maps
an input to an output one yields by means of an emptiness check an accepted tree and
then synthesizes a transition system that produces precisely this tree of words.

For programs however this step is more complicated since the internal steps of a program
are not represented in the tree and as a result useful information is missing. A program
can be synthesized by transforming a synthesized transition system into an equivalent
program by simulating the states as variables and encoding the transition function
into the program. However, one can also directly synthesize programs as introduced
in [8]. We therefor use two-way alternating tree automata that work on program trees
and simulate an underlying word automaton representing the specification with the
input/output produced while traversing “input/output”-statements of the program
tree. The construction of such an automaton as well as the synthesis is introduced in
Chapter 4.

In this thesis, however, we want to solve the bounded synthesis problem for programs.
The bounded synthesis problem is to synthesize an implementation that satisfies a given
LTL specification ϕ and a given bound on the size of the implementation. By means of
bounded synthesis one directs the search for satisfying implementations towards small
implementations first. An approach for bounded synthesis of transition systems such as
Mealy machines was introduced in [2].

In this thesis, we introduce an approach that solves the bounded synthesis problem for
reactive programs over a fixed set of boolean variables. We first generalize the bounded
synthesis approach introduced for transition systems and then extend the program
synthesis approach such that the generalized bounded synthesis approach becomes
applicable.
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Chapter 3

Bounded Synthesis

3.1 Run Graph

We fix a finite set of states Q.

Definition 3.1 (Run Graph)
A run graph is tuple G = (V, v0, E, f), where

• V is a finite set of vertices,

• v0 is an initial vertex,

• E ⊆ V × V is set of directed edges and

• f : V → Q is a labeling function.

A path π = π0π1 . . . ∈ V ω is contained in G, denoted by π ∈ G, iff ∀i ∈ N : (πi, πi+1) ∈ E
and π0 = v0, i.e. a path in the graph starting in the initial vertex. We denote with
f(π) = f(π0)f(π1) . . . ∈ Qω the application of f on every node in the path, i.e., a
projection to an infinite sequence of states. We call a vertex v unreachable, iff there
exists no path π ∈ G containing v.

Let Acc ⊆ Qω be an acceptance condition. We say G satisfies Acc, iff every path of G
satisfies the acceptance condition, i.e., ∀π ∈ G : f(π) ∈ Acc.

A run graph captures all possible runs of an universal automaton with the input/output
behavior defined by an arbitrary implementation. We define run graphs for universal
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(q0, 0) (q0, 1)

(q1, 1) (q2, 1) (q1, 0) (q2, 0)

Figure 3.1: Run graph for 2-bit arbiter

word automata on Mealy machines and two-way universal tree automata on program
trees.

Definition 3.2 (Run Graph for Mealy Machines)
Let Σ = 2I∪O be a finite alphabet, A = (Σ, Q, q0, δ, Acc) be a universal word au-
tomaton and M = (I,O,M,m0, τ, o) a Mealy machine. We define the run graph
GAM = (V, v0, E, f) of A onM where

• V = Q×M ,

• v0 = (q0,m0),

• E =
{(

(q,m), (q′,m′)
)
| ∃in ∈ 2I , out ∈ 2O : τ(m, in) = m′ ∧ o(m, in) =

out ∧ q′ ∈ δ(q, in ∪ out)
}
and

• f(q,m) = q.

Since the run graph contains all infinite runs of A on words producible byM, A accepts
M, if and only if all runs in GAM are accepting, i.e., GAM satisfies Acc.

We have already seen the specification of an 2-bit arbiter given as an universal co-Büchi
automaton in Figure 2.6 as well as a possible implementation represented as a Mealy
machine in Figure 2.1. The corresponding run graph resulting from this automata
and implementation is depicted in Figure 3.1. Since the automaton has a co-Büchi
acceptance condition we depict rejecting states by double edges. Note that only the
reachable part of the run graph is shown.

The run graph for program trees is again a finite representation of the infinite run tree
of A on T , i.e., every path in GAT corresponds to one run in the run tree. Therefor A
accepts T , if and only if GAT satisfies Acc.
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Definition 3.3 (Run Graph for Program Trees)
Let ΣP be a finite alphabet as defined in Section 2.1.2,A = (ΣP , Q, q0, δL, δR, δLR, δ∅, Acc)
be a two-way universal tree automaton and T = (T, τ) a program tree. We define the
run graph GAT = (V, v0, E, f) of A on T where

• V = Q× T × {L,R,D},

• v0 = (q0, ε,D),

• E =
{(

(q, t, d), (q′, t′, d′)
)
| ∃d′′ ∈ {L,R, U} : µ(t, d′′) = (t′, d′) ∧ (q′, d′′) ∈

δt(q, τ(t), d)
}
and

• f(q, t, d) = q.

Note that the run graphs of both implementations are unique.

3.2 Annotation Functions and Relations

In this section, we introduce bounded annotation functions, that annotate each state
in a run graph with a value, and annotation comparison relations, that are used to
express acceptance conditions. We then show that a run graph satisfies an acceptance
condition, iff there exist valid bounded annotation functions for a comparison relation
that expresses the acceptance condition.

We notate with Dc = {0, 1, . . . , c} ⊂ N the finite well-founded set of annotations our
annotation functions map to.

Definition 3.4 (Bounded Annotation Function and Comparison Relation)
For a run graph G = (V,E, f) and a bound c ∈ N a c-bounded annotation function on
G is a function λ : V → Dc.

An annotation comparison relation of arity n is a relation . = (.0, .1, . . . , .n−1) ∈
(2Q×Dc×Dc)n. We refer to .i ⊆ Q×Dc ×Dc as basic comparison relations for i ∈ [n].

We denote the arity with | . | = n. We write λ(v) .i λ(v′) for (f(v), λ(v), λ(v′)) ∈ .i and
for comparison relations of arity | . | = 1 we omit the index.
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We say a path π ∈ G satisfies a comparison relation . with arity | . | = n, denoted by
π |= ., iff for every basic comparison relation there exists an annotation function that
annotates each node with a value such that the annotated number for all consecutive
nodes in the path satisfy the basic comparison relation, i.e.,

∀i ∈ [n] : ∃λ : ∀j ∈ N : λ(πj) .i λ(πj+1).

For an acceptance condition Acc ⊆ Qω we say a comparison relation . expresses Acc,
iff all paths in G satisfy the relation, if and only if the path satisfies the acceptance
condition, i.e.,

∀π ∈ G : π |= .↔ f(π) ∈ Acc.

Definition 3.5 (Valid Bounded Annotation Function)
A c-bounded annotation function λ on G = (V,E, f) is valid for a basic annotation
comparison relation . ⊆ Q × Dc × Dc, iff for all reachable v, v′ ∈ V : (v, v′) ∈ E →
λ(v) . λ(v′).

Theorem 3.6
Let G = (V,E, f) be a run graph, Acc ⊆ Qω an acceptance condition expressed by an
annotation comparison relation . with arity | . | = n and a bound c ∈ N.

If there exists a valid c-bounded annotation functions λi on G for each basic comparison
relation .i, then G satisfies Acc.

Proof. Let G, Acc, . with arity | . | = n and c be given and λi be a valid c-bounded
annotation comparison relation on G for .i for all i ∈ [n]. Let π = π0π1 . . . ∈ G be an
arbitrary path in G and i ∈ [n]. Since λi is a valid annotation function, λi(π0).iλi(π1).i. . .
holds and therefore π |= .. Since . expresses Acc it follows that f(π) ∈ Acc, i.e., G
satisfies Acc. �

The other direction does not hold in general as mentioned in [6]. But we can proof the
property for individual annotation comparison relations that express some acceptance
conditions, namely Büchi, co-Büchi and Streett acceptance conditions. Therefore, we
first define comparison relations that express the individual acceptance conditions.

26 Carsten Gerstacker



3.2. ANNOTATION FUNCTIONS AND RELATIONS

Definition 3.7 (Annotation Comparison Relations)
Let G = (V,E, f) be run graph.

• Let F ⊆ Q be a set of accepting states and Acc = BÜCHI(F ). The annotation
comparison relation .FB is defined as

λ(v) .FB λ(v′) =

true if f(v) ∈ F

λ(v) > λ(v′) if f(v) 6∈ F

Note | .FB | = 1.

• Let F ⊆ Q be a set of rejecting states and Acc = CO-BÜCHI(F ). The annotation
comparison relation .FC is defined as

λ(v) .FC λ(v′) =

λ(v) > λ(v′) if f(v) ∈ F

λ(v) ≥ λ(v′) if f(v) 6∈ F

Note | .FC | = 1.

• Let F = {(Ai, Gi)}i∈[k] ⊆ 2Q×Q and Acc = STREETT(F ). The annotation
comparison relation is defined as .FS = (.F,0S , .F,1S , . . . , .F,k−1

S ) where

λ(v) .F,iS λ(v′) =


true if f(v) ∈ Gi

λ(v) > λ(v′) if f(v) ∈ Ai ∧ f(v) 6∈ Gi

λ(v) ≥ λ(v′) if f(v) 6∈ Ai ∪Gi

Note | .FS | = k.

The comparison relation for Büchi acceptance requires the annotation to count down-
wards in every step until an accepting state is visited. Therefore, every node can be
labeled with the maximal distance to the next accepting state. For co-Büchi acceptance
the comparison relation requires the annotation to count downwards when a rejecting
state was visited. Therefore, every node can be labeled with the maximal number
of rejecting states that can be visited on a path starting in that node. Intuitively,
the Streett acceptance comparison relation combines Büchi and co-Büchi comparison
relations for each pair (A,G) ∈ F , such that A is considered as rejecting or bad states
and G as accepting states. The comparison relation then requires the annotation to
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count downwards after a rejecting state was visited until an accepting state is visited.
Therefore, every node can either be labeled with the maximal number of rejecting states
that can be visited on a path starting in that node or whenever there are infinitely
many visits to rejecting states, be labeled with the maximal distance until an accepting
state is visited. Intuitively, those numbers exists whenever the run graph satisfies the
corresponding acceptance condition.

We now proof for every introduced annotation comparison relation that they express
their corresponding acceptance condition. Each proof consists of first a lemma to show
that the satisfaction of Acc by G implies the existence of valid bounded annotation
functions and finally a theorem to proof that the corresponding acceptance condition is
expressed by that relation. Note that for a proof of expression of an acceptance condition
by a comparison relation it is sufficient for every basic relation . to find for every path
π, one annotation function λ, such that π |= .. However, we proof that there exists a
valid annotation function for every basic relation, i.e., one function that holds on every
path instead of a function for each path. Whether this quantifier swap is possible in
general or not is not further discussed in this thesis, however it is an interesting question
left open for further work. We later make use of this property when proofing the inverse
direction of Theorem 3.6 for the introduced comparison relations.

Lemma 3.8
For a Büchi acceptance condition Acc = BÜCHI(F ) with accepting states F ⊆ Q and a
run graph G = (V,E, f):

If G satisfies Acc, then there exists a valid |V |-bounded annotation function λ for .FB.

Proof. Let F ⊆ Q be a set of states, Acc = BÜCHI(F ) an acceptance condition and
G = (V,E, f) a run graph satisfying Acc.

Construct the valid c-bounded annotation function λ that maps to each vertex v the
maximal distance to a vertex v′ with f(v′) = q for some q ∈ F , this maximal distance
exists since otherwise there would exist an infinite path π without any visits to F
and therefore π 6∈ Acc which contradicts the assumption. We define λ(v) = 0 for all
unreachable states v ∈ V . The bound c is the maximal number annotated to a vertex
of G. �
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Theorem 3.9
For a Büchi acceptance condition Acc = BÜCHI(F ) with accepting states F ⊆ Q:

.FB expresses Büchi acceptance.

Proof. Let F be a set of states, Acc = BÜCHI(F ) an acceptance condition and π ∈ G an
arbitrary path in a run graph G = (V,E, f). We prove ∃λ : ∀i ∈ N : λ(πi) .FB λ(πi+1)⇔
f(π) ∈ Acc.

”⇒ ” :
Let λ be a c-bounded annotation function that satisfies ∀i ∈ N : λ(πi) .FB λ(πi+1). Proof
by contradiction. Assume π 6∈ Acc. This means there exists a position n ∈ N such that
∀m > n : f(πm) 6∈ F . Therefore by definition of .FB, it holds λ(πm) < λ(πm+1) < . . .,
i.e., there exists an infinite descending chain. This is a contradiction since the domain
Dc is well-founded.  

”⇐ ” :
Let f(π) ∈ Acc. More precisely since π is an arbitrary path, this property holds for
every path in G, i.e., G satisfies Acc. With Lemma 3.8 there exists a valid c-bounded
annotation function λ. �

Lemma 3.10
For a Co-Büchi acceptance condition Acc = CO-BÜCHI(F ) with rejecting states F ⊆ Q

and a run graph G = (V,E, f):

If G satisfies Acc, then there exists a valid |V |-bounded annotation function λ for .FC.

Proof. Let F ⊆ Q be a set of states, Acc = CO-BÜCHI(F ) an acceptance condition
and G = (V,E, f) a run graph satisfying Acc.

Construct the c-bounded annotation function λ that maps to each vertex v of G the
maximal amount of visits to rejecting vertices, i.e., a vertex v′ with f(v′) = q for some
q ∈ F , for all paths starting in v. This maximal number of visits exists, since otherwise
there would exist a path π in G with infinite visits to rejecting states and therefore
f(π) 6∈ Acc which contradicts the assumptions. We define λ(v) = 0 for all unreachable
states v ∈ V . The bound c is the maximal annotated number to a vertex of G. �
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Theorem 3.11
For a Co-Büchi acceptance condition Acc = CO-BÜCHI(F ) with rejecting states F ⊆ Q:

.FC expresses co-Büchi acceptance.

Proof. Let F be a set of states, Acc = CO-BÜCHI(F ) an acceptance condition and
π ∈ G an arbitrary path in a run graph G = (V,E, f). We prove ∃λ : ∀i ∈ N :
λ(πi) .FB λ(πi+1)⇔ f(π) ∈ Acc.

”⇒ ” :
Let λ be a c-bounded annotation function that satisfies ∀i ∈ N : λ(πi) .FC λ(πi+1). Proof
by contradiction. Assume f(π) 6∈ Acc. This means there exists a state q ∈ F that is
visited infinitely often, i.e., ∀n ∈ N : ∃m ≥ n : f(πm) = q. Let I = i1i2 . . . ∈ Nω with
∀j ∈ N : f(πij ) = q ∧ ij < ij+1 be the infinite ordered sequence of all indexes where
q occurs in f(π). By definition of .FC it holds that λ(π0) ≤ λ(π1) ≤ . . . ≤ λ(πi1) <
λ(πi1+1) ≤ . . . ≤ λ(πi2) < λ(πi2+1) ≤ . . ., i.e., an infinite descending chain, which is a
contradiction since the domain Dc is well-founded.  

”⇐ ” :
Let f(π) ∈ Acc. More precisely since π is an arbitrary path, this property holds for
every path in G, i.e., G satisfies Acc. With Lemma 3.10 there exists a valid c-bounded
annotation function λ. �

Lemma 3.12
For a Streett acceptance condition Acc = Streett(F ) with set of tuples of states F ⊆ 2Q×Q

and a run graph G = (V,E, f):

If G satisfies Acc, then there exists a valid |V |-bounded annotation function λ for each
basic comparison relation in .FS .

Proof. Let F = {(Ai, Gi)}i∈[k] be a set of tuples of states, Acc = STREETT(F ) an
acceptance condition and G = (V,E, f) a run graph satisfying Acc.

We construct the k different valid c-bounded annotation functions λi. We first define
λi(v) = 0 for all unreachable states v ∈ V and then remove those states from G. We
then define each λi(v) for all i ∈ [k] with:

• ∀v ∈ V with f(v) ∈ Gi : λi(v) = 0.
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• Remove outgoing edges for states v ∈ V with f(v) ∈ Gi. That results in
G ′ = (V,E ′, f), where E ′ = E \ {(v, v′) ∈ E | f(v) ∈ Gi}. G ′ contains no strongly
connected components (SCCs) that have a vertex v with f(v) ∈ Ai∪Gi. For Gi it
is obvious since all outgoing edges are removed. For Ai: Assume there is an SCC
containing a state v where f(v) ∈ Ai, then there exists an infinite path π inside
this SCC that infinitely often visits Ai without infinite visits to the corresponding
set Gi and therefore f(π) 6∈ Acc which contradicts the assumption.

• Now let S be the set off all SCCs of G ′. We define G ′′ = (V ′′, E ′′, f). Where
V ′′ = S ∪ {{v} | v 6∈ ⋃S∈S S} and E ′′ = {(S1, S2) | ∃v1 ∈ S1, v2 ∈ S2 : S1 6=
S2 ∧ (v1, v2) ∈ E ′}.
G ′′ is a directed acyclic graph and therefor all paths in G ′′ are of finite length
and there only exist finitely many paths.

• We define nbi(π) : (V ′′)∗ → N as the max number of bad states visited on some
path π = S1, . . . , Sm. Let Occ(π) denote the set of occurring SCCs in π. We
formally define nbi(π) =

∣∣∣ ⋃S∈Occ(π) S ∩ {v ∈ V | f(v) ∈ Ai}
∣∣∣.

• ∀v ∈ S ∈ V ′′ with f(v) 6∈ Gi : λi(v) = max({nbi(π) | π is a path from S}).

�

Theorem 3.13
For a Streett acceptance condition Acc = Streett(F ) with set of tuples of states F ⊆ 2Q×Q:

.FS expresses Streett acceptance.

Proof. Let F = {(Ai, Gi)}i∈[k] be a set of tuples of states, Acc = STREETT(F ) an
acceptance condition and π ∈ G an arbitrary path in a run graph G = (V,E, f). We
proof ∀i ∈ [k] : ∃λi : ∀j ∈ N : λi(πj) .F,iB λi(πj+1)⇔ f(π) ∈ Acc.

”⇒ ” :
Let λi be a c-bounded annotation function that satisfies ∀j ∈ N : λi(πj) .F,iS λi(πj+1)
for all i ∈ [k]. Proof by contradiction. Assume π 6∈ Acc, i.e., ∃i ∈ [k] : Inf(f(π)) ∩ Ai 6=
∅ ∧ Inf(f(π)) ∩ Gi = ∅. So there exists a q ∈ Ai that is visited infinitely often and
all q′ ∈ Gi are visited only finitely often. Therefore there exists a n ∈ N such that
∀m ≥ n : f(πm) 6∈ Gi. Let I = i1i2 . . . ∈ (N \ [n])ω with ∀j ∈ N : f(πij ) = q ∧ ij < ij+1

be the infinite ordered sequence of all indexes bigger that n, where q occurs in f(π).
By definition of .F,iS it holds that λi(πn) ≤ λi(πn+1) ≤ . . . ≤ λi(πi1) < λi(πi1+1) ≤ . . . ≤

Carsten Gerstacker 31



CHAPTER 3. BOUNDED SYNTHESIS

λ(q0, 0) = 2 λ(q0, 1) = 2

λ(q1, 1) = 2 λ(q2, 1) = 1 λ(q1, 0) = 1 λ(q2, 0) = 2

≥

≤
≤ ≥ ≤ ≥

> <

Figure 3.2: Annotated run graph of A on T

λi(πi2) < λi(πi2+1) ≤ . . ., i.e., an infinite descending chain, which is a contradiction
since the domain Dc is well-founded.  

”⇐ ” :
Let π ∈ STREETT(F ). More precisely since π is an arbitrary path, this property holds
for every path in G, i.e., G satisfies Acc. With Lemma 3.12 there exists a valid c-bounded
annotation function λi for each basic comparison relation. �

We finally capture the overall results in the following theorem.

Theorem 3.14
Let G = (V,E, f) be a run graph, Acc ⊆ Qω a Büchi, co-Büchi or Streett acceptance
condition expressed by the relation .X for X ∈ {B,C, S}.

There exists a valid |V |-bounded annotation function λi on G for each basic comparison
relation .i, if and only if G satisfies Acc.

Proof. ”⇒ ” : Theorem 3.6.
”⇐ ” : Lemma 3.8, Lemma 3.10 and Lemma 3.12. �

Note that this results have already been shown for Mealy automata in [2] and [6]. We
solely generalized the results for generalized run graphs, while the proofs correlate to
the known results.

Reconsidering our example run graph depicted in Figure 3.1, there needs to exist a
bounded annotation function that satisfies the co-Büchi comparison relation. Indeed
there exists a 2-bounded annotation function as depicted in Figure 3.2. Note that the
relation between two nodes is annotated on each edge and all unreachable nodes are
labeled with 0.
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3.3 Constraint-Based Bounded Synthesis

We have shown how to construct a run graph for universal word automata on Mealy
machines and two-way universal tree automata on program trees. Those run graphs
satisfy an acceptance condition Acc, iff the corresponding implementation is accepted
by the corresponding automaton. We also proved that the satisfaction of Acc by a run
graph can be expressed by the existence of valid annotation functions for an annotation
comparison relation that expresses Acc.

We now introduce SAT encodings for both cases, that guess an implementation and
simultaneously valid annotation functions, that witness the correctness of the imple-
mentation. The SAT encodings are satisfiable, iff there exists a correct implementation
that fulfills a given size bound. The valid implementation can then be derived from the
satisfied encoding.

3.3.1 Mealy Machines

Based on an universal specification automaton A = (Σ, Q, q0, δ, Acc) over the alphabet
Σ = 2I∪O where Acc is a acceptance condition expressed by . with arity | . | = n and
a bound c ∈ N, we construct a constraint system that, when solved by a SAT-solver,
yields an implementation represented as a Mealy machineM = (I,O,M,m0, τ) with
size |M| ≤ bc/|A|c and valid c-bounded annotation functions λi for i ∈ [n] that are
witnesses for the implementation. We encode the Mealy machine and the annotation
function as uninterpreted functions as explained in the following. We introduce the
following variables:

• τ(m, ν,m′) for all m,m′ ∈ M and ν ∈ 2I , iff there is a transition from m with
input ν to m′.

• o(m, ν, x) for all m ∈M, ν ∈ 2I and x ∈ O, iff the transition from m for input ν
is labeled with x.

• λBi (q,m) for all i ∈ [n], m ∈ M and q ∈ Q, iff (q,m) is reachable in the run
graph.

• λ#
i (q,m, x) for all i ∈ [n],m ∈M, q ∈ Q and 0 ≤ x < log(c), where the annotated

number to node (q,m) is encoded as a binary number with log(c) many bits. We
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denote with λ#
i (q,m) ◦ k for ◦ ∈ {<,≤,=,≥, >} the relation to some value k or

other annotations λ#
i (q′,m′).

The SAT formula ΦA,.M is build based on the following constraints:

• Transitions ofM are unambiguous:

∧
m∈M,ν∈2I

exactlyOne
(
{τ(m, ν,m′) | m′ ∈M}

)

where exactlyOne : X → B(X) maps a set to a SAT query to ensure that only
one element of the set is true while all remaining are false.

• The initial state of the run graph is reachable and all annotations fulfill the given
bound: ∧

i∈[n]
λBi (q0,m0) ∧

∧
i∈[n],m∈M,q∈Q

λ#
i (q,m) ≤ c

• All reachable states in the run graph are annotated and fulfill the comparison
relation

∧
i∈[n],m∈M,q∈Q

λBi (q,m)→
∧
σ∈Σ

label(m,σ)→
∧

m′∈M
τ(m, I ∩ σ,m′)

→
∧

q′∈δ(q,σ)
λBi (q′,m′) ∧ λ#

i (q,m) .i λ#
i (q′,m′)

where label(m,σ) = ∧
x∈O∩σ o(t, I ∩ σ, x) ∧ ∧x 6∈O∩σ ¬o(t, I ∩ σ, x) fixes the label

of each transition.

Note this SAT-encoding stems from [1] and is modified to encode multiple annotation
functions. The encoding checks whether universal properties in the run graph hold. In
[6] they use an SMT encoding to check such universal properties for Büchi and Streett
automata. Both encodings are equivalent and we can therefore use the SAT encoding
to also check Büchi and Streett conditions. We collect the results for both papers in the
following theorem.

Theorem 3.15 ([1] and [6])
Given a universal word automaton A with a Büchi, co-Büchi or Streett acceptance
condition Acc expressed by . and a bound c ∈ N. The constraint system ΦA,.M is satisfiable,
iff there is a Mealy machineM with size |M| ≤ bc/|A|c that is accepted by A.
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3.3.2 Program Trees

Based on a two-way universal specification automaton A = (Σ, Q, q0, δL, δR, δLR, δ∅, Acc)
over an alphabet Σ where Acc is an acceptance condition expressed by . with arity
| . | = n and a bound c ∈ N, we construct a constraint system that when solved by a
SAT-solver yields an implementation represented as a program tree T = (T, τ) with size
|T | ≤ bc/|A|c and valid c-bounded annotation functions λi for i ∈ [n] that are witnesses
for the implementation. We encode the program tree and the annotation function as
uninterpreted functions as explained in the following

We introduce the following variables:

• L(t, t′) and R(t, t′) for all t, t′ ∈ T , iff t′ is the left or right child of t, respectively

• τ(t, x) for all t ∈ T and x ∈ Σ, iff t is labeled with x.

• λBi (t, q, d) for all i ∈ [n], t ∈ T , q ∈ Q and d ∈ {L,R,D}, iff (t, q, d) is reachable
in the run graph.

• λ#
i (t, q, d, x) for all i ∈ [n], t ∈ T , q ∈ Q, d ∈ {L,R,D} and 0 ≤ x < log(c),

where the annotated number to node (t, q, d) is encoded as a binary number
with log(c) many bits. We denote with λ#

i (t, q, d) ◦ k for ◦ ∈ {<,≤,=,≥, >} the
relation to some value k or other annotations λ#

i (t′, q′, d′).

The SAT formula ΦA,.T is build based on the following constraints:

• Assure binary tree structure of T , i.e., every node has exactly one parent and
the root t0 has none:

∧
t′∈T\{t0}

exactlyOne
({(

L(t, t′) ∧ ¬R(t, t′)
)
∨
(
¬L(t, t′) ∧R(t, t′)

)
| t ∈ T

})

∧
∧
t∈T
¬L(t, t0) ∧ ¬R(t, t0)

where exactlyOne : X → B(X) again maps a set to a SAT query to ensure that
only one element of the set is true while all remaining are false.

• Each node has exactly one label:

∧
t∈T

exactlyOne({τ(t, x) | x ∈ Σ})
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• The initial state of the run graph is reachable and all annotations fulfill the given
bound: ∧

i∈[n]
λBi (t0, q0, d0) ∧

∧
i∈[n],t∈T,q∈Q,d∈{L,R,D}

λ#
i (t, q, d) ≤ c

• All reachable states in the run graph are annotated and fulfill the comparison
relation ∧

i∈[n],(q,t,d)∈{Q×T×{L,R,D}}
λBi (q, t, d)→

∧
σ∈Σ

τ(t, σ)

→
∧

t′∈T,(d′′,d′)∈{(U,L),(U,R),(L,D),(R,D)}
µ(t, d′′, t′, d′)

→
∧

(q′,d′′)∈δt(q,σ,d)
λBi (q′, t′, d′) ∧ λ#

i (q, t, d) .Ai λ
#
i (q′, t′, d′)

where µ(t, d′′, t′, d′) =



L(t, t′) , if d′′ = L

R(t, t′) , if d′′ = R

L(t′, t) , if d′′ = U ∧ d = L

R(t′, t) , if d′′ = U ∧ d = R

The encoding checks whether universal properties in the run graph hold.

Theorem 3.16
Given a two-way universal tree automaton A with a Büchi, co-Büchi or Streett acceptance
condition Acc expressed by . and a bound c ∈ N. The constraint system ΦA,.T is satisfiable,
iff there is a program tree T with size |T | ≤ bc/|A|c that is accepted by A.

Proof.

”⇒ ” :
Let T be accepted by A, then with Theorem 3.14 there exists a valid annotation function
λi on G for each i ∈ [| . |]. Let λi be represented by λ#

i and λBi be true for all reachable
states in the run graph G. Then ΦA,.T is satisfied.

”⇐ ” :
Let ΦA,.T be satisfied. Then there exists a valid annotation function λi encoded by λ#

i

for each i ∈ [| . |] (set λi(v) = 0 for all unreachable states v, i.e., where λ#
i (v) is false)

that satisfies the encoding. With Theorem 3.14 the acceptance of T by A follows. �

The constructed constraint system is of size O(| . | · |T | · |δ| · |Σ|) with x many variables
where x ∈ O(|T | · (|T |+ |Σ|+ | . | · |Q| · log(|Q| · |T |))).
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Chapter 4

Synthesis of Reactive Programs

We have already argued that programs as a more succinct representation of implementa-
tions are highly desirable. However, in contrast to Mealy machines, that only dependent
on the current state map an input to a corresponding output, in programs such a direct
mapping is not given. Rather do programs need to be simulated, variables to be altered,
expressions to be evaluated and an output statement to be traversed until we produce
a corresponding output to a received input, that therefore not only depends on the
current position in the code but additionally the valuation of all variables.

In [10] reactive program synthesis is solved by means of two-way alternating Büchi tree
automata that walk over program trees, while keeping track of the current valuation and
the state of a given Büchi specification automaton that is simulated by the input/output
received by traversing the program tree. The automaton then accepts a program tree
whenever the simulated specification automaton accepts the provided input/output.
The constructed automaton is intersected with two more constructed automata that
accept syntactically correct programs and reactive programs. Then a reactive and
syntactically correct program is synthesized by means of an emptiness check of the
obtained automaton.

Carsten Gerstacker 37



CHAPTER 4. SYNTHESIS OF REACTIVE PROGRAMS

4.1 Valuations

A valuation is a function that maps from variables to boolean values s ∈ S := B → B.
Such a valuation represents part of our program state. We can update a valuation with
the following notation:

for some b ∈ B, v ∈ B :

s[b/v](x) =

v if b = x

s(x) otherwise

We extend this notation to replace vectors of variables by vectors of values such that
we replace a variable at some position i in our variables vector ~b by the respective value
vi of the value vector ~v.

for some ~b ∈ Bn, ~v ∈ Bn :

s[~b/~v](x) =

vi if bi = x, for all i

s(x) otherwise

4.2 Construction of Two-Way Alternating Büchi Tree
Automaton

First we translate a given specification into a non-deterministic Büchi word automaton
Aspec as explained in Theorem 2.19. By intuition the automaton we construct guesses an
error-path of our program and therefore accepts program trees that do not satisfy the
specification. The received input of the environment and the simulation of the underlying
specification automaton Aspec is non-deterministic. We use non-determinism to guess
the evaluation of boolean expressions and, for conditionals, check with a universal choice
whether the guess was correct.

The constructed two-way alternating Büchi automaton A over the alphabet ΣP with
the set of states PA,

PAexpr = S ×Bool

Pexec = S ×Q× I × {inp, out} ×Bool

PA = PAexpr ∪ Pexec

and initial state pA0 = (s0, q0, i0, inp, 0), is defined with the following transitions, where
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s ∈ S, v ∈ Bool, q ∈ Q, i ∈ I, m ∈ {inp, out} and t ∈ {0, 1}.

• Transitions to evaluate Boolean expressions:

– δA∅ ((s, 1), tt, D) = true

δA∅ ((s, 0), tt, D) = false

– δA∅ ((s, 1),ff, D) = false

δA∅ ((s, 0),ff, D) = true

– δA∅ ((s, v), b,D) =

true , if s[b] = v

false , otherwise

– δALR((s, 1),∨, D) = ((s, 1), L) ∨ ((s, 1), R)
δALR((s, 0),∨, D) = ((s, 0), L) ∧ ((s, 0), R)

– δAL ((s, v),¬, D) = ((s, 1− v), L)

• Transitions to evaluate non I/O statements:

– δA∅ ((s, q, i,m, t), skip, D) = ((s, q, i,m, 0), U)

– δAL ((s, q, i,m, t), assignb, D) =(
((s[b/0], q, i,m, 0), U)∧((s, 0), L)

)
∨
(
((s[b/1], q, i,m, 0), U)∧((s, 1), L)

)
– δALR((s, q, i,m, t), if, D) =(

((s, 1), L) ∧ ((s, q, i,m, 0), LR)
)
∨

(
((s, 0), L) ∧ ((s, q, i,m, 0), RR)

)
– δALR((s, q, i,m, t),while, D)

= δALR((s, q, i,m, t),while, R)
=
(
((s, 1), L) ∧ ((s, q, i,m, 0), R)

)
∨

(
((s, 0), L) ∧ ((s, q, i,m, 0), U)

)
• Transitions to evaluate input and output:

– δA∅ ((s, q, i, inp, t), input ~b,D) =∨
valuations val over ~b((s[~b/val], q, val, out, 0), U)

– δA∅ ((s, q, i, out, t),output ~b,D) = ∨
q′∈δspec(q,~i,s[~b])((s, q′, i, inp, 1), U)

• Transitions to move to next statement in program:

– δALR((s, q, i,m, t), ;, D) = ((s, q, i,m, t), L)
δALR((s, q, i,m, t), ;, L) = ((s, q, i,m, t), R)
δALR((s, q, i,m, t), ;, R) = ((s, q, i,m, t), U)
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– δALR((s, q, i,m, t), then, L)
= δALR((s, q, i,m, t), then, R)
= ((s, q, i,m, t), U)

– δALR((s, q, i,m, t), if, R) = ((s, q, i,m, t), U)

All other transitions evaluate to false.

The set of accepting states is defined as

FA =
{

(s, q, i,m, 1) | q ∈ Fspec
}

The set of states PA consists of two separate sets for the evaluation of boolean expressions
PAexpr and for the normal execution of our program Pexec.
Boolean expressions are evaluated by sending a copy of the automaton into the program
subtree containing the boolean expression. Boolean evaluations only walk down on the
finite subtree and terminate at the bottom to true or false, if the evaluation yields the
expected result or not, respectively. To evaluate a boolean expression, the automaton
requires the current valuation s ∈ S and the expected evaluation result.
The normal execution states are needed to traverse our program tree and thereby reading
input, altering the current valuation and producing output. Such a state consists of
the current valuation s ∈ S, the current state of the simulated specification automaton
q ∈ Q, the last input read, a flag, whether the next interaction with the environment is
an input or an output statement, and a marker for the Büchi acceptance.

The automaton has a Büchi acceptance condition and the set of accepting states is a
collection of normal execution states, to be more precise all normal execution states after
an output-statement that simulated the underlying specification automaton such that
the specification automaton just hit one of its accepting states. This means A accepts
a program tree whenever the underlying automaton accepts the infinite input/output
sequence produced by the program tree. Since the specification automaton accepts
infinite words that do not satisfy the specification, A precisely accepts program trees
that interact infinitely often with the environment and fail the specification.

For the remainder of this thesis we refer with A to this constructed two-way alternating
Büchi automaton.
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4.3 Synthesis

In this section we shortly sketch the synthesis approach introduced in [8]. First we
introduce a non-deterministic tree automaton Apgm that accepts all finite syntactically
correct program trees over a fixed set of Boolean variables B with input and output
arities NI and NO, respectively. We then introduce a two-way alternating Büchi tree
automaton Areactive that accepts reactive programs. We then complement A into a
two-way alternating co-Büchi automaton that accepts all program trees that satisfy
the given specification. This automaton and Areactive can then with a exponential
blowup be transformed into equivalent non-deterministic tree automata. This transfor-
mation is based on the two-way alternating tree automata to non-deterministic tree
automata conversion for infinite trees introduced in [10]. The intersection of the three
non-deterministic tree automata then accepts reactive programs that do satisfy the
specification. The following theorem captures the correctness and complexity of the
construction.

Theorem 4.1 ([8])
Let B be a finite set of Boolean variables, and let NI , NO ∈ N. Let Aspec be a non-
deterministic Büchi automaton over the alphabet {0, 1}NI+NO . Then we can construct
a non-deterministic tree automaton, that precisely accepts the trees corresponding to
reactive programs over B and with input/output type (NI , NO) that on all executions
generate input/output sequences that are not in L(A). Furthermore, this tree automaton
can be constructed to be of size O(exp(|Aspec|, exp(B))).
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Chapter 5

Bounded Synthesis of Reactive
Programs

5.1 Automata Construction

In this section, we construct a two-way non-deterministic Büchi tree automaton B that
is equivalent to A by reconstructing the evaluation of boolean expressions and therefore
remove all universal choices. We construct B without a blowup in the state space, i.e., the
size of B is linearly in A. We then complement B into a two-way universal co-Büchi tree
automaton to match the requirements for the introduced bounded synthesis approach.

5.1.1 Two-way Universal Co-Büchi Tree Automaton

The two-way alternating Büchi tree automaton A uses universal choices only in relation
to boolean expression evaluation. For example for if, while and assignb-statements
a boolean evaluation is needed. In this cases we non-deterministically guess whether
the expression evaluates to 0 or 1 and then universally send one copy into the boolean
expression, that evaluates to true iff the expression evaluates to the expected value,
and one copy to continue the corresponding normal execution.

The copy evaluating the boolean expression walks only downwards and since the subtree
corresponding to the boolean expression is finite, this copy terminates to either true
or false after finitely many steps. We use this property to reconstruct the boolean
evaluation process, such that instead of universally checking whether a boolean expression
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and a normal execution are accepting, we first deterministically evaluate the boolean
expression (note this is done in finitely many steps) and then either continue with the
normal execution or reject, if the boolean evaluation yielded the expected result or not.

The only other occurrence of an universal choice is within the boolean evaluation
itself, but since we reconstruct this process such that boolean expressions are evaluated
deterministically, those choices will be removed.

Our automaton B with the set of states

PBexec′ = Q× I × {inp, out}

Pexec = S ×Q× I × {inp, out} ×Bool

PBexpr = S ×Bool × {>,⊥} × PBexec′

PB = PBexpr ∪ Pexec

and initial state pB0 = (s0, q0, i0, inp, 0), is defined with the following transitions, where
s ∈ S, v ∈ Bool, q ∈ Q, i ∈ I, m ∈ {inp, out}, t ∈ {0, 1}, p ∈ PBexec′ and r ∈ {>,⊥}.
Note that transitions different from the ones defined forA are highlighted by a “ ”-bullet
point.

• Transitions to evaluate Boolean expressions:

δB∅ ((s, 1,⊥, p), tt, D) = ((s, 1,>, p), U)
δB∅ ((s, 0,⊥, p), tt, D) = ((s, 0,⊥, p), U)

δB∅ ((s, 1,⊥, p),ff, D) = ((s, 1,⊥, p), U)
δB∅ ((s, 0,⊥, p),ff, D) = ((s, 0,>, p), U)

δB∅ ((s, v,⊥, p), b,D) =

((s, v,>, p), U) , if s[b] = v

((s, v,⊥, p), U) , otherwise

δBLR((s, v,⊥, p),∨, D) = ((s, v,⊥, p), L)

δBLR((s, 1,>, p),∨, L) = ((s, 1,>, p), U)
δBLR((s, 1,⊥, p),∨, L) = ((s, 1,⊥, p), R)

δBLR((s, 0,>, p),∨, L) = ((s, 0,⊥, p), R)
δBLR((s, 0,⊥, p),∨, L) = ((s, 0,⊥, p), U)

δBLR((s, v, r, p),∨, R) = ((s, v, r, p), U)
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δBL((s, v, r, p),¬, D) = ((s, 1− v, r, p), L)
δBL((s, v, r, p),¬, L) = ((s, 1− v, r, p), U)

• Transitions to evaluate non I/O statements:

δB∅ ((s, q, i,m, t), skip, D) = ((s, q, i,m, 0), U)

δBL((s, q, i,m, t), assignb, D) =
((s, 0,⊥, (q, i,m)), L) ∨ ((s, 1,⊥, (q, i,m)), L)

δBL((s, v,>, (q, i,m)), assignb, L)
= δBL((s, v,>, (q, i,m)), assignb, L)
= ((s[b/v], q, i,m, 0), U)

δBLR((s, q, i,m, t), if, D) =
((s, 1,⊥, (q, i,m)), L) ∨ ((s, 0,⊥, (q, i,m)), L)

δBLR((s, 1,>, (q, i,m)), if, L) = ((s, q, i,m, 0), RL)
δBLR((s, 0,>, (q, i,m)), if, L) = ((s, q, i,m, 0), RR)

δBLR((s, q, i,m, t),while, D)
= δBLR((s, q, i,m, t),while, R)
= ((s, 1,⊥, (q, i,m)), L) ∨ ((s, 0,⊥, (q, i,m)), L)
δBLR((s, 1,>, (q, i,m)),while, L) = ((s, q, i,m, 0), R)
δBLR((s, 0,>, (q, i,m)),while, L) = ((s, q, i,m, 0), U)

• Transitions to evaluate input and output:

– δB∅ ((s, q, i, inp, t), input ~b,D) =∨
valuations val over ~b((s[~b/val], q, val, out, 0), U)

– δB∅ ((s, q, i, out, t),output ~b,D) = ∨
q′∈δspec(q,~i,s[~b])((s, q′, i, inp, 1), U)

• Transitions to move to next statement in program:

– δBLR((s, q, i,m, t), ;, D) = ((s, q, i,m, t), L)
δBLR((s, q, i,m, t), ;, L) = ((s, q, i,m, t), R)
δBLR((s, q, i,m, t), ;, R) = ((s, q, i,m, t), U)

– δBLR((s, q, i,m, t), then, L)
= δBLR((s, q, i,m, t), then, R)
= ((s, q, i,m, t), U)

– δBLR((s, q, i,m, t), if, R) = ((s, q, i,m, t), U)
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All other transitions evaluate to false.

The set of accepting states is defined as

FB =
{

(s, q, i,m, 1) | q ∈ Fspec
}

Note that B behaves similar to A during normal execution and that only boolean
evaluation was altered. Therefore, the state spaces of the automata only differ in the
states corresponding to boolean evaluation. Additionally, the set of accepting states FA

and FB are equivalent.

Equivalence of A and B

In this section we prove that A and B accept the exact same program trees. We do so
by showing first that B evaluates boolean expressions to the same result as A but that
instead of terminating with true or false a copy of the automaton reaches the state
where the boolean evaluation was started from and this copy contains information of
the correct result, that is > and ⊥ for true and false, respectively. We then use this to
show the equivalence of A and B.

Lemma 5.1
Given a program tree T with root t ∈ T that is a boolean expression. If and only if A in
current state (s, v) ∈ PAexpr send into t evaluates to true/false, that is it accepts/rejects
T , B with current state (s, v,⊥, p) ∈ PBexpr send into t walks over T and eventually
returns from t with the corresponding evaluation result contained in its state (s, v, r, p),
where r is >/⊥ if the evaluation result was true/false.

Proof. Let A, B be defined as above, T be a valid program tree, t ∈ T be the current
input node, that is the root of an boolean expression and p ∈ PBexec′ . Proof by structural
induction over boolean expressions.
Base-cases: For τ(t) :

• tt :

– δA∅
(
(s, 1), tt, D

)
= true

δB∅
(
(s, 1,⊥, p), tt, D

)
= ((s, 1,>, p), U)X
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– δA∅
(
(s, 0), tt, D

)
= false

δB∅
(
(s, 0,⊥, p), tt, D

)
= ((s, 0,⊥, p), U)X

• ff :

– δA∅
(
(s, 1),ff, D

)
= false

δB∅
(
(s, 1,⊥, p),ff, D

)
= ((s, 1,⊥, p), U)X

– δA∅
(
(s, 0),ff, D

)
= true

δB∅
(
(s, 0,⊥, p),ff, D

)
= ((s, 0,>, p), U)X

• b :

δA∅ ((s, v), b,D) =

true , if s[b] = v

false , otherwise

δB∅ ((s, v,⊥, p), b,D) =

((s, v,>, p), U)X , if s[b] = v

((s, v,⊥, p), U)X , otherwise

Inductive-step: For τ(t) =

• ¬ :
δAL ((s, v),¬, D) = ((s, 1− v), L)
By induction δBL((s, v,⊥, p),¬, D) = ((s, 1 − v, r, p), L) eventually returns with
(s, 1− v, r, p) where r is >/⊥ if ((s, 1− v), L) evaluates to true/false, respectively.
δBL((s, 1− v, r, p),¬, L) = ((s, v, r, p), U)X

• ∨ :

– δALR((s, 1),∨, D) = ((s, 1), L) ∨ ((s, 1), R) evaluates to either

∗ true meaning ((s, 1), L) or ((s, 1), R) evaluated to true.

· For ((s,1),L) evaluating to true by induction we have δBLR((s, 1,⊥, p),∨, D) =
((s, 1,⊥, p), L) eventually returning with (s, 1,>, p) from the left subtree and
by definition δBLR((s, 1,>, p),∨, L) = ((s, 1,>, p), U).X

· For ((s,1),L) evaluating to false by induction we have (s, 1,⊥, p) eventu-
ally returning from the left subtree and therefore δBLR((s, 1,⊥, p),∨, L) =
((s, 1,⊥, p), R). With ((s,1),R) being true we have by induction (s, 1,>, p)
returning from the right subtree and therefore δBLR((s, 1,>, p),∨, R) =
((s, 1,>, p), U) by definition.X
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∗ or false meaning both ((s, 1), L) and ((s, 1), R) evaluated to false. By in-
duction we have (s, 1,⊥, p) eventually returning from the left subtree and
therefor δBLR((s, 1,⊥, p),∨, L) = ((s, 1,⊥, p), R). With induction on ((s, 1), R)
we have (s, 1,⊥, p) returning from the right subtree and by definition follows
δBLR((s, v,⊥, p),∨, R) = ((s, v,⊥, p), U).X

– δALR((s, 0),∨, D) = ((s, 0), L) ∧ ((s, 0), R) evaluates to either

∗ true meaning both ((s, 0), L) and ((s, 0), R) evaluating to true. By induc-
tion on ((s, 0), L) we have δBLR((s, 0,⊥, p),∨, D) = ((s, 0,⊥, p), L) eventu-
ally returning with (s, 0,>, p) from the left subtree. By definition we have
δBLR((s, 0,>, p),∨, L) = ((s, 0,⊥, p), R) that by induction on ((s, 0), R) even-
tually returns with (s, 0,>, p) from the right subtree and by definition
δBLR((s, 0,>, p),∨, R) = ((s, 0,>, p), U).X

∗ or false meaning either ((s, 0), L) or ((s, 0), R) evaluating to false.

· For ((s, 0), L) evaluating to false. By induction on ((s, 0), L) we have
δBLR((s, 0,⊥, p),∨, D) = ((s, 0,⊥, p), L) eventually returning with (s, 0,⊥, p)
from the left subtree and therefore by definition δBLR((s, 0,⊥, p),∨, L) =
((s, 0,⊥, p), U).X

· For ((s, 0), L) and ((s, 0), R) evaluating to true and false, respectively.
By induction on ((s, 0), L) we have δBLR((s, 0,⊥, p),∨, D) = ((s, 0,⊥, p), L)
eventually returning with (s, 0,>, p) from the left subtree and therefore
δBLR((s, 0,>, p),∨, L) = ((s, 0,⊥, p), R) by induction on ((s, 0), R) even-
tually returning with (s, 0,⊥, p) from the right subtree. By definition
δBLR((s, 0,⊥, p),∨, R) = ((s, 0,⊥, p), U).X

�

We now proof that besides boolean expressions both automata traverse program trees
in the same way, more precisely, they traverse the same states of Pexec and since the
accepting states FA = FB ⊂ Pexec they accept the same trees.

Theorem 5.2
L(A) = L(B).

Proof. ”⇒ ” :
Let T ∈ L(A) be a program tree with accepting run tree RA = 〈RA, τA〉. The initial
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state p0 of A is a normal execution state (p0 ∈ Pexec). The transitions of A are defined
such that whenever A is in a normal execution state p ∈ Pexec exactly one successor is
again a normal execution state p′ ∈ Pexec. There can be an additional successor state
that is used to evaluate a boolean expression but those subtrees of the accepting run
graph are finite and terminate to true on every path. Therefore there only exists a
single infinite path

r0r1 . . . = (t0, p0, d0)(t1, p1, d1) . . . ∈
(
T × Pexec × {L,R,D}

)ω
in the accepting run tree RA that satisfies the Büchi acceptance condition.

We show that B visits the same states p0p1 . . . ∈ P ω
exec in the same order while traversing

T , that is whenever A is in state pi ∈ Pexec reading a node ti ∈ T moving to node ti+1

and state pi+1, B in state pi reading node ti eventually moves to node ti+1 with state
pi+1. We show this with a case analysis over possible inputs τA(ti):

• assignb: In this case ri has two children ri+1 and (t′, p′, L) with p′ = (s, v) ∈ PAexpr.
Since the run tree is accepting, the boolean evaluation evaluates to true. For B
we choose ((s, v,⊥, (q, i,m)), L) as valid move. With Lemma 5.1 we know that B
traverses the boolean expression subtree and returns with state (s, v,>, (q, i,m))
to ti. The only valid transition for B now is ((s[b/v], q, i,m, 0), U), that is a move
to ti+1 with state pi+1.X

• if: In this case ri has two children ri+1 and (t′, p′, d′) with p′ = (s, v) ∈ PAexpr.
Since the run tree is accepting, the boolean evaluation evaluates to true. For B
we choose ((s, v,⊥, (q, i,m)), L) as valid move. With Lemma 5.1 we know that B
traverses the boolean expression subtree and returns with state (s, v,>, (q, i,m))
to ti. Depending on v having the value 0 or 1 the only valid transition for
B is either ((s, q, i,m, 0), RR) or ((s, q, i,m, 0), RL), respectively. Either way it
matches the move of A and therefore is a move to ti+1 with state pi+1.X

• while: In this case ri has two children ri+1 and (t′, p′, d′) with p′ = (s, v) ∈ PAexpr.
Since the run tree is accepting, the boolean evaluation evaluates to true. For B
we choose ((s, v,⊥, (q, i,m)), L) as valid move. With Lemma 5.1 we know that B
traverses the boolean expression subtree and returns with state (s, v,>, (q, i,m))
to ti. Depending on v having the value 0 or 1 the only valid transition for B is
either ((s, q, i,m, 0), U) or ((s, q, i,m, 0), R), respectively. Either way it matches
the move of A and therefore is a move to ti+1 with state pi+1.X
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All other valid transitions are equally defined such that B can make the same choices.

Since B visits for every accepted run tree the same normal execution states equally
often and the set of accepting states for A and B are equivalent and a subset of normal
execution states B accepts the same program trees as A.

”⇐ ” :
Let T ∈ L(B) be a program tree with accepting run tree RB = 〈RB, τB〉. The initial
state p0 of B is a normal execution state (p0 ∈ Pexec). Since B has no universal choices
the run tree is 1-ary, that is a single infinite path

r0r1 . . . = (t0, p0, d0)(t1, p1, d1) . . . ∈
(
T × PB × {L,R,D}

)ω
The infinite sequence of states p0p1 . . . hits the set of accepting states FB infinitely often
and is structured as follows:

• p0 ∈ Pexec

• ∀i : pi ∈ Pexec → pi+1 ∈ Pexec∨
(
∃j : pi+1pi+2 . . . pi+j ∈ (PBexpr)∗∧pi+j+1 ∈ Pexec

)
Which means the sequence of states starts with a normal execution state and contains
infinitely many.

We show that A can visit the same normal execution states as B, more precisely: Let
B be in state pi ∈ Pexec reading a node ti ∈ T . If B moves to node ti+1 with state
pi+1 ∈ Pexec, then A can also perform a valid move from ti with state pi to ti+1 with
state pi+1.
If B moves to a state pi+1 ∈ PBexpr and traverses the boolean expression subtree and
therefore visits the states pi+2pi+3 . . . pi+j−1 ∈ (PBexpr)∗ until it returns to node ti(= ti+j)
with state pi+j ∈ PBexpr and subsequently moves to node ti+j+1 with state pi+j+1 ∈ Pexec,
then A can also perform a valid move from ti with state pi to node ti+j+1 with state
pi+j+1.

In the first case, where B moves from normal execution state to another normal
execution state A can always do the same move since those transitions are equally
defined. We show the second case with a case analysis over the possible labels τB(ti).
Let pi = (s, q, i,m, t) ∈ Pexec, ti ∈ T , pi+1 = (s, v,⊥, (q, i,m)) ∈ PBexpr and pi+j =
(s, v,>, (q, i,m)) (since the run tree is valid the boolean evaluation has to be successful).

• assignb: In this case B moves from pi+j to (s[b/v], q, i,m, 0). Depending on v, A
moves from ti with state pi into ti+j+1 with state (s[b/v], q, i,m, 0) and into ti+1
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with state (s, v). The second copy send into the boolean expression terminates
to true based on Lemma 5.1.X

• if and while: A moves from ti with state pi into ti+j+1 with state pi+j+1 and
depending on v also into ti+1 with state (s, v). Again with Lemma 5.1 the second
copy send into the boolean expression terminates to true.X

Since A visits the same normal execution states as B in the same order and the set of
accepting states are equivalent and is a subset of normal execution states, A fulfills the
Büchi acceptance condition. �

We now complement the constructed two-way non-deterministic Büchi automaton to a
two-way universal co-Büchi automaton. For the rest of this thesis we refer with B to
the two-way universal co-Büchi automaton.

Since A accepts precisely the programs that fail the specification and interact infinitely
often with the environment, the complement now only accepts programs that do satisfy
the specification or interact only finitely often with the environment. How our approach
guarantees reactiveness is introduced in Section 5.1.3. First we guarantee that all
programs are syntactically correct.

5.1.2 Guarantee Syntactically Correctness

Apgm as introduced in Section 4.3 is a non-deterministic tree automaton that checks for
correct syntax. One can construct Apgm as a two-way universal co-Büchi automaton
Bpgm, that universally checks each branch by walking down on the tree and terminating
at the leaves.

We define Bpgm = (ΣP , {STMT,EXPR,THEN}, STMT, δL, δR, δLR, δ∅,CO-BÜCHI(∅)),
where the transition function is defined by:

• δLR(STMT, ;, D) = (STMT, L) ∧ (STMT, R)

• δLR(STMT, if, D) = (EXPR, L) ∧ (THEN, R)

• δLR(THEN, then, D) = (STMT, L) ∧ (STMT, R)

• δLR(STMT,while, D) = (EXPR, L) ∧ (STMT, R)

• δL(STMT, assignb, D) = (EXPR, L)
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• δ∅(STMT, skip, D)
= δ∅(STMT, input ~b,D)
= δ∅(STMT,output ~b,D) = true

• δLR(EXPR,∨, D) = (EXPR, L) ∧ (EXPR, R)

• δL(EXPR,¬, D) = (EXPR, L)

• δ∅(EXPR, tt, D)
= δ∅(EXPR,ff, D)
= δ∅(EXPR, b,D) = true

Note that B can be easily intersected with Bpgm due to the universal branching mode,
that is one can simulate both automata simultaneously simply by sending one copy into
the corresponding Bpgm-states from the initial state of B.

Due to the fact that B was designed to correctly simulate programs of our defined
syntax and transitions were only defined for syntax-valid statements, B implicitly rejects
programs that are syntactically invalid. But such programs are only then rejected when
their syntactically incorrect statements are traversed in the simulation, therefore B does
not check for syntactically correct subtrees of our program tree that are unreachable.
It is now arguable whether the intersection with Bpgm is necessary in practice. One
could expect programs to be syntactically correct in total and this expectation is in
general well-argued. On the other hand, we do perform bounded synthesis, i.e., we
search for implementations with a bound on the implementation size and then increment
this bound until a valid implementation is found. It is easy to see that programs with
unreachable parts can be represented by smaller programs with the same behavior
simply by removing unreachable statements. Therefore, with an incremental search one
first finds the smallest and thus syntactically correct program. Therefor, we continue
with B not intersected with Bpgm.

5.1.3 Guarantee Reactiveness

It now remains to guarantee reactiveness of the programs accepted by B. We introduce
Breactive, that is a two-way universal Büchi automaton that only accepts program trees
that are reactive. This automaton is designed with the exact same states and transitions
as B only with another acceptance condition. The intersection of B and Breactive then
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yields a two-way universal Streett automaton we use to build our constraint system for
bounded synthesis.

We construct a two-way universal Büchi automaton Breactive based on B that accepts
reactive program trees. Formally, Breactive = (ΣP , P

B, δBL, δ
B
R, δ

B
LR, δ

B
∅ ,BÜCHI(FBreactive))

is a tuple that only differs from B in the acceptance condition. The set of accepting
states is defined as:

FBreactive =
{

(s, q, i,m, 1) | ∀s, q, i,m
}

So Breactive informally accepts a program tree if it produces infinitely many outputs on
all possible executions. Due to the alternation between input and output statements
the program reacts infinitely often with its environment, i.e., it is reactive.

We now intersect B and Breactive into a two-way universal Streett automaton B′. Formally,
B′ = (ΣP , P

B, δBL, δ
B
R, δ

B
LR, δ

B
∅ , STREETT(FB′)), where

FB
′ =

{
(FB, ∅), (PB, FBreactive)

}

Theorem 5.3
L(B′) = L(B) ∩ L(Breactive)

Proof. ” ⇒ ” : Let T ∈ L(B′) be an arbitrary program tree. Let π be an arbitrary
infinite path in the run tree of B′ and T . Since B′, Breactive and B have the same states
and transitions the path π also exists in the run tree of B and T and in the run tree of
Breactive and T . Then for every tuple (A,G) ∈ FB′ either A is hit finitely often or G is
hit infinitely often. For (FB, ∅) ∈ FB′ it holds that ∅ cannot be hit. Then FB is only
hit finitely often and therefore T ∈ L(B). For (PB, FBreactive) ∈ FB

′ it holds that PB is
hit infinitely often since π is infinite. Then FBreactive is hit infinitely often and therefore
T ∈ L(Breactive).

”⇐ ” : Let T ∈ L(B)∩L(Breactive) be an arbitrary program tree. Let π be an arbitrary
infinite path in the run tree of B and T or Breactive and T . Since the states and transitions
are the same the path also exists in the respective other run tree. Since B′, Breactive and
B have the same states and transitions the path π also exists in the run tree of B′ and
T . Since T ∈ L(B) the path π visits FB only finitely often. Therefore, (FB, ∅) ∈ FB′

is satisfied. Since T ∈ L(Breactive) the path π visits FBreactive infinitely often. Therefore,
(PB, FBreactive) ∈ FB

′ is satisfied. �
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5.2 Bounded Synthesis

We now can by means of the encoding ΦB′
S introduced in Section 3.3 synthesize program

trees accepted by B′, i.e., precisely program trees that correspond to reactive programs
that satisfy the given specification.

Theorem 5.4
Let B be a finite set of Boolean variables and let NI , NO ∈ N. For a specification
given as an LTL formula ϕ over the alphabet {0, 1}NI+NO , we can construct a two-way
universal Streett automaton B′ that precisely accepts the trees corresponding to reactive
programs over B and with input/output type (NI , NO) that on all executions generate
I/O sequences that are accepted by the specification automaton.

Furthermore we construct a SAT encoding ΦB′
S that is satisfiable for a given bound c ∈ N,

iff there exists a program tree T with size |T | ≤ bc/|B′|c accepted by B′.

Size of construction

Note that the number of boolean variables |B| dominates NI and NO. The automaton
can be constructed of size O(2|B|+|ϕ|), i.e., for a fixed set of boolean variables the
automaton is linear in the size of the specification automaton, that is exponential in
the size of the specification formula as discussed in Section 2.3.1. The constructed
constraint system ΦB′

S is of size O(|T | · |δ| · |ΣP |) with x many variables, where x ∈
O(|T | ·(|T |+ |ΣP |+ |Q| ·log(|Q| · |T |))). Note that |ΣP | ∈ O(|B|NI+NO) grows polynomial
in the number of variables for fixed input/output arities.
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Chapter 6

Conclusion and Further Work

We introduced a generalized approach to bounded synthesis that is applicable whenever
all possible runs of an universal automaton on the possibly produced input/output
words of an input-deterministic implementation can be expressed by a run graph.
The acceptance of an implementation by an automaton can then be expressed by the
existence of valid annotation functions for an annotation comparison relation that
expresses the acceptance of the automaton for Büchi, co-Büchi and Streett acceptance
conditions. The existence of valid annotation functions for a run graph can then be
encoded as a SAT query that is satisfiable if and only if there exists an implementation
satisfying a given size bound that is accepted by the automaton.

We constructed for a specification given as an LTL-formula a two-way universal Streett
automaton that accepts reactive programs that satisfy the given specification. We then
constructed a run graph thats represents all possible runs and applied the generalized
bounded synthesis approach. On these grounds we could construct a SAT query that
guesses a reactive program of bounded size as well as valid annotation functions that
witness the correctness of the synthesized program.

Program Repair

The presented approach is also applicable to program repair. When for example a hole
in a program needs to be filled such that the overall program fulfills a given specification,
one fixes the already provided program in the constraint system while the remaining
subtree can then be synthesized by solving the constraint system. Previous approaches
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like game based solutions were introduced in [4, 5], but our approach improves in terms
of simplicity.

Variable Bound

While fixing the set of variables for our reactive programs we implicitly introduced a
bound on the amount of used variables. Intuitively, this bound on the variables correlates
with the size of the synthesized program. For example could repeated calculations
be replaced by a single calculation and then whenever needed only the variable is
accessed instead of a recalculation. On the other hand, our constructed automaton
grows exponential in the amount of variables as well as the to be solved constraint
system. The determination of an appropriate amount of variables that justifies this
trade-of between runtime and probably smaller and structurally simpler programs is
left open as further work.

Bound on Output-Distance

To ensure reactiveness we introduced a two-way universal Büchi tree automata Breactive
that accepts reactive programs and intersected this automata with the constructed
two-way universal co-Büchi tree automata B, that accepts programs that satisfy the
specification. The resulting automata then was an intersection of these two automata,
i.e., a two-way universal Streett tree automata.

Instead of the introduction of Breactive one could also bound the maximal distance
between two output statements in the run graph. Since the program alternates between
input and output statements and after every output statement another output statement
needs to be traversed in finitely many steps, this bound would ensure reactiveness of
the implementation. Intuitively, this resembles the Büchi condition of Breactive, that also
requires only finitely many steps between two output statements. However, instead of
intersecting the two automata into an automaton with Streett acceptance, we keep the
Büchi and co-Büchi acceptance conditions and introduce two independently bounded
annotation functions to express the acceptance conditions, respectively. This bound
then correlates with the worst-case response-time of the implementation measured
in evaluation steps in the corresponding program tree and represents an additional
output-sensitive property that can be ensured with bounded synthesis.
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