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Abstract

Simulations of cyber-physical systems are used to avoid cost-intensive physical exper-
iments. Even though the overall structure of the system might be well-studied, the
exact dynamics can depend on undetermined parameters. Thus, modeling the system
manually leads to additional expenses. Instead, the dynamics can be learned from
existing trajectories.

Learning and predicting the highly non-linear dynamics of the full system, however,
requires an expressive model such as recurrent neural networks and large amounts of
training data. Expert knowledge of the system should be incorporated into the learning
process to improve the learning rate and the quality of the model. Even though neural
networks are in general considered to be black-box systems, feature preprocessing
provides a convenient way to introduce additional knowledge into the learned model.
We study the use of runtime monitoring specifications to calculate such features.

In this thesis, we aim to model cyber-physical systems with recurrent neural net-
works. We study the integration of RTLola specifications as a means to introduce expert
knowledge into the model and aid the learning process. We evaluate our approach on a
trajectory prediction task for quadcopters.
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Chapter 1
Introduction

In domains like reinforcement learning, controllers of cyber-physical systems are trained
to achieve a goal while avoiding critical failures. Even though the controller improves
during learning, the training process is started with an arbitrarily bad controller. During
these first training phases the controller randomly explores the environment in an
trial-and-error manner, thereby gradually learning which actions yield good results
and which bad results. Such training processes come with various failures and crashes
until a sufficiently good controller is learned. Thus, training on real hardware involves
high hardware costs. To avoid these cost-intensive physical experiments, simulations of
cyber-physical systems can be used. Instead of repairing the physical object, failures
can be recovered simply by restarting the simulation. Constructing good simulations,
however, is a hard task. To simulate a dynamic system, the correspondence between
control inputs and behavior of the system needs to be studied. This includes the
system’s reaction to the control inputs and the following physical behavior. Even
though the overall structure of a system is known, the exact dynamics can additionally
depend on undetermined parameters. For example, quadcopters come in various shapes
and forms. Their dynamics are well-studied in general, but each drone depends on
distinct constants. These have to be determined in physical experiments, thus leading to
additional expenses whenever the system changes even slightly.

Instead of studying the dynamics manually, they can be learned from existing tra-
jectories [1, 2, 3, 4]. The required trajectories can be produced in an safe environment,
e.g., when a quadcopter is being controlled by an professional pilot. Thus, the control
inputs and system behavior can be recorded without the system crashing. These trajec-
tories can then be used to infer the dynamics of the system with machine learning, e.g.,
training a neural network to predict the systems behavior based on the control inputs.
We are interested in simulating the system over multiple time steps, referred to as
multi-step trajectory prediction. Learning the system dynamics over multiple time steps
requires expressive models such as recurrent neural networks. To improve the learning
process and the quality of the predictions, expert knowledge can be incorporated into
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1. Introduction

the learning process [5]. For example, when a quadcopter has a sensor to measure
acceleration, the velocity of the quadcopter can be computed by integrating over the
sensor value. This connection between acceleration and velocity is known and easy to
compute. However, for a neural network it can be easier to use a precomputed velocity
value instead of figuring out the connection between the sensor value and the dynamic
behavior by itself. Due to neural networks being considered as black-box systems, it is
hard to add information into the system. However, feature preprocessing provides a
convenient way to introduce additional knowledge to the learning model. We propose
the use of runtime monitoring specifications to calculate such features.

Runtime monitoring tools like RTLola [6] are used to supervise cyber-physical systems.
Observing the system’s behavior over time, the behavior is checked against a specification
that ensures correct and safe behavior. The specification language in the case of RTLola
is stream-based. Thus, the inputs are streams of data and specifications can express
mathematical operations on stream values as well as aggregations over time. The
specification language is powerful enough to express the calculation of useful features
that can be used during training. Another advantage is the possible use in settings were
RTLola specifications are already used. In that case, existing specifications can simply
be reused for the training and might already hold valuable information for the network
without further effort.

In this thesis, we model a cyber-physical system with recurrent neural networks. We
integrate RTLola specifications as a means to introduce expert knowledge into the model
and aid the learning process. We evaluate our approach on a trajectory prediction task
for quadcopters.

Related Work Recurrent neural networks have been shown to be effective for multi-
step prediction problems [7]. In general, multi-step predictions are hard because of the
iterative predictions. Reusing erroneous predictions as a basis for successive predictions
leads to an accumulating error over time [8]. The problem of modelling dynamic
systems based on observed input/output pairs is also referred to as non-linear system
identification [1]. Multiple architectures, including recurrent neural networks, have been
proposed for the modelling task [2, 3, 4].

In addition to using neural networks to approximate a dynamic system, we aim to
introduce additional knowledge into the system. Hybrid models (or Gray-Box mod-
els) [5, 9] inspire this idea as they embed computations specific to the training task
into the network. In their work, quadcopter dynamics are integrated into the network
directly. Note that our approach works similarly, but instead of integrating a fixed set of
dynamics, we integrate a computation unit for features based on a specification. The
specification can be changed without touching the model, and thus, our approach is
more adaptable. Another difference comes from the fact that computation of gradients
is inherent to neural network training. Thus, the computations that can be used inside
of a network are limited to differentiable operations. Since we integrate RTLola as a
preprocessing component, no gradients need to be computed for the additional input
and the computation is free from limitations such as differentiability.
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Chapter 2
Preliminaries

In this chapter, we introduce the background knowledge about the neural networks
architectures used in this thesis and their successful training.

The length or norm of a vector x = (x0,x1, . . . ,xn−1) ∈ Rn is defined as |x| =
√∑n−1

i=0 x
2
i .

We notate the dimension of a vector x ∈ Rn as dim(x) = n. Concatenation of two vectors
x ∈ Rn and y ∈ Rm is defined as x⊕ y = [x,y] = (x0,x1, . . . ,xn−1, y0, y1, . . . , yn−1) ∈ Rn+m.

2.1. Neural Networks

Neural networks are structured computational units that are used to approximate
arbitrary functions. The functions we want to approximate are in general unknown and
only some samples are available. This samples are input-output pairs that correspond
to the functions evaluation on a given input. The samples are referred to as training
data. This data is used to fit the networks computation to match the unknown function.
The networks computation depends on internal trainable weights. Training refers to
the process of adjusting the trainable weights of the network such that the unknown
function is approximated.

For example, a classic problem where neural networks are used is image classification.
That is to predict the label of a given image, i.e., what is depicted on the image. The
training data is a huge collection of pictures and the corresponding labels, e.g, pictures
of dogs with the corresponding dog race as the label. The correct function to map images
to labels is unknown, but a neural network is trained to approximate this function.

In this section, we formally introduce neural networks and explain the training
process.

In the machine learning setting [10], a neuron refers to an operational unit that
computes an weighted sum over its inputs x ∈ Rn. The sum is then passed into an
activation function to make the computation more expressive. Activation functions refer
to non-linear step-functions as depicted in Figure 2.1. For neural networks, the three
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2. Preliminaries
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Figure 2.1.: The three activation functions mainly used in neural networks.

typically used activation functions are

σ (x) =
1

1 + e−x

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x

ReLU(x) =max(0,x) .

All of the functions are differentiable with a non-zero gradient. This will later play a
key-role in training the neurons to approximate arbitrary functions. Note that ReLU
technically has no gradient at x = 0, but in practice the gradient is simply fixed to be 0.
Let w ∈ Rn be the weights for each input and b ∈ R, the function computed by a single
neuron is

σ
(
x>w+ b

)
.

We refer to w and b as trainable weights.
A neural network is an expressive computational model consisting of layer-wise ar-

ranged neurons. The output of each layer, i.e., the output of each neuron in the layer,
makes up the input to each neuron of the next layer. Layer-wise arranged neurons with
individually simplistic behavior add up computational power and are able to compute
complex functions. The goal is to adjust the trainable weights inside the neurons to
approximate arbitrary functions. Note that without the activation functions, that in-
troduce non-linearity into the individual units, the network would simply compute a
polynomial.

We use neural networks to approximate a (possibly unknown) function merely based
on samples from the original function. The difference between the network and the
target function is measured with a loss function L. A common loss function is the squared
error (SE)

LSE(p, p̂) = (p − p̂)>(p − p̂) ,

where p ∈ Rn is the output of the approximated function and p̂ ∈ Rn is the network
prediction. Training refers to finding weights w such that the function computed by
the network fw matches the unknown target function on all samples. The available
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2.1. Neural Networks

samples are referred to as training data and consist of tuples (c0,p0), (c1,p1), . . . , (cd ,pd),
where c ∈ Rdimin is the input data and p ∈ Rdimout is the prediction or output of the target
function. Training is inherently an optimization problem with the goal to minimize the
average loss over all possible training weights w

min
w

1
d

d∑
i=0

LSE
(
pi , p̂i

)

⇔min
w

1
d

d∑
i=0

LSE
(
pi , fw(ci)

)
.

2.1.1. Training

Since neural networks have lots of parameters, determination of the perfect weights to
approximate a target function is computationally infeasible. Instead, one adjusts the
weights in an iterative process to minimize the loss function. As mentioned earlier, the
function computed by a neural network is differentiable. Thus, we can use gradient
descent to follow the local gradient of the current weights to decrease the loss func-
tion L. Gradient descent is an optimization algorithm based on an iteratively applied
optimization step

wt+1 = wt −α
∂L
∂w

∣∣∣
wt

where α ∈ R is the step-size. If w is a vector in Rn, we use the gradient ∇wL instead
of partial derivatives ∂L

∂w . Intuitively, the gradient is the local information about the
direction in which the function decreases. The weights are adjusted in accordance to the
gradient, and thus, the function is minimized. To compute the gradients with respect to
the current weights, we use a technique called backpropagation. Instead of deriving the
gradients for each weight by hand, the process can be automated when the derivation of
each operation is known. The gradient of a function can then be computed step-wise by
utilizing the chain rule

∂z
∂x

=
∂z
∂y

∂y

∂x
.

Example: Training Step

Consider the function fw(x) = x ·w1 +w2, where w ∈ R2 is a weight vector parameterizing
the function. Similar to the weights of a neural network, we want to learn the weights
w to approximate another function. For this example, we want to approximate an
unknown function g with one available sample. The available data is the sample (2,5)
which corresponds to the function evaluating to y = 5 on the input x = 2.

We start the training process with randomly initialized weights w = (1,2). The loss
function we aim to minimize is the squared error L(y, ŷ) = (y − ŷ)2. During the so called
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2. Preliminaries

forward pass, we compute the intermediate steps and memorize the intermediate results
of each operation.

L(y, ŷ) = L(y,fw(x)) =
(
5− (

o∗︷︸︸︷
2·1 +2︸    ︷︷    ︸

o+

)
)2

=
( o−︷︸︸︷

5− 4
)2︸    ︷︷    ︸

o2

= 1

Conveniently, the intermediate results can be identified by the operator, because each
operation occurs exactly once, e.g., o− = 5− o+. The results are o∗ = 2, o+ = 4, o− = 1 and
o2 = 1. Note that L = o2 since it is the last operation.

To minimize the loss function we are interested in the gradient ∇wL|w=(1,2). For this
example, we only compute the gradient for w1. The gradient computation is referred to
as backpropagation because we traverse the computational graph in opposite direction
to the forward pass. The gradients are only computed locally and put together with the
chain rule. Looking at the following equations, one sees that using the chain rule we can
compute the gradient stepwise by backpropagation through the computational graph.

∂L
∂w1

=
∂o2

∂w1

=
∂o2

∂o−

∂o−
∂w1

=
∂o2

∂o−

∂o−
∂o+

∂o+

∂w1

=
∂o2

∂o−

∂o−
∂o+

∂o+

∂o∗

∂o∗
∂w1

This way we only need to compute the derivatives locally.

∂o2

∂o−
=
∂(o2
−)

∂o−
= 2 ∗ o− = 2

∂o−
∂o+

=
∂(5− o+)
∂o+

= −o+ = −4

∂o+

∂o∗
=
∂(o∗ +w2)

∂o∗
= o∗ = 2

∂o∗
∂w1

=
∂(4 ·w1)
∂w1

= 4

Putting everything together, we have ∂L
∂w1

= 2·(−4) ·2 ·4 = −64. Repeating the same

computation for w2, we get ∂L
∂w2

= −16. Performing a gradient descent step with step size
α = 0.01, we get

w′1← w1 −α · (−64) = 1.64 w′2← w2 −α · (−16) = 2.16

and the updated function fw′ (2) = 5.44 is now closer to the approximated function. This
steps are repeated multiple times and make up the training process.
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2.1. Neural Networks

2.1.2. Sequence Loss

Loss functions measure the error of the network predictions, i.e., they compare the
prediction with the real data and compute the difference as a non-negative function.
In our trajectory prediction setting, we compute the loss over sequences. A sample
consists of an sequence of inputs C = (c0, c1, . . . , cn) and outputs P = (p0,p1, . . . ,pn), where
ct ∈ Rdimin and pt ∈ Rdimout are the inputs sampled in the t-th time step. The network is
fed one input ct at a time and tries to predict the corresponding output pt. We denote to
predictions of the network as P̂ = (p̂0, p̂1, . . . , p̂n).

We use the Sum-of-Squares-Error (SSE) to measure the error between predictions and
data. Let n ∈N be the sequence length and pt , p̂t ∈ Rdimout are sample data and prediction,
respectively. The loss is then defined as

LSSE(P , P̂ ) =
n∑
t=0

(pt − p̂t)>(pt − p̂t) .

We compute the averaged loss Lw over a set consisting of multiple sequences D =(
(C(0), P (0)), (C(1), P (1)), . . . , (C(d), P (d))

)
with respect to the current weights w as

Lw(D) =
1
d

d∑
i=0

LSSE
(
P (i), P̂ (i)

)

=
1
d

d∑
i=0

LSSE
(
P (i), fw(C(i))

)

=
1
d

d∑
i=0

n∑
t=0

(
p

(i)
t − fw(c(i)

t )
)>(

p
(i)
t − fw(c(i)

t )
)
.

2.1.3. Adam Optimizer

The introduced gradient descent algorithm is the underlying idea of many optimization
algorithms. In general, the optimization of the loss function is a hard problem and
among many optimization algorithms, there is no superior algorithm. In an empiri-
cal comparison [11], adaptive learning algorithms were shown to be less sensitive to
hyperparameters like the step-size and thus preferred.

Adam [12] is one optimizer in the class of adaptive learning algorithms. The algorithm
uses exponentially decaying averages of the gradient and squared gradient to adapt the
learning rate. The average over the gradients and squared gradients in each time step
are referred to as first moment estimate and second raw moment estimate , respectively.
Motivated by the physics of an rolling object, momentum refers to gradual changes to
the gradient instead of abrupt changes. Imagining the gradient descent algorithm as a
ball that rolls down on the function surface, momentum allows it to roll over flat local
minima instead of stopping immediately. We use the standard implementation of the
algorithm.
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2. Preliminaries

Gradient Clipping

In each training step, the gradients are computed and the weights are updated. When
optimizing complex functions like neural networks, the gradients can grow too big such
that the weights change too drastically and advancements during training are lost again.
This problem is in general referred to as exploding gradients. Gradient clipping [13] refers
to cutting of gradients before they are applied to the weights. In our case, we clip the
gradients element-wise to 1.0, such that

clip(x) =


1.0 if x > 1

−1.0 if x < −1

x otherwise.

2.1.4. Curriculum Learning

Curriculum learning [14] refers to learning strategies that split the learning task into
different complexities. It is inspired by the way humans study new problems. First, a
student starts by learning simple concepts of the problem and then moves on to more
difficult variations. For example, instead of learning a language by reading complex
texts, one starts with small sentences and simple grammatical concepts. The difficulty
of the content is then gradually increased until the student becomes able to understand
full texts and complex grammar.

The stochastic descent method described earlier is only able to find a local minimum
of a function. This is due to the search only considering local information instead of
global. Depending on the starting point of the search, the algorithm finds the next local
minimum. Mechanism like momentum in the Adam optimizer are used to pass over flat
local minimum. However, it can not be guaranteed to find the global minimum of a
function. Due to the neural network expressing high-dimensional functions, merely
a global minimum is reached. In this setting, curriculum learning can be seen as a
minimum search in a smoothened function. The idea also has a mathematical foundation
in optimization theory, namely continuation methods [15]. First, the smoothened function
is minimized and the trained weights saved. The chance of finding a global minimum in
a smoothened function is higher due to the absence of some of the local minima. When
increasing the complexity of the task, we build on the learned weights. Thus, the search
starts in a region of the function that is assumed to be close to the global minimum.

2.2. Recurrent Neural Networks

In sequence prediction tasks, not only the current input but also the information as a
whole is important. For example, when translating a sentence each word itself does not
hold much information. However, each word in context with the sentence read so far
holds meaning. Only in combination with the information about the whole sequence,
the meaning of a sentence can be inferred.

8



2.2. Recurrent Neural Networks

Recurrent Neural Networks (RNN) refer to neural networks that step-wise read se-
quences of data and keep information over multiple time steps. This is achieved with
recurrent connections that carry information over to the next time step. We explain the
architecture of two recurrent neural networks used in this thesis.

2.2.1. LSTM

Long Short-Term Memory (LSTM) [16] units were first studied in 1997. In this architecture,
the network not only learns the importance of the information for the current time step,
but also the temporal importance over multiple time steps. The decision about the data
that needs to be stored becomes part of the learning task and the information flow is
controlled by trainable weights. This is achieved by three different gates, namely forget,
input, and output gate. Additionally, an internal cell state is available and used to transfer
information to the following time steps. The gates are used to control the information
flow around the cell state and the output of the network.

Let ct and p̂t denote input and activation of the unit in the t-th time step, respectively.
Each gate depends on the current input ct and the units output of the last state p̂t−1.
The trainable weights are referred to as Wx and bx, where x ∈ {F ,I ,O,C} denotes the
corresponding gate or node. The three gates compute a σ function that produces values
in the range [0,1]. Thus, multiplication with a gate corresponds to keeping or loosing
information depending on the gate output being closer to 1 or 0, respectively. The forget
gate

Ft = σ (WF · [ct , p̂t−1] + bF )

controls the information that is to be forgotten from the cell state. It is multiplied with
the cell state to remove information. The input gate

It = σ (WI · [ct , p̂t−1] + bI )

controls the information that is about to enter the cell state. A candidate value for the
new cell state

Ct = tanh(WC · [ct , p̂t−1] + bC)

is multiplied with the input gate and the resulting vector is added to the cell state.
Overall, the cell state is directly affected by the forget and input gate

Ct = Ft ·Ct−1 + It ·Ct .

The output gate again computes a σ function to control the output of the unit

Ot = σ (WO · [ct , p̂t−1] + bO) .

Finally, the prediction of this unit is

p̂t = Ot · tanh(Ct) .

Note that LSTM naturally has a large amount of trainable weights, due to the amount of
different gates.

9



2. Preliminaries

2.2.2. GRU

Gated Recurrent Units (GRU) [17] are an simpler version of LSTM units. First of all, there
is no explicit cell state but its last output is reused. Furthermore, the forget and input
gate are merged into one component, thus, reducing the amount of trainable weights.
Again, we denote input and activation of the unit by ct and p̂t, respectively. The two
gates used in the GRU architecture are referred to as reset gate Rt and update gate Zt

Rt = σ (WR · [ct , p̂t−1])

Zt = σ (WZ · [ct , p̂t−1]) .

The reset gate is used to compute a new candidate activation p̄t

p̄t = tanh(Wh · [x,Rt · p̂t−1])

by controlling the influence of the last activation. The update gate is used to interpolate
between the last activation and candidate activation. Altogether, the activation is

p̂t = Zt · p̂t−1 + (1−Zt) · p̄t .

Note, that GRU units have significantly less trainable weights than LSTM units. There-
fore, they can be better suited when less training data is available. However, in general
LSTMs outperform GRU units.

In the literature, there are many other LSTM variations and their differences were
studied in [18]. In general, there are no significant improvements over the classic LSTM
architecture. We use the two presented architectures and compare their efficiency with
respect to the available amount of data.

2.2.3. Back-Propagation Through Time

Due to the recurrent connections of RNN units, classic backpropagation algorithms can
not be directly applied to recurrent architectures. An adjusted training algorithm for
recurrent neural networks is referred to as Back-Propagation-Through-Time (BPTT) [19,
20]. To train a recurrent neural network, the recurrent connections are unrolled over the
prediction time steps. Thus, multiple copies of the network are created and recurrent
connections simply connect the copies of adjacent time steps. The forward pass is
computed on the unrolled network. Then, the loss of each prediction step is computed
and backpropagation is performed. The backpropagation starts in the last time step and
propagates through the recurrent connections. This allows for traversing accumulated
errors back through time – hence the name – and learn temporal dependencies.

2.3. Regularization

Overfitting is a problem that occurs when approximating sampled training data by overly
complex functions. Due to neural networks being highly non-linear functions, they are
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very prone to overfitting on training data. One way to detect overfitting is by observing
the generalization error of a model. This refers to the error a model has on data it was
not trained on. During training the error on the training data naturally decreases as
well as the error on a separated valuation set. In the case of overfitting, however, the
generalization error starts increasing while the training data continuously drops. Thus,
the model is to precise on the training data, such that it does not generalize on the
problem. Two commonly used methods to prevent overfitting are weight decay and
dropout.

2.3.1. Weight Decay

Weight decay – also known as L2 parameter regularization – penalizes the use of high
magnitude weights in the model. The loss function is extended by an additional term
that needs to be minimized together with the loss Lw

min
w

Lw +λ · |w|2

where w are the trainable weights and λ ∈ R is a regularization parameter. The regu-
larization parameter λ controls the trade-off between loss and regularization. With
an arbitrary big parameter, the loss of the optimization problem would be completely
neglected and merely the weight penalty would decide. Since this is not the goal, the
parameter is generally rather small, e.g., 10−3, 10−4 or 10−5.

For example, assume that two sets of weights w1 and w2 are able to achieve a similar
loss Lw1

≈ Lw2
. For better generalization on the training task and to avoid overfitting, we

prefer the simpler model. With weight decay, the complexity of a model is measured by
the squared norm of the weights, thus big weights are penalized more. If |w1|2 < |w2|2,
the weights w1 would be preferred over w2, because they represent a simpler model.

This allows us to use expressive models like neural networks, but within the possibly
computed functions we settle for the smoother ones.

2.3.2. Dropout

Dropout [21] is a regularization method for neural networks. Dropout is a simple method
to prevent overfitting during training and corresponds to averaging the output of multi-
ple models. Instead of training a fixed network structure, in each training step randomly
chosen neurons are deactivated. Deactivating or disabling a neuron simply corresponds
to multiplying its output with 0. The probability of disabling a neuron pd ∈ [0,1] is a
hyperparameter and is chosen prior to the training. Deactivating neurons randomly
corresponds to training multiple subnetworks, i.e., the network consisting of the re-
maining active neurons. In general, there exist exponentially many subnetworks that
can be created by randomly deactivating sets of neurons. It would be computationally
infeasible to train all subnetworks explicitly and then average their outputs. Instead,
dropout samples a subnetwork in each training step. During prediction, all neurons are
activated and the weights are scaled down in accordance to the dropout hyperparameter.
The prediction then approximates the expectation of multiple subnetworks.
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2.4. RTLola

RTLola [6] is a stream-based monitoring specification language. Inputs are considered
to be streams of data and the specification describes computations on these streams
such as accumulation and integration. In RTLola, input streams can be asynchronous,
i.e., the data of the input streams does not necessarily arrive at the same time. When
working with cyber-physical systems, one can not assume data to arrive synchronously
due to sensors and different components having individual sampling rates. In our case,
multiple sensors of quadcopters are used, and thus, data is in general asynchronous.

Given a specification in the RTLola syntax, the input streams can be processed and
output streams are calculated accordingly. The memory consumption of the monitoring
tool can be computed based on a static analysis of the given specification. Due to the
modular design of RTLola, computations can be highly parallelized and compiled onto
FPGAs to be used efficiently in closed looped systems [22].

As an example of RTLola specification, consider two input streams that correspond
to the current x and y velocity of an moving object. Assuming we want to track the
position of the object, that is a stream for the x and y coordinates, respectively. The
corresponding RTLola specification looks as follows.

input velocity_x: Float64
input velocity_y: Float64
output position_x@10Hz:= position_x.offset(by:-1).defaults(to:0.0) +

velocity_x.aggregate(over:0.1s, using:integral)
output position_y@10Hz:= position_y.offset(by:-1).defaults(to:0.0) +

velocity_y.aggregate(over:0.1s, using:integral)

First, the two input streams and their types are defined. The output streams in this
example use multiple features of RTLola. The @10Hz annotation defines the update
frequency, i.e., the stream needs to be updated 10 times a second. The integral over the
velocity over the last 0.1 seconds is computed with aggregate(over:0.1s, using:integral).
To sum up the integrals over time, we access the last computed output of the stream
with offset(by:-1) and pass a default value for the first step. Every update corresponds
to the sum over fixed size integrals over the input stream.
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Chapter 3
Trajectory Prediction

Predicting trajectories of dynamic systems is a multi-step prediction problem. Instead
of only making a single prediction, the network will be used to predict a trajectory
consisting of multiple steps. These steps are not estimated altogether but iteratively
building up on each other. Given the current state and control inputs, the network is
trained to predict the next state of the trajectory. By repeating this process and reusing
predictions, arbitrary long trajectories can be generated.

However, due to the iterative nature of the prediction process the error of each step
affects the future predictions. Since each step is based on the previous one, the error is
accumulated over time. We refer to this inherent problem as the accumulation error.

In this chapter, we present our approach to predicting dynamic systems over multiple
time steps. The concrete problem is the step-wise estimation of flight trajectories of
quad-copters. The approach is logically separated into data generation and neural
network architectures.

3.1. Data Generation

The data generation is based on AirSim [23], a simulation tool developed by Microsoft.
We use the tool to simulate quad-copters in real-time and track their dynamic behavior.
The recorded flights will later be used as training data for the neural networks.

In this section, we first introduce the AirSim tool and the generation of random flights.

3.1.1. AirSim

AirSim is based on UnrealEngine [24] to simulate quad-copters and cars in real-time.
UnrealEngine is a 3D game engine used for the game development and real-time simu-
lations. Additionally, AirSim offers a python module to interact with the simulation. We
use the interface to control the simulated quad-copters and track the dynamic behavior.
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3. Trajectory Prediction

Figure 3.1.: A screenshot of an AirSim simulation running in UnrealEngine. The quad-
copter is randomly controlled and the dynamic behavior recorded.

Figure 3.1 depicts the UnrealEngine during simulation of an AirSim quad-copter. The
environment is the standard AirSim environment “Blocks4.18“.

The drone is controlled by four signals [25], namely the pitch, roll, throttle and yaw
rate. Throttle is used to adjust the overall thrust the four rotors generate. Depending
on the throttle, the quad-copter either flies upwards or falls down. The remaining
three signals are used to control the drone’s movement and orientation. Each signal
corresponds to a axis the drone is rotated around, e.g., pitch and roll tilt the drone
forward/backwards and left/right, respectively. Yaw rate corresponds to ration around
the relative z-axis, i.e., whether the drone rotates clockwise/counter-clockwise when
looked at from above. Throughout the remaining thesis we will denote these four control
signals as c = (pitch,roll, throttle,yaw)>.

The state of the quad-copter is measured by multiple sensors. An IMU unit measures
the orientation, angular velocity and linear acceleration. The IMU unit provides the
arguably most important measurements for the prediction task. Both velocity and
acceleration are useful for the prediction of dynamic behavior. Another available sensor
is a barometer that provides altitude and pressure measurements. These can be used
to access the current height of the quad-copter. The remaining sensors available are a
magnetometer and a gps unit.

Since the environment is simulated, we can also access the vehicles ground-truth
kinematics. These are the position and acceleration data used within the simulation to
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calculate the system dynamics. The positional values are given as absolute positions,
that is the exact position w.r.t to the simulations coordinate system.

The ground-truth kinematics together with the sensor values make up the state
information of a single time step. We refer to this information as state and position,
interchangeably. We denote recorded positions from the simulation by p and position
predictions from neural networks by p̂.

3.1.2. Random Flights

The remaining piece for the data generation is the control input. With AirSim taking
care of the simulation, there are two ways to control the quad-copter. The control
signals can be generated by either manual labor, i.e., a human manually controlling
the quad-copter, or an automated controller. Given the amount of data required for
neural network training, we utilize a controller to randomly generate the control signals.
The generated signals are send to AirSim in real-time and the quad-copter behavior
is recorded. This now leaves two tasks to be taken care off, namely the random signal
generation and the quad-copter state sampling. We start with latter problem.

Sampling

Sampling in the context of signal processing is the conversion of a continuous signal to
a discrete one. For discrete signals, we refer to the amount of steps per second as the
sample rate.

The problem we are facing is to sample the quad-copter dynamics into a discrete
signal that can be stored. Note that the simulation of the quad-copter is technically
already a discrete signal because it is computed step-wise. However, the sample rate of
the simulation is much higher than the amount of data we can store. Instead of recording
each simulation-step, we sample the signal with a lower sample rate and thereby reduce
the memory usage.

Besides the memory required to record all simulation-steps, there is another reason
to favour a lower sample rate. The sampled data will later be used to train a neural
network. Thus, the network learns to make step-wise predictions in accordance to
the sample rate. For example, if the training data is sampled once every second, the
network learns to predict one second into the future. Considering the accumulation
error introduced earlier, higher sample rates correspond to more predictions, and thus,
a higher accumulation error.

On the other hand, choosing the sample rate too low also has some disadvantages.
Given that the training data is simulated in real-time, the sample rate directly corre-
sponds to the amount of training data that we are able to produce each second. Since
neural networks are known to require lots of data to train, a reduced sample rate bares
the risk of an insufficient amount of training data.

We use two sample rates and later compare the results. Each random flight will
be simulated for ∼ 30 seconds. We choose the sample rate to record at least 128/512
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Figure 3.2.: Different ways to generate the control inputs (red lines). In (a), the control
signals are piecewise linear over ∼ 1.5 second periods. During this time the dynamic system
state is sampled multiple times as depicted by the dotted vertical lines. The control signals
of (b) are interpolated in accordance with the sample rate to avoid disruptive changes in the
input.

time steps per trajectory. Due to the interface with AirSim blocking at times, the
communication with the simulation can not be perfectly timed. Thus, some small noise
is introduced into the sampling process. This noise can cause the actual sample rate to
be slightly smaller than anticipated. Considering this behavior, we choose the sample
rates to be 5Hz and 18Hz, respectively. This way the anticipated amount of samples per
trajectory is slightly exceeded and we can shorten the traces subsequently.

Random Controls

In accordance to the sampling methods, we propose two kinds of randomly generated
controls. Together with the low frequency, we generate control inputs that are constant
over a few sample steps. We refer to this kind of control inputs as piecewise-linear. The
controls are randomly generated every ∼ 1−1,5 seconds and then kept constant until the
next controls are generated. The corresponding simulation is sampled multiple times
over each interval as depicted in Figure 3.2a.

The second kind, as depicted in Figure 3.2b, changes the inputs between each sampling
step. Instead of keeping the control signal constant over multiple sample step, two
randomly chosen controls are linearly interpolated over a few sampling steps. This way
each input is close to the next one and there are now disruptive changes in the control
signal. This method is combined with the high-frequency sampling to smoothen the
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Figure 3.3.: Plot of random flight trajectories. The trajectories were simulated with
piecewise-linear (blue) and interpolated (red) random controls. Compared to the tra-
jectories from piecewise-linear controls, the interpolated controls produce slightly smoother
trajectories.

interpolation. The corresponding trajectories will thereafter be referred to as interpolated.

With each sample we record the current control inputs c together with the state p.
The trajectories then consist of a sequence of tuples (c0,p0), (c1,p1), . . . , (cn,pn), where ci
and pi refer to the i-th control and i-th state sample, respectively. Figure 3.3 depicts
two generated random flights. The plots depict only the three dimensional position
information. The interpolated controls produce smoother trajectories in general, but
also contain parts where the direction changes abruptly.

3.2. Preprocessing

Prior to training the neural network, we prepare the input data to make it more suitable
for the training process. The data preparation is referred to as preprocessing. We apply
two kinds of preprocessing steps to our data as explained in the following.

3.2.1. Normalization

Normalization is used to improve the performance of neural networks [26]. The idea is
to transform all features in the training data to a fixed range. Therefore, all features are
equally weighted, independent of their initial magnitude. For example, the position data
sampled from AirSim is from the interval [−100,100]. In contrast to this, the control
signals are from a very small range [−1,1]. Normalizing the data such that all features
are in the same interval improves the performance of the network as well as speeding
up the training process.

In this work we use Min/Max normalization. The goal is to scale the data to an interval
between 0 and 1. We denote normalization as a function f on the training data d. In our
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case, the data D ∈ Rn×l×dimin is a three dimensional tensor. The dimensions correspond to
the number of trajectories n in the training set, the length of each trajectory l ∈ {128,512},
and the feature dimension dimin, respectively. The feature dimension is the amount of
inputs the network receives each prediction step. In our case, this corresponds to the
concatenation of the control signals |c| = 4 and state signals |p| = 10, thus dimin = 14. We
calculate the minimum min(D) ∈ Rdimin and maximum max(D) ∈ Rdimin with respect to
each feature. Normalization is then defined as

f (D) =
D −min(D)

max(D)−min(D)
.

The operations are broadcasted to be applied on each entry of d. Formally,

f (D)i,j,k =
Di,j,k −min(D)k

max(D)k −min(D)k
∀i, j,k .

For example, assume the min and max of the throttle control signal to be 1.3 and 0.5,
respectively. Then, every throttle signal in the training data t is mapped to t−1.3

0.5 ∈ [0,1].

Denormalization

The network trains on normalized data and the network predicts normalized values.
These predictions are reused to iteratively predict multiple steps as discussed earlier.
Note that an additional normalization step is not required, because the predictions al-
ready correspond to normalized values. However, when using the network for inference,
we expect the predictions of the network to be denormalized. To compute the final
output, the operation inverse to normalization is applied on the outputs. We refer to the
inverse operation as denormalization and denote it by f −1.

3.2.2. Displacement Vectors

As mentioned in Section 3.1.1, the ground-truth positions are absolute positions with
respect to the simulation origin. These positions are distributed over a big range of
numbers and distinct to the simulation environment. For example, when predicting
in an environment with a different origin, the network has to deal with values very
different to the training data. Even though, the dynamic behavior of the quad-copter
does not change depending on the origin, the networks will perform worse on these
unseen inputs. Therefore, we introduce an additional preprocessing step to convert
absolute positions to relative ones. We refer to the relative position between two time
steps as displacement vector. The displacement vector is calculated by subtracting two
subsequent time steps. Note that the magnitude of the displacement vectors is implicitly
bounded by the maximal velocity of the quad-copter and independent of the simulation
origin. Due to the bounded magnitude of the displacement vector, it is guaranteed that
the positional values will stay familiar to the values encountered during training. When
plotting a trajectory, the displacement vectors are accumulated to calculate the absolute
position.

18



3.3. Neural Network Architectures

In contrast to absolute values, however, the displacement error does not hold the
information about the trace as a whole. Therefore, the accumulation error over multiple
steps is not present, and thus, cannot be used to guide the predictions. We empirically
compare both position representations and their influence on the prediction quality in
the evaluation part.

3.2.3. Data Splitting

The preprocessed training data is split in three parts, namely training, validation and
test data. The training data, making up 60% of the overall data, is actively used to train
the network. Validation data makes up 30% of the data and is not used to train the
network, but to find suitable hyperparameters. The loss with respect to the validation
data is computed once every training epoch. This validation loss is used to measure
the networks performance on data it was not trained on. It indicates the generalisation
performance and possible overfitting during the training process. The remaining test
data is used as performance assessment at the end of the training. In contrast to training
and validation data that are respectively used for weight and hyperparameter search,
the test data has no direct influence on the network.

3.3. Neural Network Architectures

In this section, we introduce three different neural network architectures. For multi-step
trajectory prediction, we need to predict sequences of data. Information that can be
inferred from multiple time steps will be called temporal information. For example, to
predict a moving dynamical system the acceleration is a necessary feature, because it
describes the change between two system states. If the acceleration is not given directly,
it can only be inferred over multiple time steps. Due to the importance of temporal
information to dynamic system prediction, we focus on architectures able to access
temporal information.

We start with buffered feed-forward networks which will make up the baseline against
which the other approaches are compared. The buffer stores a fixed amount of inputs.
This gives the network access to not just the current but also past input data. The next
model are recurrent neural networks that internally keep track of data over multiple
time steps. In contrast to buffers that only give a limited static view into the past,
recurrent neural networks actively learn which data to store. Thus, allowing the network
to keep information over arbitrary many time steps. In an attempt to increase the
prediction quality, we integrate RTLola as preprocessing engine to recurrent neural
networks. RTLola maintains an internal state and processes data in accordance to custom
specifications. This allows to explicitly extract and process temporal information during
training and prediction.
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Figure 3.4.: A buffered feed-forward network. The inputs are stored in a buffer of size 2 and
can be accessed by later time steps. Dashed lines of same color depict data of the same time
step. During the first steps the buffer defaults to 0, depicted by gray arrows.

All networks aim to predict the next state of the dynamic system, namely the sensor
states and position. The input to the network at time step i is the current state ci and
control inputs pi .

inputi = pi ⊕ ci .

During inference, multiple time steps are predicted by iteratively reusing the predicted
states as input to the network.

inputi = p̂i ⊕ ci ,

where p̂i is the prediction for the i-th step, i.e., the prediction made in step i − 1.

3.3.1. Buffered Neural Network

We use buffered neural networks as the baseline to compare the more advanced models
against. To access events of the past, both positional data and control inputs are saved
in a fixed-size buffer. As depicted in Figure 3.4, the inputs are forwarded to the buffer
and can be accessed in future time steps. The dashed lines depict information stored
into and read from the buffer. Lines of same color belong to the same time step, e.g., the
red lines correspond to the first time step and can be accessed during the second and
third time step. However, the data of the first time step can not be accessed during the
forth or later steps, because the size of the depicted buffer is 2. The buffer is initiated
with 0s, depicted as gray lines. Thus, the network behaves correctly after the first two
steps when the buffer is filled. These first few steps make up the initialization phase.

In contrast to NARX [27, 28] – a class of recurrent neural networks with additional
memory – we only buffer the inputs and do not forward the gradients through the buffer
during training.
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A buffer of size k only stores information about the last k time steps. Formally, the
input of time step i including the buffer information is

inputi =
(
pi−k ⊕ ci−k ⊕ . . .⊕ pi−1 ⊕ ci−1

)
⊕ pi ⊕ ci ,

where k ∈ N is the buffer size and the parentheses represent the buffer. During inference,
all states pj are replaced by the network prediction of the last time steps p̂j .

A disadvantage of this structure is the limited access to past information. Only the last
k time steps can be kept in the buffer at a time. Additionally, the network has no control
over the stored data besides using them as input. We refer to this kind of buffer as static
memory, because of the data simply being stored without any calculation applied.

Buffer Size

The buffer size can be thought of as an additional hyperparameter. It introduces a
horizon for past events such that any kind of information outside of it can not be
accessed anymore. Thus, the size needs to be chosen in accordance to the problem. In
general, choosing a sufficient buffer size is not easy because it might be unclear which
information of the past is necessary.

In our case, the network needs to predict the movement of a dynamic system. As
argued earlier, an important information is the velocity as well as the acceleration of the
system. When using the displacement vectors, we already have a linear approximation of
velocity with respect to the length of each time step. An additional time step allows the
comparison of the past and current velocity, i.e., an linear approximation for the current
acceleration. If we naively assume that this information is sufficient, only a single time
step is required for the prediction task. However, this argument is merely based on
the positional information and does not consider any of the other state information,
let alone the required buffer size to accurately predict them. Additionally, the buffer
size corresponds to an increase in the networks input dimension. Therefore, the overall
network size and structure might be in need of adjustments. We decide to evaluate three
different buffer sizes 2, 4 and 6 and evaluate their performance empirically.

3.3.2. Recurrent Neural Network

In contrast to an input buffer, recurrent neural networks have an internal memory. The
information is kept in the internal cell state of fixed size and consists of floating-point
numbers. Trainable weights regulate the information flow through the cell state. Thus,
decisions about whether to keep or remove information becomes part of the training
problem. In contrast to static memory methods like buffers, the network decides the
importance of individual events and influences the memory behavior. Information
that is not considered to be useful can be dropped, thus freeing memory to store other
information.

An advantage of this structure is the possibility to keep information over long periods
of time. Since there is no implicit event horizon with respect to time steps, older steps
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Figure 3.5.: A recurrent neural network with scheduled learning strategy. The network has
an internal state to store information over multiple time steps. This recurrent connections
are depicted by dotted lines. According to scheduled sampling, the choice to reuse the
prediction or use the training data is randomised.

are not automatically overwritten. Instead, the information can be stored over arbitrarily
long time periods. Learning long term dependencies is a hard problem in general, but
recurrent neural networks – especially LSTMs – are known for their good performance
[29]. Additionally, there is no need for extra hyperparameters that require manual
fine-tuning for each individual problem.

The generalized information flow of recurrent neural networks is depicted in Fig-
ure 3.5. The dotted lines represent the internal state of the network being passed to
the next time steps. For what follows dotted lines are used to depict temporal connec-
tions between time steps. This can refer to recurrent connections and internal states of
components, e.g., static memory.

As introduced in Section 2.2, we use two kinds of recurrent neural network architec-
tures, namely GRU and LSTM. In the following sections, we refer to GRU and LSTM
simply as recurrent neural networks. Both variants will be compared in the evaluation
chapter.

Scheduled Sampling

According to Section 2.1.4, we refer to training strategies that gradually increase the
problem complexity during training as curriculum-learning strategies. For recurrent
neural networks, we implement an improved version of scheduled sampling [30]. During
training the network typically predicts trajectories exclusively based on the training
data as inputs. The predicted trajectory is only used to compute the loss function and
the gradients. This behavior varies significantly from the inference behavior where the
network is forced to iteratively reuse prior predictions. Thus, the network is confronted
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Figure 3.6.: Recurrent neural network with RTLola integration. The inputs are forwarded
to RTLola to compute additional features. The internal states over time as well as recurrent
connections are depicted by dotted arrows.

with unfamiliar values and small errors in each time step can easily accumulate over
time.

Scheduled sampling aims to resolve this gap by bringing the behavior during training
and inference closer together. During the training process, training data is gradually
being replaced by prior predictions. Thus, the network is forced to behave similar to the
inference task. The choice to either use a training data position p or reuse the prediction
p̂ is decided randomly in each step. We refer to the probability ε to reuse the prediction
p̂ as schedule parameter.

Due to the arbitrarily bad performance during the first training iterations, reusing
predictions all the time would slow down convergence of the training process. Instead
of a constant probability, ε gradually increases along the training iterations. Thus,
first learning from the training data and bit by bit increasing the probability to reuse
predictions, and thus, resemble inference.

In the original implementation, the gradients are not propagated through the pre-
dictions of earlier steps and the propagation is explicitly mentioned as further work.
We implement the scheduled sampling algorithm in TensorFlow. By utilizing the auto-
mated gradient computation and appropriate structures, the gradients are propagated
through the reused predictions. However, we do not compare the difference in the two
approaches. The implementation is given in Algorithm A.3.

3.3.3. RTLola Integration

In this section, we extend recurrent neural networks with RTLola. So far we have
introduced two different methods to handle temporal information. First, buffered
neural networks with fixed-size static memory were presented. Then, recurrent neural
networks that use internal memory which is controlled by trainable weights. Introducing
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RTLola as a preprocessing unit can be compared to extending recurrent networks with
additional memory and computational power. In addition to the network learning to
handle temporal information, an expert describes the memory behavior by means of
a specification. In contrast to using a simple static memory component, RTLola does
not only introduce additional memory, but describes the extraction of temporal data.
Thus, introducing expert knowledge that simplifies the training task, e.g., well-known
physical laws.

For example, the quad-copters have an integrated IMU unit. As stated in Section 3.1,
this provides us with an accelerometer and enables us to measure the acceleration of the
drone. From the physics point of view, velocity can be derived by integrating over the
acceleration. Even though, a recurrent neural network has the computational power to
compute this integral, the precise computation first has to be learned. In RTLola, we can
easily express such integrals and thereby simplify the learning problem for the network.
Furthermore, the network can use the precomputed features instead of utilizing the
internal memory. Thus, the internal memory requirements are relaxed.

Figure 3.6 depicts the extension of recurrent neural networks by RTLola. The inputs
are forked to the RTLola component and then processed. The produced output of
RTLola is then used as additional input to the network. Formally, the input of the i-th
time step is

p̄i =

p̂i with probability ε

pi otherwise.

inputi = p̄i ⊕ ci ⊕RTLolai(p̄i , ci)

For inference, the network predictions are always reused, i.e., p̄i = p̂i .

Monitor Normalization

Our neural networks are trained on normalized data, i.e., inputs to the networks and
outputs from the networks are within a normalized domain [0,1]. However, the specifica-
tions for RTLola are written by hand and refer to the original values before normalization
is applied. To integrate RTLola, we denormalize the inputs before forking them into the
RTLola component. Especially during inference, where the position is only available in
the normalized domain, incoming data to RTLola needs to be denormalized.

Note that normalization is also applied to the RTLola monitor output. The normal-
ization data for the monitor is once computed in the beginning of the training. For
this matter, the denormalized training data is used step-wise to compute RTLola out-
puts. This data is then used to compute the normalization parameters that are required
to normalize the monitor outputs. The exact timing for normalization is depicted in
Figure 3.7.
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Figure 3.7.: Two time steps of a neural network with RTLola integration and curriculum
learning. The yellow boxes with labels f and f −1 represent the normalization and the
inverse operation, respectively. Because specifications for RTLola refer to the true values,
denormalization is applied before passing values to the RTLola component. The output
of the network is forwarded to the next step. In accordance to scheduled sampling, it is
randomly chosen between the training data or prediction of the earlier step. The random
choice is depicted by a dice and dotted lines represent internal states connections.
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Runtime Trade-Off

The RTLola integration introduces a trade-off between computational speed and predic-
tion quality. Training neural networks is usually done on GPUs, because the computa-
tions can be parallelized. Thus, the training can be highly accelerated and computational
speed is increased. The calls to RTLola, however, happen in between every time step.
Thus, the training steps can not be computed on a GPU. Due to the frequent interrup-
tions that are introduced by calls to RTLola, the speed of the computation is not just
reduced by the time RTLola claims, but through the disability of using GPUs.

On the other hand, RTLola introduces expert knowledge to the neural network and
simplifies the overall training problem. Thus, the prediction quality can be improved.
The trade-off depends on the learning problem and the significance of additional knowl-
edge introduced. The trade-off for our specific use case is observed in the next chapter.

RTLola Specifications

We use two kinds of specifications for the evaluation. One computes the displacement
vector of the 3-dimensional position and the 4-dimensional orientation data. This
specification is referred to as displacement and is given in Algorithm A.1.

The second specification computes the velocity as an integral over the acceleration
sensor data. The integral is numerically approximated by an trapezoidal integral∑

i

f (xi) + f (xi−1)
2

∗ (xi − xi−1) ,

where xi and f (xi) are the i-th time step and senor value respectively. We refer to this
specification as integral. The specification is given in Algorithm A.2.

26



Chapter 4
Evaluation

In this chapter we compare the different implementations. The introduced neural
network models performances and the training hyperparameters are analysed. Due
to the observation that local predictions produce very natural looking trajectories, we
introduce an additional model to combine displacement vector predictions and absolute
predictions. The new model is evaluated together with the other architectures.

4.1. Implementation

In this section we introduce the practical details and used tools. The main parts are
implemented in Python3.6, including the data generation and neural network wrappers
for training/prediction.

For data generation, AirSim’s python interface is used to control and sample the
flight simulations. The sampled traced are then saved in the json data format. The
overall training set consist of 15000 piecewise and 20000 interpolated random flights.
Each trajectory corresponds to a 30second flight sampled in real-time. Thus, the overall
training data consists of roughly 12 days worth of random flights and 17 million samples.

For efficient computations and memory representation of arrays and tensors, we used
the Numpy python module. This includes the preprocessing and data handling in general
as training data is loaded directly into Numpy arrays. Keras and TensorFlow2.0 are used
for machine learning related tasks. TensorFlow offers automated gradient computations
and out-of-the box neural network implementations for recurrent neural networks, such
as GRU and LSTM. We also make use of TensorFlow’s computation optimizations. Thus,
training functions are compiled into optimized computation graphs. For example the
scheduled sampling implementation used to train the recurrent neural networks is
implemented this way. The code is appended in Algorithm A.3.

The RTLola monitoring tool is implemented in Rust. To use RTLola from our python
code base, we implement a foreign function interface(ffi) to bridge the two languages.
We implement this connection using the cpython module and a Rust interface for C
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4. Evaluation

(a) Comparison with GRUs of depth 4 (b) Comparison with GRUs of depth 6

Figure 4.1.: A comparison of the number of GRU layers and different batch sizes. The plot
depicts the valuation error during training of the models. In (a) and (b) we see a comparison
with networks of depth 4 and 6, respectively. The dashed line corresponds to the best
network best-gru with a depth of 2 and a batch size of 64.

function calls. Thus, the low-level communication is based on C function calls and uses
C structs to pass data.

The networks were trained on two machines, i.e., a server with 8 CPU-cores and 32GB
of RAM, and a laptop with 4 CPU-cores and 8GB of RAM.

4.2. Models

As introduced in Chapter 3, we use three different architectures, namely buffered feed-
forward, recurrent and RTLola integrated neural networks. We separate the recurrent
neural networks further into GRU and LSTM architectures. The RTLola integrated
networks are also based on recurrent neural networks and use the same architectures.
Due to the slower training time of RTLola integrated architectures, we rely on the
basic recurrent architectures for the hyperparameter search. The hyperparameters that
yield promising results on the basic recurrent neural networks are used for the RTLola
integrated versions.

All architectures share the same learning rate α = 0.001, number of hidden units
h = 64, and regularization λ = 10−5. The recurrent neural networks additionally require
the scheduled sampling parameter ε and dropout parameter pd = 0.5. Due to the GRU
networks having less parameters, they can be trained faster in comparison to LSTMs.
Thus, we use the GRU architecture as guiding model for the hyperparameter search.

Depth and Batch Size

In Figure 4.1, we compare GRU neural networks with different hyperparameters. The
figure depicts the valuation error after each training epoch. A faster and continuously
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4.2. Models

Figure 4.2.: A comparison of different scheduled training parameters. The best results are
achieved with ε ∈ {1.0,1.5}. However, the loss with ε = 1.0 is more consistently decreasing.

decreasing valuation loss corresponds to a good model. We pick the best version,
depicted by a dashed line, and the corresponding hyperparameters. The model best-gru
corresponds to a network of depth 2, i.e., two layers with 64 GRU units. The network
was trained with a batch size of 64.

Scheduled Sampling

To determine an appropriate scheduled sampling parameter ε, we compare different
values on the GRU architecture. In Figure 4.2, the valuation error of multiple values are
compared. During training, the values are linearly interpolated between 0.25 and the
given ε. Formally,

ε̂i = 0.25 +
i
e
∗ (ε − 0.25)

εi = min
(
1.0,max(0.0, ε̂i)

)
,

where i and e are the current and total epoch, respectively. Note that the model with
ε = 0.0 simply doesn’t use scheduled-sampling at all and ε = 100 refers to always reusing
the predictions. We can see that the best results are archived with ε ∈ {1.0,1.5}. Thus,
we use both values during training. However, we observe that ε = 1.5 (or even higher)
produces better results with increasing number of training iterations. For example, the
best model was trained over 200 epochs and ε = 4.0.

Combined models

During the evaluation, we observe that the prediction of displacement vectors without
any knowledge about the absolute position produces the best results. We introduce a new
model that combines the network’s displacement vector predictions and the absolute
position by an explicit sum as depicted in Figure 4.3. This way the network predicts
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Figure 4.3.: A combination of displacement vector and absolute position prediction. The
network predicts displacement vectors that are explicitly summed up to absolute positions.

displacement vectors while the explicit sum introduces knowledge about the absolute
position. Note that during training of this new model, the scheduled sampling method
not only randomly chooses the inputs to the network but also the input to the explicit
sum. When the training data is used, both the input to the network and the absolute
position input to the sum is the position from the training data. During inference,
the predicted value is reused as input to the network and the explicit sum. Given
our implementation of scheduled sampling where gradients are forwarded beyond the
random choice, the new sums additionally introduce connections for the gradient to
flow directly to earlier time steps. The new architecture is referred to as combination in
the result tables.

4.3. Results

In Table 4.4, the evaluation results for piecewise trajectories are depicted. For absolute
position predictions, RTLola effectively reduces the loss. In comparison to the other
models within this class of predictions, RTLola integration even achieves the lowest loss.
Due to the use of RTLola and the corresponding Python-Rust interface, the optimized
computational graphs of TensorFlow could not be applied. Thus, the training process is
slower and requires up to 270 minutes.

When comparing the absolute position predictions with the displacement vector
predictions, even the RTLola variants are outperformed. The prediction of displacement
vectors without any global information outperforms the other approaches and produces
very realistic looking trajectories. Overall, these predictions achieve the lowest loss of
30540. Note that the loss is computed on the predicted trajectory after the corresponding
absolute positions are computed, and thus, is a fair comparison.

The introduced combined architecture with RTLola further improves the prediction
quality of RTLola integrated architectures. The corresponding loss almost matches
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4.3. Results

time

model spec train[min] predict[s] loss

Absolute Position

BFF ≤1 ≤1 83141

GRU 23 76 101547

LSTM 23 75 101981

GRU + RTLola displacement 272 246 74061

GRU + RTLola integral 270 246 92299

LSTM + RTLola displacement 88 191 88792

LSTM + RTLola integral 271 244 78044

Displacement Vector

BFF ≤1 ≤1 41173

GRU 24 148 30540

LSTM 24 135 32073

Combination

LSTM + RTLola displacement 343 120 35568

LSTM + RTLola displacement 1370 126 32440

LSTM + RTLola integral 145 115 89226

GRU + RTLola integral 176 118 99118

Figure 4.4.: The test errors of trajectory predictions from piecewise controls. All networks
were evaluated on the same test set. The displacement vectors predictions are summed
up to compute the corresponding absolute positions. This happens only for the prediction
and not during training, thus, the model has no information about absolute positions. In
contrast to that, the combination architecture has an explicit sum as part of the model, thus
training with respect to the absolute position loss. The loss is the mean summed squared
error over all trajectories of the test set.
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4. Evaluation

time

model spec train[min] predict[s] loss

Absolute Position

BFF 2 4 754566

GRU 352 694 712010

LSTM 173 905 723162

GRU + RTLola integral 1358 1763 850211

LSTM + RTLola displacement 1043 671 703167

Displacement Vector

BFF 6 4 958658

GRU 236 707 472202

LSTM 175 708 384863

Combination

GRU + RTLola integral 802 645 643238

Figure 4.5.: The test errors of trajectory predictions from interpolated controls. The best
predictions come from local displacement vector predictions without knowledge of the
absolute positions. Absolute position prediction and combined predictions are slightly
improved with RTLola. The interpolated traces consist of more samples, and thus, the
training time and error is higher.

the overall best prediction with a loss of 32440. Comparing the different RTLola
specifications, the best results are achieved with the displacement specification. Note
that the second LSTM + RTLola was trained over more epochs, and thus, has a much
longer training time. However, the loss only improved slightly despite the difference in
training time.

The results for interpolated trajectories are depicted in Table 4.5. As mentioned in
Section 3.1.2, the trajectories that correspond to interpolated control signals consist of
512 samples. This are exactly four times as many steps as the piecewise trajectories.
Due to the accumulation error summing up over all time steps, the training problem is
much harder. Furthermore, the loss function sums up the prediction errors along the
trajectory, and thus, the loss is much higher compared to the piecewise trajectories.

The evaluation of the different models shows similar results as in the piecewise tra-
jectory prediction setting. Again, the overall best predictions are displacement vector
predictions without any knowledge of the absolute positions. The combined architec-
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4.3. Results

ture with RTLola slightly improves the prediction quality of GRU/LSTM architecture.
However, it was not possible to match the displacement vector predictions as closely as
for piecewise trajectories.

Prediction Quality In Figure 4.6, the predictions of all architectures are compared
aside the computed test loss. The absolute position predictions in Figure 4.6a approxi-
mate the overall flow of the trajectory. However, the predictions are very fuzzy due to
the loss function only accounting for the absolute difference and not local changes in
behavior. In comparison to the displacement vector predictions in Figure 4.6b where
only local predictions are used, absolute predictions look very unnatural. Predicting the
local changes and penalizing local divergence instead of the absolute position produces
very smooth and natural looking trajectories. Thus, displacement vector predictions
not only have a lower prediction loss but also produce more natural trajectories. The
combination architectures as depicted in Figure 4.6c and Figure 4.6d achieve a loss
similar to the displacement vector predictions. However, when comparing the results,
the predicted trajectories resemble the unnatural appearance of absolute position pre-
dictions. The trajectories remain close to the original trace but look very fuzzy with
many abrupt changes in direction.
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4. Evaluation

(a) Absolute Position (b) Displacement Vector

(c) Combined Architecture (d) Combined Architecture - Longer Training

Figure 4.6.: Trajectory predictions of the different architectures. The dotted line in each
picture represents different ground-truth trajectories. The corresponding control signals are
passed to the networks and the trajectories are predicted. The best predictions come from
displacement vector predictions (b). The combined predictions (c, d) improve on the pure
absolute position predictions (a). However, the produced trajectories are still very fuzzy
and do not look natural.
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Chapter 5
Conclusion & Further Work

Multi-step trajectory prediction is a hard learning problem. In this thesis, we trained
and compared different neural network architectures. We proposed the introduction
of expert knowledge by the means of RTLola specifications to improve the prediction
quality. The evaluation shows that the RTLola integration helps the network and the
test loss could be decreased. Additionally, we observed that local predictions, i.e.,
displacement vectors, produced very natural looking trajectories. This insight was used
to construct and evaluate a new architecture to combine the local predictions with an
explicit sum on the lowest layer. The sum is part of the network and adds up the local
predictions over time to compute the absolute position. The connections introduced
by the sum are direct connections between time steps. Due to an adapted scheduled
sampling implementation, the gradients are also forwarded along the new connections.
Thus, gradients computed on the lowest layer can be directly forwarded to adjacent time
steps without first passing through the network layers.

For further work, we propose the use of more involved RTLola specifications as well
as trajectory prediction for systems with already existing RTLola specifications. The
existing specifications might be reused for the prediction task without any additional
efforts of coming up with useful specifications. Additionally, the training of recurrent
neural networks is hard and there are many hyperparameters that can be adjusted to im-
prove the training process and prediction quality. The results might be further improved
by comparing models on different sets of hyperparameters and training the networks
over longer periods of time. Furthermore, the absolute position predictions look very
unnatural and fuzzy. One could penalize the abrupt changes explicitly by adapting the
loss function. The additional term in the loss function acts like regularization and the
predicted traces could be smoothened.
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Appendix A
Code

input pitch: Float64
input roll: Float64
input throttle: Float64
input yaw_rate: Float64
input pos_x: Float64
input pos_y: Float64
input pos_z: Float64
input ori_w: Float64
input ori_x: Float64
input ori_y: Float64
input ori_z: Float64
input acc_x: Float64
input acc_y: Float64
input acc_z: Float64
output dis_x:= pos_x - pos_x.offset(by:-1).defaults(to:0.0)
output dis_y:= pos_y - pos_y.offset(by:-1).defaults(to:0.0)
output dis_z:= pos_z - pos_z.offset(by:-1).defaults(to:0.0)
output dis_ori_w:= ori_w - ori_w.offset(by:-1).defaults(to:0.0)
output dis_ori_x:= ori_x - ori_x.offset(by:-1).defaults(to:0.0)
output dis_ori_y:= ori_y - ori_y.offset(by:-1).defaults(to:0.0)
output dis_ori_z:= ori_z - ori_z.offset(by:-1).defaults(to:0.0)

Figure A.1.: RTLola specification for the training. Accumulate velocity and compute dis-
placements for position and orientation
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A. Code

input pitch: Float64
input roll: Float64
input throttle: Float64
input yaw_rate: Float64
input pos_x: Float64
input pos_y: Float64
input pos_z: Float64
input ori_w: Float64
input ori_x: Float64
input ori_y: Float64
input ori_z: Float64
input acc_x: Float64
input acc_y: Float64
input acc_z: Float64
output vel_x:= vel_x.offset(by:-1).defaults(to:0.0)

+ (acc_x + acc_x.offset(by:-1).defaults(to:0.0))/2.0 * time
output vel_y:= vel_y.offset(by:-1).defaults(to:0.0)

+ (acc_y + acc_y.offset(by:-1).defaults(to:0.0))/2.0 * time
output vel_z:= vel_z.offset(by:-1).defaults(to:0.0)

+ (acc_z + acc_z.offset(by:-1).defaults(to:0.0))/2.0 * time

Figure A.2.: RTLola specification for the training. Calculates the velocity as an numerical
integral over acceleration sensors. The variable time is the time-interval between two
predictions, and thus, depends on the sampling frequency.
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LOSS = nets.util.SumOfSquaresLoss()

@tf.function
def train_step(model, inputs, target, epsilon, batch_size):

""" implements accumulated learning training step """
with tf.GradientTape() as tape:

prediction_len = target.shape[1]
prediction_dim = target.shape[2]
predictions = tf.TensorArray(

nets.data.TF_FLOAT,
size=prediction_len,
clear_after_read=False)

# first prediction is explicit as it cannot depend on earlier predictions
prediction = model(inputs[:, 0:1], training=True)
predictions = predictions.write(0, prediction)

# predict step-wise and accumulate results
for i in tf.range(1, prediction_len):

# roll a dice
decision = tf.logical_and(

tf.less(tf.random.uniform([1]), epsilon), # with prob<epsilon, reuse old
prediction

tf.greater(i, 16)) # except for the first steps (model is still adjusting)
inp = tf.where(

decision,
tf.concat(

[inputs[:, i:i+1, :-prediction_dim], predictions.read(i-1)],
axis=2),

inputs[:, i:i+1])
prediction = model(inp, training=True)
predictions = predictions.write(i, prediction)

# transform tensorarray to tensor:
# stacking yields shape=(prediction_len, batch_size, 1, dim_features)
# -> transpose to restore correct shape=(batch_size, prediction_len, dim_features)
prediction = tf.squeeze(tf.transpose(predictions.stack(), [1, 0, 2, 3]))

loss = LOSS(target, prediction)
grad = tape.gradient(loss, model.trainable_variables)
# update model
model.optimizer.apply_gradients(zip(grad, model.trainable_variables))

return loss

Figure A.3.: Scheduled Sampling
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