
NeuroSynt: A Neuro-symbolic Portfolio Solver for
Reactive Synthesis

Matthias Cosler1 , Christopher Hahn2, Ayham Omar1 , and Frederik
Schmitt1

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{matthias.cosler, ayham.omar, frederik.schmitt}@cispa.de

2 X, the moonshot factory, Mountain View, USA⋆⋆

chrishahn@google.com

Abstract. We introduce NeuroSynt, a neuro-symbolic portfolio solver
framework for reactive synthesis. At the core of the solver lies a seamless
integration of neural and symbolic approaches to solving the reactive syn-
thesis problem. To ensure soundness, the neural engine is coupled with
model checkers verifying the predictions of the underlying neural models.
The open-source implementation of NeuroSynt provides an integration
framework for reactive synthesis in which new neural and state-of-the-art
symbolic approaches can be seamlessly integrated. Extensive experiments
demonstrate its efficacy in handling challenging specifications, enhancing
the state-of-the-art reactive synthesis solvers, with NeuroSynt contribut-
ing novel solves in the current SYNTCOMP benchmarks.

1 Introduction

The reactive synthesis problem [16] seeks to automatically construct an imple-
mentation from a system’s specification. Rather than delving into the intricate
nuances of how a system computes, hardware designers can describe what the
system should achieve and leave implementation details to the synthesis engine.
We introduce NeuroSynt, a portfolio solver for reactive synthesis that combines
the efficiency and scalability of neural approaches with the soundness and com-
pleteness of symbolic solvers.

The reactive synthesis problem has seen significant progress in recent years
[12,28,29,49] with active tooling development [1,11,24,26,45,38], and an annual
competition (SYNTCOMP [35]). However, applications beyond the competition
to an industrial scale are still limited. The advent of machine learning, empow-
ered by the advancements in deep learning architecture and hardware accelera-
tors, has the potential to drastically increase performance in reactive synthesis.
While deep learning approaches offer efficiency, they lack soundness and com-
pleteness guarantees, which are essential to the reactive synthesis problem.

We address this challenge by introducing NeuroSynt, a portfolio solver frame-
work for reactive synthesis that aims to bridge the gap between soundness, com-
pleteness, and practical efficiency through the combination of state-of-the-art
⋆⋆ Work done while being at Stanford University.

https://orcid.org/0009-0007-3984-0997
https://orcid.org/0009-0009-2711-8993
https://orcid.org/0009-0001-7106-3725

2 Cosler, Hahn, Omar, Schmitt

symbolic solver, model-checker, and deep learning techniques. The integrated
neural solver computes candidate implementations while model-checking tools
verify the candidate solutions to ensure soundness. To ensure completeness, the
neural solver is backed up by several state-of-the-art symbolic solvers running in
parallel.

In particular, our main contribution is the design and open-source implemen-
tation of the extensible and efficient portfolio solver. NeuroSynt’s design priori-
tizes extensibility: Its modular architecture facilitates the seamless integration of
new models, algorithms, or optimization techniques. This adaptability ensures
that NeuroSynt remains relevant amidst evolving methodologies, providing re-
searchers with a unified platform to experiment, validate, and advance their
innovations in the reactive synthesis domain.

Additionally, we contribute an advanced neural solver for reactive synthesis
(based on [56]) that handles larger and more complex specifications, improving
its performance on real-world instances from SYNTCOMP.

Our results show that deep learning methods can indeed increase the perfor-
mance of reactive synthesis tools. NeuroSynt provides smaller solutions faster
while maintaining soundness and completeness. Our portfolio solver enhances the
performance of the state-of-the-art Strix [45] by 31 samples on the SYNTCOMP
2022 benchmark, and the bounded synthesis tool BoSy [26] by 152 samples. No-
tably, a virtual best solver (VBS) that combines the neural solver with all tools
in the SYNTCOMP 2022 competition solves an additional 20 instances that a
VBS without the neural solver could not solve.

2 Background

Reactive Synthesis. The reactive synthesis problem is a well-known algorithmic
challenge, that dates back to Church [16,15] as the problem of automatically
constructing an implementation from a system’s specification. With the decid-
ability findings in 1969 [10] (using games) and 1972 [53] (using automata), a long
history of work on reactive synthesis was initiated. After the introduction of tem-
poral logics in 1977 [50], the complexity for LTL reactive synthesis was found
to be 2-EXPTIME complete [51] but undecidable for distributed systems [52].
Since then, many different approaches have been developed (e.g., [12,28,29,49])
and implemented in tools (e.g. [1,11,24,26,37,38,45,54]). Moreover, an annual
competition, the Reactive Synthesis Competition (SYNTCOMP [35]), associ-
ated with the International Conference on Computer Aided Verification (CAV)
is organized to track the improvement of algorithms and tooling.

Linear-time Temporal Logic (LTL). LTL extends propositional logic by intro-
ducing temporal operators U (until) and (next). Several additional opera-
tors can be derived: φ ≡ true U φ and φ ≡ ¬ ¬φ. φ is interpreted
as φ will eventually hold in the future and φ as φ holds globally. Oper-
ators can be nested, e.g. φ states that φ has to occur infinitely often.
Linear-time Temporal Logic (LTL) [50] is the prototypical temporal logic for

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 3

expressing requirements of reactive systems. For example, the following formula
describes an arbiter: Given two processes and a shared resource, the formula
(r0 → g0) ∧ (r1 → g1) ∧ ¬(g0 ∧ g1) describes that whenever a process

requests (r) access to a shared resource, it will eventually be granted (g). For-
mally, the reactive synthesis problem for LTL is defined over the notion of a
strategy as follows: An LTL formula φ over atomic propositions AP = I ∪̇ O is
realizable if there exists a strategy f : (2I)∗ → (2O) that satisfies φ. We show
the formal syntax and semantics of LTL and the definition of a strategy in the
Appendix A.

And-Inverter Graphs. And-Inverter Graphs are directed acyclic graphs that rep-
resent reactive systems using three fundamental building blocks: the AND gate,
the inverter (NOT gate), and latches, which can store a single bit for one time-
step. The graph’s edges define the connections between gates, indicating how sig-
nals propagate through the circuit. And-Inverter Graphs, especially the AIGER
format [8,9], are widely used in formal verification and reactive synthesis. The
AIGER format follows a well-defined specification. The first line contains header
information: the maximal variable id, the number of inputs, outputs, latches, and
AND gates in the circuit. The circuit’s components are following in this order:
inputs, latches, outputs, AND-gates, with each component in one line. Each in-
put, AND-gate, and latch defines an even number (variable id) to which other
gates and outputs can refer to establish connections between gates. NOT gates
are implicitly encoded by the odd version of each number. True and False are
encoded by the numbers 1 and 0. We provide an example in Figure 11 in the
Appendix.

Deep Learning in Formal Methods. Deep Learning methods have been success-
fully applied to various domains in formal methods. Applications of deep learning
methods in symbolic reasoning include SAT/SMT solving [4,13,57,58], tempo-
ral logics such as generating satisfying traces [32], reactive synthesis and re-
pair [20,41,56], as well as generating symbolic reasoning problems in temporal
logics and symbolic mathematics [40]. Mathematical reasoning problems, includ-
ing integration and differential equations, have been approached with transform-
ers [42] and through code generation with Large Language Models (LLMs)[21].
Mathematical reasoning has also been tackled through automatic proof gener-
ation [43]. More general applications of deep learning to theorem proving are
guiding the proof search with clause selection for CNF formulas [44] and tactic
and premise selection/prediction for Coq and HOL light [5,6,33,47]. In contrast
to proof guidance, LLMs can be used for end-to-end generation and repair of
proofs in Isabelle/HOL [30]. LLMs have recently also enabled a step towards
autoformalization of unstructured natural language for theorem proving [36,63]
and temporal logic [19]. Further, deep learning has had a considerable impact on
program verification and synthesis, i.e., for termination analysis [3,31], creating
loop invariants [48,55,60] and program synthesis/induction [2,18,25,27].

4 Cosler, Hahn, Omar, Schmitt

NeuroSynt

TLSF / LTL
speci cation

AIGER
circuit

LTL
speci cation

AIGER
circuit

Neural Solver
- multiple

models
 - di erent

con gurations
 - constantly

improved
Spot

Model Checker

NuXmv

Validation

AIGER circuit

LTL speci cation

Symbolic Solver

Strix

isolated docker container
and grpc server

BoSy ltlsynt

TLSF speci cation

LTL speci cation

SyFCo

Fig. 1. An overview of NeuroSynt.

3 The Neuro-symbolic Portfolio Solver NeuroSynt

The portfolio solver provides a unified approach to neural and symbolic meth-
ods for reactive synthesis. For a seamless integration of the neural method,
NeuroSynt relies on model checking (for soundness) and is backed up by symbolic
synthesis tools (for completeness).

3.1 Overview

We provide an overview of NeuroSynt in the following. Figure 1 shows the sys-
tem design of NeuroSynt. With a single call, a sample is 1) translated from TLSF
[34], the standardized input format for reactive synthesis, to LTL assumptions
and guarantees. 2) Fed into the neural solver described in Section 4 with candi-
date solutions being verified by a model-checker. This is a feasible approach since
LTL model checking is computationally significantly easier than reactive synthe-
sis (PSPACE [61] vs. 2-EXPTIME [51]). 3) A symbolic solver is queried simulta-
neously with the neural solver. The final result is an implementation in the form
of an AIGER [8] circuit, which is either a verified candidate circuit of the neural
solver or the circuit returned by the symbolic solver. Depending on the speci-
fication’s realizability, the circuit either represents the system implementation
(proving realizability) or the environment behavior (proving unrealizability).

All components, neural solver, symbolic solver, and model-checker, are iso-
lated Docker containers. All communication channels between components are
defined through a standardized API. Therefore, extending, maintaining, and
updating tools are uncoupled from NeuroSynt’s implementation. Currently inte-
grated are solvers based on the Python library ML23, including the neural solver
3 https://github.com/reactive-systems/ml2

https://github.com/reactive-systems/ml2

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 5

described in Section 4, nuXmv [14], NuSMV [17], Spot [22], Strix [45], and BoSy
[26]. We use SyFCo [34] to convert from TLSF to assumptions and guarantees
in LTL.

3.2 Usage

Since NeuroSynt comprises multiple tools that operate in conjunction during
each execution, users must specify arguments to tailor the behavior of these
tools. We categorize these arguments into tool-specific and general arguments to
simplify this process. General arguments are unrelated to any specific tool and
are passed with the execution command in the command-line interface.

For tool-specific arguments, we use the YAML format [7] to create configura-
tion files that encompass the neural engine arguments, the chosen tool for model
checking, and symbolic synthesis tasks, along with their respective arguments.
These configuration files facilitate reproducibility and provide a structured way
to manage tool-specific settings. An example of a configuration file is demon-
strated in Figure 12 in the Appendix.

Depending on user choice, NeuroSynt can either wait for all tools to fin-
ish/timeout and report all results or return the fastest solution. We allow the
standardized input format TLSF [34] and simple assume-guarantee structured
files in LTL (see Figure 10 in the Appendix for an example).

NeuroSynt offers two primary execution commands: benchmark for solving a
dataset of samples and synthesize for processing individual samples. For bench-
mark, all results are saved in a CSV file, which can be further analyzed. In
all other cases, the result is printed to the command line. First, we indicate
whether the specification was found to be REALIZABLE or UNREALIZABLE,
after which we print the system in AIGER format [8] (see Figure 11 in the
Appendix).

3.3 Implementation and Extensibility

The central design goal of NeuroSynt is to provide interfaces that are easy to
implement when adding and integrating new components. We first describe the
communication interfaces between components. Secondly, we detail some of the
messages, and lastly, we describe the options to extend the portfolio solver.

Each solver or model-checker is isolated in a Docker container and com-
municates with other components through gRPC interfaces. gRPC is a high-
performance open-source framework initially developed by Google for building
remote procedure call (RPC) APIs. Protocol buffers (protobuf) are used as
the interface definition language, ensuring programming-language-agnostic in-
terfaces.

In Figure 2, we show the communication through gRPC APIs for the run of
NeuroSynt with one specification. In the first step, each tool is initialized using
setup messages, ensuring the components’ successful connection. After setup, a
synthesis problem call is sent to the symbolic and neural solver in parallel. Both

6 Cosler, Hahn, Omar, Schmitt

Neural Solver

P
or

tf
o
lio

 S
o
lv

er

Model Checker

MCProblem

params
speci cation

system
realizable

SetupRequest

SetupResponse

SetupRequest

SetupResponse

SynProblem
params

speci cation

system
realizable

SynSolution

system
realizable

SynSolution

MCSolution

Symbolic Solver

SetupRequest

SetupResponse

SynProblem
params

speci cation

MCSolution
status

counterexample

Fig. 2. Communication diagram of gRPC calls for a run of NeuroSynt, calling the
Symbolic Solver and the neural solver, including model-checking.

solvers eventually report with a synthesis solution. Before responding, the neural
solver makes one or multiple calls to the model checker with candidate solutions,
the specification, and the information on whether the specification is suspected
to be realizable. The model checker answers a status and optionally a counterex-
ample. The neural solver then selects one solution if multiple candidates have
been generated and responds to NeuroSynt. The following details the specific
protobuf messages that can be exchanged between components.

SetupRequest and SetupResponse. As initialization, the components exchange
simple messages through a JSON-like object. This message establishes the suc-
cessful connection and allows the user to provide some tool- but not run-specific
arguments. In the case of the neural solver, the model name and other param-
eters are transmitted to load the model into the memory. The component then
responds with a simple success flag or error message.

SynProblem, SynSolution, and UnsoundSynSolution. The SynProblem (request)
contains an LTL Specification and a set of JSON-like parameters to configure
the run- and tool-specific arguments, such as timeout or the number of threads.
The LTL specification is decomposed into guarantees and assumptions, both
strings in infix or prefix notation. A SynSolution contains the system as the
string representation of an AIGER circuit or mealy machine, a status (realiz-
able, unrealizable, error, timeout, nonsucess), the calculation duration, and the
tool’s name. No system must be returned if error, timeout, or nonsucces were
reported. The UnsoundSynSolution consists of a SynSolution and MCSolution
and is returned by the neural solver. We show the protobuf definition for the
SynSolution, SynProblem, and the Specification in Figure 3. Other definitions
can be found in the Appendix in Figure 13.

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 7

// An LTL Synthesis solution. Used as response message for Synthesis.
message LTLSynSolution {

// AIGER circuit. It is allowed to pass no system , e.g. if a timeout
// happened.
optional AigerCircuit circuit = 1;
// Shows , whether the specification was found to be realizable or
// unrealizable. May not be set , e.g. if a timeout happened.
optional bool realizable = 2;
// A status that includes useful information about the run.
LTLSynStatus status = 3;
// Here additional information should be supplied if the status value
// requires more details.
string detailed_status = 4;
// which tool has created the response.
Tool tool = 5;
// How long the tool took to create the result.
optional google.protobuf.Duration time = 6;

}

message LTLSynProblem {
// Defines run - and tool -specific parameters. As Map (Dict in Python).
// Typical examples are threads , timeouts etc. Can be empty.
map <string , string > parameters = 1;
// A decomposed specification (assumptions + guarantees).
DecompLTLSpecification decomp_specification = 2;

}

message DecompLTLSpecification {
// All input atomic propositions that occur in guarantees or assumptions.
repeated string inputs = 1;
// All output atomic propositions that occur in guarantees or assumptions
repeated string outputs = 2;
// A set of guarantees that make up the specifications. All inputs and
// outputs occurring in any guarantee must be part of input/output.
repeated LTLFormula guarantees = 3;
// A set of assumptions that make up the specifications. All inputs and
// outputs occurring in any guarantee must be part of input/output.
repeated LTLFormula assumptions = 4;

}

Fig. 3. The protobuf definition for a SynSolution, SynProblem, and decomposed LTL
specification. Slightly simplified for easier comprehension. We refer the reader to the
artifact and our repository for the full definitions.

MCProblem and MCSolution. A tool can request its candidate solutions to be
model-checked by sending an MCProblem request. This message contains a set of
JSON-like parameters to configure the run- and tool-specific arguments, an LTL
specification (see SynProblem), and a system and status (see SynSolution). The
MCSolution contains the status of the model-checking and, if violating, a coun-
terexample in the form of an error trace and the duration of the computation.
We show the relevant protobuf definitions in Figure 13 in the Appendix.

NeuroSynt can be extended in three major ways. New neural solvers, sym-
bolic solvers, and model-checking tools can be integrated. Although not required,
we recommend wrapping all components into Docker containers as it helps re-
producibility, portability, and isolation, especially when run on high-performance
clusters.

8 Cosler, Hahn, Omar, Schmitt

Neural Solver. The neural solver sits at the core of the portfolio solver, with con-
nections to both the model-checking component and the main portfolio solver.
This component has to support receiving and responding to a SetupRequest and
a SetupResponse for initialization. Furthermore, it should respond to SynProb-
lem requests with UnsoundSynSolution. To verify candidate solutions, the neural
solver should initiate communication with the model-checking component to ver-
ify candidate solutions. Therefore, it should also support sending MCProblem
requests and receiving MCSolution responses. The neural solver can be inde-
pendent of the ML2 library if it implements the two communication interfaces
mentioned above. It can also be based on the ML2 library, where one could
benefit from the existing infrastructure ML2 provides.

Model checking tools. A model checker should respond to a SetupRequest with
a SetupResponse and receive the MCProblem request, perform model checking
and answer with an MCSolution.

Symbolic Solver. New symbolic solvers can be integrated into NeuroSynt by
implementing the server side of our generic protocol buffer interface for sym-
bolic solvers. As for all components, a symbolic solver should implement a setup
message (SetupRequest, SetupResponse). For a synthesis call, the symbolic solver
receives a SynProblem, performs the synthesis task, and eventually responds with
a SynSolution. At the time of writing, we do not require the output of synthe-
sis tools to be model-checked. However, one can implement the interface to the
model checking component to increase the trust in the output of new symbolic
approaches.

4 The Neural Solver

The neural solver is at the heart of the portfolio solver and is developed jointly
with NeuroSynt. We report on the methodology of the neural solver, including
architecture, datasets, data generation, training, and evaluation. We clearly dis-
tinguish between previous work [56], introducing a neural approach for reactive
synthesis, and improvements that are integrated into NeuroSynt, leading to the
significantly increased performance on the SYNTCOMP benchmarks.

4.1 Data and Data Generation Improvement

We significantly improved the training data generation compared to previous
work. While the basic algorithm is taken from [56], we scale the size of the
training samples, tweak the data generation parameters to fit the larger samples,
and combine multiple data generation strategies to lift previous limitations.

We aim for a dataset containing specifications (assumptions and guaran-
tees) and circuits. Depending on the specification, the circuit is either a winning
strategy for the system (realizable) or a winning strategy for the environment
(unrealizable). For each sample, we use an additional token to show whether the

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 9

system is realizable or unrealizable. The dataset is for supervised training, with
the specification being the input and the circuit, along with the realizability
token being the model’s target.

In total, we combine three datasets and generation techniques. For the first
two datasets, we utilize the generation method from [56] with 1) the minor tweak
of having a variable number of inputs and outputs (up to five) in the circuit
instead of exactly five (denoted previous), and 2) extensions to handle a larger
number of patterns, larger patterns, and patterns with more atomic propositions
(denoted new). The third dataset is a data augmentation method based on the
result of new (denoted augmented).

Data Generation. We first report on the data generation algorithm for previous
and new. The data generation has two major steps. In the first step, we mined
LTL formula patterns that are common in research and practice. Considering
formula patterns is a widespread idea, e.g., [23]. We collect patterns from 1075
(previously 346) benchmarks from the LTL synthesis track of SYNTCOMP 2022.
We extract a list of 627 assumption patterns and 7948 guarantee patterns. An
assumption restricts the environment, and a guarantee defines the implemen-
tation’s behavior. To fit the model requirements, we filtered out LTL formulas
with more than 15 inputs and 15 outputs (previously 5). Additionally, we fil-
ter out specifications with an abstract syntax tree (AST) size greater than 30
(formerly 25), resulting in 519 (formerly 157) assumption patterns and 6841
(previously 1942) guarantee patterns. In the second step, we constructed syn-
thesis specifications by combining the mined patterns. For each specification,
we alternate between sampling guarantees until the specification becomes un-
realizable, and sampling assumptions until the specification becomes realizable.
Whether we aim for a realizable or unrealizable specification, we either collect
the last successfully mined specification (realizable) or the second-to-last mined
specification (unrealizable). We aim for an even split between realizable and
unrealizable specifications. To handle more atomic propositions while reducing
patterns that do not share atomic propositions, we now favor atomic proposi-
tions present in the already constructed part of the specification with a bias of
4 when instantiating the patterns. We continue this process until we reach one
of the following stopping criteria:

a) the specification has the maximal number of guarantees (10),
b) the specification has the maximal number of assumptions (3),
c) the synthesis tool timed out (120s timeout), or
d) no suitable assumption was found after 7 (formerly 5) attempts.

To ensure an even distribution of challenging instances, we filter AIGER
circuits exceeding a maximum variable index of 60 and only allow a certain
amount (20%) of circuits with the same number of AND gates.

Data Augmentation. We augment the dataset new as a third approach to artifi-
cially force larger properties for a share of the final dataset. For each specification

10 Cosler, Hahn, Omar, Schmitt

Fig. 4. Previous dataset[56], compared with the new final dataset. Comparing the
number of atomic propositions in a sample, the largest variable id in the AIGER
circuit, and the average size of properties.

in new, we combine multiple patterns into one property until we reach an AST
size of 30. Having longer properties in the training dataset leads to better gen-
eralization to even larger properties. Compared to new, the augmented dataset
has an average of 3 guarantees instead of 5.6, with an average size of 22.9 per
guarantee instead of 12.3.

Final Dataset. All three resulting datasets are combined into a single dataset,
consisting of 600 000 training samples and 75 000 validation and test samples.
Figure 4, shows the key differences in features of the new final dataset compared
to the previous dataset [56]. While the previous dataset used only up to 5 inputs
and outputs in the specification, we now have up to 15 inputs and outputs,
leading to up to 25 atomic propositions in a specification. We also have slightly
more latches in the new dataset (1.23 instead of previously 1.16). Note that the
same version and configuration of Strix [45] was used in both approaches. The
most apparent distinction to previous datasets[56] is in the size of the properties,
where we clearly see the effects of the data augmentation process.

4.2 Architecture & Training

Transformer Architecture. The core of the neural solver implemented in
NeuroSynt is a Transformer neural network [62]. The vanilla Transformer ar-
chitecture follows a basic encoder-decoder structure. The encoder constructs
a hidden embedding zi for each input embedding xi of the input sequence
x = (x0, . . . , xn) in parallel. An embedding is a mapping from plain input, for
example, words or characters, to a high dimensional vector, for which learn-
ing algorithms and toolkits exist, e.g., word2vec [46]. Given the encoders out-
put z = (z0, . . . , zk), the decoder generates a sequence of output embeddings

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 11

assumptions and guarantees AIGER circuit

Self-Attention

Encoder-Decoder Attention

Softmax

next token

12

Fig. 5. Schematic view of the Hierarchical Transformer, with illustrated inputs/outputs
of the reactive synthesis application. The encoder shows the hierarchical self-attention
with separation into local and global layers. For simplicity, we show one local and global
layer and only two assumptions and guarantees with two tokens each.

y = (y0, . . . , ym) autoregressively. Since the transformer architecture contains
no recurrence nor convolution, we apply a tree positional encoding [59].

The main idea of the Transformer is a self-attention mechanism to compute
a score for each pair of input elements, representing which positions in the se-
quence should be considered the most when computing the hidden embeddings.
For each input embedding xi, we compute 1) a query vector qi, 2) a key vector
ki, and 3) a value vector vi by multiplying xi with weight matrices Wk, Wv, and
Wq, which are learned during the training process. The embeddings can be cal-
culated simultaneously using matrix operations [62]. Specifically, let Q,K, V be
the matrices obtained by multiplying the input vector X consisting of all xi with
the weight matrices Wk, Wv, and Wq: Attention(Q,K, V) = softmax (QKT

√
dk

)V ,
with dk being the model’s dimension. For details, we refer the interested reader
to [62]. The Transformer variation used in this paper is a so-called hierarchical
Transformer [43], separating the encoder self-attention into local and global lay-
ers. Local layers embed assumptions and guarantees individually and invariant
against their order. Global layers calculate the self-attention across all assump-
tions and all guarantees. We show an illustration in Figure 5.

Model Hyperparameter & Training. We train our model on the 600 000 samples
from our training dataset for 80 000 steps with early stopping and a batch size
of 512. We show a plot of the accuracy per sequence in Figure 6. We train data
parallel on two Nvidia A100 40GB from a Nvidia DGX A100 system, which
takes approximately 10 hours. We use the Adam optimizer [39] with β1 = 0.9,
β2 = 0.98 and ϵ = 10−9. We use learning rate scheduling as proposed in [62]
with 4000 warmup-steps. Our model consists of 4 local, 4 global, and 8 decoder
layers, each having 4 heads. All feed-forward networks have 1024 nodes to which

12 Cosler, Hahn, Omar, Schmitt

5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k 65k 70k 75k 80k
0%

10%

20%

30%

40%

50%

training
validation

steps

ac
cu

ra
cy

 p
er

 s
eq

ue
nc

e

Fig. 6. Accuracy per sequence during training. Measured on training and validation
data.

we apply a dropout of 0.2. Our model has a total size of 14 791 748 parameters.
Input and output tokens have an embedding of size 256. The maximum input and
target lengths are set according to the training data with at most 12 properties,
a maximum AST size of 32 per property for the specification, and a maximum
circuit length of 128 tokens after encoding.

We show that our model significantly improved compared to previous work
[56] by reimplementing and adapting the previous model to evaluate the 2022
SYNTCOMP benchmarks. With 21.8%, the new model improved by 13 percent-
age points to 34.83%. We explore more details of the evaluation of the model in
Section 5.1.

5 Experiments & Benchmarks

We split our experiments into two segments. In Section 5.1, we first perform
generalization experiments on the integrated neural solver. The neural solver
can generalize on its training distribution but also to more complex instances,
longer specifications, and out-of-distribution instances, which we show using the
datasets test, large, timeouts, and syntcomp.

Secondly, in Section 5.2, we evaluate the performance of the NeuroSynt frame-
work on the SYNTCOMP 2022 benchmarks. To this end, we use NeuroSynt to
compare the performance of the neural solver against multiple symbolic solvers
and highlight efficiency gains and enhancements that arise from the combination
of both methodologies. We show that the combined effort of neural and sym-
bolic solvers leads to a performance gain that symbolic solvers alone could not
achieve.

The evaluation is performed on a GPU cluster (1 Nvidia DGX A100 40GB,
AMD EPYC 7F32 @ 1.8GHz base, 3.7GHz max, 8 cores + 8 SMT cores, 256GB
RAM), on a CPU cluster (Intel Xeon E7-8867 v3 @ 2.50GHz, 64 cores + 64 HT
cores, and 1536 GB RAM) and additionally did some early experiments on an
Apple M1 Max (64GB memory, 10 cores, 32 neural cores).

Similar to different configurations of symbolic solvers, we have multiple mod-
els with slightly different performances. This paper reports the results of the

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 13

model that performed best on the SYNTCOMP benchmark. Whenever we con-
sider additional models, we mention that explicitly.

5.1 Generalization

We analyze the generalization capabilities of the model in the neural solver in
four ways. Firstly on our test set, secondly on samples that are significantly
larger than seen during training (large), thirdly samples that are arguably
more difficult than training samples, and fourthly on out-of-distribution sam-
ples (syntcomp). Here, we consider instances that are not from the same data
generation algorithm out-of-distribution samples. Results on these datasets are
in Table 1.

Generalization on test and large. On the datasets test and large, addition-
ally to measuring correct solutions (semantic accuracy, 84.2%), we collect how
many solutions are syntactically identical to the solution from our data gener-
ation algorithm (38.6%). The large difference of 45.6 percentage points on our
test dataset indicates that the neural solver generalizes to the semantics of the
synthesis problem instead of learning the particularities of the data generator.

The dataset large consists of larger samples than seen during training. Sam-
ples in large have at least 10, on average 14.5 properties, and the largest prop-
erty in each sample has an AST of 37.9 on average. In contrast, training samples
have 5.3 properties on average, with the largest property having an AST of 22.2
on average.

For a more detailed analysis, we join datasets test and large and plot the
share of correct solutions partitioned by the number of properties as well as the
size of the largest property in each sample in Figure 7. The largest property
seen during training is 30, and the largest number of properties per specification
is 12. While we see a decrease in performance for larger samples, there is no
clear drop after 12 or 30, respectively, which indicates generalization with the
number of properties and the length of the properties. Note that results from
larger sizes naturally have less significance as fewer samples per bucket exist.
We refer to Figure 14 in the Appendix for the total count of samples in each
displayed bucket.

Table 1. Performance of the neural model on different datasets.

test large timeouts syntcomp-
small

syntcomp-
large

syntcomp-
full

syntactic
accuracy 38.6% 10.2% - - - -

semantic
accuracy 84.2% 57.7% 33% 65.8% 54.5% 34.83%

14 Cosler, Hahn, Omar, Schmitt

Fig. 7. Share of correct solutions on the joint dataset of large and test over the
number of properties in a sample and the size of the largest property in each sample.
A darker background indicates sizes larger than seen during training.

Generalization on timeouts. The dataset timeouts consists of samples on which
Strix timed out after 120s during our data generation. Therefore, such samples
can be seen as significantly harder, while not larger than samples in the training
data. We achieve 33% correct solutions on this dataset, showing that our model
generalizes from the training data to more challenging specifications and solu-
tions that could not have not been solved by Strix during the data generation.
This experiment prognosticates the potential of combining neural methods with
symbolic methods.

Generalization on out-of-distribution dataset. While large and timeouts were
generated with the same data generation approach as the training data,
syntcomp-full consists of all 1075 real-world specifications collected in the
SYNTCOMP benchmark, on which the neural solver achieves 34.83% accuracy
(see Table 1). syntcomp-large contains all such samples that are in the size
of our evaluation constraints (i.e. max 30 properties, max AST size of 70 per
property, 54.5% accuracy). syntcomp-small contains only such samples that are
in the training data size (i.e., max 12 properties, max AST size of 30 per prop-
erty, 65.8% accuracy). We see a remarkable generalization to out-of-distribution
samples with an accuracy of 64.8% on syntcomp-small. We additionally observe
generalization on specification size that we also see on the large dataset. We
refer to Figure D in the Appendix for more details.

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 15

Fig. 8. A cactus plot showing the number of solved samples vs. accumulated wall-clock
time. Each sample per solver is a dot on the respective line. The lower and further
right a line, the better the solver. We compare the neural solver, Strix and BoSy
alone, NeuroSyntBoSy which couples BoSy and the neural solver and NeuroSyntStrix

which couples the neural solver and Strix. Further, we virtually combine the results
of all tools and all configurations from the SYNTCOMP to a virtual best solver and
compare that with the evaluations of multiple neural models.

5.2 Comparisons and Advantages of Combination

We demonstrate the advantage of NeuroSynt by comparing the neural solver
to the performance of multiple symbolic solvers: Strix [45], the current state-of-
the-art, BoSy [26], a bounded synthesis method, and additionally rely on the
results of SYNTCOMP 2022 (ltlsynt [54], Otus [1], sdf [37]). Whenever we write
SYNTCOMP in this paper, we refer to the 2022 iteration.

We initiate the evaluation by comparing the neural solver and NeuroSynt to
the specified symbolic tools, illustrating the number of problems that can be
solved within a specific time frame. Then we dive into details on instances that
could only be solved by NeuroSynt and no other symbolic solver (novel solves),
show details on the time-to-solution differences between the solvers, and lastly,
look at circuit sizes of their respective solutions.

In Figure 8, we display the performance of the neural solver, the perfor-
mance of several symbolic tools and the performance of NeuroSynt that unites
the neural solver with a symbolic solver. We additionally show a Virtual Best
Solver (VBS) of all SYNTCOMP 2022 results without and including the neural
solver. We further report what the previously published neural reactive synthesis
approach [56] would have achieved if it had been integrated into the portfolio
solver. With 374 solved instances, the neural solver alone can already solve more
samples than BoSy (347) with 120s timeout on the CPU cluster. Its true advan-
tage becomes evident when combining the neural solver with symbolic solvers.
NeuroSyntBoSy solves 152 (previous: 59) samples more than BoSy alone, which

16 Cosler, Hahn, Omar, Schmitt

is 20.8% of the samples that BoSy could not solve. Similarly, NeuroSyntStrix
solves 31 (previous: 2) samples more than Strix alone (1h timeout on the CPU
cluster), which is 14.2% of the samples that Strix could not solve in 1h. To show
the full potential of NeuroSynt, we combined all results from the SYNTCOMP
and our experiments with BoSy and Strix. All symbolic solvers combined were
able to solve 945 instances of the total of 1075. Adding the neural solver of
NeuroSynt to the virtual best solver, we solve an additional 20 (previous: 0)
samples exclusively that no other tool tested did solve (novel solves). This is
15.4% of the samples that none of the symbolic tools could solve in 1h. No other
tool in SYNTCOMP 2022 except the state-of-the-art Strix, solved more samples
that no other tool could solve. We refer to the appendix 2 for exact numbers.
This signifies that even for specifications that pose computational challenges to
symbolic synthesis tools, there exist patterns that a neural network can recognize
and exploit post-training.

Novel Solves. Of the 20 novel solves, 6 instances are parameterized versions of
full arbiters with 3 processes. This version of the full arbiter is unrealizable as
the specification additionally enforces two grants to hold at the same time step
(step 11 to step 16 respectively). These are the largest parameterizations of this
problem class in the SYNTCOMP dataset. Similarly, 11 instances are full arbiter
with 3 processes, where two grants are enforced simultaneously (step 6 to 16,
respectively). These parameterizations are also the largest parameterizations of
this problem class in the SYNTCOMP dataset. One instance is a full arbiter
with 6 processes and the requirement of two grants to hold at any time step.
Finally, we have one instance of a load balancer with 6 grants and the addi-
tional unrealizable requirement of two grants at time step 5. This is also the
largest parameterization of this problem class in the SYNTCOMP dataset. In
the Appendix, Figure 17, we give an example of such samples.

Time To Solution. For experiments with NeuroSynt, we record the wall-clock
time of the neural solver, the symbolic solver, and the model checker. The neural
solver (including model checking) is fastest on the GPU cluster, with 8.6s and
a standard deviation of only 3.3s. The time for model-checking using NuXmv is
almost negligible, with 0.35s on average per sample. The low standard deviation
highlights the advantage of the neural solver, as the time does not depend on the
complexity of the specification. Strix with a timeout of 1h on the CPU cluster
takes 33.4s on average, with a standard deviation of 185.3s. We find that the
neural solver can also be run on CPU-only hardware (CPU cluster) with an
average of 79.4s and on hybrid desktop hardware such as the Apple M1 Max
with an average of 17.8s. For an extensive overview over the experiments with
different timeouts, we refer the reader to the appendix 3.

Circuit Sizes. We find that on instances where the neural solver and the symbolic
solver both found a solution, the solution by the neural solver is often smaller
than the symbolic solver’s. This holds for BoSy and Strix, but also for all other
tools in SYNTCOMP (on the realizable fraction). On samples solved by Strix

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 17

Fig. 9. No. of latches per instance. On instances that the neural solver and Strix
commonly solved

and the neural solver, the solutions by the neural solver have 54.9% fewer latches
than those by Strix. In Figure 9, we show the distribution of latches for this
comparison. For more details, we refer the reader to the Appendix 4.

6 Conclusion

We introduced NeuroSynt, a neuro-symbolic portfolio solver for reactive synthe-
sis. At the core of the portfolio solver lies an integrated neural solver that com-
putes candidate implementations, which are automatically checked by model-
checking tools. We reported on the neural solver’s methodology and training and
the API framework’s implementation to isolate components. The open-source
implementation of NeuroSynt provides an interface in which new neural and
symbolic approaches alike can be seamlessly integrated.

Our experiments on the generalization capabilities of the Transformer show
the ability to generalize to larger specifications, more difficult specifications,
and out-of-distribution specifications. The relatively small size of the underly-
ing Transformer neural network suggests that the overall performance of neural
solvers can be further increased.

We evaluated the overall performance of NeuroSynt, enhancing the state-
of-the-art in reactive synthesis with the integrated neural solver contributing
novel solves in the SYNTCOMP 2022 benchmark. With the almost constant
evaluation time of the neural solver, the portfolio solver is often faster than
previous approaches. Furthermore, the integrated neural solver yields smaller
implementations than state-of-the-art symbolic tools, including Strix and BoSy.

7 Data Availability Statement

NeuroSynt is published open-source on GitHub (https://github.com/react
ive-systems/neurosynt). All data, models, and experiments supporting this
paper’s results are publicly available. A digital artifact is available at (https:
//doi.org/10.5281/zenodo.10046523).

https://github.com/reactive-systems/neurosynt
https://github.com/reactive-systems/neurosynt
https://doi.org/10.5281/zenodo.10046523
https://doi.org/10.5281/zenodo.10046523

18 Cosler, Hahn, Omar, Schmitt

References

1. Abraham, R.: Symbolic LTL reactive synthesis. Master’s thesis, University of
Twente, Enschede (Jul 2021)

2. Alet, F., Lopez-Contreras, J., Koppel, J., Nye, M., Solar-Lezama, A., Lozano-Perez,
T., Kaelbling, L., Tenenbaum, J.: A large-scale benchmark for few-shot program
induction and synthesis. In: International Conference on Machine Learning. pp.
175–186. PMLR (2021)

3. Alon, Y., David, C.: Using graph neural networks for program termination. In:
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. pp. 910–921. ESEC/FSE
2022, Association for Computing Machinery, New York, NY, USA (Nov 2022).
https://doi.org/10.1145/3540250.3549095

4. Balunovic, M., Bielik, P., Vechev, M.T.: Learning to solve SMT formulas. In: Ben-
gio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett,
R. (eds.) Advances in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada. pp. 10338–10349 (2018)

5. Bansal, K., Loos, S.M., Rabe, M.N., Szegedy, C., Wilcox, S.: HOList: An Envi-
ronment for Machine Learning of Higher-Order Theorem Proving. In: Proceedings
of the 36th International Conference on Machine Learning. pp. 454–463. PMLR
(May 2019). https://doi.org/10.48550/arXiv.1904.03241

6. Bansal, K., Szegedy, C., Rabe, M.N., Loos, S.M., Toman, V.: Learning to reason
in large theories without imitation (Jun 2020). https://doi.org/10.48550/arXiv.1
905.10501

7. Ben-Kiki, O., Evans, C., döt Net, I.: YAML Ain’t Markup Language (YAML™)
revision 1.2.2. Tech. rep. (Oct 2021)

8. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech.
Rep. 07/1, Institute for Formal Models and Verification, Johannes Kepler Univer-
sity, Altenbergerstr. 69, 4040 Linz, Austria (October 2007, 2007)

9. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Tech. Rep. 11/2, In-
stitute for Formal Models and Verification, Johannes Kepler University, Altenberg-
erstr. 69, 4040 Linz, Austria (July 2011, 2011)

10. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Transactions of the American Mathematical Society 138, 295–311 (1969).
https://doi.org/10.2307/1994916

11. Cadilhac, M., Pérez, G.A.: Acacia-bonsai: a modern implementation of downset-
based LTL realizability. In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 29th International
Conference, TACAS 2023, Paris, France, April 22-27, 2023, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13994, pp. 192–207. Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_14

12. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: Hatami, H., McKenzie, P., King, V. (eds.) Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017. pp. 252–263. ACM (2017). https:
//doi.org/10.1145/3055399.3055409

13. Cameron, C., Chen, R., Hartford, J., Leyton-Brown, K.: Predicting propositional
satisfiability via end-to-end learning. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 34, pp. 3324–3331 (2020)

https://doi.org/10.1145/3540250.3549095
https://doi.org/10.1145/3540250.3549095
https://doi.org/10.48550/arXiv.1904.03241
https://doi.org/10.48550/arXiv.1904.03241
https://doi.org/10.48550/arXiv.1905.10501
https://doi.org/10.48550/arXiv.1905.10501
https://doi.org/10.48550/arXiv.1905.10501
https://doi.org/10.48550/arXiv.1905.10501
https://doi.org/10.2307/1994916
https://doi.org/10.2307/1994916
https://doi.org/10.1007/978-3-031-30820-8_14
https://doi.org/10.1007/978-3-031-30820-8_14
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 19

14. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) Computer Aided Verification - 26th International Conference,
CAV 2014, Vienna, Austria, July 18-22, 2014. Proceedings. Lecture Notes in Com-
puter Science, vol. 8559, pp. 334–342. Springer (2014). https://doi.org/10.1007/
978-3-319-08867-9_22

15. Church, A.: Logic, arithmetic, and automata (1962)
16. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.

In: Summaries of the Summer Institute of Symbolic Logic. vol. 1, pp. 3–50. Cornell
University, Ithaca, NY (1957)

17. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an OpenSource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) Computer Aided Verification. pp.
359–364. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2002).
https://doi.org/10.1007/3-540-45657-0_29

18. Clymo, J., Manukian, H., Fijalkow, N., Gascón, A., Paige, B.: Data generation for
neural programming by example. In: Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics. pp. 3450–3459. PMLR (2020)

19. Cosler, M., Hahn, C., Mendoza, D., Schmitt, F., Trippel, C.: nl2spec: interactively
translating unstructured natural language to temporal logics with large language
models. In: Enea, C., Lal, A. (eds.) Computer Aided Verification - 35th Interna-
tional Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13965, pp. 383–396. Springer (2023).
https://doi.org/10.1007/978-3-031-37703-7_18

20. Cosler, M., Schmitt, F., Hahn, C., Finkbeiner, B.: Iterative circuit repair against
formal specifications. In: The Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023 (2023)

21. Drori, I., Zhang, S., Shuttleworth, R., Tang, L., Lu, A., Ke, E., Liu, K., Chen,
L., Tran, S., Cheng, N., Wang, R., Singh, N., Patti, T.L., Lynch, J., Shporer, A.,
Verma, N., Wu, E., Strang, G.: A neural network solves, explains, and generates
university math problems by program synthesis and few-shot learning at human
level. Proceedings of the National Academy of Sciences 119(32), e2123433119 (Aug
2022). https://doi.org/10.1073/pnas.2123433119

22. Duret-Lutz, A., Renault, E., Colange, M., Renkin, F., Aisse, A.G., Schlehuber-
Caissier, P., Medioni, T., Martin, A., Dubois, J., Gillard, C., Lauko, H.: From
Spot 2.0 to Spot 2.10: what’s new? In: Shoham, S., Vizel, Y. (eds.) Computer Aided
Verification - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10,
2022, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13372, pp.
174–187. Springer (2022). https://doi.org/10.1007/978-3-031-13188-2_9

23. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st international conference on Soft-
ware engineering. pp. 411–420. ICSE ’99, Association for Computing Machinery,
New York, NY, USA (May 1999). https://doi.org/10.1145/302405.302672

24. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems - 17th
International Conference, TACAS 2011, Saarbrücken, Germany, March 26-April
3, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6605, pp. 272–275.
Springer (2011). https://doi.org/10.1007/978-3-642-19835-9_25

25. Ellis, K., Wong, L., Nye, M., Sablé-Meyer, M., Cary, L., Anaya Pozo, L., Hewitt,
L., Solar-Lezama, A., Tenenbaum, J.B.: DreamCoder: growing generalizable, in-
terpretable knowledge with wake–sleep Bayesian program learning. Philosophical

https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-031-37703-7_18
https://doi.org/10.1007/978-3-031-37703-7_18
https://doi.org/10.1073/pnas.2123433119
https://doi.org/10.1073/pnas.2123433119
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/978-3-642-19835-9_25

20 Cosler, Hahn, Omar, Schmitt

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences 381(2251), 20220050 (Jun 2023). https://doi.org/10.1098/rsta.2022.0050

26. Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: an experimentation framework
for bounded synthesis. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Ver-
ification - 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10427,
pp. 325–332. Springer (2017). https://doi.org/10.1007/978-3-319-63390-9_17

27. Fijalkow, N., Lagarde, G., Matricon, T., Ellis, K., Ohlmann, P., Potta, A.N.: Scal-
ing neural program synthesis with distribution-based search. In: Proceedings of
the AAAI Conference on Artificial Intelligence. vol. 36, pp. 6623–6630 (Jun 2022).
https://doi.org/10.1609/aaai.v36i6.20616

28. Finkbeiner, B., Hahn, C., Lukert, P., Stenger, M., Tentrup, L.: Synthesis from
hyperproperties. Acta Informatica 57(1-2), 137–163 (2020). https://doi.org/10.1
007/s00236-019-00358-2

29. Finkbeiner, B., Klein, F.: Bounded cycle synthesis. In: Chaudhuri, S., Farzan, A.
(eds.) Computer Aided Verification - 28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 9779, pp. 118–135. Springer (2016). https://doi.org/10.1
007/978-3-319-41528-4_7

30. First, E., Rabe, M.N., Ringer, T., Brun, Y.: Baldur: Whole-Proof Generation and
Repair with Large Language Models (Mar 2023). https://doi.org/10.48550/arXiv
.2303.04910

31. Giacobbe, M., Kroening, D., Parsert, J.: Neural termination analysis. In: Roy-
choudhury, A., Cadar, C., Kim, M. (eds.) Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18,
2022. pp. 633–645. ACM, Singapore Singapore (Nov 2022). https://doi.org/10.114
5/3540250.3549120

32. Hahn, C., Schmitt, F., Kreber, J.U., Rabe, M.N., Finkbeiner, B.: Teaching tempo-
ral logics to neural networks. In: 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021)

33. Huang, D., Dhariwal, P., Song, D., Sutskever, I.: GamePad: a learning environment
for theorem proving. In: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019)

34. Jacobs, S., Klein, F., Schirmer, S.: A high-level LTL synthesis format: TLSF v1.1.
In: Piskac, R., Dimitrova, R. (eds.) Proceedings Fifth Workshop on Synthesis,
SYNT@CAV 2016, Toronto, Canada, July 17-18, 2016. EPTCS, vol. 229, pp. 112–
132 (2016). https://doi.org/10.4204/EPTCS.229.10

35. Jacobs, S., Perez, G.A., Abraham, R., Bruyere, V., Cadilhac, M., Colange, M.,
Delfosse, C., van Dijk, T., Duret-Lutz, A., Faymonville, P., Finkbeiner, B., Khal-
imov, A., Klein, F., Luttenberger, M., Meyer, K., Michaud, T., Pommellet, A.,
Renkin, F., Schlehuber-Caissier, P., Sakr, M., Sickert, S., Staquet, G., Tamines,
C., Tentrup, L., Walker, A.: The reactive synthesis competition (SYNTCOMP):
2018-2021 (Jun 2022). https://doi.org/10.48550/arXiv.2206.00251

36. Jiang, A.Q., Welleck, S., Zhou, J.P., Lacroix, T., Liu, J., Li, W., Jamnik, M., Lam-
ple, G., Wu, Y.: Draft, Sketch, and Prove: Guiding Formal Theorem Provers with
Informal Proofs. In: The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023 (2023)

37. Khalimov, A.: Game-based bounded synthesis via BDDs

https://doi.org/10.1098/rsta.2022.0050
https://doi.org/10.1098/rsta.2022.0050
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1609/aaai.v36i6.20616
https://doi.org/10.1609/aaai.v36i6.20616
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.48550/arXiv.2303.04910
https://doi.org/10.48550/arXiv.2303.04910
https://doi.org/10.48550/arXiv.2303.04910
https://doi.org/10.48550/arXiv.2303.04910
https://doi.org/10.1145/3540250.3549120
https://doi.org/10.1145/3540250.3549120
https://doi.org/10.1145/3540250.3549120
https://doi.org/10.1145/3540250.3549120
https://doi.org/10.4204/EPTCS.229.10
https://doi.org/10.4204/EPTCS.229.10
https://doi.org/10.48550/arXiv.2206.00251
https://doi.org/10.48550/arXiv.2206.00251

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 21

38. Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token
rings. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification - 25th In-
ternational Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 8044, pp. 928–933. Springer
(2013). https://doi.org/10.1007/978-3-642-39799-8_66

39. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y.,
LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015).
https://doi.org/10.48550/arXiv.1412.6980

40. Kreber, J.U., Hahn, C.: Generating symbolic reasoning problems with transformer
GANs (May 2023). https://doi.org/10.48550/arXiv.2110.10054

41. Křetínský, J., Meggendorfer, T., Prokop, M., Rieder, S.: Guessing winning policies
in LTL synthesis by semantic learning. In: Enea, C., Lal, A. (eds.) Computer Aided
Verification. pp. 390–414. Lecture Notes in Computer Science, Springer Nature
Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-37706-8_20

42. Lample, G., Charton, F.: Deep learning for symbolic mathematics. In: 8th In-
ternational Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020 (2020)

43. Li, W., Yu, L., Wu, Y., Paulson, L.C.: IsarStep: a benchmark for high-level math-
ematical reasoning. In: 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021)

44. Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st International Conference on Logic
for Programming, Artificial Intelligence and Reasoning, Maun, Botswana, May
7-12, 2017. EPiC Series in Computing, vol. 46, pp. 85–105. EasyChair (2017).
https://doi.org/10.29007/8mwc

45. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verification. pp.
578–586. Lecture Notes in Computer Science, Springer International Publishing,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_31

46. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word rep-
resentations in vector space. In: Bengio, Y., LeCun, Y. (eds.) 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA,
May 2-4, 2013, Workshop Track Proceedings (2013)

47. Paliwal, A., Loos, S.M., Rabe, M.N., Bansal, K., Szegedy, C.: Graph representa-
tions for higher-order logic and theorem proving. In: The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, New York, NY, USA, February 7-12,
2020. pp. 2967–2974. AAAI Press (2020). https://doi.org/10.1609/aaai.v34i03.5689

48. Pei, K., Bieber, D., Shi, K., Sutton, C., Yin, P.: Can large language models reason
about program invariants? In: International Conference on Machine Learning. pp.
27496–27520. PMLR (2023)

49. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) Verification, Model Checking, and Abstract Interpre-
tation, 7th International Conference, VMCAI 2006, Charleston, SC, USA, January
8-10, 2006, Proceedings. Lecture Notes in Computer Science, vol. 3855, pp. 364–
380. Springer (2006). https://doi.org/10.1007/11609773_24

50. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977. pp. 46–57 (Oct 1977). https://doi.org/10.1109/SFCS.1977.32

https://doi.org/10.1007/978-3-642-39799-8_66
https://doi.org/10.1007/978-3-642-39799-8_66
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.2110.10054
https://doi.org/10.48550/arXiv.2110.10054
https://doi.org/10.1007/978-3-031-37706-8_20
https://doi.org/10.1007/978-3-031-37706-8_20
https://doi.org/10.29007/8mwc
https://doi.org/10.29007/8mwc
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1609/aaai.v34i03.5689
https://doi.org/10.1609/aaai.v34i03.5689
https://doi.org/10.1007/11609773_24
https://doi.org/10.1007/11609773_24
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32

22 Cosler, Hahn, Omar, Schmitt

51. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 11-13, 1989. pp. 179–190. ACM Press
(1989). https://doi.org/10.1145/75277.75293

52. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri,
USA, October 22-24, 1990, Volume II. pp. 746–757. IEEE Computer Society (1990).
https://doi.org/10.1109/FSCS.1990.89597

53. Rabin, M.: Automata on infinite objects and church’s problem. CBMS Regional
Conference Series in Mathematics, vol. 13. American Mathematical Society, Prov-
idence, Rhode Island (1972). https://doi.org/10.1090/cbms/013

54. Renkin, F., Schlehuber, P., Duret-Lutz, A., Pommellet, A.: Improvements to ltlsynt
(2022). https://doi.org/10.48550/arXiv.2201.05376

55. Ryan, G., Wong, J., Yao, J., Gu, R., Jana, S.: CLN2INV: Learning Loop Invari-
ants with Continuous Logic Networks. In: International Conference on Learning
Representations (Sep 2019)

56. Schmitt, F., Hahn, C., Rabe, M.N., Finkbeiner, B.: Neural circuit synthesis from
specification patterns. In: Advances in Neural Information Processing Systems.
vol. 34, pp. 15408–15420. Curran Associates, Inc. (2021)

57. Selsam, D., Bjørner, N.S.: Guiding high-performance SAT solvers with unsat-core
predictions. In: Janota, M., Lynce, I. (eds.) Theory and Applications of Satisfiabil-
ity Testing - SAT 2019 - 22nd International Conference, SAT 2019, Lisbon, Portu-
gal, July 9-12, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11628,
pp. 336–353. Springer (2019). https://doi.org/10.1007/978-3-030-24258-9_24

58. Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a
SAT solver from single-bit supervision. In: 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 (2019)

59. Shiv, V.L., Quirk, C.: Novel positional encodings to enable tree-based transformers.
In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. pp.
12058–12068. Vancouver, BC, Canada (Dec 2019)

60. Si, X., Dai, H., Raghothaman, M., Naik, M., Song, L.: Learning loop invariants
for program verification. In: Advances in Neural Information Processing Systems.
vol. 31 (2018)

61. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
Journal of the ACM (JACM) 32(3), 733–749 (1985). https://doi.org/10.1145/38
28.3837

62. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 30. pp. 5998–6008. Long Beach, CA,
USA (Dec 2017)

63. Wu, Y., Jiang, A.Q., Li, W., Rabe, M., Staats, C., Jamnik, M., Szegedy, C.: Aut-
oformalization with large language models. Advances in Neural Information Pro-
cessing Systems 35, 32353–32368 (2022)

https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/75277.75293
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1090/cbms/013
https://doi.org/10.1090/cbms/013
https://doi.org/10.48550/arXiv.2201.05376
https://doi.org/10.48550/arXiv.2201.05376
https://doi.org/10.1007/978-3-030-24258-9_24
https://doi.org/10.1007/978-3-030-24258-9_24
https://doi.org/10.1145/3828.3837
https://doi.org/10.1145/3828.3837
https://doi.org/10.1145/3828.3837
https://doi.org/10.1145/3828.3837

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 23

A Linear-time Temporal Logic (LTL)

For a given set of atomic propositions AP , the syntax of LTL formulas over AP
is defined as:

φ,ψ ::= ⊤ | a | ¬φ | φ ∧ ψ | φ | φU ψ ,

where ⊤ is the Boolean constant, a ∈ AP , ¬ and ∧ are the Boolean connectives
and and U are temporal operators. We refer to as the next operator and
to U as the until operator. Other Boolean connectives can be derived. Further,
we can derive temporal modalities such as eventually φ := ⊤U φ and globally
φ := ¬ ¬φ. For a given set of atomic propositions AP , the semantics of an

LTL formula over AP is defined with respect to the set of infinity words over the
alphabet 2AP denoted by

(
2AP

)ω. The semantics of an LTL formula φ is defined
as the language Words(φ) = {σ ∈

(
2AP

)ω | σ |= φ} where |= is the smallest
relation satisfying the following properties:

σ |= ⊤
σ |= a iff a ∈ A0

σ |= ¬φ iff σ ̸|= φ

σ |= φ ∧ ψ iff σ |= φ and σ |= ψ

σ |= φ iff σ[1 . . .] |= φ

σ |= φU ψ iff ∃j ≥ 0. σ[j . . .] |= ψ and ∀0 ≤ i < j. σ[i . . .] |= φ ,

where σ = A0A1 . . . ∈ (2AP)ω and σ[i . . .] = AiAi+1 . . . denotes the suffix of σ
starting at i.

A strategy f : (2I)∗ → 2O maps sequences of input valuations 2I to an
output valuation 2O. The behavior of a strategy f is characterized by an infinite
tree, called computation tree, that branches by the valuations of I and whose
nodes w ∈ (2I)∗ are labeled with the strategic choice f(w). For an infinite word
w = w0w1w2 . . . ∈ (2I)∗, the corresponding trace is defined as (f(ϵ)∪w0)(f(w0)∪
w1)(f(w1) ∪ w2) . . . ∈ (2I∪̇O)ω.

B Usage of NeuroSynt

We provide an example for an assume-guarantee style input file in Figure 10. It
can be used as an alternative to the standardized TLSF [34] format. Figure 11
provides the output that NeuroSynt produces for this specification. In Figure 12,
we give an example of the configuration file for NeuroSynt, running Strix as a
symbolic solver, NuXmv as a model checker, and our neural solver.

24 Cosler, Hahn, Omar, Schmitt

1 {
2 "semantics": "mealy",
3 "inputs": ["r_0", "r_1"],
4 "outputs": ["g_0", "g_1"],
5 "assumptions": [],
6 "guarantees": ["(G ((! (g_0)) | (! (g_1))))",
7 "(G ((r_0) -> (F (g_0))))",
8 "(G ((r_1) -> (F (g_1))))"]
9 }

Fig. 10. Example of the JSON input file of a simple 2-bit-arbiter

1 REALIZABLE
2 aag 3 2 1 2 0
3 2
4 4
5 6 7
6 7
7 6
8 i0 r_0
9 i1 r_1

10 l0 l0
11 o0 g_0
12 o1 g_1

Fig. 11. Example of the AIGER output for a simple 2-bit arbiter

1 symbolic_solver:
2 tool: strix
3 tool_args:
4 "timeout": 120
5 "--threads": 4
6 "--minimize": ""
7 "--auto": ""
8 service_args:
9 "mem_limit": "2g"

10 "start_containerized_service": True
11 model_checker:
12 tool: nuxmv
13 tool_args:
14 "timeout": 10
15 service_args:
16 "mem_limit": "2g"
17 "start_containerized_service": True
18 neural_solver:
19 tool: ml2solver
20 service_args:
21 "nvidia_gpus": False
22 "mem_limit": "100g"
23 "start_containerized_service": True
24 "start_service": False
25 tool_setup_args:
26 "batch_size": 1
27 "alpha": 0.5
28 "num_properties": 40
29 "length_properties": 70
30 "beam_size": 32
31 "check_setup": True
32 "model": "ht -50"

Fig. 12. Example of the configuration file, running Strix as a symbolic solver, NuXmv
as a model checker, and our neural solver.

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 25

C Protocol Buffers

Figure 13 shows some of our protocol buffer interfaces. We omitted some mes-
sages and definitions for simplification. We refer the interested reader to the
artifact.

message LTLFormula {
// Represents an LTL formula as string.
string formula = 1;
// The notation in which the formula is serialized. Infix is default.
string notation = 2;

}

message UnsoundLTLSynSolution {
LTLSynSolution synthesis_solution = 1;
// A model -checking result can optionally be included in the response.
optional LTLMCSolution model_checking_solution = 2;
// which tool has created the response.
Tool tool = 3;
// How long the tool took to create the result.
optional google.protobuf.Duration time = 4;

}

message LTLMCProblem {
// Defines run - and tool -specific parameters. As Map (Dict in Python).
// Typical examples are threads , timeouts etc. Can be empty.
map <string , string > parameters = 1;
// A decomposed specification.
DecompLTLSpecification decomp_specification = 2;
// AIGER circuit.
optional AigerCircuit circuit = 3;
// Shows whether the specification is realizable or unrealizable.
bool realizable = 4;

}

message LTLMCSolution {
// A status that includes useful information about the run.
LTLMCStatus status = 1;
// which tool has created the response.
Tool tool = 2;
// A trace , proving the violation of the specification.
optional Trace counterexample = 3;
// How long the tool took to create the result.
optional google.protobuf.Duration time = 4;

}

Fig. 13. Parts of the protocol buffer interfaces. Some messages and definitions are
missing for simplification.

26 Cosler, Hahn, Omar, Schmitt

D Distribution of test, large, and syntcomp dataset over
input size

Fig. 14. Distribution of the joint dataset of large and test over the number of prop-
erties in a sample and the size of the largest property in each sample.

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 27

Fig. 15. Top: Share of correct solutions on the syntcomp datasets over the number of
properties in a sample and the size of the largest property in each sample. A darker
background indicates sizes larger than seen during training. Bottom: Distribution of
syntcomp dataset over the number of properties in a sample and the size of the largest
property in each sample.

28 Cosler, Hahn, Omar, Schmitt

E Syntcomp Results

Here, we provide detailed results on the number of solved instances (Table 2),
the average times per tool (Table 3), and the sizes of the solutions (Table 4).

Table 2. Performance of several tools on the 2022 SYNTCOMP benchmarks. Total
number of samples: 1075. Tools denoted with † include experiments on own hard-
ware. Other results are solely based on the SYNTCOMP results. Exclusive solves are
instances where no other listed tool provided a solution

tool total solved total solved exclusively solved
best configuration grouped configurations grouped configurations

Strix† 858 919 116
sdf 719 723 17
ltlsynt 707 717 5
Otus 502 503 0

Neural Solver† 374 402 20

BoSy† 347 347 0

Table 3. Average times of Strix, BoSy, and the neural solver on different hardware
configurations. Averaged over all SYNTCOMP instances. For the symbolic solvers, we
additionally report the number of solved samples for the different hardware configu-
rations. The Neural Solvers accuracy does not depend on the hardware configuration.
Experiments on the Apple Mac Book Pro (MBP: M1 Max, 10 cores, 32 Neural Cores)
are 20 randomly selected instances from SYNTCOMP. Given the low standard de-
viation of the neural solver that we found in other experiments, this is an accurate
representation.

Experiment mean (s) std (s) solved instances

Strix on CPU cluster 120s timeout 5.1 14.3 821
Strix on GPU cluster 120s timeout 3.7 12.4 833
Strix on CPU cluster 1h timeout 33.4 185.3 858
Strix-ltl_synth_zlk_bfs (SYNTCOMP) 28.2 145.7 816
BoSy on CPU cluster 120s timeout 19.4 28.1 347
Neural Solver on GPU cluster 8.6 3.3
→ thereof model-checking 0.35 0.93

Neural Solver on CPU cluster 79.4 28
→ thereof model-checking 0.66 1.3

Neural Solver on MBP 17.8 -
→ thereof model-checking 0.59 -

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 29

Table 4. Comparison of the number of latches of different tools. Each symbolic solver is
compared with the neural solver on all instances that both solvers solve correctly. Cal-
culations on † marked tools are solely based on the realizable fraction of SYNTCOMP
results, as SYNTCOMP only reports circuits for realizable instances.

Symbolic Solver average
Symbolic Solver

average
Neural Solver

Neural Solver
smaller by (%)

Strix 1.4 0.64 54.9
BoSy 1.11 0.64 42.3
ltlsynt† 2.49 1.05 57.7
Otus† 13.21 1.05 92
sdf† 44.84 1.05 97.6

F Example Instances

Figure 17 shows an example instance in which the neural solver found a solution,
but Strix did not within the time limit. Figure 16 shows an example instance on
which the Transformer neural network was trained on, consisting of 12 properties.
Figure 18 shows an example instance of the large data set, which was solved
by the neural solver. Figure 19 shows an example instance from SYNTCOMP,
which was solved by the neural solver (and Strix).

1 {
2 "inputs": ["i0", "i1", "i2", "i3", "i4"],
3 "outputs": ["o0", "o1", "o2", "o3", "o4"],
4 "assumptions": [
5 "(G ((! (o0)) | (X (((! (i0)) & (! (i2))) U ((! (i0)) & (i2))))))",
6 "(G ((! (o2)) | (X (((! (i1)) & (! (i0))) U ((! (i1)) & (i0))))))"
7],
8 "guarantees": [
9 "(G (F (o3)))",

10 "(G ((o0) -> (X ((i0) R (((i0) -> (o2)) & ((! (i0)) -> (o4)))))))",
11 "(G (((i3) & (X (i0))) -> (F ((o2) & (o0)))))",
12 "(G ((i0) -> (F (o3))))",
13 "(G (((i2) & (X (i3))) -> (X (X (X (X (X (X (X (X (X (X ((o3) & (o0))))))))

))))))",
14 "(G ((o1) -> (X (((! (o1)) U (i3)) | (G (! (o1)))))))",
15 "(G (((i3) & (X (i0))) -> ((X (o1)) <-> (X (i2)))))",
16 "(G ((o3) -> (X (((! (o3)) U (i1)) | (G (! (o3)))))))",
17 "(G (((i4) & (o1)) -> (X (X (X (X (X (o4))))))))",
18 "(G ((X (o4)) -> (i0)))"
19]
20 }

Fig. 16. Example instance from the training set with 12 properties.

30 Cosler, Hahn, Omar, Schmitt

1 INFO {
2 TITLE: "Full Arbiter, unrealizable variant 1"
3 DESCRIPTION: "Parameterized Arbiter, where no spurious grants are allowed"
4 SEMANTICS: Moore
5 TARGET: Mealy
6 }
7 {
8 "inputs": ["r_0","r_1","r_2"],
9 "outputs": ["g_0","g_1","g_2"],

10 "assumptions": [],
11 "guarantees": [
12 "(G (((g_0) & (G (! (r_0)))) -> (F (! (g_0)))))",
13 "(G (((g_0) & (X ((! (r_0)) & (! (g_0))))) -> (X ((r_0) R (! (g_0))))))",
14 "(G (((g_1) & (G (! (r_1)))) -> (F (! (g_1)))))",
15 "(G (((g_1) & (X ((! (r_1)) & (! (g_1))))) -> (X ((r_1) R (! (g_1))))))",
16 "(G (((g_2) & (G (! (r_2)))) -> (F (! (g_2)))))",
17 "(G (((g_2) & (X ((! (r_2)) & (! (g_2))))) -> (X ((r_2) R (! (g_2))))))",
18 "(G (((! (g_0)) & (! (g_1))) | (((! (g_0)) | (! (g_1))) & (! (g_2)))))",
19 "(G (((r_0) & (X (r_1))) -> (X (X (X (X (X (X (X (X (X (X (X (X (X (X (X

((g_0) & (g_1)))))))))))))))))))",
20 "(G (((r_0) & (X (r_2))) -> (X (X (X (X (X (X (X (X (X (X (X (X (X (X (X

((g_0) & (g_2)))))))))))))))))))",
21 "(G (((r_1) & (X (r_2))) -> (X (X (X (X (X (X (X (X (X (X (X (X (X (X (X

((g_1) & (g_2)))))))))))))))))))",
22 "((r_0) R (! (g_0)))",
23 "(G ((r_0) -> (F (g_0))))",
24 "((r_1) R (! (g_1)))",
25 "(G ((r_1) -> (F (g_1))))",
26 "((r_2) R (! (g_2)))",
27 "(G ((r_2) -> (F (g_2))))"
28]
29 }

Fig. 17. An instance of a parameterized arbiter without spurious grant that is solved
by NeuroSynt, but not by any of the symbolic solvers.

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 31

1 {
2 "inputs": ["i0","i1","i10","i11","i12","i13","i14","i2","i3","i4","i6","i7"

,"i8","i9"],
3 "outputs": ["o0","o1","o10","o11","o12","o13","o2","o3","o4","o5","o6","o7"

,"o8","o9"],
4 "assumptions": [
5 "G (F (i12))",
6 "X (G ((! (o1)) | (((! (i13)) & (! (i10))) U ((! (i13

)) & (i10)))))",
7 "X (G ((! (o13)) | (((! (i10)) & (! (i11))) U ((! (

i10)) & (i11)))))"
8],
9 "guarantees": [

10 "G (((i6) & (X (i13))) -> (X (X (X (X (X (X (X (X (X (
(o1) & (o2))))))))))))",

11 "G ((i13) -> (F (o7)))",
12 "G ((o13) -> (X ((o13) | (o3))))",
13 "G ((i0) -> (F (o1)))",
14 "G ((i7) -> ((o2) <-> (X (o0))))",
15 "o3",
16 "G (((o0) | ((o13) & (i11))) -> (X (F (((o12) | (o13)

) R (i12)))))",
17 "G (((((((((! (i10)) & (i2)) & (! (i13))) & (! (i8

))) & (! (i11))) & (! (i9))) & (! (i6))) & (i12))
-> ((o2) <-> (i0)))",

18 "G (((i2) & (X (i4))) -> (X (X (X (X (X (X (X ((o1) &
(o2))))))))))",

19 "(i12) R (! (o9))",
20 "G (((((((! (i6)) & (i13)) & (! (i0))) & (i11)) & (

! (i4))) & (i10)) -> (F (((((((! (o3)) & (! (o6)
)) & (o9)) & (! (o0))) & (o2)) & (! (o7))) & (o13

))))",
21 "G ((i11) -> ((X (((! (o4)) & (o9)) & (! (o6)))) <->

(i12)))",
22 "G (((((((o0) & (! (o8))) <-> ((! (o8)) | (o0))) &

(! (o4))) & (! (o9))) <-> (((((o4) & (! (o9))) <
-> ((o9) & (! (o4)))) | (o0)) | (o8))) & ((((((
o3) & (! (o6))) <-> ((! (o6)) | (o3))) & (! (o12))
) & (! (o2))) <-> (((((o12) & (! (o2))) <-> ((o2)
& (! (o12)))) | (o3)) | (o6))))",

23 "G ((! (o12)) | (! (o2)))",
24 "G ((((((! (o3)) & (o5)) & (o12)) & (! (o4))) & (G (

(((i13) | (! (i14))) | (! (i0))) | (i9)))) -> (F
((((o3) | (! (o5))) | (! (o12))) | (o4))))",

25 "o10",
26 "F ((i8) & ((! (i7)) U ((i4) & (! (i7)))))",
27 "G ((i12) -> (F (o0)))",
28 "((! (i11)) & (G ((((i11) & (! (o8))) -> (X (i11)))

& ((o8) -> (X (! (i11))))))) -> ((! (o12)) & (G (
((((! (i11)) & (X (i11))) -> (X ((! (o8)) & (X (F
(o8)))))) & (((! (o8)) & (X (! (i11)))) -> (X (
! (o8))))) & ((! (o12)) | (! (o8))))))",

29 "G ((o0) -> (X (((! (o0)) U (i3)) | (G (! (o0))))))
",

30 "G (((i9) & (X (i8))) -> (X (X (X (X (X (X (X (X ((o5
) & (o2)))))))))))",

31 "G (F ((! (i13)) | (X (o12))))",
32 "G ((((((((! (i12)) & (i1)) & (i10)) & (! (i11))) &

(i6)) & (! (i9))) & (! (i0))) -> ((o8) <-> (i3))
)",

33 "G (((i13) & (X (i6))) -> (X (X (X (X (X (X ((o11) & (
o8)))))))))",

34 "G (F ((! (i0)) | (X (o1))))",
35 "G ((! (o4)) | (! (o9)))",
36 "G (((! (o7)) & (! (o2))) | (((! (o7)) | (! (o2)))

& (! (o5))))"
37]
38 }

Fig. 18. Solved example instance with 30 properties taken from large.

32 Cosler, Hahn, Omar, Schmitt

1 INFO {
2 TITLE: "Full Arbiter, unrealizable variant 2"
3 DESCRIPTION: "Parameterized Arbiter, where no spurious grants are allowed"
4 SEMANTICS: Mealy
5 TARGET: Mealy
6 }
7
8 {
9 "inputs": ["r_0","r_1","r_2","r_3","r_4","r_5"],

10 "outputs": ["g_0","g_1","g_2","g_3","g_4","g_5"],
11 "assumptions": [],
12 "guarantees": [
13 "(G (((g_0) & (G (! (r_0)))) -> (F (! (g_0)))))",
14 "(G (((g_0) & (X ((! (r_0)) & (! (g_0))))) -> (X ((r_0) R (! (g_0))))))",
15 "(G (((g_1) & (G (! (r_1)))) -> (F (! (g_1)))))",
16 "(G (((g_1) & (X ((! (r_1)) & (! (g_1))))) -> (X ((r_1) R (! (g_1))))))",
17 "(G (((g_2) & (G (! (r_2)))) -> (F (! (g_2)))))",
18 "(G (((g_2) & (X ((! (r_2)) & (! (g_2))))) -> (X ((r_2) R (! (g_2))))))",
19 "(G (((g_3) & (G (! (r_3)))) -> (F (! (g_3)))))",
20 "(G (((g_3) & (X ((! (r_3)) & (! (g_3))))) -> (X ((r_3) R (! (g_3))))))",
21 "(G (((g_4) & (G (! (r_4)))) -> (F (! (g_4)))))",
22 "(G (((g_4) & (X ((! (r_4)) & (! (g_4))))) -> (X ((r_4) R (! (g_4))))))",
23 "(G (((g_5) & (G (! (r_5)))) -> (F (! (g_5)))))",
24 "(G (((g_5) & (X ((! (r_5)) & (! (g_5))))) -> (X ((r_5) R (! (g_5))))))",
25 "(G (((((! (g_0)) & (! (g_1))) & (! (g_2))) & (((! (g_3)) & (! (g_4))) |

(((! (g_3)) | (! (g_4))) & (! (g_5))))) | ((((((! (g_0)) & (! (g_1)))
| (((! (g_0)) | (! (g_1))) & (! (g_2)))) & (! (g_3))) & (! (g_4))) &
(! (g_5)))))",

26 "(G (((r_0) & (X (r_1))) -> (F ((g_0) & (g_1)))))",
27 "(G (((r_0) & (X (r_2))) -> (F ((g_0) & (g_2)))))",
28 "(G (((r_0) & (X (r_3))) -> (F ((g_0) & (g_3)))))",
29 "(G (((r_0) & (X (r_4))) -> (F ((g_0) & (g_4)))))",
30 "(G (((r_0) & (X (r_5))) -> (F ((g_0) & (g_5)))))",
31 "(G (((r_1) & (X (r_2))) -> (F ((g_1) & (g_2)))))",
32 "(G (((r_1) & (X (r_3))) -> (F ((g_1) & (g_3)))))",
33 "(G (((r_1) & (X (r_4))) -> (F ((g_1) & (g_4)))))",
34 "(G (((r_1) & (X (r_5))) -> (F ((g_1) & (g_5)))))",
35 "(G (((r_2) & (X (r_3))) -> (F ((g_2) & (g_3)))))",
36 "(G (((r_2) & (X (r_4))) -> (F ((g_2) & (g_4)))))",
37 "(G (((r_2) & (X (r_5))) -> (F ((g_2) & (g_5)))))",
38 "(G (((r_3) & (X (r_4))) -> (F ((g_3) & (g_4)))))",
39 "(G (((r_3) & (X (r_5))) -> (F ((g_3) & (g_5)))))",
40 "(G (((r_4) & (X (r_5))) -> (F ((g_4) & (g_5)))))",
41 "((r_0) R (! (g_0)))",
42 "(G ((r_0) -> (F (g_0))))",
43 "((r_1) R (! (g_1)))",
44 "(G ((r_1) -> (F (g_1))))",
45 "((r_2) R (! (g_2)))",
46 "(G ((r_2) -> (F (g_2))))",
47 "((r_3) R (! (g_3)))",
48 "(G ((r_3) -> (F (g_3))))",
49 "((r_4) R (! (g_4)))",
50 "(G ((r_4) -> (F (g_4))))",
51 "((r_5) R (! (g_5)))",
52 "(G ((r_5) -> (F (g_5))))"
53]
54 }

Fig. 19. Solved example instance from SYNTCOMP with 40 properties.

	NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis

