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Abstract. Answering a question of Krivelevich and Vu [12], we present an algorithm for ap-
proximating the chromatic number of random graphs Gn,p within a factor of O(

√
np/ ln(np))

in polynomial expected time. The algorithm applies to edge probabilities c0/n ≤ p ≤ 0.99,
where c0 > 0 is a certain constant.
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1 Introduction

In the Graph Coloring Problem we are given a graph G, and the goal is to determine the chromatic
number χ(G). With respect to the worst-case complexity of graph coloring, Feige and Kilian [7]
proved that unless NP=ZPP, no polynomial time algorithm approximates the chromatic number of a
graph on n vertices within a factor of n1−ε, where ε > 0 denotes an arbitrarily small constant. Thus,
we do not hope for coloring algorithms that perform well on all instances. Therefore, the goal of
this paper is to investigate coloring heuristics. Hence, we are interested in coloring algorithms that
perform well on “most” instances in some meaningful sense.

In order to specify precisely what “most” instances is supposed to mean, we consider the well-
known binomial model Gn,p of random graphs pioneered by Erdős and Rényi. The vertex set of
Gn,p is V = {1, . . . , n}, and each of the

(
n
2

)
possible edges is present in Gn,p with probability

p = p(n) independently of all others. Hence, the number of edges of Gn,p is binomially distributed
with mean

(
n
2

)
p. Of course, the Gn,p model does not capture various types of “practical” input

distributions. Nevertheless, both the combinatorial structure and the algorithmic theory of Gn,p are
of fundamental interest [3, 8]. Indeed,Gn,p provides an interesting family of benchmarking instances
for graph coloring [11].

We say thatGn,p enjoys some property with high probability (“w.h.p.”) if the probability that the
property holds tends to 1 as the number n of vertices tends to infinity. Bollobás [2] and Łuczak [15]
determined the probable value of the chromatic number:

χ(Gn,p) ∼ −
n ln(1− p)
2 ln(np)

w.h.p. if n−1 � p ≤ 0.99. (1)

However, the proof of (1) does not answer the algorithmic question how to actually color G =
Gn,p in χ(G) colors efficiently. Concerning the algorithmic issue, Grimmett and McDiarmid [9]
proved that on input Gn, 12 a greedy algorithm finds a coloring that uses (1 + o(1))n/ log2 n colors
w.h.p. Thus, (1) shows that for G = Gn,p the greedy algorithm needs at most (2 + o(1)) · χ(G)
colors w.h.p.

Though, Kučera [13] observed that there are graphs G on n vertices for which the greedy algo-
rithm needs at least n1−ε · χ(G) colors (n arbitrarily large and ε > 0 arbitrarily small but fixed). Of
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course, in the light of the hardness result of Feige and Kilian [7] this observation is hardly surpris-
ing. But the issue is that the greedy algorithm does not detect its failure, because it does not compute
a lower bound on the chromatic number. Therefore, Krivelevich and Vu [12] posed the following
problem.

Devise a coloring algorithm that colors any input graph with at most r · χ(G) colors and
whose expected running time on input Gn,p is polynomial for a number r ≥ 1 as small as
possible.

Here the expected running time of an algorithmA on Gn,p is
∑
GRA(G) ·P [G = Gn,p], where the

sum ranges over all graphs G with vertex set V = {1, . . . , n}, andRA(G) signifies the running time
of A on input G.

Krivelevich and Vu obtained a coloring algorithm with approximation ratio r = O(
√
np/ ln(np))

whose expected running time onGn,p is polynomial, provided that p� n−1/2. This algorithm com-
bines the greedy coloring algorithm with a spectral technique for bounding the chromatic number
from below. Moreover, Krivelevich and Vu asked for an algorithm that achieves a similar approxima-
tion ratio in polynomial expected time for smaller values of p (cf. also Research Problem 3 in [11]).

Partial answers were obtained by Coja-Oghlan, Moore, Sanwalani, and Taraz [5, 6], who pre-
sented algorithms that approximate χ(Gn,p) within a factor of r = O(

√
np) in polynomial expected

time if p ≥ c0/n for a sufficiently large constant c0 > 0. However, the approximation ratio ob-
tained by these results is by a ln(np)-factor worse than that obtained by Krivelevich and Vu. The
main result of this paper is the following theorem, which answers the question of Krivelevich and
Vu completely, giving an approximation ratio of O(

√
np/ ln(np)) for p ≥ c0/n.

Theorem 1. Suppose that c0/n ≤ p ≤ 0.99 for a sufficiently large constant c0. There exists a
coloring algorithm ApxColor that guarantees an approximation ratio of O(

√
np/ ln(np)) on any

input graph and runs in polynomial expected time on input Gn,p.

The algorithm ApxColor consists of two parts: a procedure GreedyCoreColor that yields
an upper bound on the chromatic number, and a semidefinite progamming based method for bound-
ing the chromatic number from below. In comparison to [5, 6], the significant new aspect is the
procedure GreedyCoreColor, which yields the improved approximation ratio. In Section 2 we
present and analyze this procedure. Then, we prove Theorem 1 in Section 3.

2 The Algorithm GreedyCoreColor

2.1 Outline of the Algorithm

The goal of this section is to establish the following result.

Theorem 2. There is an algorithm GreedyCoreColor that enjoys the following properties.

1. If G is a graph on n vertices and 0 < p < 1, then GreedyCoreColor(G, p) colors G with at
most 30np

ln(np) + χ(G) colors.
2. If c0 ≤ np ≤ 0.99n, where c0 > 0 denotes a sufficiently large constant, then the expected

running time of GreedyCoreColor(Gn,p, p) is linear.

The algorithm GreedyCoreColor employs the following procedure CoreColor from [6].

Proposition 3. There is an algorithm CoreColor that has the following properties.

1. For any input graph G and any k ≥ 3, CoreColor(G, k) needs at most χ(G) + k colors.
2. If k ≥ 10np, then the expected running time of CoreColor(Gn,p, k) is linear.

In addition to CoreColor, GreedyCoreColor makes use of the following well-known lin-
ear time algorithm GreedyMIS for computing an independent set.
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Algorithm 4. GreedyMIS(G)
Input: A graph G = (V,E). Output: An independent set S of G.

1. Let S = ∅.
2. For all v ∈ V do: if there is no v-S-edge in G, then add v to S.
3. Output S.

Thus, GreedyMIS goes through the vertices in a fixed order and includes each vertex v into S if S∪
{v} remains independent. Observe that GreedyMIS(G) actually computes a maximal independent
set S; i.e., there is no independent set T in G that contains S properly.

Recall that the well-known greedy coloring algorithm just calls GreedyMIS repeatedly as fol-
lows. On input G = (V,E), GreedyColor calls GreedyMIS to find an independent set S. Then,
GreedyColor assigns one new color to the vertices in S, and proceeds recursively to obtain a
coloring of G− S.

How does GreedyColor behave in input Gn,p? As mentioned earlier, Grimmett and McDi-
armid [9] pointed out that GreedyColor(Gn, 12 ) uses (1 + o(1)) n

log2 n
∼ 2χ(Gn, 12 ) colors w.h.p.

(cf. also [3, pp. 297–298] for some more detailed results). However, since our goal is to achieve a
coloring algorithm with polynomial expected running time that satisfies the first condition in The-
orem 2 on all inputs, we need to take a closer look. Let G = Gn,p, and let Sj be the color class
determined during the j’th iteration of Step 3 of GreedyColor(G).

Clearly, the odds that in the j’th iteration GreedyMIS(G′ = G −
⋃j−1
i=1 Si) will find a “large”

color class Sj depend on the number #V (G′) of remaining vertices. For the larger #V (G′) is,
the more candidates for inclusion into the new color class there are. In fact, in Lemma 6 below
we shall prove that the probability that the first, say, 20np/ ln(np) color classes cover less than a
(1− 1/ ln(np))-fraction of the vertices is ≤ exp(−n).

On the other hand, suppose that np = d > 0 is a large constant, and let us try to lower bound the
probability that GreedyColor(G = Gn,p) behaves “badly”. Consider a graph H on d2 vertices
such that GreedyColor(H) uses at least d colors, while χ(H) ≤

√
d (cf., e.g., [13] for a proof

that such graphs H exist). Then the probability that the subgraph of G = Gn,p induced on the first
d2 vertices is precisely H is at least pd

4 ≥ n−O(1). Since χ(H) =
√
d, by (1) we have

P[GreedyColor(G) needs > d colors, but χ(G) ≤ d/ ln d] ≥ n−O(1). (2)

In summary, we have indicated that with probability ≥ 1 − exp(−n), the “first few” color
classes produced by GreedyColor(Gn,p) will cover a large fraction of the vertices. Though,
by (2) there is a moderate chance that GreedyColor(Gn,p) produces a bad coloring of the en-
tire input graph. Therefore, the basic idea behind the next algorithm GreedyCoreColor is to
follow the greedy strategy while the number of uncolored vertices is still fairly large. But as soon
as there are < n/ ln(np) vertices left, the algorithm calls the procedure CoreColor from Propo-
sition 3. If, however, the greedy phase needs too many colors (more than, say, 20np/ ln(np)), then
GreedyCoreColor calls an exact coloring algorithm Lawler from [14]. This algorithm com-
putes an optimal coloring of a graph on n vertices in time O(2.443n).

Algorithm 5. GreedyCoreColor(G, p)
Input: A graph G = (V = {1, . . . , n}, E), a number 0 < p < 1. Output: A coloring of G.

1a. Let G′ = G.
1b. While #V (G′) ≥ n/ ln(np)
1c. Let S = GreedyMIS(G′).

Color the vertices in S with one new color and remove S from G′.
2. If Step 1 has used ≤ 20np/ ln(np) colors in total, then

Call CoreColor(G′, 10np/ ln(np)) to color the remaining graph G′ with new
colors and output the resulting coloring of G.

3. Otherwise run Lawler(G) to compute an optimal coloring.
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The analysis of GreedyCoreColor relies on the following lemma, which we shall prove in
Section 2.2.

Lemma 6. Suppose that c0 ≤ np ≤ 0.99n for some sufficiently large constant c0 > 0. Let E be the
event thatG = (V,E) = Gn,p has l = 10np

ln(np) pairwise disjoint maximal independent sets S1, . . . , Sl
such that

l∑
i=1

#Si ≤ n
[
1− 1

ln(np)

]
and #Si ≤

ln(np)
10p

for i = 1, . . . , l. (3)

Then P(E) ≤ exp(−n).

Proof of Theorem 2. To prove the first assertion, let G = (V,E) be a graph on n vertices. If Step 1
of GreedyCoreColor(G, p) needs more than 20np/ ln(np) colors, then GreedyCoreColor
executes Step 3 and therefore outputs an optimal coloring of G. Furthermore, if Step 1 uses at most
20np/ ln(np) colors, then Proposition 3 entails that Step 2 yields a coloring of G′ that needs at most
χ(G) + 10np/ ln(np) colors. Thus, in total GreedyCoreColor needs at most 30np

ln(np) + χ(G)
colors, as desired.

With respect to the second assertion, we observe that Step 1 runs in linear time. Furthermore, we
claim that the expected time that GreedyCoreColor(G = Gn,p, p) spends on executing Step 2 is
linear as well. Indeed, letG′ be the graph with which Step 2 is encountered, letW = V (G)\V (G′),
and let n′ = #V (G′). We claim that G′ is distributed as a random graph Gn′,p. Indeed, Step 1
has only inspected the neighborhoods of the vertices in W . That is, Step 1 only depends on edges
of the form {v, w} with v ∈ V (G) and w ∈ W , which are independent of the internal edges of
the resulting graph G′. Hence, as the input graph G is a random graph Gn,p, we conclude that
G′ = Gn′,p. Therefore, Proposition 3 entails that the expected running time of Step 2 is linear.

As Step 3 runs in time O(2.443n), to establish the second part of the theorem the remaining task
is to show that

P
[
Step 1 of GreedyCoreColor(Gn,p, p) uses > 20np

ln(np) colors
]
≤ 2.443−n. (4)

Thus, let G = (V,E) = Gn,p. Then GreedyCoreColor(G, p) iterates Step 1b k ≤ n times. In
each iteration, GreedyMIS exhibits an independent set Sj of cardinality sj = #Sj (j = 1, . . . , k).
We say that the j’th iteration fails if sj <

ln(np)
10p . Note that if Step 1 uses more than 20np

ln(np) colors,

then more than l = 10np
ln(np) iterations of Step 1b fail. Therefore, in order to prove (4), it suffices to

establish the following:

P [at least l iterations of Step 1b fail] ≤ exp(−n). (5)

To prove (5), assume that there are indices 1 ≤ j1 < j2 < · · · < jl < k such that the ji’th
iteration of Step 1b fails. Then Sj1 , . . . , Sjl are pairwise disjoint maximal independent sets ofG that
satisfy (3). Thus, (5) follows from Lemma 6. ut

2.2 Proof of Lemma 6

Let us call a set S of vertices of G = (V,E) closed if every v ∈ V \ S has a neighbor in S. Let

ν =
n

ln(np)
, l =

10np
ln(np)

, and s =
ln(np)
10p

.

Suppose that S1, . . . , Sl ⊂ V are pairwise disjoint sets that satisfy (3). If S1, . . . , Sl are maximal
independent sets, then in particular S1, . . . , Sl are closed. Let si = #Si for i = 1, . . . , l. We claim
that

P [S1, . . . , Sl are maximal independent sets in G = Gn,p] ≤ P [S1, . . . , Sl are closed in G = Gn,p]

≤
l∏
i=1

(1− (1− p)si)ν . (6)
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Indeed, for each v ∈ V \
⋃l
j=1 Sj we let e(v, Si) denote the number of v-Si-edges; then we have

P [e(v, Si) > 0] = 1 − (1 − p)si , because each of the si possible v-Si-edges is present with prob-
ability p independently. Furthermore, since the random variables e(v, Si) are mutually independent
for v ∈ V \

⋃l
j=1 Sj and because #V \

⋃l
j=1 Sj ≥ ν, we obtain

P

∀v ∈ V \ l⋃
j=1

Sj : e(v, Si) > 0

 ≤ (1− (1− p)si)ν . (7)

Finally, as the sets S1, . . . , Sl are pairwise disjoint, the random variables (e(v, Si))1≤i≤l are mutu-
ally independent (v ∈ V \

⋃l
j=1 Sj). Therefore, we obtain

P [S1, . . . , Sl are closed in G = Gn,p] ≤
l∏
i=1

P

∀v ∈ V \ l⋃
j=1

Sj : e(v, Si) > 0

 ,
so that (6) follows from (7).

Now, let s1, . . . , sl be integers such that

0 ≤ s1, . . . , sl ≤ s and
l∑
i=1

si ≤ n− ν. (8)

Let E(s1, . . . , sl) signify the event that G = Gn,p admits pairwise disjoint closed sets Si of cardi-
nalities #Si = si (i = 1, . . . , l). Then by (6)

P [E(s1, . . . , sl)] ≤
l∏
i=1

(
n

si

)
(1− (1− p)si)ν ≤

[(
n

s

)
(1− (1− p)s)ν

]l
≤
(en
s

)ls
exp [−l · ν(1− p)s] ≤ exp

[
n
(
1 + ln

(n
s

)
− ν

s
(1− p)s

)]
, (9)

because ls = n. Since p ≤ 0.99, we have ln(1− p)/p ≥ −4.7. Hence,

ν

s
(1− p)s =

ν

s
exp

[
ln(np)

ln(1− p)
10p

]
≥ 10np

ln(np)2
· (np)−0.47 ≥ 10

√
np, (10)

because np ≥ c0 for a large constant c0 > 0. Moreover,

ln
(n
s

)
= ln

(
10np
ln(np)

)
≤ ln(np). (11)

Plugging (10) and (11) into (9), we get

P [E(s1, . . . , sl)] ≤ exp [n (1 + ln(np)− 10
√
np)] ≤ exp

[
−9n3/2p1/2

]
. (12)

Finally, let S be the set of all tuples (s1, . . . , sl) that satisfy (8). By the union bound,

P [E ] ≤
∑

(s1,...,sl)∈S

P [E(s1, . . . , sl)]
(12)
≤ (s+ 1)l exp

[
−9n3/2p1/2

]
≤ exp

[
l ln(n)− 9n3/2p1/2

]
≤ exp

[
−8n3/2p1/2

]
≤ exp(−2n),

because l ln(n) = o(n3/2p1/2).
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3 The Algorithm ApxColor

ApxColor combines the procedure GreedyCoreColor from Section 2 with computing the vec-
tor chromatic number χ̂(G) of its input graph G. The vector chromatic number is a semidefinite
programming relaxation of the chromatic number and was introduced by Karger, Motwani, and Su-
dan [10]. For all graphs G we have χ̂(G) ≤ χ(G); moreover, χ̂(G) can be computed in polynomial
time (cf. [10]). Furthermore, the following result from [4] bounds χ̂(Gn,p).

Lemma 7. There are constants c0, c1 > 0 such that the following holds. If c0/n ≤ p ≤ 0.99, then
P
[
χ̂(Gn,p) ≥ c1

√
np
]
≥ 1− exp(−n).

Algorithm 8. ApxColor(G, p)
Input: A graph G = (V,E) on n vertices and a number 0 < p < 1. Output: A coloring of G.

1. If χ̂(G) ≥ c1
√
np for a certain constant c1 > 0 (cf. Lemma 7),

2. Run GreedyCoreColor(G, p) and output the resulting coloring.
3. Otherwise run Lawler(G) to compute an optimal coloring in time O(2.443n).

Proof of Theorem 1. Suppose that c0/n ≤ p ≤ 0.99 for a sufficiently large constant c0 > 0.
Step 1 of ApxColor has polynomial running time. Furthermore, by Lemma 7 the probability that
ApxColor(Gn,p, p) executes Step 3 is ≤ exp(−n). Thus, the expected time spent on executing
Step 3 is polynomial. Finally, by Theorem 2, the expected running time of Step 2 is polynomial.

To prove that ApxColor achieves an approximation ratio of O(
√
np/ ln(np)), let G be any in-

put graph. If χ̂(G) < c1
√
np, then Step 3 of ApxColor outputs an optimal coloring. Thus, assume

that χ̂(G) ≥ c1
√
np. By Theorem 2, GreedyCoreColor(G, p) uses at most 30np/ ln(np)+χ(G)

colors. Therefore, we obtain an approximation ratio of

χ(G) + 30np/ ln(np)
χ(G)

≤ 1 +
30np

ln(np) · χ̂(G)
≤ 1 +

30
√
np

c1 ln(np)
= O

( √
np

ln(np)

)
,

thereby proving the theorem. ut
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