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Abstract

In this work, we present an approach for repairing faulty circuits using deep neural
networks. Given a faulty circuit and a specification in LTL, we demonstrate that our
approach repairs faulty circuits such that they satisfy corresponding specifications.

Since the 1950s, when introduced by Alonzo Church, reactive synthesis is a funda-
mental problem in computer science. Unfortunately, because the synthesis of temporal
specifications is usually 2EXPTIME-complete, classic synthesis algorithms are slow and
only able to synthesize from comparatively short and easy specifications. Using machine
learning for such computationally hard problems gives new perspectives and recent ad-
vances show promising results. We improve these results by repairing mispredicted
circuits using a Transformer-based model.

We introduce a new architecture, the separated hierarchical Transformer, that is de-
signed to handle circuits and specifications as input sources. We introduce multiple
datasets that include specifications, faulty circuits, and circuits that satisfy the specifica-
tions. We train separated hierarchical Transformer models with these datasets to repair
faulty circuits towards circuits that satisfy a given specification. We show that the pro-
posed architecture can learn from the synthetic data, that the model utilizes the repair
circuit to solve more complex specifications, and that the model generalizes to out-of-
distribution datasets. We show that we improve the state-of-the-art in Neural Circuit
Synthesis by 6.8 percentage points on held-out instances and 11.8 percentage points on
an out-of-distribution dataset from the reactive synthesis competition SYNTCOMP.
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Chapter 1
Introduction

Already in the 1950s, Alonzo Church formulated the problem of reactive synthesis for
circuits.

“Given a requirement which a circuit is to satisfy (. . . ). The synthesis
problem is then to find recursion equivalences representing a circuit that
satisfies the given requirement (or alternatively, to determine that there is
no such circuit).” Alonzo Church, 1957 [Chu57]

Since then, reactive synthesis is a fundamental problem in computer science. Several
formal logics have been invented to specify the requirements for systems, in formal
verification and reactive synthesis. In this work, we consider the reactive synthesis of
circuits for linear-time temporal logic (LTL). Using LTL, we can specify the properties of
systems over time. Classical approaches to reactive synthesis from LTL specifications are
typically either game-based [BL90] or bounded [Fay+17]. Although significant progress
in optimization of the algorithms and tools such as BoSy [FFT17] or Strix [MSL18] have
been made, reactive synthesis of LTL specifications is 2EXPTIME-complete [Ros91]
and the current state-of-the-art is far from feasible for larger-scaled specifications and
systems.

This motivates different perspectives and new approaches to reactive synthesis. With
Neural Circuit Synthesis from Specification Patterns [Sch+21], Schmitt et al. recently showed
that the problem can also be approached using neuro-symbolic methods by combining a
Transformer-based architecture with the symbolic task of reactive synthesis. Although
having promising results using Transformers for circuit synthesis, the work of Schmitt
et al. [Sch+21] still leaves a gap of 20% mispredictions on held-out instances and
33% mispredictions on samples from the reactive synthesis competition SYNTCOMP
[Jac+22b; Jac+22a].

The goal of this work is to introduce and implement a novel approach to automat-
ically repair faulty circuits. This can be applied to Neural Circuit Synthesis to repair
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1. Introduction

mispredicted circuits, lessen the gap, and advance in using machine learning for reactive
synthesis and formal methods.

Solving the problem of circuit and program repair is an active field of research.
Jobstmann et al. [JGB05; Job+12] show a game-based approach to repair programs using
LTL specifications. In Explainable Reactive Synthesis [BFT20], the authors propose an
approach for synthesizing reactive systems from LTL specifications iteratively through
repair steps. Live Synthesis [FKM22; Nah+16] is a form of synthesis, where a system
needs to be adjusted to a new specification in real-time. First, an (LTL) specification
and a system that satisfies the specification are given. The specification is then updated
and the system needs to be adjusted in real-time such that it satisfies the updated
specification. Given the updated specification and the old system, the adjustment of
the old system could also be interpreted as the repair of a malfunctioning system.

Contrary to the mentioned algorithmic approaches for circuit and program repair, in
this work, we give an approach for circuit repair with LTL specifications using a deep
learning architecture based on the Transformer [Vas+17]. We base this decision on two
reasons. First, a deep learning model might be more suitable to repair mistakes that
are made by another deep learning model. Faulty circuits produced by the network
might not be logically close to a correct solution. Whereas for a deep learning model,
such circuits could still be valuable because their textual representation might be close
or because they might share valuable features that are not noticeable. Secondly, we
base this decision on promising findings from Hahn et al. [Hah+21], showing that a
Transformer can understand the semantics of temporal and propositional logics, and
the work of Schmitt et al. [Sch+21] on reactive synthesis using a Transformer-based
architecture.

The Transformer [Vas+17] is a sequence-to-sequence architecture for Machine Learn-
ing, originally designed for natural language processing. The Transformer architecture
is one of the most revolutionizing and successful deep learning architectures of the past
years. Transformer models can understand and produce complex patterns, and adhere
to syntax and semantics, not only of natural language but also logic [Hah+21; Sch+21],
proofs and mathematics: Transformers have been used for the learning of mathematical
proofs and reasoning [Rab+20; PS20; Li+21], and applied to mathematical tasks such as
integration or solving differential equations [LC19].

We introduce a new Transformer-based architecture, the separated hierarchical
Transformer in Chapter 3. The separated hierarchical Transformer is an extension of:Chapter 3, p. 11

the hierarchical Transformer [Li+21], designed to handle multiple sources of inputs.
Other forms and applications of multi-source [ZK16; Nis+20; Lit+19], or more general
multimodal machine learning [BAM19] are widespread, but rarely seen in logical or
mathematical applications.

We create a selection of datasets for supervised learning for the circuit repair problem
and train experiments based on the separated hierarchical Transformer architecture on
these datasets. We present datasets in Chapter 4 and experiments in Chapter 5. We show:Chapter 4, p. 21

:Chapter 5, p. 33
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that our models repair circuits such that they satisfy the given specification with up to
86% accuracy on hold-out samples. In Chapter 6, we demonstrate that our approach :Chapter 6, p. 43

can be combined with existing approaches such as Neural Circuit Synthesis [Sch+21] to
repair mistakes and improve the task of reactive synthesis with machine learning. We
make a significant improvement of 6.8 percentage points to a total of 84% on held-out-
instances. An even greater improvement was made on out-of-distribution datasets with
11.8 percentage points on samples from the reactive synthesis competition SYNTCOMP.
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Chapter 2
Reactive Synthesis

This chapter lays the theoretical background on reactive synthesis, linear-time temporal
logic (LTL), and And-Inverter Graphs. We further present the work on Neural Circuit
Synthesis [Sch+21], which partially is the foundation for the work in this thesis.

Reactive synthesis is the task to find a system that satisfies a given formal specification.
We consider formal specifications that are formulas over a set of atomic propositions
(AP ) in LTL. The specification defines the desired behavior of a system based on a set
of input and output variables. As the system, we consider circuits, more precisely a text
representation of And-Inverter Graphs, called AIGER circuits. And-Inverter Graphs
connect input and output edges using AND gates, NOT gates (inverter), and memory
cells (latches).

We say that a circuit satisfies a specification if and only if, given any possible traces
of assignments of input variables and the traces of assignments of output variables
determined by the circuit, the specification holds. A specification is either realizable if
a circuit exists that satisfies the specification or unrealizable if no circuit exists that can
satisfy the specification.

Definition 2.1
For a specification s, we call a circuit c correct if either

• the specification s is realizable, and the circuit c satisfies the specification. Or

• the specification s is unrealizable, and the predicted circuit c is a counter strategy
to the specification s.

5



2. Reactive Synthesis

2.1. Linear-time Temporal Logic (LTL)

LTL [Pnu77] combines boolean operators with temporal operators as next ( ) and until
(U). LTL is evaluated over trace models of atomic propositions. Boolean operators are
evaluated over the propositions of states, whereas temporal operators refer to the states
on which the propositions are evaluated. For example, next refers to a property on the
state that comes relatively next to the current state, and until refers to a property that
needs to hold until a second property will eventually hold.

φ := p | φ ∧ φ | ¬φ | φ | φU φ

where p is an atomic proposition p ∈ AP . In this context, we assume that the set of
atomic propositions AP can be partitioned into inputs I and outputs O: AP = I∪̇O.

Generally LTL is defined over a set of traces: TR := (2AP )ω. Let π ∈ TR be trace, π[0]
the starting element of a trace π and for a k ∈ N and be π[k] be the kth element of the
trace π. With π[k,∞] we denote the infinite suffix of π starting at k. We write π |= φ for
the trace π satisfies the formula φ.

For a trace π ∈ TR, p ∈ AP and formulas φ:

• π |= ¬φ iff π ̸|= φ

• π |= p iff p ∈ π[0] ; π |= ¬p iff p ̸∈ π[0].

• π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2.

• π |= φ iff π[1] |= φ

• π |= φ1 U φ2 iff ∃l ∈ N : (π[l,∞] |= φ2 ∧ ∀m ∈ [0, l − 1] : π[m,∞] |= φ1)

We use further temporal and boolean operators that can be derived from the ones
defined above. That includes ∨,→,↔ as boolean operators and the following temporal
operators:

• φ1Rφ2 (release) is defined as ¬(¬φ1 U ¬φ2)

• φ (globally) is defined as falseRφ

• φ (eventually) is defined as trueU φ

2.2. And-Inverter Graphs

And-Inverter Graphs are graphs that describe hardware circuits. The graph connects
input edges with output edges through AND gates, latches, and implicit NOT gates. We
usually represent this graph by a text version called the AIGER Format [Bru+07]. The
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2.2. And-Inverter Graphs

AIGER format uses variable numbers that define variables. Variables can be interpreted
as wired connections in a circuit or as edges in a graph, where gates and latches are
nodes.

• A negation is implicitly encoded by distinguishing between even and odd vari-
able numbers. Two successive variable numbers represent the same variable, the
even variable number represents the non-negated variable, and the odd variable
number represents the negated variable. The variable numbers 0 and 1 have the
constant values FALSE and TRUE.

• Each input and output edge is defined by a single variable number, respectively.

• An AND gate is defined by three variable numbers. The first variable number
defines the outbound edge of the AND gate, and the following two variable
numbers are inbound edges. The value of the outbound variable is determined
by the conjunction of the values of both inbound variables.

• A latch is defined by two variable numbers: an outbound edge and an inbound
edge. The value of the outbound variable is the value of the inbound variable at
the previous time step. In the first time step, the outbound variable is initialized
as FALSE.

The AIGER format starts with a header, beginning with the letters aag and following
five non-negative integers M, I, L, O, Awith the following meaning:
M=maximum variable index

I=number of inputs

L=number of latches

O=number of outputs

A=number of AND gates

After the header, each line represents a definition of either input, latch, output,
or AND gate in this order. The numbers in the header define the number of lines
associated with each type. After the definition of the circuit, an optional symbol table
might follow, where we can define names for inputs, outputs, latches, and AND gates.
In this context, the circuit can either describe a satisfying system or a counter strategy
to the specification.

Example 2.2.1. This example from [Bru+07] describes a toggle flip flop without inputs.
The comments at the end of each line are not part of the actual format.

aag 1 0 1 2 0

2 3 latch 0

2 output 0

3 output 1

o0 output0

o1 output1

l0 latch0

output0

2

output1 latch0

7



2. Reactive Synthesis

The maximum variable index in the example is 1, because variable numbers 2 and 3
represent the same variable, where 3 is the negation of 2. We have no inputs, one latch,
and two outputs. The last three lines are optional and define a symbol table. The latch
has the inbound connection 3 and outbound connection 2. A latch is visualized by a
diamond shape with a dotted outbound connection. In the first time step 2 has the value
FALSE, hence 3 has the value TRUE. Therefore, the outputs (triangle in the visualization)
in the first time step are output0: FALSE, output1: TRUE. In the second time step,
the latch outputs the value of 3 in the previous time step (TRUE) hence 2 has the value
TRUE and 3 the value FALSE. The outputs in the second time step are output0: TRUE,

output1: FALSE. If AND gates would be present, they would be shown as oval shapes
in the visualization, with the inputs on the bottom and output(s) on the top. △

2.3. Circuit Repair

In this work, we target the problem of circuit repair. Circuit repair is closely related to
reactive synthesis. Formally it can be seen as a subproblem of circuit synthesis. Given
a specification and a (faulty) circuit, it is to find a circuit that satisfies the specification.
Formally speaking, this problem is equally hard as circuit synthesis as we give no formal
constraints on the (faulty) circuit. However, statistically speaking, the (faulty) circuit can
help to find a satisfying circuit. Therefore, given a helpful (faulty) circuit, we anticipate
circuit repair to work better in practice than circuit synthesis. The concept of circuit
repair can be applied to improve any form of potentially unsound approach for circuit
synthesis, which includes circuits designed by humans.

2.4. Neural Circuit Synthesis

The work of this thesis is strongly influenced by the work of Schmitt et al. [Sch+21]
about Neural Circuit Synthesis. We will give a quick overview of this work, but re-
fer to the original paper for more information. Neural Circuit Synthesis is one of the
first applications of machine learning to reactive synthesis. The authors provide large
datasets of pairs of LTL specifications and AIGER circuits for supervised learning. The
specifications are generated based on patterns extracted from the synthesis competi-
tion SYNTCOMP [Jac+22b; Jac+22a], the corresponding circuits are generated using the
synthesis tool Strix [MSL18]. The authors trained a hierarchical Transformer to predict
AIGER circuits that satisfy the specification. In the case of an unrealizable specification,
the Transformer should predict an AIGER circuit that inherently proves the unrealiz-
ability. The authors showed that their models achieved competitive results on held-out
instances (79.9% accuracy), and two out-of-distribution benchmarks: the SYNTCOMP
benchmarks (66.8% accuracy) and J.A.R.V.I.S [Gei+22] (40.0% accuracy). On a set of
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samples on which the synthesis tool Strix timed out after 120 seconds, the authors
reached 30.1% accuracy.
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Chapter 3
Setup and Architecture

In this chapter, we present the structure and architecture of this approach. We first
show how the input and target are structured. Then we lay the background on the
Transformer and hierarchical Transformer architecture. We also introduce a new archi-
tecture, the separated hierarchical Transformer. Further, we discuss how tokenization
and positional encoding are applied. Lastly, we explain how we evaluate the network
and why we use model checking in the evaluation process. We give an overview of the
process in Fig. 3.1.

Assumptions

Guarantees

(Faulty)
AIGER circuit

Tokenization Tree
Positional Encoding

Tokenization
Linear

Positional Encoding

Separated
Hierarchical
Transformer

Circuit
(Prediction)

Model
Checking

Figure 3.1.: Overview over the architecture pipeline

3.1. Data Format

We briefly cover the format of input and target of the architecture. We present more
details on the format, datasets, and their generation in Chapter 4. :Chapter 4, p. 21

We consider an LTL specification and a (faulty) AIGER circuit as input sequences.
The target feature is a correct AIGER circuit.

Specification We structure the specification into multiple input sequences: assump-
tions and guarantees. Assumptions and guarantees are lists of LTL formulas (see
Sec. 2.1). The lists of assumptions and guarantees combined make a specification: : Sec. 2.1, p. 6
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3. Setup and Architecture

spec := (assumption1 ∧ · · · ∧ assumptionn) → (guarantee1 ∧ · · · ∧ guaranteem)

(Faulty) Circuit The second input feature is a sequence close to the format of an AIGER
circuit (see Sec. 2.2). We enforce only a few constraints on the format: the sequence: Sec. 2.2, p. 6

needs to be processable by our implementation of the parser and tokenizer (Sec. 3.5).: Sec. 3.5, p. 16

This constraint does not necessarily imply that the sequence follows the correct AIGER
syntax, nor does it imply that the circuit cannot be correct.

Target Circuit. The target circuit is a sequence representing a correct (Def. 2.1) AIGER:Def. 2.1, p. 5

circuit under consideration of the given specification. The circuit includes a symbol
table, which, in this context, implicitly encodes whether the circuit is a satisfying system
or a counter strategy.

3.2. Transformer

The Transformer [Vas+17] is a sequence-to-sequence architecture for machine learning,
originally designed for natural language processing. The Transformer architecture is
one of the most revolutionizing and successful deep learning architectures of the past
years. The foundation of the Transformer is an attention mechanism, allowing for a
deeper and more flexible understanding of the input and target sequences. We will give
a brief overview of the Transformer architecture and the attention mechanism in this
section and Fig. 3.2.

Encoder Stack The encoder stack is designed to understand the input and transform
it into a hidden representation. The encoder stack consists of multiple encoders, each
of the same structure. We combine a multi-head self-attention mechanism (encoder
attention) with a feed-forward network. Residual connections allow to skip the attention
and or the feed-forward network. We normalize the results from the attention and the
feed-forward network when combined with the residual connection.

Decoder Stack The decoder stack generates the output word-by-word based on the
hidden representation and previously predicted words. The prediction of each word
is called a prediction step. The decoder stack consists of multiple serially connected
decoders; each decoder consists of multi-head self-attention on the output/target (de-
coder attention) combined with multi-head attention between encoder and decoder
(encoder-decoder attention). A feed-forward network processes the resulting vector
before softmax predicts the next word. Residual connections allow to skip the attention
blocks and or the feed-forward network. As in the encoder, we normalize the results
from the attention and the feed-forward network when combined with the residual
connection.

12



3.2. Transformer
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Output Embedding

Decoder Attention

Encoder-Decoder Attention

Feed Forward

D
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Decoder Attention

Encoder-Decoder Attention

Feed Forward

Softmax

Figure 3.2.: The Transformer architecture. We show two encoders in an encoder stack
and two decoders in a decoder stack.

Attention Attention is a method of learning relationships and connections between
different words/positions of a sentence. The Transformer uses the attention mechanism
in multiple steps. Encoder- and decoder attention are self-attention layers, meaning
the attention is learned between positions of the same sentence, where encoder-decoder
attention finds relationships between the hidden representation (output of the encoder)
and the output of the decoder attention.

The underlying principle is the scaled dot-product. A query, key, and value vector
are learned for each embedded token. Then, a score is calculated, stating how strong the
connection of each token to any other token is, by calculating the dot product between
the learned query vector of the current token and the learned key vector of any other
token. This score is scaled before softmax is applied and multiplied with the learned
value vector of each token. LetQ,K, V be the matrixes of all query, key, and value vectors
packed together. dk is the dimension of the key vectors. The attention is calculated as
follows:

Attention(Q,K, V ) = softmax(QKT

√
dk

)V

For the encoder-decoder attention, query vectors from the hidden representation of
the decoder attention are used, while key and value vectors come from the output of
the encoder attention stack. During training, a masked version of the self-attention in

13



3. Setup and Architecture

guarantee 1 guarantee 2

global layer
parameters

local layer
parameters

Figure 3.3.: The structure of global and local layers in the hierarchical Transformer. We
omit the feed-forward network in this figure. Arrows between blue boxes
(tokens) express the attention mechanism between tokens. As illustrated
here, the specification can be partitioned into its guarantees.

the decoder is used. Only positions that already have a prediction should be visible to
the self-attention. This method is called masked self-attention and prohibits cheating.

Instead of computing the scaled dot product just once, multiple versions, each called
an attention head, are learned in parallel. The results are combined using a linear
transformation. This is called multi-head attention.

3.3. Hierarchical Transformer

The hierarchical Transformer is a variation of the original Transformer. It was first
proposed in Li et al. [Li+21]. A hierarchical Transformer has two types of hierarchically
structured layers in the encoder. Local layers only see parts of the input, while the global
layers handle the combined output of all local layers. First, the input is decomposed into
multiple partitions before being fed into the local layers. Positional Encoding is applied
separately to each part of the input, which is implemented by having one traditional
encoder as local layers. All input partitions are fed independently and successively
into the encoder. Therefore, model parameters are shared between the local layers.
However, no attention can be calculated between tokens in different partitions because
only one part of the input is visible to the local layer at once. The outputs of the local
layer are concatenated and fed into the global layer. The global layer is just a standard
encoder. An illustration of the architecture can be found in Fig. 3.3.

The hierarchical Transformer has been beneficial to understanding repetitive struc-
tures in mathematical [Li+21] and logical contexts such as LTL formula [Sch+21]. Local
layers can learn these repetitive structures, while the global layer learns more general
connections in the whole input sentence.

14



3.4. Separated Hierarchical Transformer

circuit
parameters

specification
parameters

specification circuit

global layer
parameters

Figure 3.4.: The structure of global and local layers in the separated hierarchical Trans-
former. As applied in this work, the two local layers process circuits and
specifications independently. Arrows between blue boxes (tokens) express
the attention mechanism. We simplify this figure by not showing the feed-
forward network.

3.4. Separated Hierarchical Transformer

We introduce a new architecture by extending the hierarchical Transformer to a sepa-
rated hierarchical Transformer. A separated hierarchical Transformer has two types of
local layers: Each separated local layer is an independent encoder, therefore, separated
local layers do not share any model parameters, nor are attention calculations between
tokens in two separated local layers possible, as shown in Fig. 3.4. Non-separated local
layers are identic to local layers in the hierarchical Transformer. Non-separated local
layers share model parameters, but no attention can be calculated between tokens in
two local layers. A separated local layer contains one or more non-separated local lay-
ers. The results of the separated local layers are concatenated and fed into the global
layer. While the number of non-separated local layers does not change the model size,
multiple separated local layers increase the model size since they introduce more model
parameters. Contrary to the hierarchical Transformer, which is typically good at han-
dling multiple partitions of the input that are independent but of the same structure,
type, and maximal length, we introduced the separated hierarchical Transformer to ad-
ditionally handle multiple completely independent inputs, including structure, types,
and length.

We give a comparison of the presented variations in Tbl. 3.5. A Transformer automat- :Tbl. 3.5, p. 16

ically performs the attention mechanism over the whole input sequence. Consequently,
model parameters are shared over the whole input as well. The hierarchical Trans-
former can calculate independent attention mechanisms over partitions of the input
while it uses the same model parameters for the whole input. The separated hier-
archical Transformer can use independent attention mechanisms. It can share model
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3. Setup and Architecture

Independent Model

Parameters

Independent Attention

Calculations

Transformer ✗ ✗

Hierarchical Transformer ✗ ✓

Separated Hierarchical Transformer ✓ ✓

Table 3.5.: Overview of the characteristics of the different architecture variations.

parameters between some partitions of the input and separate between model param-
eters of other partitions of the input. Independent parameters also imply independent
attention mechanisms.

In this work, we use a separated hierarchical Transformer. We separate the specifi-
cation and the (faulty) circuit using a separated local layer. The specification is further
partitioned into its guarantees and assumptions, which we feed into non-separated local
layers. Therefore, in local layers, attention calculation is limited to between tokens in the
circuit, between tokens in each guarantee, and between tokens in each assumption, but
not between the different partitions. Parameters are shared between all assumptions
and guarantees but not between the specification and the circuit.

3.5. Tokenization and Embedding

While language models such as the Transformer need to embed arbitrary words of a
natural language, we specialize in the Domain Specific Language (DSL) of LTL formulas
(Sec. 2.1) and AIGER circuits (Sec. 2.2) with only a few symbols. For every symbol in: Sec. 2.1, p. 6

: Sec. 2.2, p. 6 the DSL, we introduce a token. In the LTL formula, we fix atomic propositions to five
inputs i0 · · · i4 and five outputs o0 · · · o4 and introduce a token for each. Parentheses are
redundant because we encode the syntax tree into the positional encoding (see Sec. 3.6).: Sec. 3.6, p. 17

In the AIGER format, we fix the variable numbers to the range of 0 to 61, thereby
indirectly limiting the size of the circuit. These limitations seem to be a good trade-off
between token set size and expressible complexity. We only embed the circuit itself, not
the symbol table, which can be part of the AIGER format. Therefore, we set a special
token as a prefix to the circuit embedding. This token determines whether the circuit
represents a satisfying circuit or a counter strategy, hence whether the specification is
presumed to be realizable or not. We embed the tokens by applying one-hot encoding
which we multiply with a learned embedding matrix. We call the embedding that
results from one token, an embedding vector.
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3.6. Positional Encoding

A positional encoding of the input and target ensures that the Transformer can determine
the order of embedding vectors and, therefore, the order of the words in the input/target
sequences. Different techniques of positional encoding are possible, but they should
meet some principles:

• Every position/token in the input should have a unique encoding.

• An easy-to-learn transformation can describe relative positions. This includes
affine and linear transformations.

Linear Positional Encoding. As linear positional encoding for encoding sequences
in general, Vaswani et al.[Vas+17] propose overlaying sine and cosine functions with
different frequencies. This positional encoding has the advantage of easily generalizing
to sequences longer than seen during training and having a fixed size for each token
in potentially arbitrary long sequences. Further, relative positions are described by a
linear transformation. In this work, we use a linear encoding for circuits (target circuit
and (faulty) circuit)

Tree Positional Encoding. To consider tree-like structures, Shiv et al. [SQ19] intro-
duced a tree positional encoding. This encoding incorporates the tree structure into
the positional encoding and allows easy calculations between tree relations as siblings,
parents, and children. For this encoding, we fix a maximal branching size and the
maximal depth of the tree. The position of a token is defined by the path from the node
to the tree’s root node. Instead of a number, a one-hot encoding is used to describe
the children-parent relation. Each node has a unique encoding, and an affine transfor-
mation describes relative positions. This work uses a tree encoding for LTL formulas
representing assumptions and guarantees (input). The tree structure represents the
syntax of the LTL formulas. We give an example of the tree encoding in Fig. 3.6. :Fig. 3.6, p. 18

3.7. Evaluation

We evaluate the model by querying the specification together with a faulty circuit. The
model predicts a circuit and a realizability token. We call a prediction correct if the
predicted circuit is correct (Def. 2.1) under consideration of the predicted realizability :Def. 2.1, p. 5

token and the given specification. We use beam search to improve the sequence accuracy
while predicting the output token-by-token. Lastly, we model-check our predictions to
verify our results.
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→

r

g

[0,0,0,0,0,0]

[1,0,0,0,0,0]

[1,0,1,0,0,0] [0,1,1,0,0,0]

[1,0,0,1,1,0]

Figure 3.6.: Example tree positional encoding for the LTL request pattern (r→ g).
This example is taken from [Sch+21].

Beam Search. Beam search is a technique often combined with Transformers to im-
prove the sequence accuracy of a Transformer model [Wu+16]. Beam search allows con-
sidering multiple distinct predictions simultaneously. Each such prediction is called
a beam. A predefined parameter called beam size (bs) determines the number of
predictions kept simultaneously. In each prediction step, we consider the bs likeliest
predictions. Therefore, in the next prediction step, bs distinct histories are fed into the
decoder. For each history, we again predict the bs likeliest words, leading to bs2 distinct
beams, of which we select the bs most promising ones by averaging the likelihood of all
words in the beam. This process allows the model to rectify predictions of earlier steps
that seemed optimal when the token was predicted.

Model Checking. Model checking is the counterpart to synthesis. Given a specification
and an AIGER circuit, a model-checking algorithm decides whether the circuit is correct
(Def. 2.1). We model-check each prediction to verify our results. Model checking:Def. 2.1, p. 5

is a PSPACE-complete operation. Therefore, it is much easier than solving reactive
synthesis algorithmically (2EXPTIME-complete). Because of the hardness of reactive
synthesis, we deal with comparatively small specifications and circuits. Model-checking
the predictions is feasible for the size of our specifications and circuits. Combining our
architecture with model checking makes our approach sound because we only accept
model-checked circuits. We model-check using the tool nuXmv [Cav+14].

Performance Measures. When measuring the accuracy of our models, multiple met-
rics can be considered: When considering only predictions that are identical to the
target, we measure what we call the syntactic accuracy of the model. No model check-
ing is necessary for measuring syntactic accuracy. We call predictions that fall under
the syntactic accuracy a matching circuit or simply a match. However, in this case, it is
more interesting to give a semantic accuracy by measuring circuits verified as correct
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by the model checker. This accuracy is typically higher than the syntactic accuracy,
as it also considers alternative solutions. Contrary to syntactic accuracy, the semantic
accuracy can also be calculated over datasets without target circuits.
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Chapter 4
Datasets

In this chapter, we introduce a method for generating datasets for Neural Circuit Repair.
All datasets we create are for supervised learning. All datasets have multiple splits, at
least a training, validation and test splits. The number of samples in each dataset differs
from dataset to dataset, depending on the generation technique. Most of the datasets
have approximately 250000 samples, with typically around 10% in the validation and test
set respectively and 80% in the training split. In Appendix A.1 we list exact numbers :Appendix A.1, p. 63

per dataset. All datasets we create are based on the datasets from [Sch+21].
We first explain the format the datasets have. Secondly, we discuss two methods for

generating the datasets.

4.1. Format

A CSV file describes each split with several columns describing input, targets, and
annotations. Annotations are additional characteristics not used during training but
give valuable insight. A dataset is defined by a folder containing the CSV files of all
dataset splits, along with some metadata and statistics.

In the following, we list input, target, and annotation columns:

Specification The specification is input to the network and consists of two columns:
assumptions and guarantees. Both are a list of arbitrary LTL formulas and are generated
based on SYNTCOMP 2020 benchmark [Jac+22b; Jac+22a]. The exact algorithm is
described in [Sch+21].

(Faulty) Circuit. A possibly faulty circuit is an additional input to the network and the
distinguishing feature between Neural Circuit Repair and Neural Circuit Synthesis. The
circuit is supposed to be an AIGER circuit (Sec. 2.2), but we do not force the circuit to : Sec. 2.2, p. 6
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be syntactically correct. The circuit might satisfy or violate the specification. It is often
close to a satisfying AIGER circuit in a loose sense. The circuit is to be repaired such
that it eventually is a correct circuit (Def. 2.1), which is why it is called repair circuit.:Def. 2.1, p. 5

The following sections detail how to generate the repair circuit and what close in this
context means.

Target Circuit. The target circuit is a correct AIGER circuit; hence, it either satisfies the
specification or is a counter strategy to the specification. This depends on whether the
specification is realizable. It is generated from the specifications using the synthesis tool
Strix [MSL18] or by evaluating Neural Circuit Synthesis while all samples are verified
with nuXmv [Cav+14].

Annotations. Some columns in the CSV files are just annotations and not used for
training. They should help to understand the underlying data and might be helpful to
gain further insight.

• A status field describes how each sample was generated. In more detail, it de-
scribes the relationship between the repair circuit and target circuit, respectively
specification. It can be Violated (repair circuit violates specification), Satisfied (re-
pair circuit is correct, see Def. 2.1), Match (repair circuit is identical to target circuit:Def. 2.1, p. 5

and therefore also is correct), or Changed (repair circuit is a synthetically altered
version of the target circuit).

• Input and output variables used in the specification.

• We include a hash that uniquely describes the specification.

• A realizability flag shows whether the specification is realizable. As the symbol
table of the circuit indirectly encodes this information, we treat this column as an
annotation.

• Lastly, we include an optional column containing the Levenshtein distance
(Def. 4.1) between the repair circuit and the target circuit.:Def. 4.1, p. 22

Definition 4.1 (Levenshtein Distance)
The Levenshtein distance is an edit distance metric, measuring the degree of distinc-

tion between two strings. Let s1 and s2 two given strings, then the Levenshtein distance
lev(s1, s2) is a the number of actions necessary to transform string s1 into string s2 or
vice versa. Possible actions are deletions, insertions, and substitutions.

We use two approaches and their combination to generate datasets for neural circuit
repair. Both approaches rely on existing datasets from the Neural Circuit Synthesis
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project. The following two sections explain both methods in detail. We also provide
a Jupyter Notebook in the repository 1, guiding through the generation of the datasets
with code.

4.2. Data generation through altering target circuits

The first method creates repair circuits using an altered target circuit version. There are
two basic directions for introducing mistakes to the circuits. We could either introduce
logic mistakes (similar to human mistakes by faulty reasoning) or introduce mistakes
in the representation (similar to careless mistakes). We choose the latter direction for
this work. The following paragraphs go into more detail about defining mistakes in the
representation and what to consider when introducing such mistakes into a circuit.

• We introduce mistakes in the representation of the circuit. This means that in-
troduced mistakes can be approximated using the Levenshtein distance. More
mistakes lead to a higher Levenshtein distance. Also, comparing a more signif-
icant mistake to a less significant one should not lead to a smaller Levenshtein
distance. This entails that a more significant mistake (following this definition)
is not necessarily more significant in a logical sense. A circuit containing mis-
takes might even satisfy the specification. Indeed, this happened for an average of
1.7%. However, it strongly depends on the choice of parameters we use to create
a dataset. All the created datasets have less than two percent of such samples. For
per dataset statistics, have a look at Appendix A.1. :Appendix A.1, p. 63

• The mistakes we introduce should not be completely arbitrary, such as adding
noise, but follow the syntactic of AIGER circuits and be comprehensible to a
certain degree.

The following algorithm achieves these standards:

1. Given the parameters changesmax, changesmin and changesrange−68, determine
how many changes should be performed on the circuit by sampling a discrete
truncated normal distribution, with mean 0, and σ =

changesrange−68

2 . We truncate
with a lower bound of changesmin and an upper bound of changesmax. See Fig. 4.1 :Fig. 4.1, p. 24

for illustration.

2. For each change: given the parameter Pdeteletes, we either delete a line with the
probability Pdeteletes or change the number of a variable with the probability
1− Pdeteletes

1https://github.com/MatCos/ml2/blob/main/notebooks/repair_datasets_creation.ipynb
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Figure 4.1.: On the left side, we depicted the probability density function for sampling
the number of changes applied to a sample. Default values of changesmax =

50, changesmin = 1, changesrange−68 = 15. On the right side, we show the
probability density function for sampling a new variable number based
on the exemplary old variable number 12. Default values of varmax =

61, varmin = 0, varrange−68 = 20.

• For deleting: uniformly choose a line from the AIGER circuit. We do not
remove inputs or outputs to stay consistent with the dataset. All circuits and
specifications in the dataset have the same number of inputs and outputs.

• For changing: uniformly choose a variable number to replace with a new
value. The variable number can be an input, output, the inbound edge(s), or
the outbound edge of a latch or AND gate. The new variable number is deter-
mined by sampling a discrete truncated normal distribution by choosing the
mean as the old variable number and the parameter varrange−68 determining
the width σ =

varrange−68

2 of the distribution. The new variable number is not
smaller than the parameter varmin, not larger than varmax, and cannot be the
mean itself. For illustrations see Fig. 4.1:Fig. 4.1, p. 24

3. The altered circuits are model-checked using nuXmv. For correct circuits (Def. 2.1):Def. 2.1, p. 5

the status annotation is set to Satisfied and to Changed for all others. We calculate
statistics to describe the dataset accurately.

We generate a collection of different datasets covering a range of parameters. Datasets
created based on this section are named with the prefix exp-repair-alter, with a number
following, that simply iterates over all datasets from this section. We show the Leven-
shtein distance between altered circuit and target circuits in Fig. 4.2. An overview of
more statistics and other final datasets can be found in Appendix A.1.:Appendix A.1, p. 63
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Figure 4.2.: Levenshtein distance between repair circuit and target circuit. scpa-repair-
alter-1: Pdeletes = 0.2, changesmax = 50, changesrange−68 = 15, varrange−68 =

20. scpa-repair-alter-4: Pdeletes = 0.1, changesmax = 50, changesrange−68 =

15, varrange−68 = 20. scpa-repair-alter-6: Pdeletes = 1, changesmax =

20, changesrange−68 = 5.

4.3. Data generation through Neural Circuit Synthesis

Having the goal in mind of improving the state-of-the-art in Neural Circuit Synthesis,
the second approach is based on the evaluation of Neural Circuit Synthesis. This
approach allows us to train a network on actual evaluation data and, later, repair the
results of the Neural Circuit Synthesis without out-of-distribution samples. However,
we need to make several significant modifications before we can use the evaluation data
for training.

In a first step, we train a network for Neural Circuit Synthesis. Architecture and
parameter-tuning are based on [Sch+21]. Neural Circuit Synthesis uses a hierarchical
Transformer (Sec. 3.4), and for evaluation beam search (Sec. 3.7) is applied. The next step : Sec. 3.4, p. 15

: Sec. 3.7, p. 18is to evaluate the network with all original Neural Circuit Synthesis dataset samples.
The original dataset has the same format described in Sec. 4.1 except for the repair : Sec. 4.1, p. 21

circuit and related fields. The predictions are collected and model-checked against the
specification and combined with the original dataset. This procedure creates a raw
dataset consisting of the fields from the old dataset plus the prediction, now called
the repair circuit, a status annotation with the result of the model checker, and an
annotation column with the Levenshtein distance between the repair circuit and the
target circuit. We repeated the evaluation for different beam sizes, giving us multiple
datasets. Further, we have multiple unique predictions per specification for evaluations
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Figure 4.3.: Levenshtein distance between repair circuit and target circuit of the raw
datasets based on beam size 1 (...raw-1) and beam size 3 (...raw-2). Notice
the logarithmic scale of the y-axis.

where a beam size greater than one was used. Each prediction is combined with the
original fields such as specification and target, leading to multiple unique samples in
the new dataset that are based on a single evaluated sample.

In a first attempt, we trained experiments on these raw datasets. However, we only
obtained bad results and unstable training. Therefore, we analyze the raw dataset more
profoundly and determine several problems. First, we must choose a metric to calculate
the difference between the repair circuits (evaluation output) and the target circuits.
The repair circuits are based on the prediction of Neural Circuit Synthesis, which archi-
tecture is a sequence-to-sequence architecture, more precisely, a Transformer. Because
of the architecture, we expect most mistakes in the representation of the circuit, hence
several mispredicted tokens instead of logical mistakes (compare Sec. 4.2). Therefore,: Sec. 4.2, p. 23

we propose the Levenshtein distance (Def. 4.1) between the repair circuit and target:Def. 4.1, p. 22

circuit as a metric.
To get an overview, we show the histogram for the Levenshtein distance between the

repair circuit and the target circuit in Fig. 4.3. This plot substantiates the choice of metric,
as we can see that most mistakes in the repair circuit are small in the representation.
Only comparatively few samples have a high Levenshtein distance.

4.3.1. Misleading Targets

One problem we could determine with the raw dataset is the problem of misleading
targets. Neural Circuit Synthesis has to differ between semantic and syntactic accu-
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racy. Correctly predicted circuits can either be identical to the target circuit (syntactic
accuracy) or satisfy the specification with an alternative solution (semantic accuracy).
Therefore, the repair circuit can satisfy the specification without being identical to the
current target circuit. For beam size 1, we achieve a semantic accuracy of 55% vs. a
syntactic accuracy of 32% on the Neural Circuit Synthesis task, leaving a gap of 23%
samples where the predicted circuit is different from the current target circuit, although
semantically correct. If we build a dataset for training from this evaluation data, the
network would learn to repair already (semantically) correct samples. Not only is this
unnecessary, as we only need semantically correct circuits, but the massive difference
between the repair circuit and the target circuit might even hinder the network from
gaining helpful information from the repair circuit. We call the target of such samples
a misleading target as it leads the training signal in the wrong direction of repairing a
correct circuit.

The misleading targets are not only found in semantically correct but not matching
samples but can also be found in violating samples. Given a sample where the repair
circuit does not satisfy the specification but is very close to some satisfying circuit
(alternative target), we call the current target a misleading target. The training signal
would direct towards learning the distant target instead of the close alternative target.

We apply two algorithms to the dataset to remove as many misleading targets as
possible.

Removing misleading targets from semantically correct samples. Removing such
misleading targets is comparatively easy. Semantically correct repair circuits are by
definition already an alternative target so that we can replace the target circuit with the
repair circuit. This eliminates the misleading training signal for semantically correct
samples.

Removing misleading targets from violating samples. Given a violating sample, we
need to determine whether the target might be misleading and if we find a better
alternative target. In general, we cannot decide whether a target is misleading as we
need to know all the alternative targets for this specification. Therefore, we choose to
generate only a few alternative targets for each specification using the beam search.
We evaluate each sample with different beam sizes from 1 to 4. This gives us multiple
predictions for the same sample. Not surprisingly, not all of the predictions satisfy the
specifications. In practice, for larger beam sizes, we often have groups of predictions that
are close to each other, where one prediction is a satisfying circuit, and approximately
3 other predictions violate the specification. The satisfying circuit, however, might not
be identical to the current target circuit, hence is an alternative target. Therefore using
the beam search is an efficient way to find alternative targets that are close to the repair
circuit. Algorithmically, for each violating sample, we now compare the current target
and all alternative targets we discovered during beam-search. Based on the assumption
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Figure 4.4.: Levenshtein distance between repair circuit and target circuit. scpa-repair-
gen-raw-1: original raw dataset. scpa-repair-gen-raw-3: misleading targets
from semantically correct samples removed. scpa-repair-gen-raw-5: mislead-
ing targets from violating samples removed. Beam size of 1 in all datasets.
Notice the logarithmic scale of the y-axis.

that errors of the Neural Circuit Synthesis are in the representation, we choose the target
with the smallest Levenshtein distance to the repair circuit as the new target.

Fig. 4.4 shows the effect of these changes on the distribution of the Levenshtein
distance between the repair circuit and the (new) target. The difference between scpa-
repair-gen-raw-1 and scpa-repair-gen-raw-3 shows how samples from almost all bins in
the histogram are moved to the 0-bin, as the target circuit and repair circuit become
identical. The match fraction (fraction of samples, where target circuit and repair
circuit are identical) is 39% in scpa-repair-gen-raw-1, whereas in scpa-repair-gen-raw-3, the
match fraction is 60%. For the next step, we removed misleading targets from violating
circuits, perceptible in the difference between scpa-repair-gen-raw-3 and scpa-repair-gen-
raw-5. The max fraction stays identical. However, bins with a Levenshtein distance
smaller than approximately 25 significantly grow, while other bins shrink. The mean of
the Levenshtein distance of violating samples changes from 60.65 in scpa-repair-gen-raw-3
to 50.64 in scpa-repair-gen-raw-5. The median changes from 50 to 37.

4.3.2. Filtering Dataset

We can further notice that a significant fraction of all samples contains a satisfying repair
circuit. After applying the algorithms from the previous Sec. 4.3.1, these satisfying repair: Sec. 4.3.1, p. 26

circuits are identical to the target circuit, resulting in a match fraction of 60%. As we
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exclude model checking from our problem of repairing circuits, these samples do not
have much value during training, since they are easily solved by predicting the repair
circuit. Since a significant fraction of the dataset has this feature, we experienced that
it might guide the network to solely learn to copy the repair circuit instead of repairing
it. We counteract by introducing a parameter filtermax−match, limiting the number of
samples where the repair circuit is identical to the target circuit.

Additionally, we suspect that samples, where the edit distance between the repair
circuit and the target circuit is considerably large, do not contribute to the learning
process. We try to reason how the Neural Circuit Synthesis predicts such samples.
We assume that in these cases, the Neural Circuit Synthesis either produced such
wrong circuits, that it is not effective to try to repair these, or that they are close to an
alternative target we could not find. Given the two explanations, such samples would
be dispensable for the training process. We introduce the parameter filtermax−dist to
define the largest Levenshtein distance allowed in the dataset.

We choose two alternative methods to balance the dataset. First, we can remove
inadvertent samples by undersampling the matches and removing samples with large
edit distances. Alternatively, we can replace the repair circuit in such samples with an
artificially altered target circuit based on the algorithm from Sec. 4.2. This can be set : Sec. 4.2, p. 23

with the parameter filterprocess = (remove | alter).
We generate a collection of different datasets covering a range of parameters. Datasets

created based on this section are named with the prefix exp-repair-gen, with a number
following, that simply iterates over all datasets from this section. Appendix A.1 gives an :Appendix A.1, p. 63

overview. We show the differences between the final dataset and the steps towards it for
the default parameters in Fig. 4.5. scpa-repair-gen-raw-5 shows the dataset after replacing :Fig. 4.5, p. 30

misleading targets as the results of Sec. 4.3.1. scpa-repair-gen-77 and scpa-repair-gen-81 : Sec. 4.3.1, p. 26

show two different final datasets, both are created with the same default parameters, but
in scpa-repair-gen-81, we undersample by removing all samples that do not fit our filter
criteria. In scpa-repair-gen-77 we do not remove samples but create a new repair circuit by
altering the target circuit Sec. 4.2 for all samples that do not fit the filter criteria. As clearly : Sec. 4.2, p. 23

visible, no samples with a Levenshtein distance larger than 50 are part of the dataset scpa-
repair-gen-81 as such samples are removed. Further, only 10% of all samples are matches,
as the parameter max-match-fraction defined it. This makes the distribution better
balanced. Alternatively, as seen in scpa-repair-gen-77, a larger Levenshtein distance than
50 is possible when altering instead of removing. This is because we mix the distribution
of scpa-repair-gen-81 with the distribution of scpa-repair-alter-1 from Fig. 4.2. We think :Fig. 4.2, p. 25

that altering the circuits instead of removing them is generally better. We suspect that
there is a codependency between easier specifications and correct circuits, as well as
harder specifications and a larger Levenshtein distance. Following this assumption,
the Neural Circuit Synthesis can be seen as an oracle, classifying which specifications
are easier and which specifications are hard - by either giving a satisfying circuit or by
calculating the degree it fails to give a satisfying circuit using the Levenshtein distance
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Figure 4.5.: Levenshtein distance between repair circuit and target circuit. Beam size of
1 in all datasets. Notice the logarithmic scale of the y-axis.
scpa-repair-gen-raw-5: misleading targets removed. scpa-repair-gen-77: fi-
nal dataset with filters applied (filtermax−dist = 50, filtermax−match =

0.1, filterprocess = alter). scpa-repair-gen-81: final dataset with filters ap-
plied (filtermax−dist = 50, filtermax−match = 0.1, filterprocess = remove).

between violating circuit and target circuit. This would imply that easy specifications
lead to matches in our raw dataset and harder specifications lead to large Levenshtein
distances. After filtering by removing samples, easy specifications, as well as demanding
specifications, are not included in the dataset. Altering the circuit, however, would allow
all specifications in the dataset. Only the repair circuit will be changed.

4.4. Final Datasets

We now show three selected datasets, their parameters, and some statistics on these
datasets. For more information on other datasets, we refer to Appendix A.1.:Appendix A.1, p. 63

We show the distribution of the Levenshtein distance of the selected datasets in Figure
Fig. 4.6:Fig. 4.6, p. 31

Dataset scpa-repair-alter-19 The dataset scpa-repair-alter-19 is based on altered cir-
cuit data. We do not delete any lines from circuits (Pdeletes = 0), perform at most
100 changes per circuit, with approximately 68% samples having at most 50 changes
(changesmax = 100, changesrange−68 = 50). We sample the new variable number from
a normal distribution around the old variable number with approximately 68% chance
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Figure 4.6.: Levenshtein distance between repair circuit and target circuit.

of a maximal distance of 20 (varrange−68 = 20). This procedure leads to less than 1% of
repair circuits that still satisfy the specification. 20% of all samples have a Levenshtein
distance of less than 10 between the repair circuit and the target circuit. In total the
Levenshtein distance in the dataset has a mean of 19.18 with a standard deviation of
12.97 and the median is at 17.

Dataset scpa-repair-gen-108 The dataset scpa-repair-gen-108 is based on evaluation
circuit data and supplemented with altered circuits. We use a beam size of 3 to gener-
ate circuits (parentbeam−size = 3), then change misleading targets by finding minimal
alternative targets, and finally filter the resulting samples. We only keep evaluation
samples with a Levenshtein distance greater than 0 and smaller than 100 in the dataset
(filtermax−match = 0, filtermax−dist = 100), hence for the rest we replace the repair
circuits with altered circuits (filterprocess = alter). For generating altered circuits, for
20% of all changes we delete a line from the circuit (Pdeletes = 0.2), and perform at most
100 changes per circuit with approximately 68% samples having at most 15 changes
(changesmax = 100, changesrange−68 = 15). We sample the new variable number from
a normal distribution around the old variable number with approximately 68% chance
of a maximal distance of 20 (varrange−68 = 20). This procedure leads to approximately
2% of altered circuits that still satisfy the specification. 35% of all samples have a Leven-
shtein distance of less than 10 between the repair circuit and the target circuit. In total
the Levenshtein distance in the dataset has a mean of 21.14 with a standard deviation
of 21.48 and the median is at 14.
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4. Datasets

Dataset scpa-repair-gen-96 The dataset scpa-repair-gen-96 is based on evaluation cir-
cuit data and supplemented with altered circuits. We use a beam size of 3 to generate
circuits (parentbeam−size = 3), then change misleading targets by finding minimal al-
ternative targets, and finally filter the resulting samples. We only keep evaluation
samples with a Levenshtein distance greater than 0 and smaller than 50 in the dataset
(filtermax−match = 0, filtermax−dist = 50), hence for the rest we replace the repair cir-
cuits with altered circuits (filterprocess = alter). For generating altered circuits, for
20% of all changes we delete a line from the circuit (Pdeletes = 0.2), and perform at
most 50 changes per circuit with approximately 68% samples having at most 15 changes
(changesmax = 50, changesrange−68 = 15). We sample the new variable number from a
normal distribution around the old variable number with approximately 68% chance of
a maximal distance of 20 (varrange−68 = 20). This procedure leads to approximately 2%

of altered circuits that still satisfy the specification. 38% of all samples have a Leven-
shtein distance of less than 10 between the repair circuit and the target circuit. In total
the Levenshtein distance in the dataset has a mean of 15.7 with a standard deviation of
12.77 and the median is at 13.
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Chapter 5
Experiments

In this chapter, we document our training parameters, show some general results for all
models and further analyze the evaluation of three selected models in more detail.

5.1. Hyperparameters and Training

All models are trained with the same hyperparameters but on different datasets. We
trained a separated hierarchical Transformer with 4 heads in all attention layers, 4

stacked local layers in both separated local layers, and 4 stacked layers in the global
layer. The decoder stack contains 8 stacked decoders. Embedding size in the decoder
and encoder is 256 and all feed-forward networks have a size of 1024 and use the
Rectified Linear Unit (ReLU) activation function. As in [Sch+21], we used the Adam
optimizer [KB17] with β1 = 0.9, β2 = 0.98 and ϵ = 10−9. We also use 4000warmup steps
with an increased learning rate as proposed in [Vas+17]. We trained with a batch size
of 256 for at least 20000 steps. We show the accuracy training curve for selected models
in Fig. 5.1. All models are named after the dataset the model is trained on. Therefore, :Fig. 5.1, p. 34

models containing gen are based on datasets from in Sec. 4.3 and models containing : Sec. 4.3, p. 25

alter are based on datasets from Sec. 4.2. The second to last number determines the : Sec. 4.2, p. 23

exact dataset, and the last number iterates over all models based on the same dataset.
We refer to Appendix A.2 and Appendix A.1 for more details on (hyper-)parameters of :Appendix A.2, p. 64

:Appendix A.1, p. 63experiments and datasets respectively.

5.2. Evaluation

All models have stable training and reach competitive semantic and syntactic accuracy.
This indicates that hyperparameters are chosen well, datasets are balanced and the
separated hierarchical Transformer architecture can be trained to solve the problem of
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Figure 5.1.: Validation accuracy of selected models over training steps.

circuit repair. In Fig. 5.2, we show the semantic accuracy on the validation splits, with
beam size bs = 16. The accuracy ranges from 63% up to 89%. However, because the
datasets used to train each model, vary in difficulty, comparisons of different models
by test or validation accuracy only have limited expressiveness. One indicator of the
difficulty of a dataset is the Levenshtein distance between the repair circuit and the
target circuit. Samples with a smaller Levenshtein distance are presumably easier to
solve. Therefore we plot the mean and median of the Levenshtein distance on the y-axis
of Fig. 5.2. We can infer the tendency that models with high validation accuracy were
also trained and evaluated on easier datasets. This shows that comparisons between
models should be treated with caution and we should not determine the best model
based on the achieved test or validation accuracy. We compare the different models
against each other using a common baseline in Chapter 6.:Chapter 6, p. 43

For further analysis, we select three experiments. We chose two models based on
predicted circuit data (Sec. 4.3) and one model based on altered circuit data (Sec. 4.2).: Sec. 4.3, p. 25

: Sec. 4.2, p. 23 All evaluations are based on the test split of the respective datasets and use beam search
with a beam size of 16. We provide a Jupyter Notebook in the repository1 to replicate
the results for the selected experiments and all experiments we trained.

In Tbl. 5.3, we show some key results for the selected models. Surprisingly the number
of correct beams per sample is relatively high, especially compared with the results from
Neural Circuit Synthesis [Sch+21] which achieved 4.6 correct beams per sample. For
the model exp-repair-gen-96-0, on average 6.57 out of 16 beams of the predicted circuits
satisfy the specification. Looking only at solved samples, hence samples where at least
the prediction of one beam satisfies the specification, even 7.75 satisfying circuits were
found on average. Not only does the model find more alternative solutions, but it also
finds the exact target circuit more often than in [Sch+21], which has a syntactic accuracy
of 44.5%. While a higher syntactic accuracy seems intuitive as we support a repair

1https://github.com/MatCos/ml2/blob/main/notebooks/experiments.ipynb
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Figure 5.2.: Validation accuracy (bs = 16) of all trained models compared to the Lev-
enshtein distance between the repair circuit and target circuit. Mean and
median are scaled from smallest and largest values to 0 and 1. Only the
labels of selected models are shown.

experiment exp-repair-alter-19-0 exp-repair-gen-108-0 exp-repair-gen-96-0

dataset scpa-repair-alter-19 scpa-repair-gen-108 scpa-repair-gen-96

semantic accuracy 791/1024 = 77% 803/1024 = 78% 868/1024 = 84%

syntactic accuracy 601/1024 = 59% 455/1024 = 44% 545/1024 = 53%

correct beams per sample 4.15 5.79 6.57

correct beams per solved sample 5.34 7.38 7.75

Table 5.3.: Key results of selected models.

circuit that is close to the target circuit, it surprises that the model is also more capable
to find other solutions than the target circuit. This shows that the model can utilize the
repair circuit beyond character editing toward the target circuit.

5.2.1. Difficulty Indicators

We will now look at three indicators for how complex/difficult it is to solve a sample.
Naturally, these indicators cannot be extensive and only highlight one aspect of the
hardness of a sample. We will first look at the specification size, then the target size,
and finally the Levenshtein distance between the repair circuit and the target circuit.
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5. Experiments

We categorize all samples based on the indicator into bins. For each bin, we show the
percentage of all possible statuses:

• Match: prediction equals target.

• Satisfied prediction satisfies the specification, matches excluded.

• Violated (Copy) prediction violates the specification and is equal to the repair circuit.

• Violated prediction violates the specification, copies excluded.

• Error valid circuit could not be determined.

Specification Size In Fig. 5.4 we categorize all samples by specification size and show
what percentage of samples in each bin is solved correctly. We determine the size of the
specification by calculating the size of the abstract syntax tree (AST) of the formula. We
also insinuate the number of samples in each bin with a line. All specifications in the
three datasets come from the same distribution, hence the number of samples per bin is
similar in all three experiments. We can see that in all experiments, performance goes
down with larger specification sizes. This is not surprising, as larger specifications typ-
ically are more complicated. However, for exp-repair-gen-96-0, this is not as pronounced
as in both other experiments. Especially with specification sizes from around 80 to
110, performance is significantly better than for both other models. Further, for model
exp-repair-alter-19-0, we can see that for a significant portion of samples with larger
specifications, no circuit could be produced. In total 8 of 1024 samples only produced
errors in all beams. We also display if a model just copied the repair circuit. The model
exp-repair-alter-19 only produced one circuit that violates the specification and is a copy
of the repair circuit. In both other models, significantly more samples have this status:
exp-repair-gen-108-0: 65, exp-repair-gen-96-0: 31.

Target Circuit Size In Fig. 5.5 we categorize all samples by target circuit size and:Fig. 5.5, p. 38

show what percentage of samples in each bin is solved correctly. We calculate the
size of a circuit by counting AND gates and latches. We also show the number of
samples in each bin with a line. All targets in the three datasets come from the same
distribution, hence the number of samples per bin is similar in all three experiments.
As in the previous section, we can see how samples with larger targets are solved less
frequently, and as before, the effect is the smallest on the model exp-repair-gen-96, while
the other models are comparable. The differences are highly interesting because all
datasets (and consequently models) only differ in the repair circuit. All datasets have
the same specifications and targets, hence all models have seen the same specifications
and targets. However, these results differ greatly, showing that the repair circuit has an
important influence on the training and evaluation of the models.
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(b) experiment exp-repair-gen-108-0
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Figure 5.4.: The status of samples, categorized by the size of the specification AST. The
line insinuates the number of samples in each bin, scaled from 0 to 1. For a
better overview, the line is smoothed with a Hann-Window. Only the best
result from all 16 results per sample is shown.
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Figure 5.5.: The status of samples, categorized by the target circuit size (sum of latches
and AND gates). The line shows the number of samples in each bin, scaled
from 0 to 1. Only the best result from all 16 results per sample is shown.
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Levenshtein Distance In Fig. 5.6 we categorize all samples by the Levenshtein distance :Fig. 5.6, p. 40

between the repair circuit and target circuit and show what percentage of samples in
each bin is solved correctly. We also show the number of samples in each bin with a
line. While the targets in the three datasets come from the same distribution, the repair
circuit distribution is unique to each dataset. We already showed the distribution of the
Levenshtein distance for the three datasets in Fig. 4.6. Comparing the three figures, we :Fig. 4.6, p. 31

can see that the first model exp-repair-alter-16-0 is, again, most affected by harder samples.
Because of the parameters used to generate the repair circuits (see Sec. 4.4), only outliers : Sec. 4.4, p. 30

have a larger Levenshtein distance than 50 in exp-repair-alter-19-0 and exp-repair-gen-96-0.

5.2.2. Levenshtein Distance Improvement

Although all models have good results, a significant amount of samples could still not be
solved. In this section, we analyze whether a violating prediction is still an improvement.
We calculate the difference between two Levenshtein distances: The distance between
repair and target circuit lev(r, t) and the distance between prediction and target circuit
lev(p, t). If the difference is below zero: lev(p, t) − lev(r, t) < 0, the model improved
the repair circuit toward the target circuit. If not, the model might either improve
toward an alternative target or just deteriorate. The more extreme the better/worse. In
Fig. 5.7, we show a violin plot of the improvement. A violin plot visualizes a distribution :Fig. 5.7, p. 41

by showing the probability density of the data. First, we can see that for all models,
for violated or satisfied predictions, and for realizable or unrealizable specifications,
the prediction is an improvement compared to the repair circuit. Since this holds for
violating and satisfying predictions we conjecture that most violating predictions are
still an improvement compared to the repair circuit, hence the status before applying
the repair model. In the next Chapter 6, we analyze whether we can utilize this by :Chapter 6, p. 43

repeatedly applying this approach to the predicted circuit(s) until we eventually might
converge.
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Figure 5.6.: The status of samples, categorized by the Levenshtein distance between the
repair circuit and target circuit. The line shows the number of samples in
each bin, scaled from 0 to 1. Only the best result from all 16 results per
sample is shown.
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Figure 5.7.: Violin plot of the improvement of the Levenshtein distance from the repair
circuit and prediction to the target. Smaller (negative) numbers indicate
that the predicted circuit is closer to the target circuit than the repair circuit;
larger (positive) numbers indicate that the predicted circuit is further from
the target circuit than the repair circuit. The dashed line shows the mean of
the displayed distribution. For better visibility, we removed extreme outliers
and only show samples between −60 and 40.
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Chapter 6
Improving Neural Circuit
Synthesis
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Figure 6.1.: Pipeline Structure

In this chapter, we present the results of combining
this work with the work of [Sch+21]. We extend the
previous work and improve the current state-of-the-
art approach for Neural Circuit Synthesis.

We combine both approaches by using Neural Cir-
cuit Synthesis (base model, [Sch+21]) to predict cir-
cuits and Neural Circuit Repair (repair model, Chap-
ter 5) to repair predictions that violate the specifica- :Chapter 5, p. 33

tion. We call the following procedure pipeline and
show an overview in Fig. 6.1.

• We first evaluate the base model. As a base
model, we use the same model we trained for
Sec. 4.3, which was trained on the dataset scpa- : Sec. 4.3, p. 25

2. We call this the 0th iteration of the pipeline or
base model evaluation.

• If the predicted circuit violates the specifica-
tion, we feed the specification together with the
violating circuit into the repair model. We call
this the 1st iteration of the pipeline or first repair
model evaluation.

• If the prediction of the repair circuit still vio-
lates the specification, we can repeat feeding
the specification together with the violating cir-
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6. Improving Neural Circuit Synthesis

cuit into the repair model until it is solved. We call this the 2nd to nth iteration of
the pipeline or the repeats of the repair model.

Using this approach we improve the results of Schmitt et al. [Sch+21] by 6.8percentage
points to a total of 83.9% on held-out instances. We could also see similar or even greater
improvement on out-of-distribution benchmarks such SYNTCOMP [Jac+22a; Jac+22b]
with a gain of 11.8 percentage points to a total of 75.9% and J.A.R.V.I.S [Gei+22] with a
gain of 23.8 percentage points to a total of 66.7%. In the following, we give more details
on these results and investigate which part of the pipeline holds the largest stake in the
improvement.

6.1. Synthesizing an Arbiter

Before we present some generalized insights into the pipeline evaluation we give the
demonstration of synthesizing an arbiter using the pipeline. The specification and
results shown in this section are actual results using the repair model exp-repair-gen-96-
0. An arbiter manages the access to a resource to which multiple processes can request
access. The arbiter is a popular example in literature for reactive synthesis. We look
at the more advanced version of an arbiter for 4 processes which was taken from the
SYNTCOMP benchmark [Jac+22b; Jac+22a]. The requirements for a simple arbiter are
as follows. First, only one process at once should have access to the resource. Secondly,
if a process requested the resource, the arbiter should not ignore the request, hence the
process should have access to the resource sometimes in the future. We can specify
these requirements using LTL. For processes p0 · · · p3, we use the requests r0 · · · r3 as
inputs and grants g0 · · · g3 as outputs. A process pi can request the resource by setting ri
to true and receives a grant if gi is true. We create the following 5 guarantees that fully
specify an arbiter.

((¬g0 ∧ ¬g1 ∧ (¬g2 ∨ ¬g3)) ∨ ((¬g0 ∨ ¬g1) ∧ ¬g2 ∧ ¬g3))

(r0 → g0)

(r1 → g1)

(r2 → g2)

(r3 → g3)

A circuit that satisfied the requirements does not need to consider the requests, as
giving grants based on a round-robin scheduler would satisfy the requirements. The
smallest circuit to satisfy the requirements, therefore, would give a one grant after the
other to all processes.
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6.2. Improvement on held-out instances

In Fig. 6.2, we show the result of the pipeline in different iterations. First, in Fig. 6.2a, :Fig. 6.2, p. 46

:Fig. 6.2a, p. 46the predicted circuit of the base model is not correct. It lacks two necessary concepts:
The latches are not connected in a way they could count to memorize the 4 states we
need. Secondly and more obvious, g0 and g1 are controlled by the same variable. That
means they are either never true (which would violate the specification) or at some
point true at the same time (which would also violate the specification). In Fig. 6.2b, :Fig. 6.2b, p. 46

we can see the first attempt to repair that circuit. While this circuit is still faulty because
g0 and g1 are based on the same variable, progress was made towards a functioning
counter. Latch 1 (l1) now is based on a combination of AND gates and negations that
has the expressiveness to represent a counter. However, the counter does not work yet
as the second AND gate should take the variable number 14 instead of 15 as input.
In Fig. 6.2c we can see the result of feeding the previous circuit into the repair model :Fig. 6.2c, p. 46

again. Now the model predicted the correct circuit. Both latches build together a bit-
wise counter that memorizes the state. The AND gates that are connected to outputs
are the cross-product of the non-negated and negated versions of both latches such that
always one AND gate outputs true. Lastly, each AND gate is connected to exactly one
output. This circuit is an optimal solution in size for this requirement and also the
output of the classical synthesis tool Strix [MSL18].

6.2. Improvement on held-out instances

For the remaining analysis, unless stated otherwise, we evaluate all repair models in the
pipeline for 6 iterations (1 iteration base model and 5 iterations repair model) with beam
size 16. We always keep the most promising beam after each iteration using the distance
between the prediction and target circuit as a heuristic. We use the same 2048 samples,
called test_fixed, which are randomly sampled from the test split of the Neural Circuit
Synthesis dataset scpa-2. Therefore, in the first iteration of the repair model, we have the
same samples for all evaluations of repair models. We made sure that neither the base
model nor the repair model has seen samples or any parts thereof (i.e. specifications)
from this split. We either show the pipeline accuracy improvement (percentage points
gained after base model evaluation) or the pipeline accuracy (total percentage after the
last pipeline iteration).

In all iterations of the pipeline, we use beam search (Sec. 3.7) with a beam size of 16. : Sec. 3.7, p. 18

That entails that each iteration produces 16 distinct results per sample that we feed in.
We have different options on how to handle these beams. One option is to feed all 16
results into the next iteration which leads to an exponential blowup in the number of
repeats. This is feasible for small evaluation sets and a few iterations such as 3 as seen
in the experiments on benchmarks (Sec. 6.4). More iterations would theoretically be : Sec. 6.4, p. 52

possible and might lead to an even greater improvement, but 3 iterations are already
sufficient for a huge improvement. For larger evaluation sets such as 2048 samples, this
would theoretically still be possible but not efficient. Therefore we have a second option
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(a) Faulty circuit. Predicted in the base model (iteration 0).
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(b) Faulty circuit. Predicted in iteration 1 of the repair model.

aag 12 5 2 5 5
2 input 0 ( i 0 )
4 input 1 ( r_2 )
6 input 2 ( r_0 )
8 input 3 ( r_3 )
10 input 4 ( r_1 )
12 13 l a t c h 0 ( l 0 )
14 24 l a t c h 1 ( l 1 )
16 output 0 ( g_3 )
18 output 1 ( g_2 )
20 output 2 ( g_0 )
22 output 3 ( g_1 )
0 output 4 ( o4 )
16 15 13 and−gates
18 15 12 and−gates
20 14 13 and−gates
22 14 12 and−gates
24 23 17 and−gates

16

14 12

18 2022

24g3g2 g0g1

l0

l1

(c) Correct circuit. Predicted in iteration 2 of the repair model.

Figure 6.2.: Predicted circuits for a 4-arbiter. In the graph, we omit inputs and outputs
that are not connected to the circuit.
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to select one promising beam per sample to keep for the next iteration. This can either
be chosen at random or using a heuristic. To under-approximate the potential of the
model if we would keep all beams, in the following, we use a heuristic on the distance
between the prediction and the target.

In Fig. 6.3, we plot the accuracy improvement through the pipeline dependent on the
validation accuracy. The validation accuracy is based on the distribution that was used
to train the models, hence this is a different distribution for each dataset. The pipeline
accuracy improvement is based on the same distribution for all models. We can see
that models having a higher pipeline accuracy are trained with a dataset that included
evaluation results (Sec. 4.3) instead of altered circuits (Sec. 4.2). This is not surprising, : Sec. 4.3, p. 25

: Sec. 4.2, p. 23as these datasets are closer to the distribution, on which the pipeline accuracy is based.
We can identify several clusters of models, of which one cluster (yellow) has relatively
good validation accuracy and very good pipeline accuracy. All models in this cluster
improve the synthesis accuracy by more than 5 percentage points, with the highest gain
of 6.8 percentage points by the model exp-repair-gen-96-0.
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Figure 6.3.: Pipeline accuracy improvement (percentage points) compared to validation
accuracy of all trained models. Colors are based on k-means clustering with
4 clusters.

In Fig. 6.4, we show the pipeline accuracy of three selected models after each iteration. :Fig. 6.4, p. 48

exp-repair-gen-96-0 and exp-repair-gen-108-0 are the two models that have the highest
pipeline accuracy of all models we trained and exp-repair-alter-19-0 is the model that
has the highest pipeline accuracy of all models whose training dataset is solely based
on altered circuit data. For the syntactic accuracy (Match), we refer to Fig. A.1. As :Fig. A.1, p. 59

clearly visible, in all three models, the first iteration improved the most by up to 5.5
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percentage points, however, even the following iterations further improve the overall
accuracy by up to 1.3 percentage points. For the model exp-repair-alter-19-0, we can
see that the improvement is generally smaller but more distributed over all iterations.
Models with the prefix exp-repair-gen have a major gain in the first iteration compared
to later iterations. This is most likely because these models were trained with data that
included circuits from evaluation predictions (Sec. 4.3). The distribution these models: Sec. 4.3, p. 25

were trained on is similar to the distribution that is fed into the repair model in the first
iteration. The model exp-repair-alter-19-0 is trained on a different distribution, explaining
the smaller improvement. Iterations 2-5 are out-of-distribution for all models.
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Figure 6.4.: Pipeline accuracy of selected models after each iteration step. A sample is
rated as correct after iteration i if at least one prediction in evaluations from
iterations j <= i is correct. Based on a fixed set of held-out samples.

In Fig. 6.5, we show how the status changed between the base model and the last
iteration. Samples that were already solved in the base model are shown in gray
(unchanged), green samples are solved in at least one repair iteration but not in the
base model (new), and red samples are neither solved in the repair model nor the base
model (remaining). For the same plot but categorized by target circuit size instead of
specification size, we refer to Fig. A.3. We can see that throughout all specification sizes,:Fig. A.3, p. 60

samples were solved that could not be solved by the base model. Most surprisingly,
the repair model solves larger samples more often compared to smaller samples. This
shows the advantage of the repair model, as for the base model, samples with smaller
specification sizes are solved more frequently.

We refer to Fig. A.4 and Fig. A.5 for the improvement between base model and first:Fig. A.4, p. 61

:Fig. A.5, p. 61 iteration only.
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Figure 6.5.: The status improvement of samples between iteration 0 and 5, categorized
by the AST size of the specification. The line insinuates the number of
samples in each bin, scaled from 0 to 1. Per sample, we aggregate the best
result from all iterations (base model and repair model) and all 16 beams.
Based on a fixed set of held-out samples.

Finally, in Fig. 6.6, we compare the mean and median of the dataset that was used to :Fig. 6.6, p. 50

train each repair model to the pipeline accuracy improvement. The plot is analogous to
Fig. 5.2, where we showed the accuracy of each validation split. Contrary to that, we can :Fig. 5.2, p. 35

see in this plot that the Levenshtein distance between the repair circuit and target circuit
in the dataset each model was trained on has no obvious influence on the performance
when measured as the improvement to the accuracy of the base model.

6.3. Improvement through repeats

In this section, we look at the effect of repeats in the pipeline. All evaluations in
iterations larger than one are out-of-distribution evaluations because the distribution
of (faulty) circuits predicted by the first iteration of the repair model is different from
the distribution of the training data. As opposed to that, the model still performs
exceptionally well in later iterations. We show this in Fig. 6.7, where we evaluate the :Fig. 6.7, p. 51

model with violated and satisfied predictions from each previous iteration. We show
the semantic accuracy in this plot, for the syntactic accuracy we refer to Fig. A.2. We :Fig. A.2, p. 60

show the accuracy in each iteration, which should not be confused with the accuracy
after each iteration, where we rate a sample as correct if the prediction was correct
in at least one earlier iteration. The question arises, as to why the model performs
so well under these seemingly out-of-distribution conditions, but explanations at this
point are highly speculative. Firstly it could be that the distributions are much closer
to the distribution we trained on than expected. Specifications do not change through
iterations, hence these are from the same distribution as we trained. Predicted circuits
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Figure 6.6.: Pipeline accuracy improvement of all trained models compared to the Leven-
shtein distance between repair circuit and target circuit. Mean and median
are scaled from smallest and largest values to 0 and 1. Only the labels of
selected models are shown.

from the base model and predicted circuits from the repair model might be very similar.
Both are predicted by a model with very similar architectures (hierarchical Transformer
vs. separated hierarchical Transformer), hence both models (base and repair) might
produce similar mistakes, hence (faulty) circuits. Secondly, each iteration solves samples
that were not solved before. By keeping the most promising beam out of all 16 predicted
beams, beams that are already satisfied are kept with a higher probability. Therefore,
more and more circuits we feed into the next iteration are already correct, hence the
samples get easier after each iteration. This, however, does not explain the effect fully
because the model not uncommonly fails on samples where the repair circuit is already
correct.

In Fig. 6.8, we show the status improvement after the first iteration. Samples that were
solved in the base model or the first repair iteration are shown in gray (unchanged).
Green samples are solved in at least one repeat but not in the base model or the first
iteration (new). Red samples are neither solved in the repair model nor the base model
(remaining). Improvements are rather small, which is not surprising as, after the
first iteration, an accuracy of approximately 85% is reached. The remaining unsolved
samples are expected to be hard, independent of the size of the specification, hence
small improvements already indicate success. As in Fig. 6.5, we cannot recognize that:Fig. 6.5, p. 49

samples with larger specification sizes are solved less frequently. In Fig. A.6, we show:Fig. A.6, p. 62

the same plot but categorized by target circuit size instead of specification size.
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Figure 6.7.: Semantic accuracy in each iteration. Fixed test set. Beam size 16, keeping
the best beam for the next iteration.
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Figure 6.8.: The status improvement of samples between iteration 1 and 5, categorized
by the AST size of the specification. Shows the effect of the repeats of the
repair model. The line insinuates the number of samples in each bin, scaled
from 0 to 1. Per sample, we aggregate the best result from all iterations (base
model and repair model) and all 16 beams. Based on a fixed set of held-out
samples.
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6.4. Improvement on benchmarks

In this section we evaluate whether we can improve on benchmarks for reactive synthesis
such as the reactive synthesis competition (SYNTCOMP) [Jac+22a; Jac+22b] or J.A.R.V.I.S
[Gei+22], a set of specifications for Smart-Home appliances. We further look at a set
of samples that is from the distribution of the dataset scpa-2 but could not be used for
training, validation, and test as the classical synthesis tool Strix [MSL18] timed out while
attempting to synthesize a circuit. We call this set timeouts. Both benchmarks are out of
distribution for the base model, hence also for the repair model. The set Timeouts is not
out-of-distribution for the base model, but only contains hard specifications that Strix
was not able to solve in 120 seconds.

We show the results in Fig. 6.9. We evaluate the three datasets in the pipeline with 6
iterations (1 iteration base model and 5 iterations repair model) with beam size 16 in all
iterations. For all evaluations in this section, we do not use the under-approximating
heuristic for which beam we keep. We keep a single beam chosen at random, while for
SYNTCOMP and J.A.R.V.I.S, we additionally evaluate the pipeline keeping all beams
with only 3 iterations. From the timeouts set, we sample 2048 samples for evaluation.
From the SYNTCOMP and J.A.R.V.I.S benchmarks, we filter specifications that are too
large for the model, with respectively 210 and 70 samples remaining which we all
evaluate. Note that the different approaches for keeping beams, conceptually, cannot
make a difference in the evaluation of the base model but only in future iterations.
Here, the figure shows different values for the base model evaluation because of non-
determinism when transforming the SYNTCOMP and J.A.R.V.I.S. specifications into
our format. While two formulas of the same specification in two evaluations are always
logically equal, they do not have to have the same abstract syntax tree and variable
names - which leads to different results by the model.

In Fig. 6.9a (timeouts), we see that the pipeline improves the accuracy of the base
model by 6.9 percentage points. Additionally, repeats (iterations 2-5) have a larger stake
in the improvement than in Fig. 6.4 with 2.5 percentage points. It seems that more:Fig. 6.4, p. 48

than 6 iterations would even further improve the accuracy, as we have not yet reached
a plateau at iteration 5.

The Fig. 6.9b (SYNTCOMP) and Fig. 6.9c (J.A.R.V.I.S) show that we can improve the
out-of-distribution benchmarks by 7.1 and 8.8 percentage points, respectively. We can
also see that the pipeline performs considerably better when keeping all beams in all
iterations. In future work, we can try to find a suitable heuristic that chooses the most
promising beam instead of randomly choosing. This could improve the accuracy of the
pipeline without the need to keep all beams in each iteration.
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(b) SYNTCOMP benchmark (out-of-distribution).
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(c) J.A.R.V.I.S benchmark (out-of-distribution).

Figure 6.9.: Accuracy after each iteration in the pipeline. Beam size 16.
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Chapter 7
Conclusion

In this work, we presented a method to repair circuits using a Transformer-based
architecture. We introduced a new Transformer-based architecture and created sev-
eral datasets for supervised learning. We trained models using this architecture and
datasets that achieve promising results on the repair problem. We further combined
our approach with Neural Circuit Synthesis [Sch+21], to demonstrate that our approach
can be applied to existing approaches, improving the results significantly on a given
set of hold-out samples and benchmarks such as the reactive synthesis competition
SYNTCOMP. We provide code, guided notebooks, datasets, and trained models in our
repository 1.

Separated Hierarchical Transformer. We introduced a new architecture that is based
on the Transformer [Vas+17], more precisely the hierarchical Transformer [Li+21]. The
separated hierarchical Transformer extends the hierarchical Transformer to specialize
in handling multiple sources. We divide the encoder into multiple hierarchically struc-
tured encoder layers that each handle different input sources or different partitions of
each input source. Some layers share parameters while others have separated parame-
ters. In the lower layers, features in the partitions of the input can be learned without
the greater context, while the higher layers combine the features learned from each
partition and each input source and learn the greater context.

Datasets. We created a range of datasets that can be used for supervised learning of the
repair problem. We gave instructions on how to generate these datasets and document
findings that can be transferred to other distributions of circuits and other problems
of similar nature. We demonstrated that these datasets can be used for training the
separated hierarchical Transformer on the circuit repair problem. The datasets contain

1https://github.com/MatCos/ml2
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7. Conclusion

specifications in LTL, target circuits in form of an And-Inverter Graph that satisfies the
specification, and faulty circuits in form of a (faulty) And-Inverter Graph, that is close to
the target circuit. Two methods were used to generate (faulty) circuits. First, we altered
the target circuit to create broken circuits. Secondly, we used mispredicted circuits from
Neural Circuit Synthesis as a base for our training data. For all datasets, we documented
how they were generated and showed insightful statistics.

Repairing Systems. We trained multiple models that can repair a faulty circuit with
high accuracy. We analyzed the evaluations by specification and target circuit size
and learned that the performance does not depend on the size of the specification or
target circuit - contrary to the results of Neural Circuit Synthesis [Sch+21]. We further
analyzed the influence of the Levenshtein distance between the (faulty) circuit and the
target circuit on the performance of the model. At least for some models, we could not
infer that samples with larger distances are harder to solve. We also showed that our
model(s) often do not only find one correct solution but, depending on the model, up
to 7.6 correct distinct solutions per solved sample. We showed that, even for samples
that were not solved, the result improved as the predicted circuit on average is closer to
a correct circuit than the circuit we fed into the model.

experiment exp-repair-alter-19-0 exp-repair-gen-108-0 exp-repair-gen-96-0

semantic accuracy 77% 78% 84%

syntactic accuracy 59% 44% 53%

correct beams per sample 4.3 5.8 6.6

Improving Neural Circuit Synthesis. We showed the potential of our approach by
contributing to a competitive and well-researched problem. We applied our models to
Neural Circuit Synthesis [Sch+21] to repair mispredicted circuits. We made significant
improvements on held-out instances and benchmarks. We also found out that we can
apply multiple iterations of the repair model. In the first iteration, the model attempts to
repair the mispredictions of the synthesis model, while in further iterations the model
attempts to repair the mispredictions of the repair model. Our method is not limited to
improving a specific approach, we documented valuable insights and instructions, that
can be transferred to improve other circuit synthesis approaches.
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baseline after first iteration after last iteration

test 77.1% 82.6% (+5.5) 83.9% (+6.8)

timeouts 30.7% 34.9% (+4.2) 37.6% (+6.9)

SYNTCOMP 64.1% 71.7% (+7.6) 75.9% (+11.8)

J.A.R.V.I.S 42.9% 61.9% (+19) 66.7% (+23.8)

7.1. Outlook

We see multiple angles from which we think our approach can still be improved and
extended.

Graph Representations. We think that the AIGER format, while succinct, is not the
most intuitive representation of a circuit. It is not unlikely that a Transformer model
would understand other representations more easily. Using a graph encoding or ideas
from the Graphormer [Yin+21], we could directly use the And-Inverter Graph as input,
without needing the AIGER format as an intermediary text representation. One could
also switch from circuits to transition systems, which are often easier to understand
than circuits. Using transition systems instead of text representations of And-Inverter
Graphs might also change the type of mistakes a network would produce. While in the
AIGER format, small mistakes in terms of the edit distance to a correct solution generally
do not mean that these are also logically close, for transition systems we anticipate this
to be different because the time dimension is more explicit than in circuits.

Automatic Post-Editing. Instead of using a separated hierarchical Transformer, we
could also try automatic post-editing, where the decoder is initialized with the circuit
to repair. Given the initialization and the input from the encoder, the decoder could
then predict the repaired circuit. The current architecture has multiple segments with
almost identical functionality. A local separated layer of the encoder and the decoder
both interpret AIGER circuits. While there are slight differences such that the encoder
is trained on faulty circuits and the decoder only on satisfying circuits, most of the
structure is the same in both. Moving the repair circuit to the decoder would spare the
duplicated parameters and has the synergy potential of seeing even more circuit data
in the decoder.

Error Trace. Model-checking circuits against a specification usually gives an error
trace for violating circuits. The error trace is a trace of input/output assignments that
are produced by the circuit but contradict the specification. Error traces can contain
valuable information on the error in the circuit. In circuit repair, we could use the error
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trace as additional input, hopefully guiding the repair by further refining the type of
error that needs to be repaired. This could further improve the results and make the
model even more robust against out-of-distribution faulty circuits.

Repairing Programs & Human Errors Finally, we want to apply this approach to other
domains, such as programs. The field of automated software repair [Mon18] is a very
active research field, where recent additions such as Jigsaw [Jai+21] attracted attention.
Automated software repair can be applied to human-written programs or machine-
generated code for example by GitHub Copilot. The need to repair such programs is
evident as it was recently shown that Copilot not only often produces buggy code but
also introduces heavy security risks [Pea+22]. Existing repair approaches, however,
often only rely on assertions and test cases but cannot consider formal specifications.
We showed that our Transformer combines buggy programs with formal specifications
to produce correct programs. Advances in the topic of formal temporal specifications
paired with automated program repair could be a huge contribution in terms of security
and verifiability of code.
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Figure A.1.: Pipeline syntactic accuracy of selected models in each iteration step. Based
on a fixed set of held-out samples.
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Figure A.2.: Syntactic accuracy in each iteration. Experiment exp-repair-gen-96-0, beam
size 16, keeping the best beam for the next iteration.
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Figure A.3.: The status improvement of samples between iteration 0 and 5, categorized
by the target circuit size (sum of latches and AND gates). The line shows
the number of samples in each bin, scaled from 0 to 1. Per sample, we
aggregate the best result from all iterations (base model and repair model)
and all 16 beams. Samples that were already solved in the base model are
shown in gray (unchanged). Green samples are solved in at least one repair
iteration but not in the base model (new). Red samples are neither solved
in the repair model nor the base model (remaining). Based on a fixed set of
held-out samples.
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Figure A.4.: The status improvement of samples between iteration 0 and 1, categorized
by the AST size of the problem. Only one iteration of the repair model
is applied. The line insinuates the number of samples in each bin, scaled
from 0 to 1. Per sample, we aggregate the best result from the base and
repair model evaluation and all 16 beams. Samples that were solved in the
base model are shown in gray (unchanged). Green samples are solved in
the repair model but not in the base model (new). Red samples are neither
solved in the repair model nor the base model (remaining). Based on a fixed
set of held-out samples.

0 5 10 15 20 250

0.5

1

No. samples Violated or Error (remaining)
Match or Satisfied (unchanged) Satisfied (new)
Match (new)

Figure A.5.: The status improvement of samples between iteration 0 and 1, categorized
by the target circuit size (sum of latches and AND gates). Only one iteration
of the repair model is applied. The line shows the number of samples in
each bin, scaled from 0 to 1. Per sample, we aggregate the best result from
the base and repair model evaluation and all 16 beams. Samples that were
solved in the base model are shown in gray (unchanged). Green samples are
solved in the repair model but not in the base model (new). Red samples are
neither solved in the repair model nor the base model (remaining). Based
on a fixed set of held-out samples.
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Figure A.6.: The status improvement of samples between iteration 1 and 5, categorized
by the target circuit size (sum of latches and AND gates). Shows the effect
of the repeats of the repair model. The line shows the number of samples in
each bin, scaled from 0 to 1. Per sample, we aggregate the best result from
all iterations (base model and repair model) and all 16 beams. Samples that
were solved in the base model or the first repair iteration are shown in gray
(unchanged). Green samples are solved in at least one repeat but not in the
base model or the first iteration (new). Red samples are neither solved in
the repair model nor the base model (remaining). Based on a fixed set of
held-out samples.
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A.1. Dataset Feature Table

The following table shows the parameters and some statistics of
selected datasets. More extensive information can be found in the
full table at the QR-code or using the Jupyter Notebook we provide
in the repository1.

Name of dataset

scpa-

repair-

alter-1

scpa-

repair-

alter-4

scpa-

repair-

alter-6

scpa-

repair-

alter-19

scpa-

repair-

gen-77

scpa-

repair-

gen-81

scpa-

repair-

gen-96

scpa-

repair-

gen-108

alter

parameters

Pdeletes 0.2 0.1 1 0 0.2 0.2 0.2

changesmin 1 1 1 1 1 1 1

changesmax 50 50 20 100 50 50 100

changesrange−68 15 15 5 50 15 15 15

varmin 0 0 0 0 0 0

varmax 61 61 61 61 61 61

varrange−68 20 20 20 20 20 20

gen

parameters

filtermax−dist 50 50 50 100

filtermax−match 0.1 0 0 0

filterprocess alter remove alter alter

change misleading targets TRUE TRUE TRUE TRUE

parentbeam−size 1 1 3 3

train size 200000 200000 200000 200000 196436 47761 581778 581778

val size 25000 25000 25000 25000 24575 9073 72777 72777

test size 25000 25000 25000 25000 24563 9214 72805 72805

statistics

training

split

status: violated 0 0 0 0 0.24 1 0.38 0.48

status: satisfied 0 0 0 0 0.1 0 0 0

status: match 0 0 0 0 0 0 0 0

status: changed 1 1 1 1 0.66 0 0.61 0.51

realizable 0.5 0.5 0.5 0.5 0.49 0.46 0.49 0.49

satisfied and status changed 0.0145 0.0175 0.0125 0.00625 0.018 0.01925 0.02025

Levenshtein distance mean 15.99 12.83 19.76 19.18 14.77 19.76 15.7 21.14

Levenshtein distance median 13 11 17 17 12 18 13 14

Levenshtein distance std 12.1 9.33 14.03 11.74 12.97 14.89 12.77 21.48

Levenshtein distance < 10 0.35 0.43 0.29 0.2 0.42 0.31 0.38 0.35

1https://github.com/MatCos/ml2/blob/main/notebooks/datasets.ipynb
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A.2. Experiment Feature Table

The following table shows the parameters and some statistics of
selected experiments. More extensive information can be found
in the full table at the QR-code or using the Jupyter Notebook we
provide in the repository2.

name
exp-repair-

gen-96-0

exp-repair-

gen-108-0

exp-repair-

alter-19-0

parameters

name dataset
scpa-repair-

gen-96

scpa-repair-

gen-108

scpa-repair-

alter-19

training steps 20000 20000 20000

warmup steps 4000 4000 4000

embedding size 256 256 256

input/target length

max circuit length 128 128 128

max num properties (spec) 12 12 12

max tree size per property 25 25 25

network

dropout 0 0 0

network sizes 1024 1024 1024

activation relu relu relu

attention

heads (encoder and decoder) 4 4 4

layers (encoder) 4 4 4

layers (decoder) 8 8 8

evaluation

on dataset

val

accuracy 0.950 0.914 0.951

loss 0.063 0.109 0.072

accuracy per sequence 0.324 0.252 0.399

test
semantic beam

accuracy

beam size 1 0.584 0.547 0.550

beam size 16 0.847 0.784 0.772

on pipeline test_fixed

Repeats: 5

Beam Base: 16

Beam Repair: 16

keep: best

sem_improvement_accuracy 0.068 0.066 0.041

sem_overall_accuracy 0.839 0.837 0.812

syn_improvement_accuracy 0.049 0.048 0.022

syn_overall_accuracy 0.479 0.477 0.451

enc_overall_accuracy 0.851 0.849 0.823

Repeats: 10

Beam Base: 4

Beam Repair: 4

keep: best

sem_improvement_accuracy 0.090 0.085 0.038

sem_overall_accuracy 0.764 0.758 0.711

syn_improvement_accuracy 0.030 0.031 0.014

syn_overall_accuracy 0.408 0.409 0.392

enc_overall_accuracy 0.775 0.769 0.721

2https://github.com/MatCos/ml2/blob/main/notebooks/experiments.ipynb
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