
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Deductive Model Checking with

Transition Constraint Systems

Diploma Thesis

submitted by

Dominik Brill

Supervisor

Prof. Dr. Bernd Finkbeiner

Advisor

Dipl. Inf. Klaus Dräger

Reviewers

Prof. Dr. Bernd Finkbeiner

Prof. Dr. Reinhard Wilhelm

Saarland University

Faculty of Natural Sciences and Technology

Department of Computer Science

Reactive Systems Group

August 5, 2007

Abstract

This thesis presents an extension of deductive model checking that uses phase event
automata to verify, if a given reactive system satisfies a specification, typically a
temporal logic formula. Both the reactive system and the specification are encoded
in an initial phase event automaton that is repeatedly refined and transformed
until a counterexample computation or a correctness proof is found. Additional
heuristics concerning the refinement and transformation rules are used to further
improve the model checking algorithm. These heuristics lead to large state-space
savings. To preserve full automatism, the specification language is restricted to
state safety properties. The use of phase event automata allows the integration of
CSP, Object-Z and Duration Calculus into the framework.

Statement:
Hereby I confirm that this thesis is my own work and that I have documented all
sources used.

Saarbrücken, August 5, 2007

Dominik Brill

Contents

1 Introduction 11

2 Preliminaries 13
2.1 Reactive systems . 13
2.2 Real-time systems . 13
2.3 Model Checking . 14
2.4 Fair Transition Systems . 14
2.5 Example - Fischers’ Mutual Exclusion Algorithm 15
2.6 Linear-time Temporal Logic . 17
2.7 The Formula Tableau . 18
2.8 CSP-OZ-DC . 20

2.8.1 Communicating Sequential Processes 20
2.8.2 Object-Z . 20
2.8.3 Duration Calculus . 21

3 Phase Event Automata 23
3.1 Timed Automata . 23
3.2 Phase event automata . 24
3.3 Formal Definition . 25
3.4 Parallel Composition of Phase Event Automata 26

4 The DMC Procedure - Safety 27
4.1 Deductive Model Checking . 27
4.2 The Restricted DMC Procedure . 28

5 DMC with Phase Event Automata 32
5.1 Configuration Files . 34

5.1.1 Boolean Constraints - Init and Invariants 35
5.1.2 Transitions . 35
5.1.3 Nodes and Nodelabels . 36
5.1.4 Variables . 36
5.1.5 Edges . 36
5.1.6 Example: Elevator Configuration Script 37

5.2 Phase Event Automata Creation . 38
5.2.1 The PEA Object . 38
5.2.2 The Node Object . 38
5.2.3 The Edge Object . 39
5.2.4 The Transition Object . 40

5.3 Initial Falsification Diagram . 41
5.3.1 Initial Falsification Diagram Construction 41
5.3.2 Construct New Initial Nodes 41
5.3.3 Change Transition Labels . 42

5

5.3.4 Basic Transformations . 43
5.3.5 Change Failure Nodes . 43
5.3.6 Change Remaining Nodes . 43
5.3.7 Split With Invariants . 43
5.3.8 Set Failure Distances . 44
5.3.9 Examples . 44

5.4 Basic Transformations . 47
5.4.1 Unreachable Node . 47
5.4.2 Unsatisfiable Node . 48
5.4.3 Remove Edge Label . 48
5.4.4 Empty Edge . 50

5.5 Node Splitting . 51
5.5.1 Create New Nodes . 51
5.5.2 Create Edges . 52

5.6 Basic Refinement Transformations 53
5.6.1 Construction of the enabled formula 54
5.6.2 Construction of the strongest postcondition formula 55
5.6.3 Construction of the weakest precondition formula 56
5.6.4 Structural Decisions . 59
5.6.5 Precondition Split . 64

5.6.5.1 Definition: Precondition Split 64
5.6.5.2 Algorithm for Precondition Split 64
5.6.5.3 Example: Fischer’s mutual exclusion problem 66

5.6.6 Postcondition Split . 69
5.6.6.1 Algorithm for Postcondition Split 69
5.6.6.2 Example: Fischers Mutual Exclusion 71

6 Analysis 73
6.1 Example: Deque . 73
6.2 Example: Board4 . 75
6.3 Example: Elevator . 76
6.4 Example: Bakery . 79
6.5 Example: Fischer’s Problem . 82

7 Conclusion 84
7.1 Future Work . 84

List of Figures

2.1 Timed automaton for process i of Fischer’s algorithm 16
2.2 Formula tableau for ϕ . 19
2.3 Simplified formula tableau for ϕ 20
2.4 Data aspects of an elevator specification in Object - Z 21

3.1 A simple timed automaton . 23
3.2 A phase event automaton . 24

4.1 Initial falsification diagram for Fischer’s mutual exclusion . 28
4.2 Precondition split on edge 〈N1, N2〉 31

5.1 Initial Falsification diagram without invariant splitting . . . 45
5.2 Initial Falsification diagram with invariant splitting 46
5.3 Initial Falsification diagram for the elevator example 46
5.4 Unreachable graph for the elevator example 48
5.5 Sample error trace . 59
5.6 Target Enlargement in Precondition Split 60
5.7 General target enlargement . 61
5.8 Source enlargement . 62
5.9 Removing of redundant nodes 63
5.10 After the first precondition split and basic transformations 68
5.11 After the first postcondition split 72

6.1 Resulting graph of the Deque problem 74
6.2 Initial state of the board4 problem 75
6.3 Board configuration after trace τ1, τ4, τ7, τ8, τ9, τ5, τ6, τ2, τ3 . . . 76
6.4 Resulting graph of the board4 problem 77
6.5 Resulting graph of the Elevator example 78
6.6 Program Bakery for mutual exclusion 79
6.7 Resulting graph of the Bakery problem 81
6.8 Resulting graph of the Fisher problem 83

7

List of Tables

2.1 Semantics of modal operators 18

8

List of Algorithms

1 Initial falsification diagram construction 41
2 Construction of new initial nodes . 42
3 Changing the labels of failure nodes 43
4 All nodes are split with the invariants 44
5 Remove edge label transformation rule 49
6 create split nodes(l, initf lag, failf lag, newnodes) 52
7 Complete algorithm for deductive model checking 53
8 Calculation of ¬wpc(τ, φ) . 58
9 Complete algorithm for precondition split 64
10 Algorithm that realizes the procedure pre check 65
11 Complete algorithm for postcondition split 69
12 Algorithm that realizes the procedure post check 70

9

Chapter 1

Introduction

Reliability is the most important property of many of todays software and hardware
systems. But by the inevitable increase of software and hardware complexity, the
likelihood of small and subtle errors is really great and often results in a disastrous
loss of money, time or even human life. Therefore, it is the major goal of software
engineering to enable developers to construct realiable systems. The use of formal
methods, i.e. mathematically-based techniques, tools or languages, is one way to
achieve this goal. With these formal methods complex systems can be both specified
and verified. Althought they do not guarantee correctness, they can help ruling out
inconsistencies, redundancies and incompletenesses.[CWA+96]

One method that is used to verify formal systems is called model checking, that
is, a model is derived from a formal system S to verify if it satisfies a specification
ϕ, typically a temporal logic formula. First, the behaviour graph (S, ¬ϕ) is build.
This graph is the product of the temporal tableau for ¬ϕ and the state transition
graph for S. Then, the model checking procedure tests if (S, ¬ϕ) admits any
counterexample computations. Unfortunately, this procedure is applicable to finite-
state systems only.

In this thesis, deductive model checking with transition constraint systems, an
extension of deductive model checking [HTZ96], is presented. Deductive model
checking is an extension of classical tableau-based model checking procedures, that
verifies linear-time temporal logic specifications for reactive systems that are
described by fair transition systems. Deductive model checking incrementally con-
structs the behaviour graph by starting with a temporal tableau for ¬ϕ and
repeatedly refining and transforming that graph until a counterexample compu-
tation is found or it is showed that such a counterexample computation is not
possible. The result is that we can eliminate large portions of the behaviour graph
before they are fully expanded to the state level, which can lead to considerable
savings, even for finite-state systems. Unfortunately, this savings may be at cost of
full automatism.

Deductive model checking with transition constraint systems also incrementally
constructs the behaviour graph (S, ¬ϕ), but instead of starting with a temporal
tableau for ¬ϕ, it starts with a falsification diagram, i. e. a labeled transition
system, that encodes both S and the behaviour of the temporal tableau. Similary
to deductive model checking, this procedure also repeatedly refines and transforms
the initial falsification diagram until, if the procedure does not diverge, a counter-
example computation is found or a correctness proof shows that a counterexample
cannot exist. The resulting graph is also an overapproximation of the concrete
system. To preserve fully automatism, deductive model checking with transition
constraint systems is restricted to the verification of temporal formulas that state
safety properties. It basically uses the same transformation and refinement rules as

11

12 CHAPTER 1. INTRODUCTION

the original deductive model checking procedure. Additionally, some modifications
of those rules and heuristics are used, to further improve the procedure. Just as the
original procedure, deductive model checking with transition constraint systems is
not guaranteed to terminate for infinite-state systems, in general. But partial results
may be very useful too. They give possible counterexample computations that can
be used for further verification or testing.

This thesis is organized as follows: Chapter 2 gives the theoretical background
for phase event automata, which are presented in chapter 3, and for deductive model
checking, which is presented in chapter 4. In chapter 5 deductive model checking
with transition constraint systems is introduced. An analysis of the procedure is
given in chapter 6. Finally, I conclude with chapter 7.

Chapter 2

Preliminaries

2.1 Reactive systems

A Reactive system is ideally a non terminating system permanantly interacting with
its environment, whereas the environment is superior to the system. That is, the
system must react to every stimuli from its environment. The processing of such
an input has to take place within a limited period of time.
Applications of reactive systems are for example embedded systems, real-time
systems, communication protocols and human-machine interfaces.
The most important characteristics of a reactive system are:

• Correctness

• Concurrency

Whereas reactive systems typically are structured as concurrent systems, correct-
ness is a property that has to be proved for such a system.

2.2 Real-time systems

A Real-Time System responds in a (timely) predictable way to unpredictable
external stimuli. In short, a Real-Time System has to fulfil under extreme load
conditions:

• timeliness: meet deadlines, it is required that the application has to finish
certain tasks within the time boundaries it has to respect

• simultaneity or simultaneous processing: more than one event may happen
simultaneously, all deadlines should be met

• predictability: the real-time system has to react to all possible events in a
predictable way

• dependability or trustworthiness: it is necessary that the real-time system
environment can rely on it

Generally, two classes of real-time systems are distinguished: Hard and soft
real time sytems. An example of a hard real time system is a control system of
an aircraft. The time boundaries must not be violated under any circumstances,
otherwise the aircraft is not controllable. Live audio-video systems are an example
of a soft real-time system; the violation of constraints results in degraded quality,
but the system can continue to operate.

13

14 CHAPTER 2. PRELIMINARIES

2.3 Model Checking

Model checking is an automatic technique for verifying correctness
properties of safety-critical reactive systems. [CS01]

Model checking is besides theorem proving a very advanced technique for verifying
such reactive systems. It checks if a model of a reactive system, often derived from
a software or hardware design, satisfies a formal specification. This specification
is often expressed in a propositional temporal logic. Formally, the model checking
problem can be stated in the following way: given a desired property, i. e. a
temporal logical formula p, and a model M with initial state s. Does M, s � p hold?

Model checking, in contrast to some deductive methods like for example interac-
tive theorem proving, is fully automatic, i. e. there is no need for user interaction.
The model checker’s input is the finite description of the system and the specifica-
tion. Note that the state space of the system does not have to be finite. The output
is ’true’ if the model satisfies the specification. Otherwise, if the method does not
diverge, a counterexample is produced. Another advantage of model checking is
the possibility to check also partial specifications, i. e. it also provides some useful
information, although the system’s specification is incomplete.

Today, there are two main types of model checking that are differentiated:

• In temporal model checking, specifications are formalized in temporal logic
and systems are modeled as finite state transition systems. Efficient search
procedures then check if the transition system is a model for the specification.

• In another approach, both the system and the specification are modeled as
automata. These automata then are compared to determine if their behaviour
is conform.

The main disadvantage of model checking is the so called state explosion prob-
lem, i. e. the combinatorial grow of the state space, which requires an exhaustive
exploration of the search space. Different approaches, like the efficient representa-
tion of state transition systems with ordered binary decision diagrams [Bry86], has
been made to work against this problem.

2.4 Fair Transition Systems

A fair transition system (FTS) is a triple 〈V , Θ, T 〉, where V is a set of variables,
Θ is the initial condition, and T is a finite set of transitions. A finite set of system
variables V ⊂ V determines the possible states of the system. The state-space, Σ,
is the set of all possible valuations of the system variables.

A first-order assertion language A is used to describe Θ and the transitions in
T . Θ is an assertion over the system variables V. A transition τ is desribed by a
transition relation pτ (~x, ~x

′), an assertion over the set of system variables ~x and a
set of primed variables ~x′ indicating their values at the next state. T includes an
idling transition, Idle, whose transition relation is ~x = ~x′.

A run is an infinite sequence of states s0, s1, . . . such that s0 satisfies Θ, and
for each i ≥ 0, there is some transition τ ∈ T such that pτ (si, si+1) evaluates to
true. We then say that τ is taken at si, and that state si+1 is a τ -successor of s. A
transition is enabled if it can be taken at a given state. Such states are characterized
by the formula

enabled(τ)
def
= ∃~x′.pτ (~x, ~x′) .

2.5. EXAMPLE - FISCHERS’ MUTUAL EXCLUSION ALGORITHM 15

As usual, the strongest postcondition post(τ ,φ) and the weakest precondition
wpc(τ ,φ) of a formula φ relative to a transition τ are defined as follows:

post(τ ,φ)
def
= ∃ ~x0.(pτ (~x0, ~x) ∧ φ(~x0))

wpc(τ ,φ)
def
= ∀~x′.(pτ (~x, ~x′) → φ(~x′)) .

Fairness: The transitions in T can be optionally marked as just or compas-
sionate. A just (or weakly fair) transition cannot be continually enabled without
ever being taken; a compassionate (or strongly fair) transition cannot be enabled
infinitely often but taken only finitely many times. A computation is a run that
satisfies these fairness requirements.

2.5 Example - Fischers’ Mutual Exclusion Algo-

rithm

Fischer’s algorithm is an example of a timed mutual exclusion algorithm. It allows
n timed processes to access a shared resource in mutual exclusion. Every process
holds an identifier i and a clock ci. Additionally, all processes have two constants
T1, T2 and a shared variable X . The algorithm uses the shared variable X , ranging
from 0 to n, to indicate which process wants to access the shared resource. X = 0
means that no process requests the source. Once it is requested by a process, the
shared variable X has to be tested. If X = 0, the process has to reset its clock to
0 and has to set X to its identifier i in the next T1 time units, i. e. T1 has to be
larger than the process own clock ci. Then the process has to wait at least T2 time
units, i. e. it tests for T2 < ci. If its identifier i is not equal to X , it will retry
later because another process has requested the resource. Otherwise the process
can enter the critical section. When leaving the critical section, X is reset to 0.

Figure 2.1 shows the automaton for process i. The process can be at one of the
four locations pc0, . . . , pc3, where pc3 is the critical section. T1 and T2 are constants,
that are previously defined. To obtain mutual exclusion we additionally have the
invariant constraint T1 < T2. The corresponding transition system for n processes
is the triple 〈V , Θ, T 〉, with:

• V = pc1, . . . , pcn, x, c1, . . . , cn

• Θ = x = 0 ∧ ∀i.pci = 0 ∧ ci = 0

• T = ∀i ∈ {1, . . . , n} there exist transitions τ1,i, . . . , τ6,i, with:

τ1,i : x = 0, pci = 0, c′i = 0, pc′i = 1 1 2

τ2,i : pci = 1, ci ≥ T1, pc
′

i = 0

τ3,i : pci = 1, ci < T1, x
′ = i, c′i = 0, pc′i = 2

τ4,i : pci = 2, ci > T2, x 6= i, pc′i = 0

τ5,i : pci = 2, ci > T2, x = i, pc′i = 3

τ6,i : pci = 3, x′ = 0, pc′i = 0

and additionally we have a transition tick that updates the clock values

1Note, that commas stand for conjunctions
2Note, that all primed variables, that are not explicitly mentioned in the constraint, remain

unchanged, i. e. x = x′ ∧ (∀j 6= i : c′j = cj ∧ pcj = pc′j).

16 CHAPTER 2. PRELIMINARIES

pci = 0

pci = 1

x = 0
ci := 0

ci < T1
x := i
ci := 0

ci ≥ T1

pci = 2

ci > T2
x 6= i

ci > T2

x = i

pci = 3
x := 0

Figure 2.1: Timed automaton for process i of Fischer’s algorithm

2.6. LINEAR-TIME TEMPORAL LOGIC 17

tick : c′1 > c1, c
′

2 − c2 = c′1 − c1, . . . , c
′

n − cn = c′1 − c1

and the idle transition ~x = ~x′.

2.6 Linear-time Temporal Logic

Linear-time temporal logic is a logic for talking about infinite sequences,
where each element in the sequence corresponds to a propositional world.[Muk97]

Linear time temporal logic (LTL) is a subset of the computation tree logic (CTL*).
In LTL time is discrete, implicit, has an initial moment with no predecessors and is
infinite in the future. The elements of LTL are proposition variables p1, p2, . . . , the
usual logical connectives ∧,∨,→,¬ and the following temporal modal operators:

• N for next

• G for always (globally)

• F for eventually (in the future)

• U for until

• R for release

An LTL formula can be evaluated over a sequence of truth evaluations and a position
on that path. It is satisfied by a path, if and only if it is satisfied for position 0 on
that path. A system satisfies an LTL formula φ if each path through the system
satisfies φ. In tabular 2.1 the semanitics of the modal operators are given.

Some useful equivalences:

• F ϕ ≡ true U ϕ

• G ϕ ≡ ¬ F ¬ ϕ

• ψ R ϕ ≡ ¬(¬ ψ U ¬ ϕ)

• F ϕ ≡ ¬ G ¬ ϕ

In this thesis, a restricted linear-time temporal logic is used. It is a specification
language over the assertion language A, where no temporal operator is allowed
to appear within the scope of a quantifier. These temporal formulas are called
state-quantified[Pnu97] and use the usual temporal operators. A formula with no
temporal operator is called a state-formula or an assertion. There are two main
types of properties that can be stated with these formulas:

• Safety:

Safety properties usally state that something we do not want never happens
(e.g. �p for a past formula p). Is p a state-formula, the property is called an
invariance.

• Liveness:

With Liveness properties we want to state that something we want eventually
happens (♦p).

18 CHAPTER 2. PRELIMINARIES

Textual Symbolic Explanation Diagram
N(or X)ϕ ◦φ ϕ has to hold • → • → N ϕ → ϕ → •

at the next state.
G ϕ �φ ϕ has to hold on ϕ → ϕ → ϕ → ϕ → ϕ

the entire subsequent path.
F ϕ ♦φ ϕ eventually has to hold • → ϕ → • → ϕ → •

(somewhere on the subsequent path).
ψ U ϕ ψUφ ϕ holds at the current or a ψ → ψ → ψ → ϕ → •

future position, and ψ
has to hold until that position.
At that position ψ does
not have to hold any more.

ψ R ϕ ψRφ ψ releases ϕ if ϕ is true ϕ → ϕ → ψ → • → •
until the first position in which
ψ is true (or forever
if such a position does not exist).

Table 2.1: Semantics of modal operators

Example:

In Fischer’s mutual exclusion algorithm 2.5, we want to define an error state.
Assume we have 2 processes. Consequently, we have the following ’error condition’:

pc1 = 3 ∧ pc2 = 3

The resulting temporal logic formula that states that we never want to reach that
state is:

�¬ (pc1 = 3 ∧ pc2 = 3)

The negation of this formula that we will need in the next section we just get by
using the equivalences given above:

¬ (�¬ (pc1 = 3 ∧ pc2 = 3))

≡ ♦ (pc1 = 3 ∧ pc2 = 3)

2.7 The Formula Tableau

As mentioned in section 2.3, the model checking problem is to check if some model
satisfies a given property ϕ. We know that a formula ϕ is valid if and only if ¬ϕ
is unsatisfiable. The classic model checking algorithm for finite systems constructs
a behaviour graph, that is the product of the state transition graph of a system S
and the formula tableau Φ¬ϕ and checks if this behaviour graph contains a strongly
connected subgraph (SCS) that is fulfilling and also satisfies the with S accociated
fairness requirements [HTZ96]. Is there a path from an initial node to such an SCS,
a counterexample can be produced, otherwise ϕ is valid. From [MP95] we know
that, if there is given an LTL formula ϕ, it is possible to construct its tableau Φϕ,
that is a finite graph that describes all of its models and whose size normally is
exponential in the size of the formula.

In the following, I show how the formula tableau for a formula ϕ is constructed.
Hence, I use an incremental tableau algorithm, that constructs a graph G whose
nodes (atoms) are labeled with sets of formulas derived from ϕ. Every model

2.7. THE FORMULA TABLEAU 19

of ϕ is represented as an infinite path in G. The advantage of an incremental
algorithm is that only atoms reachable from an initial atom are present, that
it is more efficient and that incremental tableaux are better for implementation
[BAMP81, MW84]. A detailed describtion of the incremental tableau algorithm I
use, is given in [KMMP93].

Given the formula ϕ ≡ F (pc1 = 3 ∧ pc2 = 3). Because in the given algorithm
the formula ϕ is non-basic, it is first rewritten as true U (pc1 = 3 ∧ pc2 = 3) (see
2.6).

First, the preconditions of ϕ and ¬ϕ are constructed:

• precondition of ϕ: {pc1 = 3 ∧ pc2 = 3
︸ ︷︷ ︸

=:ψ

}, {true,N(trueU(pc1 = 3 ∧ pc2 = 3))
︸ ︷︷ ︸

=:Nϕ

}

• precondition of ¬ϕ: {false, pc1 6= 3 ∨ pc2 6= 3}, {pc1 6= 3 ∨ pc2 6= 3,¬Nϕ}

The closure of ϕ, CL(ϕ) is:

• {first,¬first , ϕ,¬ϕ, ψ,¬ψ, true, false,Nϕ,¬Nϕ}

Because the model checking algorithm presented in this paper only uses LTL
formulas that describe future properties, we can throw away the predicates first and
¬ first.

The set Cover(ϕ) that is used in the algorithm construct-initial is constructed
by the algorithm incremental-cover and is given below:

Cover(ϕ) = {{pc1 = 3, pc2 = 3, ϕ}, {true,Nϕ,ϕ}}

The algorithm construct-initial first defines following sets:

F = {}

V = { F}

E = {〈 F, F 〉}

E = {}

Now, for each atom A of Cover(ϕ), A is added to V and an edge 〈 A, F 〉 is
added to E . Applying the method correct-graph results in figure 2.2.

Nϕ,ϕ

pc1 = 3, pc2 = 3, ϕ

F

Figure 2.2: Formula tableau for ϕ

Because the model checking algorithm presented in this paper only cares about
Safety, all formulas that represent liveness properties can also be thrown away.
Additionally, the node with label F and the node with label pc1 = 3, pc2 = 3 can
be merged into one node. Figure 2.3 shows the final tableau for ϕ that is also the
input data for the model checking algorithm.

20 CHAPTER 2. PRELIMINARIES

true

pc1 = 3, pc2 = 3

Figure 2.3: Simplified formula tableau for ϕ

2.8 CSP-OZ-DC

In this section, the language CSP-OZ-DC is presented, a combination of the formal
languages Communicating Sequential Processes (CSP), Object-Z (OZ) and Duration
Calculus (DC). In the following, I shortly introduce the three formalisms. For a
detailed description of the languages I refer to [Hoe06].

2.8.1 Communicating Sequential Processes

CSP is a formal language for communicating sequential processes that was intro-
duced by Hoare [Hoa78]. CSP can describe the behaviour of sequential and parallel
processes. These processes communicate via instantaneous events. The real-time
a communication needs is abstracted into a single moment. Processes that run in
parallel communicate synchronous.

Example:

main
c
= newgoal → start → Drive

Drive
c
= (passed → Drive) � (stop → main)

This example shows the control and communication aspects of an elevator. The
elevator switches (cyclic) between the two processes main and Drive. main is
the initial entered process. The elevator chooses a floor (newgoal), then it starts
the engine and switches to the process Drive. In the Drive process, the elevator
can either pass a floor and resume driving or it can stop and return to the main

process. The � - symbol stands for an external choice which is determined by the
environment.

2.8.2 Object-Z

Object-Z is an object-oriented extension of the formal specification language Z that
is used for describing and modelling computing systems. Z defines notations for
logical operations, quantifiers, sets and functions. It also provides a way to repre-
sent large state spaces and operations. It has been developed by Smith [Smi00] at
the Software Verification Research Center in the University of Queensland.

Example:

In figure 2.4 we see the algorithmic part and and the data state of the elevator
example in Object - Z. The floors are presented as integers ranging from constants
Min to Max and Min is always smaller than Max. These boundaries are parameters
of the elevator. The internal state of the elevator is given by the two schemas top
right. The internal state consists of two variables current and goal and a variable

2.8. CSP-OZ-DC 21

dir = 0

goal = current = Min
Init

current, goal :

dir : { -1, 0, 1 }

Min, Max :

Min < Max

Min =< goal ’ =< Max

com_newgoal

(goal)

goal > current => dir ’ = 1

com_start

(dir)

goal < current => dir ’ = -1

current ’ = current + dir

com_passed

(current)

goal = current

 ()
com_stop

goal 6= current

Figure 2.4: Data aspects of an elevator specification in Object - Z

dir which stands for the direction the elevator is driving (-1 for downwards, 1 for
upwards). The initial values are given by the special schema Init.

The connection between states and events is presented by so called communi-
cation schemas. The schema com passed for example describes the change of the
state variable current that is caused by the event passed. The ∆ list determines the
variables that are changed by the operation. Here, current is increased or decreased
by the value of dir. The event newgoal chooses non-deterministically a new goal
floor that is different from current. start changes the value of dir depending on the
relation between current and goal. The elevator can only stop if the goal floor and
the current floor are equal (no variable is changed).

2.8.3 Duration Calculus

The third part of CSP-OZ-DC, Duration Calculus (DC), is an interval logic for real-
time systems. It was originally developed by Zhou Chaochen, Anders P. Ravn and
C. A. R. Hoare on the European ESPRIT Basic Research Action (BRA) ProCoS
project on Provably Correct Systems [ZHR91].

In CSP-OZ-DC only a restricted class of DC is used because the full language is
too powerful to be checked automatically. This class is called counterexample for-
mulae and describes a behaviour we do not want as a linear trace. A counterexample
formula generally looks like follows:

¬♦ (phase1; . . . ; phasen)

A formula ♦ϕ states that there is a subinterval where ϕ holds. ϕ itself is split
into n subintervals, each satisfiying phasei. Phasei has to be a simple formula that
restricts the current state of the system.

22 CHAPTER 2. PRELIMINARIES

Example:

¬♦ (l passed ; l ≤ 3 ; l passed) 3

¬♦ (current 6= goal ; (current = goal ∧ l ≥ 2 ∧ ⊟ stop)) 4

The real-time aspects of the elevator are presented by the two DC formulas
above. They ensure that the elevator stops as soon as it reaches the goal floor and
before passing the next floor. The first counterexample formula states that there
always has to be a minimum time of three seconds between two adjacent passed
events. The second formula states that the elevator has to stop within two seconds
when reaching the goal floor.

3l passed holds for a point interval, at which the variable passed changes (see [ZH04])
4The formula ⊟ stop states that the event stop does not occur during a non-empty interval (see

[ZH04]).

Chapter 3

Phase Event Automata

3.1 Timed Automata

Most traditional model checking techniques have been unsuitable for the analysis
of real time systems because they are not able to explicitly model time. Therefore,
timed automata have been introduced to model the time behaviour of real-time
systems [AD94].

In [Hen06] a timed automaton is defined as a tuple (L, l0,Σ, X, I, E), where L
is a finite set of locations, l0 ∈ L is the initial location, Σ is a finite set of synchro-
nization labels, X is a finite set of clocks, I : L → Φ(X) labels each location with
some clock constraint, and E ⊆ L × Σ × Φ(X) × 2X × L is a finite set of edges.

Example:

In figure 3.1 an example of a simple timed automaton is presented. The initial
location is s and there is only a single clock x. Because the initial location has no
invariant constraint, the system can spend an arbitrary amount of time in s. When
the system takes an a-transition to location s’, the clock is reset to 0. The value of x
at location s’ shows the amount of time elapsed since the last switch. The invariant
x ≤ 2 ensures that the system can only stay for two time units at this location. A
switch back to location s is only possible if x ≥ 1.

a, x := 0

s
s′

x ≤ 2

x ≥ 1, b

Figure 3.1: A simple timed automaton

23

24 CHAPTER 3. PHASE EVENT AUTOMATA

p0

current 6= goal

p1

current = goal

p2

current = goal

c1 < 2

¬stop
stop

true

true

true

true

c1 := 0

Figure 3.2: A phase event automaton

3.2 Phase event automata

Phase event automata (PEA) are a new class of timed automata that can
characterize the behaviour of state- and event-based systems and provide an
essential prerequisite for model checking [HM05]. PEA provide a connection
between CSP-OZ-DC (2.8) and transition constraint systems. Due to their notion
of events, variables and clocks and their ability to preserve events and data variables
of the CSP-OZ-DC specification, they can describe both immediate events from the
CSP part (2.8.1), states with durations - they model the Object-Z state variables
(2.8.2) - and clocks for real-time constraints, which are predefined by Duration
Calculus (2.8.3).

The conversion of a CSP-OZ-DC specification into phase event automata is a
parallel product of automata, one for each part of the specification. Thus, PEA
provide a compositional operational semantics for CSP-OZ-DC [HM05].

Phase event automata are converted to transition constraint systems by trans-
lating the continuous transitions of the PEA into explicite discrete transitions,
modelling events by state changes and giving up the distinction between state and
event variables. The result is a full automation of the translation process and the
final model checking.

In figure 3.2 an example of a phase event automaton is given. This PEA repre-
sents the second formula of the elevator example in Duration Calculus (2.8.3):

¬♦ (current 6= goal ; (current = goal ∧ l ≥ 2 ∧ ⊟ stop))

The formula states that the elvator has to stop within two time units when it
reaches the goal floor. Initially the automaton can be in two phases. It is in phase
p0, if the actual floor (current) is not the destination floor (goal) or in phase p1,
if the actual floor is the goal floor. If there is a change from current 6= goal to

3.3. FORMAL DEFINITION 25

current = goal , the automaton has to switch to phase p2 and the clock c1 is reset
to 0. The predicate c1 < 2 ensures that the elevator stops within the next two time
units, i. e. phase p2 has to be left in time. If current 6= goal holds, it can go back
to phase p0, otherwise the stop event is requested.

In this thesis (see chapter 5), phase event automata are the underlying structure
the model checking procedure works on. In the next section (3.3) I will give a formal
definition of phase event automata. In section 3.4 a parallel composition operator
is defined, because the different phase event automata, resulting from a separated
translation of each part of the CSP-OZ-DC formalism, have to be conjoined.

3.3 Formal Definition

Let L be the class of first-order formulae that are allowed by the specification. A
phase event automaton (Pea) is a tuple A = (P, V, A, C, E, s, I, P0) of the following
components:

- P is a set of states (phases).

- V ⊆ V\ (Events ∪ Clocks) is a finite set of (state) variables.

- A ⊆ Events is a finite set of events.

- C ⊆ Clocks is a finite set of clocks.

- E ⊆ P ×L(V ∪ V ′ ∪A∪ C)×P ×P is a set of edges. An edge (p1, g,X, p2) ∈
E represents a transition from phase p1 to phase p2 under guard g. All clocks
in X are reset when this transition is taken 1.

- s: P → L(V) is a labeling function that associates each phase with a predicate
that must hold during this phase.

- I: P → L(C) is a function assigning to each phase a clock invariant that has
to hold while the automaton is in that phase.

- P0 ⊆ P is a set of possible initial phases.

Additionally we have:

- For all p ∈ P, the clock invariant I(p) is convex.

- For all p ∈ P, E contains a stuttering edge (p,¬e1∧. . .∧¬ek∧v1 = v′1∧. . .∧vj =
v′j , ∅, p) for some particular {e1, . . . , ek} ⊆ A, {v1, . . . , vj} ⊆ V .

Let A = (P, V, A, C, E, s, I, P0) be a PEA. A state of A is a triple (p, β, γ) of
a phase p ∈ P, a V-valuation β and a C-valuation γ. A duration is a positive real
number. A run of A is an infinite sequence

〈(p0, β0, γ0), t0, Y0, (p1, β1, γ1), t1, Y1, . . . 〉

with alternating states (pi, βi, γi), durations ti and sets of events Yi ⊆ A. The
following always has to hold:

1. p0 ∈ P0.

2. For all c ∈ C, γ0(c) = 0.

3. For all i ≥ 0, βi |= s(pi)

1 L(V) denotes the set of those formulae in L that only refer to variables V ⊆ V .

26 CHAPTER 3. PHASE EVENT AUTOMATA

4. For all i ≥ 0 and all 0 ≤ δ ≤ ti, γi + δ |= I(pi)

5. For all i ≥ 0 there is an edge (pi, g,X, Pi+1) ∈ E such that

(a) βi ∪ β′

i+1 ∪ (γi + ti) ∪ X Yi

2 |= g and

(b) γi+1 = (γi + ti)[X := 0]3.

The stuttering edge (pi,¬e1∧ . . .∧¬ek ∧v1 = v′1 ∧ . . .∧vj = v′j , ∅, pi) is required
to make the definition invariant against stuttering and simplifies the definition of
parallel composition, because automata can step synchronously.

3.4 Parallel Composition of Phase Event Automata

In [HM05], for every part of the CSP-PZ-DC specification a special phase event
automaton is build. Therefore we need an operator that composes these automata
in parallel. The phase event automata are synchronised on both states and events:
A variable that occurs in two automata can only be changed if both agree. Also,
an event that is in the alphabet of two automata can only be taken, if both allow
it. Clocks have to be disjoint, because the must not interfere with each other.
Next, a formal definition of the parallel composition A1‖A2 of two automata A1

and A2 with Ai = (Pi, Vi, Ai, Ci, Ei, si, Ii, P0i) is given. The result is the PEA
A= (P, V,A,C,E, s, I, P0) with:

- P := P1 × P2. This is a standard product automata construction.

- V := V1 ∪ V2.

- A := A1 ∪A2. The new alphabet is the union of the two alphabets.

- C := C1 ∪ C2 and C1 ∩ C2 = ∅. The clock set is the disjoint union of C1 and
C2. Clocks that appear in both sets have to be renamed.

- s((p1, p2)) = s(p1)∧ s(p2). The states are labeled with the conjunction of the
corresponding state predicates in A1 and A2.

- I((p1, p2)) = I(p1)∧ I(p2). The clock invariant is the conjunction of the clock
invariants in A1 and A2.

- P0 := P01 × P02.

- The set of edges E contains ((p1, p2), g1 ∧ g2, X1 ∪ X2, (p
′

1, p
′

2)) for each two
edges (pi, gi, Xi, p

′

i) ∈ Ei, i = 1, 2 in the corresponding automata Ai. The
stuttering edges allow them to do a step independently.

2XE is the characteristic function of E, that is, the mapping from Events to UBool = B such
that for all e ∈ Events, XE(e) = true iff e ∈ E. XE is an Events - valuation.

3All clocks in X is assigned the value 0.

Chapter 4

The DMC Procedure - Safety

In this chapter, the concept of deductive model checking (DMC) is presented. It is
based on [HTZ96] and represents an extension of the classical tableau-based model
checking procedures for infinite-state systems. The deductive model checking pro-
cedure given therein is used to verify linear-time temporal logic (2.6) specifications
of reactive systems (2.1). These systems are described by fair transition systems
(2.4).

To preserve the property of full automatism, the model checking procedure
presented in chapter 5 is restricted to verify safety properties ofreactive systems.
Therefore, the description of the model checking procedure in this chapter will be
restricted to those operations that are sufficient for the analysis of safety properties.
Below, I will first give an short informal description of the DMC procedure (4.1).
Then, I present the ’restricted’ DMC procedure itself (4.2).

4.1 Deductive Model Checking

Classical tableau-based model checking procedures check the behaviour graph to
verify that a system satisfies a temporal specification. The behaviour graph (S,¬ϕ)
of a system S and a temporal specification ϕ is the product of the temporal tableau
for ¬ϕ and the state transition graph for S. S satisfies ϕ if the behaviour graph
does not admit any counterexample computation. This procedure unfortunately is
applicable to finite-state systems only.

Instead of explicitely building the behaviour graph (S,¬ϕ) of a system S and a
specification ϕ, the deductive model checking procedure starts with a general repre-
sentation of the behaviour graph and progressivly refines it. The graph contains all
possible computations that violate ϕ and is called the initial falsification diagram
for S and ϕ.

Definition: A falsification diagram for a finite transition system S and
a temporal property ϕ is a directed graph G whose nodes are labeled
with pairs (A, f), where A is a temporal tableau atom for ¬ϕ and f is
a state formula. Edges of G are labeled with subsets of T , the set of
transitions of S. For nodes M and N , we write τ ∈ 〈M,N 〉 if transition
τ is in the label of the edge from M to N . A subset of the nodes in G
is marked initial.

27

28 CHAPTER 4. THE DMC PROCEDURE - SAFETY

4.2 The Restricted DMC Procedure

We start with the tableau graph Φ¬ϕ whose construction is described in 2.7. From
this graph, the initial falsification diagram G0 is constructed as follows:

1. Replace each node label A by (A, fA), where fA is the conjunction of the state
formulas in the tableau atom A.

2. For each node N : (A, f) such that A is initial in the tableau Φ¬ϕ, add a
new node N0: (A, f ∧ Θ), with no incoming edges, whose outgoing edges go
to exactly the same nodes as those of N . A self-loop 〈N,N 〉 becomes an
edge 〈N0, N 〉 in the new graph. These new nodes are the initial nodes in the
falsification diagram.

3. Label each edge in G0 with the entire set of transitions T .

Example:

N0 : pc1 = 0 ∧ pc2 = 0 ∧ c1 = 0 ∧ c2 = 0 ∧ x = 0

N1 : true

N2 : pc1 = 3 ∧ pc2 = 3

τ

τ

τ

τ

τ

Figure 4.1: Initial falsification diagram for Fischer’s mutual exclusion

In chapter 2 Fischer’s mutual exclusion algorithm (2.5) and its representation
as finite transition system S is given. In figure 2.3, the tableau graph for the
negated specification ¬ϕ is represented. In figure 4.1, we see the initial falsification
diagram for ¬ϕ (i. e. ♦ (pc1 = 3 ∧ pc2 = 3)). It is constructed as follows: The
two nodes N1, N2 of the tableau graph for ¬ϕ are replaced by (A1, fA1

) = (1, true)
and (A2, fA2

) = (2, pc1 = 3 ∧ pc2 = 3). Both nodes are marked initial, because the
system could initially be in the error-state too.1 Now, for both nodes new initial
nodes are introduced:

N01 : (01, true ∧ Θ)

N02 : (02, (pc1 = 3 ∧ pc2 = 3) ∧ Θ),

where Θ is the initial condition. Additionally, new edges 〈N01, N1〉, 〈N01, N2〉,
〈N02, N2〉 are constructed. All edge labels now are marked with T , the entire set

1Error-states are those states for which, as long as they can be reached from an initial state, a
counter-example computation exists.

4.2. THE RESTRICTED DMC PROCEDURE 29

of transitions in S. Note, that node N02 is immediately pruned since its label
is unsatisfiable. After having constructed the Initial falsification diagram, one of
the following transformations have to be repeatedly applied. The deductive model
checking procedure stops if there is no path from an initial node to an error-node,
in which case we have a correctness proof. Otherwise, the procedure diverges or if
no basic refinement transformation can be applied anymore, it stops and we get a
counter-example computation.

Basic Transformations:

• 1 (remove edge label). If an edge 〈(A1, f1), (A2, f2)〉 is labeled with a
transition τ and the assertion

f1(~x) ∧ f2(~x′) ∧ pτ (~x, ~x′)

is unsatisfiable, remove τ from the edgelabel.

• 2 (empty edge). If an edge is labeled with the empty set, remove the edge.

• 3 (unsatisfiable node). If f is unsatisfiable for a node (A, f), or if a node
has no successors, remove the node.

• 4 (unreachable node). Remove a node unreachable from an initial node.

Example:

As noted above, Figure 4.1 shows the initial falsification diagram for the
temporal formula ϕ := ♦(pc1 = 3∧ pc2 = 3). In this graph, the transformation rule
unsatisfiable node has been already applied since the node N02 is pruned.

Next, the remove edge label transformation will remove for example all tran-
sitions in the label of the edge 〈 N01, N2〉, because there is no transition τi that can
satisfy the constraint f1(~x) ∧ f2(~x

′) ∧ pτi
(~x, ~x′). Hence, the empty edge trans-

formation rule will remove this edge from the diagram.

Node Splitting: In transformations 5 and 6, a node N is replaced by new
nodes N1 and N2. Any incoming edge 〈M,N 〉 is replaced by edges 〈M,N1〉 and
〈M,N2〉 with the same label, for M 6= N . Similary, any outgoing edge 〈N,M 〉 is
replaced by edges 〈N1,M 〉 and 〈N2,M 〉 with the same label as the original edge.

If a self-loop 〈N,N 〉 was present, new edges 〈N1, N1〉, 〈N2, N2〉, 〈N1, N2〉, 〈N2, N1〉,
all with the same label as 〈N,N 〉. If an initial node is split, the two nodes are also
labeled initial.

Basic Refinement Transformations:

• 5 (postcondition split). Consider an edge from node N1: (A1, f1) to N2:
(A2, f2) whose label includes transition τ . If f2 ∧ ¬ post(τ, f1) is satisfiable
(that is, f2 does not imply post(τ, f1)), then replace (A2, f2) by the two nodes:

N2,1 = (A2, f2 ∧ post(τ, f1))

N2,2 = (A2, f2 ∧ ¬ post(τ, f1)).

We can immediately apply the remove edge label transformation to the
edge between N1 and N2,2, removing τ from its label.

Nodes N1 and N2 need not be distinct. If N1 = N2 then we split the node
into two nodes as above, but now the self-loop for N2,2 and the edge from
N2,1 to N2,2 will not contain the transition τ .

30 CHAPTER 4. THE DMC PROCEDURE - SAFETY

• 5 (precondition split). Consider an edge

〈N1, N2〉 = 〈(A1, f1), (A2, f2)〉

labeled with transition τ . If f1∧¬ (enabled(τ)∧wpc(τ, f2)) is satisfiable, then
replace (A1, f1) by the two nodes:

N1,1 = (A1, f1 ∧ enabled(τ) ∧ wpc(τ, f2))

N1,2 = (A1, f1 ∧ ¬ (enabled(τ) ∧ wpc(τ, f2))).

The original deductive model checking procedure presented in [HTZ96] uses
some more transformation rules. They are for example used to extend the model
checking procedure to prove fairness requirements.

Example:

In figure 4.2 we see the result of applying the first precondition split transforma-
tion on edge 〈N1, N2〉 and the transition τ7 : pc1 = 2∧ c1 > 3∧x = 1∧ pc′1 = 3 with
T1 = 2, T2 = 3 and T1 < T2. Note, that all unsatisfiable edge-labels and edges have
been already removed by the basic transformation rules. Because the precondition
test true ∧ ¬ (enabled(τ7) ∧ wpc(τ7, pc1 = 3 ∧ pc2 = 3)) is satisfiable, node N1 is
replaced by the following two new nodes:

N1,1 with label: pc1 = 2 ∧ c1 > 3 ∧ x = 1 ∧ pc2 = 3

N1,2 with label: (pc1 6= 2) ∨ (c1 ≤ 3) ∨ (x 6= 1)∨
(pc1 = 2 ∧ c1 > 3 ∧ x = 1 ∧ pc2 6= 3)

Next, all incoming-, outgoing- and self-edges are replaced according to the node
splitting rules (4.2). Notice that the basic transformations have been already applied
to the new edges (for instance, all transitions except τ7 have been removed from
edge 〈N1,1, N1,2〉). 2

2For simplicity reasons, the idle transition has been omitted here.

4
.2

.
T

H
E

R
E

S
T

R
IC

T
E

D
D

M
C

P
R

O
C

E
D

U
R

E
3
1

N0 : pc1 = 0 ∧ pc2 = 0 ∧ c1 = 0 ∧ c2 = 0 ∧ x = 0N0 : pc1 = 0 ∧ pc2 = 0 ∧ c1 = 0 ∧ c2 = 0 ∧ x = 0

N1 : true

N2 : pc1 = 3 ∧ pc2 = 3N2 : pc1 = 3 ∧ pc2 = 3

τ

τ

Prec.τ7

{1, 2, 13}{1, 2, 13}

{1, 2, 13}

{7, 8, 13}

{13}

{13}

{13}

N1,1 : pc1 = 2 ∧ c1 > 3 ∧ x = 1 ∧ pc2 = 3

N1,2

N1,2 : (pc1 6= 2) ∨ (c1 ≤ 3) ∨ (x 6= 1)∨

(pc1 = 2 ∧ c1 > 3 ∧ x = 1 ∧ pc2 6= 3)

N1,1

{7}

{7}

{13}

{8, 13}

F
ig

u
re

4
.2

:
P

re
c
o
n
d
itio

n
sp

lit
o
n

e
d
g
e

〈N
1 ,N

2 〉

Chapter 5

DMC with Phase Event

Automata

In this chapter, I present a new approach to verify temporal safety 1 properties of
reactive systems, deductive model checking with transition constraint systems.

In chapter 3, phase event automata, a class of timed automata, that can
characterize the behaviour of state- and event-based systems got already intro-
duced. In chapter 4, deductive model checking, as an extension of the classical
tableau based model checking procedure to verify temporal properties, was pre-
sented. Deductive model checking with transition constraint systems now combines
these two formalisms. Instead of building a tableau graph for the negated specifica-
tion formula (Φ¬ϕ) for a given transition system S, we want to verify a phase event
automaton that comprises both the behaviour of the transition system S and the
structure of Φ¬ϕ.

In [Hoe06] is showed how CSP-OZ-DC specifications 2 are first translated into
phase event automata before being converted to transition systems and finally model
checked. At present, the underlying phase event automaton, that is repeatedly
refined during the procedure, is build from a configuration file the user has to specify
in advance. The deductive model checking procedure presented in this thesis works
with labeled transition systems that represent phase event automata. This is done
because of structural reasons, i. e. to make them applicable for the deductive model
checking procedure given in [HTZ96]. Nevertheless, a nice feature is, that in the
future, CSP-OZ-DC specifications could also be translated to transition constraint
systems and with only little changes serve as underlying structure to this model
checking procedure.

The deductive model checking algorithm itself is implemented in SICStus Prolog
(version 3.12.12). This commercial Prolog version extends the original language for
logic programming applications with an object oriented component and dedicated
constraint solvers for linear equalities. The transition systems that are worked on
here, are encoded as SICStus objects. The constraint logic library for rationals and
reals is used to check the satisfiability of the constraints that incur during the basic
and refinement transformations.

DMC with transition constraint systems first converts the configuration file
mentionend above into a labeled transition system. After having been read in, the
input file is converted into tokens. The resulting token list is additionally parsed

1This approach is not really restricted to formulas that state safety properties. This decision
is made to preserve the fully automatism of the model checking procedure.

2CSP-OZ-DC specifications are not only well-investigated specification techniques but also quite
intuitive and comprehensible.

32

33

to check the correctness of the configuration data, especially the given constraints.
Finally, an ’object-creater’ module translates the token list into a ’phase event
automaton’(transition system). In the second step, the initial falsification diagram
is constructed. This algorithm differs from the original construction algorithm given
in [HTZ96]. For efficiency reasons, some heuristics are included in the procedure.
When the initial falsification diagram is constructed, the basic and refinement
transformations repeatedly refine the system until a counter-example computa-
tion or a correctness proof is found. Unfortunately, if the problem is undecidable
in general, the algorithm also can diverge. The transformations given in this thesis
also differ from the original transformations. These differences also are explained
in detail later.

Some problems the algorithm has to deal with at present are the restriction of
the specification language to safety properties. Fortunately, this problem is not
unsolvable. It should not be a big problem to extend the algorithm with modules
that implement those transformations in [HTZ96], that extend the specification
language to fairness properties for example. Althought the incremental charac-
ter of the model checking and the restriction to check local conditions, leads to
significant savings concerning the state-space (compared to classic tableau-based
model ckecking procedures for example), the state space in this approach is still
quite large. Additional heuristics are used to deal with this problem.

This chapter is organized as follows: The first section (5.1) defines the grammar
of a configuration script. Section 5.2 describes how the given input file is read in,
tokenized, checked for correctness and finally translated into a ’phase event
automaton’. In section 5.3, we see the construction of the initial falsification
diagram. Section 5.4 presents the basic transformations. Finally, section 5.6 both
describes the precondition split and the postcondition split rules of the
basic refinement transformations and the heuristics used to improve the model
checking algorithm.

34 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

5.1 Configuration Files

The preliminaries for the original deductive model checking procedure is a transition
system S and the tableau graph Φ¬ϕ for the specification ϕ we want to check. The
model checking procedure presented in this thesis needs a phase event automaton
that comprises both the behaviour of the transition system S and the structure
of Φ¬ϕ as input. Althought representing a phase event automaton, the configura-
tion script specifies a kind of transition system. The difference to the transition
constraint systems that has been constructed from PEAs in [Hoe06] is, that they
combine the transition systems for different processes. In the following, the syntax
of a configuration script is given:

The configuration file has to start with the keyword pea, followed by a colon.
When the file has been read in, the tokenizer only accepts the following structure:

keyword: arguments

Every new keyword has to follow a line-break. The configuration script consists
of nine keywords, appearing in the order given below: pea:, init:, transitions:, nodes:,
intvars:, realvars:, nlabels:, invariants:, edges:. The configuration file also has to end
with a line-break.3 In listing 5.1 the configuration script for the Fischer’s mutual
exclusion problem is given.

Listing 5.1: Configuration file for Fischer’s mutual exclusion�
pea :
i n i t : and{Pc1=0,and{Pc2=0,and{C1=0,and{C2=0,X=0}}}}
t r a n s i t i o n s : t r ans i t i ona rguments
nodes : (p0 , true , f a l s e) , (p1 , true , t rue)
i n tv a r s : Pc1 , Pc2 ,X,C1 ,C2
r e a l v a r s :
n l a b e l s : (p0 , t rue) , (p1 , and{Pc1=3,Pc2=3})
i nva r i a n t s : invar iantarguments
edges : (p0$true$p1) , (p0$true$p0) , (p1$true$p1)

� �

Because the lines of the transitionarguments and invariantarguments are too long
for the listing, they are given below. In listing 5.3, we see the replacement for
transitionarguments. In listing 5.2, the formula invariantarguments is replaced with.
(Note, that in the original configuration file, there is no newline between transitions.)

3Note, that the tokenizer gets a list of characters. Therefore every keyword: arguments list
ends with a ’newline’.

5.1. CONFIGURATION FILES 35

5.1.1 Boolean Constraints - Init and Invariants

The arguments of init and invariants are always boolean constraints. Listing 5.2
shows an invariant for Fischer’s mutual exclusion problem.

In the configuration file, boolean constraints F, G, H have the following struc-
ture:

F ,G,H : := true (∗verum ∗)
| f a l s e (∗ fa lsum ∗)
| P (∗ atomic formula ∗)
| not {G} (∗ negat ion ∗)
| and{G,H} (∗ conjunct ion ∗)
| or{G,H} (∗ d i s j un c t i o n ∗)
| imp{G,H} (∗ imp l i c a t i o n ∗)

An atomic formula P always has the following structure:

P : := Exp1 = Exp2
| Exp1 =/= Exp2
| Exp1 >= Exp2
| Exp1 > Exp2
| Exp1 =< Exp2
| Exp1 < Exp2

Exp1 , Exp2 : := Var (∗ va r i a b l e ∗)
| Const (∗ constant ∗)
| Exp1 + Exp2 (∗ add∗)
| Exp1 − Exp2 (∗ subt ra c t ∗)

(| Exp1 ∗ Exp2 (∗ mult ip ly ∗))

Multiplication binds stronger than addition and subtraction. The initial condi-
tion and the invariants always are restricted to be conjunctions or a single atomic
formula.

Listing 5.2: Invariants in the configuration file�
and{and{and{and{Pc1>=0,Pc1=<3},and{Pc2>=0,Pc2=<3}},

and{X>=0,X=<2}},and{C1>=0,C2>=0}}

� �

5.1.2 Transitions

In the configuration file, the argument of transitions has the structure given below:

trans1, . . . , transn,

where each transi is a triple (Num,Chvarlist, Constraint). Num denotes a positive
integer starting with 1. Chvarlist is the list of variables that are changed by the
transition and Constraint is a boolean constraint. Listing 5.3 shows the transitions
of Fischer’s algorithm.

36 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

Listing 5.3: Transitions in the configuration file

(1 , [Pc1 ,C1] , and{and{X=0,Pc1=0} ,and{Pc1 ’=1 ,C1’=0}}) ,
(2 , [Pc2 ,C2] , and{and{X=0,Pc2=0} ,and{Pc2 ’=1 ,C2’=0}}) ,
(3 , [X,C1 , Pc1] , and{C1<2,and{Pc1=1,and{X’=1 , and{C1’=0 ,Pc1 ’=2}}}}) ,
(4 , [X,C2 , Pc2] , and{C2<2,and{Pc2=1,and{X’=2 , and{C2’=0 ,Pc2 ’=2}}}}) ,
(5 , [Pc1] , and{Pc1=1,and{C1>=2,Pc1 ’=0}}) ,
(6 , [Pc2] , and{Pc2=1,and{C2>=2,Pc2 ’=0}}) ,
(7 , [Pc1] , and{Pc1=2,and{C1>3,and{X=1,Pc1 ’=3}}}) ,
(8 , [Pc2] , and{Pc2=2,and{C2>3,and{X=2,Pc2 ’=3}}}) ,
(9 , [Pc1] , and{Pc1=2,and{and{C1>3,X=/=1},Pc1 ’=0}}) ,
(1 0 , [Pc2] , and{Pc2=2,and{and{C2>3,X=/=2},Pc2 ’=0}}) ,
(1 1 , [Pc1] , and{Pc1=3,and{X’=0 ,Pc1 ’=0}}) ,
(1 2 , [Pc2] , and{Pc2=3,and{X’=0 ,Pc2 ’=0}}) ,
(1 3 , [C1 ,C2] , and{C1’=C1+1,C2’=C2+1})

5.1.3 Nodes and Nodelabels

Nodes are specified as triples (Id, Initf lag, Failf lag), that are also separated by
commas. Every node has an unique identifier Id that marks the different states of
the phase event automaton. The Initf lag value marks, if a node is an initial node
and the Failf lag value specifies, that a node is an error node (i. e. this node la-
bels the failure condition; a counter-example computation is possible). Nodelabels
are tuples (Id, Constraint). For a node pId, the Id values of both the node and
the nodelabel have to coincide. Constraint is a boolean constraint. As already
mentioned before, nodelabels always are conjunctions of predicates or a single
atomic formula.

5.1.4 Variables

The variables in the configuration file specify the states, the data and clock values of
a phase event automaton. Here, variables are strings that begin with a capital letter,
followed by capital letters, lowercase letters or numbers. Variables also are devided
into integer and real-valued variables. In listing 5.1 all variables are declared as
integers. This separation into real and integer variables strengthens the constraint
propagation. The constraint x > 2 ∧ x < 3 for example is satisfiable, if x is a real
valued variable. This is not the case, if x is an integer. Therefore, whenever there is
a nodel label that includes a constraint of the form exp1 < exp2(exp1 > exp2) and
all expi only contain integer variables, the constraint is replaced by exp1 =< exp2−1
(exp1 >= exp2 + 1).

5.1.5 Edges

The edges in the configuration script have a special form:
They are triples (Id1$Edgelabel$Id2). For parsing reasons, the different members
of the triple are separated by a $ sign. Id1 and Id2 specify the origin and the
goal states of an edge. Edgelabel always is a list of transitions. Because the initial
falsification diagram labels each edge with the entire set of transitions, all edgelabels
are marked with true in the configuration file. We could also remove this placeholder
and only work with tuples which specify the origin and the goal of an edge.

5.1. CONFIGURATION FILES 37

5.1.6 Example: Elevator Configuration Script

Below, the configuration script for the elevator example is presented.

Listing 5.4: Configuration file for the elevator example�
pea :
i n i t : and{Goal=Curr=Min , and{Min<Max, and{Dir=0,Pc=0}}}
t r a n s i t i o n s : t r ans i t i ona rguments
nodes : (p0 , true , f a l s e) , (p1 , true , t rue) , (p2 , true , t rue)
i n tv a r s : Min , Curr ,Max, Goal , Dir , Pc
r e a l v a r s :
n l a b e l s : (p0 , Min=<Curr=<Max) , (p1 , Curr<Min) , (p2 , Curr>Max)
i nva r i a n t s : and{Min<Max,

and{Pc>=0,and{Pc=<2,and{Dir+1>=0,Dir=<1}}}}
edges : (p0$true$p0) , (p1$true$p1) , (p2$true$p2) , (p0$true$p1) ,

(p0$true$p2)

� �

Listing 5.5: Transitions in the elevator configuration file�
(1 , [Goal , Pc] , and{Pc=0,and{Curr<Goal’=<Max, Pc ’=1}}) ,
(2 , [Goal , Pc] , and{Pc=0,and{Min=<Goal ’<Curr , Pc ’=1}}) ,
(3 , [Dir , Pc] , and{Pc=1,and{Pc’=2 , and{Goal>Curr , Dir ’=1}}}) ,
(4 , [Dir , Pc] , and{Pc=1,and{Pc’=2 , and{Goal<Curr , Dir ’+1=0}}}) ,
(5 , [Curr] , and{Pc=2,and{Curr=/=Goal , Curr ’=Curr+Dir }}) ,
(6 , [Pc] , and{Pc=2,and{Pc’=0 , Goal=Curr}})

� �

38 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

5.2 Phase Event Automata Creation

This section briefly presents the creation of an initial phase event automaton from
the configuration file. This is done in four steps. First the configuration file is read
in by the module object creater. The resulting data structure is a character list that
is given next to the module tokenizer. The procedure tokenize(Charlist, Tokenlist)
analyses the Charlist and converts it into a list of tokens. The third step exists
more or less for security reasons. The procedure parse checks if the tokenlist is in
right order. This is inevitable, because the order in which the single components
of the PEA object are constructed is important. Additionally, the parser checks
if all arguments for the fourth step are syntactically correct. Finally, the module
converter constructs the object that represents the initial phase event automaton
from the given tokenlist. Note, that this initial PEA object is different from the
initial falsification diagram. Below, some more information about the initial PEA
object is given.

5.2.1 The PEA Object

The procedure convert to object in the module converter first creates an object
pea.(Remember, that this object rather describes a transition constraint system.)
A PEA object has the following attributes:

• nodelist: A list of all actually existing states of the automaton.

• edgelist: A list of all actually existing edges of the automaton.

• initv: A boolean constraint that describes the initial condition of the phase
event automaton.

• vars: A list of all actually existing variables of the automaton.

• intvars: A list of all actually existing integer variables of the automaton.

• transitions: The list of transitions.

• initnodes: A list of all actually existing states that are marked initial.

• new edges: A list of all actually existing edges that have been recently created.

• invariants: A boolean constraint that describes some additional information
to restrict node labels.

For efficiency reasons, the deductive model checking procedure presented in this
thesis only refines this PEA object, i. e. no other PEA objects are created. The
representation of an phase event automaton as an object also makes it possible to
simply extend the PEA’s features. Nodes, edges, variables and transitions are ob-
jects themselfs. Whereas variable objects are quite simply structured, i. e. variables
only have procedures to set and get their values; node, edge and transition objects
have some additional information. Their structure will be showed in the following.

5.2.2 The Node Object

A node object has the following attributes:

• state: Every node in the graph represents a state the automaton is in. Every
node has a unique atom id = pi.

5.2. PHASE EVENT AUTOMATA CREATION 39

• label: A node label always is a list with one element. This element is a
boolean constraint. Nodelabels are only allowed to be single predicates or
conjunctions. Predicates do not contain terms of the form Exp1 6= Exp2 4.
They are replaced by two new nodes with labels

Exp1 < Exp2 and

Exp1 > Exp2.

All nodes also are disjoint concerning their labels.

• init: Is a boolean flag that specifies, if a node is marked initial. Additionally,
the flag marks definitely reachable states.

• visited: Is a boolean flag that specifies, if a node already has been visited.
This flag is used in a procedure that traverses the graph to remove nodes,
that are unreachable from an initial node.

• visited2: Is a boolean flag that specifies, if a node already has been visited.
This flag is used in a procedure that traverses the graph to calculate the
minimal distance of the actual node to the next failure node.

• failflag: Is a boolean flag that specifies, if a node represents a failure state.
These nodes become unreachable during the deductive model checking proce-
dure.

• selfs: Is a boolean flag that specifies, if a node contains an selfedge.

• tos: Is a list of all actually existing nodes j, j 6= i, the node i contains edges
to.

• froms: Is a list of all actually existing nodes j, j 6= i, the node i contains edges
from.

• fdist: Is an integer that shows the actual distance of that node to the next
failure node.

5.2.3 The Edge Object

An edge object has the following attributes:

• from: Is an atom pi that specifies the origin state of the edge.

• edgelabel: Is a list of transition objects.

• to: Is an atom pi that specifies the goal state of the edge.

• mem: Is a boolean flag that is initially true. If an edge becomes an edge whose
goal node is marked initial, i. e. after source enlargement (5.6.4), the flag is
set to false and and this edge will not be used for a split again.

• presat: Is a tuple list with elements (transi, f lag), where transi specifies a
transition the edge is labeled with and flag specifies, if the test for a precon-
dition split was successful for that edge concerning transi. Initially all these
flags are true.

• postsat: Is a tuple list with elements (transi, f lag), where transi specifies a
transition the edge is labeled with and flag specifies, if the test for a postcon-
dition split was successful for that edge concerning transi. Initially all these
flags are true.

4Node labels have to be convex

40 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

5.2.4 The Transition Object

A transition object has the following attributes:

• id: Is an atom to uniquely identify a transition.

• label: Is a list that always consists of two elements. The first element chvar(Chlist)
is an atom with Chlist as the list of variables that are changed by the
transition. The second element is the the transition constraint itself.5

• enabled: Is a boolean formula that results from applying enabled to the
transition. Because the enabled formula for a transition never changes, it
is calculated once to avoid unneccessary computation.

5Note that a transition constraint must not contain constraints of the form y′ > x ∧ y′ < z

because the implicit guard x < z is missing

5.3. INITIAL FALSIFICATION DIAGRAM 41

5.3 Initial Falsification Diagram

In this section, the construction of the initial falsification diagram is presented.
In 4.2 we have already seen how it is constructed in the original deductive model
checking procedure. Both methods ideally are equal. However, the algorithm given
next contains some refinements concerning the node labels, i. e. all future and
existing node labels are made convex and disjoint among each other. This may
increase the size of the initial diagram relative to the falsification diagram of the
original DMC procedure, but it also removes redundant nodes in the graph and
therefore considerably reduces the state-space.

In the original procedure, for every inital node a new initial node is constructed.
This is also improved now: Nodes which represent failure states can be marked
initial too, and as soon as their label is conjoined with the initial condition, the
new label should be ’false’. Therefore, nodes with label false will not be created
at all, instead of pruning them later during the satisfiability check. Additionally,
we know that every failure-path contains a minimal failure-path. Therefore, for all
nodes that are marked initial no incoming edges and for all nodes that are marked
as failure states no outgoing edges are created because the removal of non-minimal
error-paths preserves the correctness of the system.

An additional change pertains to the transitions. In the initial phase event
automaton, a transition may be labeled with a boolean constraint that contains
an implication or a disjunction. For structural reasons transition labels are only
allowed to be conjunctions. Therefore, the are changed concerning this matter.
In the following, I will first give an algorithmic description (pseudocode) of the
initial falsification diagram construction. Then, every procedure that is used in
the algorithm will be explained in detail. All procedures to construct the diagram
belong to the module init false diagram.

5.3.1 Initial Falsification Diagram Construction

Algorithm 1 Initial falsification diagram construction

Input: Pea /* this is the initial PEA */
1: construct new initial nodes
2: change transition labels
3: basic transformations 1, 3, 4
4: change failure nodes
5: change remaining nodes
6: split with invariants
7: set failure distances

Output: modified PEA /* represents the initial falsification diagram */

5.3.2 Construct New Initial Nodes

In line 1 of the initial falsification diagram construction a new set of initial nodes is
constructed. The procedure traverses the list of all actually existing nodes and for
every node, that is marked initial, a set of new nodes is created.

In 2, first a new label l = init∧ label∧¬ error is created for each node Ni. init
is the initial condition of the PEA, label is the actual label of a node and error is
the disjunction of all existing failure states. Because we only allow node labes to be
conjunctions, the new label has to be brought to disjunctive normal form. Now, for
every disjunct a new node Nij is created. Additionally, for every new initial node
Nij , new outgoing edges are created, that go to exactly the same nodes as those of

42 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

Algorithm 2 Construction of new initial nodes

Input: nodelist, error
1: for all nodes in nodelist do
2: if node is marked initial then
3: create new node label /* init ∧ label ∧ ¬ error */
4: bring new label in disjunctive normal form
5: create new initial nodes
6: create new edges
7: origin node is not marked initial anymore
8: end if
9: end for

Ni. A self-loop 〈Ni, Ni〉 becomes an edge 〈Nij , Ni〉 in the new graph. All Nij have
no incoming edges. Finally, the init flag of every Ni is set to false, i. e. they are
not initial anymore.

The construction of new nodes, node labels and edges comprises some interesting
details. Except for the edges in this procedure, all other edges and nodes will be
constructed in the module node splitting. The procedures included therein will be
explained in 5.5.

5.3.3 Change Transition Labels

As already mentioned before, transition labels are only allowed to be conjunctions.
But the transition labels of the initial pea also can contain implications, disjunctions
or predicates with inequalities. Therefore, at this point of the model checking
procedure, for every transition ti a disjunctive normal form ti1∨. . .∨tik is calculated.
Also every transition that contains an inequality predicate expi 6= expj is replaced
by two transitions expi ≤ expj and expi ≥ expj . If all variables in expi and expj are
integers, expi 6= expj is replaced by two transitions, one containing expi ≤ expj−1,
the other expi ≥ expj + 1. In the new set of transitions every ti is replaced by all
tij . Finally, all edges of the initial falsification diagram are labeled with the entire
set of transitions.

Example:

Below, the resulting transitions of the Fischer’s mutual exclusion problem given
in 5.3 are presented. Note, that the old transitions 9 and 10 are replaced by two
new transitions each.

• τ1 : x = 0 ∧ pc1 = 0 ∧ pc′1 = 1 ∧ c′1 = 0

• τ2 : x = 0 ∧ pc2 = 0 ∧ pc′2 = 1 ∧ c′2 = 0

• τ3 : c1 < 2 ∧ pc1 = 1 ∧ x′ = 1 ∧ c′1 = 0 ∧ pc′1 = 2

• τ4 : c2 < 2 ∧ pc2 = 1 ∧ x′ = 2 ∧ c′2 = 0 ∧ pc′2 = 2

• τ5 : pc1 = 1 ∧ c1 ≥ 2 ∧ pc′1 = 0

• τ6 : pc2 = 1 ∧ c2 ≥ 2 ∧ pc′2 = 0

• τ7 : pc1 = 2 ∧ c1 > 3 ∧ x = 1 ∧ pc′1 = 3

• τ8 : pc2 = 2 ∧ c2 > 3 ∧ x = 2 ∧ pc′2 = 3

5.3. INITIAL FALSIFICATION DIAGRAM 43

• τ9 : pc1 = 2 ∧ c1 > 3 ∧ x < 1 ∧ pc′1 = 0

• τ10 : pc1 = 2 ∧ c1 > 3 ∧ x > 1 ∧ pc′1 = 0

• τ11 : pc2 = 2 ∧ c2 > 3 ∧ x < 2 ∧ pc′2 = 0

• τ12 : pc2 = 2 ∧ c2 > 3 ∧ x > 2 ∧ pc′2 = 0

• τ13 : pc1 = 3 ∧ x′ = 0 ∧ pc′1 = 0

• τ14 : pc2 = 3 ∧ x′ = 0 ∧ pc′2 = 0

• τ15 : c′1 = c1 + 1 ∧ c′2 = c2 + 1

5.3.4 Basic Transformations

In line 3 of the initial falsification diagram construction some basic transformation
rules are inserted. This is useful, because in the next procedures a lot of nodes
are split and for every node a lot of edges are created. Therefore, all unnecessary
information, i. e. all unsatisfiable transitions, nodes that are unreachable and
edges with empty labels, are removed. The Basic transformation rules will be
presented in 5.4.

5.3.5 Change Failure Nodes

Algorithm 3 describes how all nodes that mark a failure state are made disjoint
from all remaining nodes of the diagram.

Algorithm 3 Changing the labels of failure nodes

Input: nodelist, init /* init is the initial condition of the PEA */
1: repeat
2: if node is marked as failure node, node is not an initial node then
3: create new node label /* ¬ init ∧ label */
4: create new nodes for the new label
5: delete the origin node
6: create new edges for the new nodes
7: end if
8: until nodelist is empty

5.3.6 Change Remaining Nodes

This procedure changes all nodes that are not marked initial or ’fail’ (i. e. represent
a failure state). The algorithm is the same as the one for changing failure nodes
except, that the new label for a node with label l is ¬ init ∧ ¬ error ∧ l.

5.3.7 Split With Invariants

In line 6 of the algorithm, that constructs the initial falsification diagram, all nodes
are split with the invariant constraint given in the configuration script. This is very
useful, because the initial falsification diagram may contain nodes, that should never
be satisfiable, but can not be directly removed. Only with some additional informa-
tion, these nodes can be removed before beeing split and consequently adding a lot
of useless information to the diagram. Note, that the splitting of a node (N, l) with

44 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

an invariant i 6 first removes unsatisfiable nodes and second gives a proof for the
correctness of the additionally used information. Invariant constraints are proposi-
tions that will be proved. They are not taken for granted. Below, the algorithmic
description of the procedure is presented.

Algorithm 4 All nodes are split with the invariants

Input: nodelist, invariant /* invariant is a conjunction of invariant predicates */
1: for all atomic predicates p ∈ invariant do
2: for all nodes with label l ∈ nodelist do
3: create new node with label: l ∧ p
4: create new nodes with label: l ∧ ¬ p /* may be several nodes */
5: create new edges for every new created node
6: basic transformations 1, 3, 4
7: end for
8: end for

5.3.8 Set Failure Distances

In line 7, the fdist value for every node in the initial falsification diagram is set.
The fdist value of a node N gives the actual distance of N to the next node that is
marked as failure state. The algorithm that calculates those distances is given in the
module functionlibrary. It traverses the initial falsification diagram by a breadth
first search, starting from the set of all nodes that are marked as failure state.

5.3.9 Examples

Figure 5.1 shows the initial falsification diagram of Fischer’s mutual exclusion
algorithm without invariant splitting. This phase event automaton has 13 nodes,
where state p4 is the error state and p3 the initial state. The problem is, that the
node labels of p9, p10, p12, p14 and p16 never should be satisfied, since they restrict
one of their variables to be negative. By contrast, Figure 5.2 shows the result of
splitting all nodes with the invariant constraint

pc1 ≥ 0 ∧ pc1 ≤ 3 ∧ pc2 ≥ 0 ∧ pc2 ≤ 3 ∧ x ≥ 0 ∧ x ≤ 2 ∧ c1 ≥ 0 ∧ c2 ≥ 0.

Figure 5.3 shows the initial falsification diagram of the elevator example.

6I. e. two new nodes (N1, l ∧ i) and (N2, l ∧ ¬ i) may be constructed.

5
.3

.
IN

IT
IA

L
F
A

L
S
IF

IC
A
T

IO
N

D
IA

G
R

A
M

4
5

p4 [15]

p6

[7]

[2,3,4,6,8,11,12,14,15]

p8

[7]

p9

[7]

p10

[5,9,10]

p11

[5,9,10]

p13

[5,9,10]

[8]

[2,4,6,11,12,15]

[13] [13]

p12

[13]

[13]

p14

[13]

p15

[13]

[15]

[13]

[1]

[15]

[1]

[4,8,15]

[6,11,12,14]

[6,11,12,14]

[14] [6,11,12,14]

[1]

[2]

[15]

[15] [15]

p16

[15]

p17

[15]

[1]

[2]

[15]

[1]

[2]

[15]

[1]

[2]

[15][15][15]

p3

[1]

[2]

[15]

F
ig

u
re

5
.1

:
In

itia
l
F
a
lsifi

c
a
tio

n
d
ia

g
ra

m
w

ith
o
u
t

in
v
a
ria

n
t

sp
littin

g

46 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

p129 [15]

p131

[7]

[2,3,4,6,8,11,14,15]

p133

[7]

p135

[5,9,10]

p137

[5,9,10]

p127

[1]

[2]

[15][8]

[2,4,6,11,15]

[13]

[13]

p139

[13]

[1]

[4,8,15]

[6,11,14]

[6,11,14]

[1]

[2]

[15]

[1]

[2]

[15]

Figure 5.2: Initial Falsification diagram with invariant splitting

p112 [4,6]

p114 [1,3,5]

p116 [7] p118 [2,4,6]

p120 [3,5] p122 [7]

p124

[6] [6] [6]

[2,4,6]

p126

[1]

p128

[6]

p129

[6]

[5] [5] [5]

[2]

[1,3,5]

[5]

p110

[1] [2]

[1]

[7]

[1]

[7]

Figure 5.3: Initial Falsification diagram for the elevator example

5.4. BASIC TRANSFORMATIONS 47

5.4 Basic Transformations

This section presents the basic transformations of deductive model checking with
transition constraint systems. Basic transformations are used to prune the phase
event automaton, i. e. they are used to throw away unsatisfiable nodes, nodes,
that are unreachable from an initial node, or nodes that have no successor. They
are also used to remove transitions that are not applicable between two states or to
throw edges with empty labels away.

In contrary to the basic transformations given in [HTZ96], the procedure pre-
sented in this thesis only uses those transformation rules that are sufficient to check
the satisfiablity of temporal logic formulas. I. e., the transformation rules 5 and 6
of the original procedure have been dropped. In the original procedure it is also not
really described, how to apply these transformations. Therefore, the transformation
rules have a fixed order. First, all nodes, that are unreachable from an initial node,
are removed. Then, all nodes, that have no successor, are thrown away. Next, all
unsatisfiable edge labels between to nodes are removed. Now, every edge with an
empty edge label is removed. Finally, the first transformation rule is applied again
to remove every node (and its incoming and outgoing edges), that is not reachable
anymore. The satisfiablity check is not necessary, because nodes whose label is not
satisfiable are not created at all. This is a quite efficient change, because besides the
creation of such a node also a lot of edges are created. Both the node and the edges
would have to be removed during the next application of the basic transformation
rules. In the following, all basic transformation rules are explained in detail.

5.4.1 Unreachable Node

The basic transformation rule unreachable node removes every state from the phase
event automaton that is not reachable from an initial state. The underlying
algorithm first computes the set of all initial nodes. From every initial node, a
breadth first search traverses the graph. If there is an edge from an initial node N0

to a child N1, the childs attribute visited is set to true. This search is repeated until
every traversed child is marked visited. Now, the list of all actually existing nodes
is searched and every node that has not been visited yet is removed from the phase
event automaton. As soon as an unreachable node is deleted, also all its incoming
and outgoing edges have to be removed.

The easier this rule is to realize, the more crucial is its effect. Without removing
unreachable nodes, the deductive model checking algorithm could refine a subgraph
that never would belong to neither a correctness proof or a counterexample. This is
not only a waste of computational power or time. The algorithm also could diverge
in this subgraph, althought there may exist a correctness proof.

Example:

Figure 5.4 shows an unreachable subgraph of the elevator example after the
first precondition and postcondition split. This is the result, if the unreachable
node transformation rule is omitted. For simplicity reasons, all self-loops have been
removed. The model checking procedure could never produce a correctness proof,
since the graph contains failure states. If the transformation rule is not omitted,
the model checking procedure will find a correctness proof after four precondition
splits.

48 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

p674

p543

[4]

[4,6]

p417

[6]

p453

[6]

p471

[6]

p542

[4]

p470

[6]

[4,6] [7] [2,4,6]

p612

[6]

[2,6]

p560

[5]

p488

[5]

p515

[5]

p561

[3]

p611

[6]

p629

[5] [5][5]

[5][7]

p516 [7]

[5]

p489

[5]

p435

[5]

p630

[5][5]

[3,5] [1,3,5]

p559

[3]

p433

[5]

[1,5]

p675

[6]

p451

[6]

[7]

Figure 5.4: Unreachable graph for the elevator example

5.4.2 Unsatisfiable Node

The transformation rule unsatisfiable node is used to remove nodes that have no
successors. As mentioned before, the satisfiabiliy check for node labels is omitted
here.

In the algorithm presented here, the satisfiability check for node labels is
advanced to the timepoint a node is created. If the label can not be satisfied,
this node will not be created at all. This decision is really time and space saving.
Assume a node is split into n new nodes in the precondition split for example,
whereof the labels of the nodes n2, . . . , nn can not be satisfied. If the satisfiability
check would have be postponed to the basic transformations part, the algorithm
would have unnecessarily had to create O(n2) edges between those nodes, all in-
coming and outgoing edges to the nodes, all self-loops for the nodes and the nodes
n2, . . . , nn themselves in the worst case. But it is not only the unnecessary creation
and following deletion of the nodes, but also the unnecessary updating of distances
and node specific information (a lot of lists have to be updated) that has to be done
if unsatisfiable nodes are created.

The realisation of the successor check is quite simple. The input of this algorithm
is the list of all actually existing nodes. For every node N is checked, if the attribute
list tos of N is empty and the attribute flag selfs of N is set to false. If so, the
node is removed, otherwise the input list is searched recursively. Again, if a node
is removed all its incoming and outgoing edges have to be removed.

One design decision, that will be explained in detail later, is that, when it comes
to a node split, failure nodes should not have any outgoing edges. The point here
is, that this decision had to be reduced to outgoing edges that are not self-loops.
If a failure state would not have a self-loop, the algorithm would incorrectly throw
away all failure nodes in the first successor check.

5.4.3 Remove Edge Label

This section shows the functionality of the remove edge label transformation rule. If
there is an edge 〈(N1, f1), (N2, f2)〉 that is labeled with an transition τ , the following
constraint is checked:

f1(~x) ∧ f2(~x′) ∧ pτ (~x, ~x′)

If this constraint is unsatisfiable, the transition τ has to be removed from the edge
label.

The remove edge label rule is used to successively remove transitions from an
edge label. After every precondition and postcondition split, transitions can be

5.4. BASIC TRANSFORMATIONS 49

removed from the edge labels of the new created edges. The goal is to remove all
transitions until the label of an edge, that cannot belong to the set of possible edges
for a counterexample, is empty. Then this edge can be removed by the empty edge
transformation rule. Below, an algorithmic (pseudocode) description of the remove
edgelabel rule is presented.

Algorithm 5 Remove edge label transformation rule

Input: new edges
1: repeat
2: prepare triple list TL for every edge
3: for all (From, To, τ) ∈ TL do
4: build idle constraint from τ
5: pτ (~x, ~x

′) := idle ∧ τ
6: if fFrom(~x) ∧ fTo(~x′) ∧ pτ (~x, ~x′) is unsatisfiable then
7: remove τ from edge label
8: end if
9: end for

10: until edge list is empty

The algorithm’s input is the set of new edges, i. e. the list of all edges created
since the last precondition or postcondition split. Initially, all edges of the initial
falsification diagram belong to that set. Note, that all other edges of the phase
event automaton already have been checked for label removement. Next, for every
edge in new edges a list of triples (From, To, τ) is constructed. Assume, an edge
〈(N1, f1), (N2, f2)〉 is labeled with transitions τ1, . . . , τk. The resulting triple list
TL is [(N1, N2, τ1), . . . , (N1, N2, τk)]. Now, for every element of the list TL the
assertion, that has to be checked for satisfiablility is built. Because all transitions
τi, that are defined in the transition system, only assert the variables we want to
change, we also have to build an idle constraint. The idle constraint is an assertion
over unchanged variables (∀xj /∈ changed vars : xj = x′j). Finally the node labels
f1, f2, the transition constraint pτ (~x, ~x

′) and the idle constraint for τ are conjoined
and checked for satisfiability. If the constraint is satisfiable, the next element of TL
is checked. Otherwise, the transition is removed from the edge label before checking
the next element of TL.

The satisfiability check is done by the procedure label to constr in the
module own constrain function library. This procedure uses SICstus Prolog’s built-
in constraint library for rational and real numbers. Here, the first problem emerged.
During the model checking algorithm really a lot of constraints have to be checked
for satisfiability. Because most of these formulas are not constrained globally, we
have to use for every local satisfiability test a new set of variable representatives. If
one constraint restricts a variable a for example, the satisfiability test for another
constraint that restricts a too, can not use the same variable, since a’s restriction
would have been already stored in the constraint store 7. Therefore, every time
a constraint is checked, a completely new set of variables is used. The result is,
that the model checking algorithm filled Prolog’s constraint store with millions of
constraints and finally causes a memory error. The problem has been solved by
using Prologs backtracking mechanism. Assume a procedure constrain f(Formula)
returns the value true iff the boolean formula Formula is satisfiable. The procedure
unsat in 5.6 ensures, that every constraint is checked for satisfiability, but after
having been checked, all constraints are removed from the constraint store again.
If the constraint that has to be checked is true, the output unsat is false because
the control flow passes a cut followed by fail. This causes the procedure to back-

7The constraint store stores the actual domains of variables.

50 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

track and throw away all collected information. The cut symbol ensures that the
procedure does not try the second rule. So the result is false. Otherwise, the result
is true.

Listing 5.6: Procedure that checks constraints for satisfiability�
unsat (Formula , V l i s t):−

c o n s t r a i n f (Formula , V l i s t) , ! , f a i l .
unsat (,) : − ! .

� �

Example:

Given for example two nodes (N1, f1) and (N2, f2) with labels

f1(~x) := c1 = 0 ∧ pc2 = 0 ∧ c1 = 0 ∧ c2 = 0 ∧ x = 0,

f2(~x) := pc1 = 3 ∧ pc2 = 3 ∧ c1 ≥ 0 ∧ c2 ≥ 0 ∧ x ≥ 0 ∧ x ≤ 2 and

transition τ1 of Fischer’s algorithm, i. e.

τ1 := x = 0 ∧ pc1 = 0 ∧ pc′1 = 1 ∧ c′1 = 0.

First, the label of N2 has to changed to a primed version. Next, the idle constraint
for τ1 is calculated. Because only pc1 and c1 are changed in the transition label,
the idle constraint is:

idle := pc2 = pc′2 ∧ c2 = c′2 ∧ x = x′.

Finally, the constraint

f1(~x) ∧ f2(~x′) ∧ τ1 ∧ idle

is checked for satisfiability. Because the conjunction pc2 = 0 ∧ pc′2 = 3 ∧ pc2 = pc′2
is equivatent to false, this transition is removed from the edge label.

5.4.4 Empty Edge

The empty edge transformation rule removes all edges with empty labels. The
underlying algorithm checks the set of new created edges, new edges, that also
has been checked to remove transitions before. It suffices to check these edges,
because all other edges already are removed or have not been changed since the last
application of this rule. For every edge in new edges, the algorithm only has to test,
if the label of that edge equals the empty list. If so, the edge is removed. When all
edges with empty labels have been removed, the set new edges is set to the empty
list.

5.5. NODE SPLITTING 51

5.5 Node Splitting

As already known, the basic idea of deductive model checking is to progressively
refine the behaviour graph (S, ¬ϕ) of a given model S and a specification ϕ.
When having constructed the initial falsification diagram, first, all unsatisfiable
edge labels, i. e. transitions between two states, all nodes without successor states,
all edges with empty labels and all nodes that are not reachable from an initial
state are removed. If the resulting diagram does not contain any failure state,
the deductive model checking procedure finishes. Additionally, we have obtained a
correctness proof for S |= ϕ.

But, if the resulting diagram still contains at least one failure state, we have to
refine the diagram. The refinement is done by both precondition and postcondition
splits. They will be explained later. The result of both kind of splits is that a node
is replaced by new nodes with more restricted labels then the original one. This
of course helps to remove impossible transitions and hopefully all paths to failure
states.

This section describes how a node is split. In [HTZ96], a node N is always
replaced by two new nodes N1 and N2. Here, the splitting is extended to nodes
N1, . . . , Nk+1, because N2 may have the form N21

∨ N22
∨ . . . ∨ N2k

and we do
not allow node labels to be disjunctions. This has been done, because elimina-
tion of quantifiers for example needs a formula in disjunctive normal form. 8 The
calculation of a disjunctive normal form is exponential and therefore unsuitable.
In the following, we first see how new nodes are created. Then we see, how
corresponding edges are updated. The underlying procedures are create split nodes
to create new nodes and split node to remove and create corresponding edges. Both
procedures are located in the module node splitting.

5.5.1 Create New Nodes

Before we see an algorithmic description of the create split nodes procedure,
properties of node labels are listed:

1. A node label formula is always a conjunction of atomic predicates p1 ∧ p2 ∧
. . . ∧ pn

2. A node label is always satisfiable, i. e. unsatisfiable states are not created at
all.

3. A node label never contains redundant predicates, i. e. a node could never
contain both x ≥ 4 and x ≥ 5 as subformulas.

4. A node label never contains a negated predicate. Negations are put inward
before creating a node.

5. A node label never contains predicates of the form x 6= y. Inequalities x 6= y
are replaced by x < y∨x > y. Note that this change produces two new nodes.

6. A node label never contains predicates x < y (x > y resp.) if all variables in
the predicate are integer variables. These predicates are replaced by x ≤ y−1
(x ≥ y + 1 resp.).

Besides the failflag and initflag of the node that has to be replaced, the pro-
cedure create split nodes also needs a boolean formula in disjunctive normal form
as argument. If this formula is a disjunction, the procedure is called recursively
for every disjunct, i. e. every disjunct produces a new node. If the formula is a

8This will be explained when it comes to the calculation of the strongest postcondition in 5.6.3.

52 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

Algorithm 6 create split nodes(l, initf lag, failf lag, newnodes)

Input: node label l, initflag, failflag
Output: list of new created nodes newnodes
1: if l == a ∨ b then
2: create split nodes(a, initflag, failflag, newnodes1)
3: create split nodes(b, initflag, failflag, newnodes2)
4: append(newnodes1, newnodes2, newnodes)
5: else if l = (l0 ∧ p(x 6= y)) then
6: create split nodes(l0 ∧ p(x < y), initf lag, failf lag, newnodes1)
7: create split nodes(l0 ∧ p(x > y), initf lag, failf lag, newnodes1)
8: append(newnodes1, newnodes2, newnodes)
9: else

10: remove redundant constraints from l
11: replace all strict inequalities for predicates that only contain integers
12: if l 6= false then
13: create new node Ni with label l
14: Ni has the same failflag as original node /* except target enlargement */
15: Ni has the same initflag as original node /* except source enlargement */
16: newnodes = [Ni]
17: end if
18: end if

single atomic predicate or a conjunction of atomic predicates, the procedure checks,
if it contains a predicate with an inequality constraint x 6= y. Then, the formula
is split again into two formulas containing x < y and x > y. This split would
also result in two new nodes. If the formula does not contain any predicate x 6= y,
all redundant predicates are removed and strict inequalities replaced. Now, the
formula is checked for satisfiability again. If it is satisfiable, a new node is created.
The new node’s failflag is the same as the original one, except in the case of target
enlargement (5.6.4). The new node’s initflag is the same as the original one, except
in the case of source enlargement (5.6.4). The procedure output is the list of all
from the formula created nodes. This list will be used by the procedure split node
to create new edges for the new nodes.

5.5.2 Create Edges

A soon as new nodes N1, . . . , Nk have been created, the edges of the phase event
automaton have to be updated. This is done by the procedure split node. The
procedure’s input is the list of new created nodes and the original node that has to
be removed. First, the procedure handles self-loops, i. e. if the origin node Nold
had a self-loop 〈Nold, Nold〉, this edge is replaced by self-loops 〈N1, N1〉,. . ., 〈Nk,
Nk 〉. Additionally, the procedure creates edges between all new created nodes,
i. e. for all i, j ∈ {1, . . . , k} with i 6= j, edges 〈Ni, Nj〉 are created. All these edges
have the same edge label es the original self-loop.

Then all incoming and outgoing edges (except the self-loop) are updated. Any
incoming edge 〈N0, Nold〉 is replaced by new edges 〈N0, N1〉, . . ., 〈N0, Nk〉 with
the same label as 〈N0, Nold〉. Then all outgoing edges 〈Nold, Nout〉 are replaced by
edges 〈N1, Nout〉, . . ., 〈Nk, Nout〉. Again, they have the same label as 〈Nold, Nout〉.

Note that edges from failure nodes will not be created (except self-loops). Target
enlargement is responsible for the existence of edges from failure nodes. These edges
will be removed after the precondition split.

5.6. BASIC REFINEMENT TRANSFORMATIONS 53

5.6 Basic Refinement Transformations

This section presents the refinement transformations of deductive model checking
with transition constraint systems, precondition split and postcondition split.

As soon as the initial falsification diagram has been constructed, the basic trans-
formations given in 5.4 are used to remove unsatisfiable edge labels, empty edges,
unreachable states or states with no successors. Now, the procedure will test, if
there is still a possible path from an initial state to a failure state. This test is
really simple, because all unreachable nodes already have been removed. We only
have to check, if the automaton contains a failure state. If there is no ’error trace’ 9,
the procedure stops. Additionally, it has produced a correctness proof. Otherwise,
one of the basic refinement transformations is applied.

Basic refinement transformations are used to strengthen the domains of
variables at a given state and maybe rule out impossible paths in the diagram.
I. e., whenever a node is split into new nodes, the domain of their variables is
strengthened concering a given transition. Additionally, the labels of the updated
edges are strengthened too. The goal is to reach an automaton configuration where
all state domains are restricted that much, that no transition can be applied to
reach a failure state.

Below, the complete algorithm for deductive model checking with transition
constraint systems is given:

Algorithm 7 Complete algorithm for deductive model checking

Input: initial PEA representing Φ¬ϕ

1: repeat
2: test break condition /* break condition is a flag that is true if no failure state

is reachable from an initial state */
3: if break condition 6= true then
4: precondition split
5: basic transformations
6: test break condition
7: if break condition 6= true then
8: postcondition split
9: basic transformations

10: set break condition to false
11: else
12: set break condition to true
13: end if
14: else
15: set break condition to true
16: end if
17: until break condition = true or no new nodes have been created

The algorithm stops if one of the following two conditions is fullfilled:

1. There is no path from an initial state to a failure state.

2. Neither the precondition nor the postcondition split could have been applied.

In the second case, we obtain a counterexample computation, because these break
conditions are exclusive and therefore we will have an error trace. Note, that if
the underlying transition systems S is not a model for ϕ, the model checking

9An error trace is finite run of a phase event automaton, that starts with an initial state and
ends with an failure state.

54 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

algorithm may diverge, because there may always be an edge that can be split.
In the following, the procedures that create the enabled, weakest precondition and
strongest postcondition formulas will be presented first. Then, the precondition and
postcondition split are explained in detail.

5.6.1 Construction of the enabled formula

A transition is called enabled if it can be taken at a given state. The following
formula characterizes such states:

enabled(τ)
def
= ∃~x′.pτ (~x, ~x′).

Informally, the enabled formula of a transition τ is always the guard of that transition
τ , because the conjunction of the unprimed part of a transition and the label of a
given state have to be satisfiable. Atomic predicates, that contain primed variables
can be thrown away. They are always satisfiable if the transition does not contain
any contradictions. Below, we first see a simple example. Then, the description of
the algorithm is given.

Example:

Given for example the following transition:

ϕτ ≡ (x > 1 ∧ y′ = z)

The enabled formula of τ , is

∃y′ϕτ ≡ x > 1.

The formula enabled(τ) is calculated in the module enabled. Because transitions
are always conjunctions or single atomic predicates, the calculation of enabled(τ)
is straight forward. Traverse the boolean formula given in the transition label and
throw away all predicates that contain primed variables. If the transition label has
no guard, the resulting formula is equivalent to true.

To avoid code duplication, the procedure, that computes the enabled formula,
is also used to compute the strongest postcondition and the weakest precondition.
Therefore, the procedure enabled also does unification and variable replacement.

The arguments of the procedure enabled are a transition τ and the idle constraint
constructed from τ . Because the transition argument can also be the conjunction
of a transition and a node label, the procedure first simplifies the conjunction of
the arguments, i. e. throws for example redundant information away. Finally, the
existential quantifiers are eliminated. For more information see the following two
sections.

5.6. BASIC REFINEMENT TRANSFORMATIONS 55

Example:

Below, the enabled formulas for the transitions of the Fischer’s mutual exclusion
algorithm given in 5.3.3 are presented.

• enabled(τ1) ≡ x = 0 ∧ pc1 = 0

• enabled(τ2) ≡ x = 0 ∧ pc2 = 0

• enabled(τ3) ≡ c1 < 2 ∧ pc1 = 1

• enabled(τ4) ≡ c2 < 2 ∧ pc2 = 1

• enabled(τ5) ≡ pc1 = 1 ∧ c1 ≥ 2

• enabled(τ6) ≡ pc2 = 1 ∧ c2 ≥ 2

• enabled(τ7) ≡ pc1 = 2 ∧ c1 > 3 ∧ x = 1

• enabled(τ8) ≡ pc2 = 2 ∧ c2 > 3 ∧ x = 2

• enabled(τ9) ≡ pc1 = 2 ∧ c1 > 3 ∧ x < 1

• enabled(τ10) ≡ pc1 = 2 ∧ c1 > 3 ∧ x > 1

• enabled(τ11) ≡ pc2 = 2 ∧ c2 > 3 ∧ x < 2

• enabled(τ12) ≡ pc2 = 2 ∧ c2 > 3 ∧ x > 2

• enabled(τ13) ≡ pc1 = 3

• enabled(τ14) ≡ pc2 = 3

• enabled(τ15) ≡ true

5.6.2 Construction of the strongest postcondition formula

The strongest postcondition post(τ, φ) of a formula φ relative to a transition τ is
defined as follows:

post(τ ,φ)
def
= ∃ ~x0.(pτ (~x0, ~x) ∧ φ(~x0))

The formulas post(τ ,φ) and ¬post(τ ,φ), that are used for the postcondition split,
are computed by the procedures post and npost in the module strongestpostcond.
Because the strongest postcondition formula is existentially quantified, the proce-
dure post just uses the procedure enabled. Instead of just passing the transition
and its idle constraint to the procedure, we additionally conjunct the transition
argument with a node label formula φ. The whole formula now is first simplified
and then, all quantifiers are eliminated (see 5.6.1).

56 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

Example:

Next, we see the resulting strongest postcondition formula in the first
postcondition split of Fischer’s mutual exclusion problem.10 Given node label

φ ≡ c2 ≥ 0 ∧ c1 ≥ 0 ∧ x ≤ 2 ∧ x ≥ 0 ∧ pc2 ≥ 0 ∧ pc1 = 3 ∧ pc2 ≤ 2,

transition

τ8 ≡ pc2 = 2 ∧ c2 > 3 ∧ x = 2 ∧ pc′2 = 3

and the idle constraint constructed from τ8

idle ≡ pc′1 = pc1 ∧ c′1 = c1 ∧ c′2 = c2 ∧ x′ = x.

The strongest postcondition post(τ8,φ) is

c′2 > 3 ∧ pc′2 = 3 ∧ c′1 ≥ 0 ∧ pc′1 = 3 ∧ x′ = 2

First, we know from the transition that pc′2 = 3. Now, the predicates pc′1 = pc1
and pc1 = 3 result in pc′1 = 3. Similary it is done with variable c1. The predicates
x ≤ 2 ∧ x ≥ 0 and x′ = 2 ∧ x′ = x result in x′ = 2 because redundant information
is dropped. Similary it is done with variable c2 again.

The construction of the negated strongest postcondition formula by the proce-
dure npost not only computes ¬ post(τ ,φ). It already conjuncts the result with the
primed node label f2. This will be explained in detail in section 5.6.6.

As already mentioned in 5.5, we only allow node labels to be conjunctions. This
decision has been made, because the arguments of the procedure enabled, that are
needed to compute the strongest postcondition formula for example, are a transition
and a node label. Before the procedure can eliminate all quantifiers, the conjunction
of these arguments has to be in disjunctive normal form. If the formula is not in
disjunctive normal form, the procedure does maybe not know how variables have
to be replaced. Given for example the following transition

τ ≡ x = 0 ∧ x′ = 1 ∧ y′ = y ∧ z′ = z

and a node label

(y = 0 ∨ y = 3) ∧ z = 3.

The procedure does not know with what value it has to replace y for the calculation
of the strongest postcondition formula for example. The result has to be a disjunc-
tion. But how can the procedure know that, without having build a disjunctive
normal form before? To avoid this, node labels are always conjunctions.

5.6.3 Construction of the weakest precondition formula

The weakest precondition wpc(τ, φ) of a formula φ relative to a transition τ is defined
as follows:

wpc(τ, φ)
def
= ∀~x′.(pτ (~x, ~x′) → φ(~x′)).

10 Note, that depending on the order edges are checked, the first split edge may have another
label.

5.6. BASIC REFINEMENT TRANSFORMATIONS 57

Both the formula wpc(τ, φ) and ¬wpc(τ, φ) are constructed in the module
weakestprecond. The wpc(τ, φ) is constructed by the procedure extended wpc. The
’extended’ in the procedure name means that it not only computes the weakest
precondition but also conjuncts the wpc(τ, φ) with enabled(τ). This is because of
structural reasons:

Given a transition relation pτ ≡ τ1 ∧ . . . ∧ τk and a node label ϕ, the weakest
precondition of ϕ relative to τ is

wpc(τ, φ) ≡ ∀~x′.(pτ (~x, ~x′) → ϕ(~x′))

≡ ∀~x′.¬pτ (~x, ~x′) ∨ ϕ(~x′)

≡ ∀~x′.¬(τ1) ∨ . . . ∨ ¬(τk) ∨ ϕ(~x′)

If the formula above is conjoined with enabled(τ), all disjunctions except ϕ(~x′)
can be dropped. The result is the conjunction of enabled(τ) and ϕ(~x′). Note, that
all variables in ϕ(~x′) are primed and in the scope of an universal quantifier. This
quantifier now is removed by unifying all primed variables in ϕ by the unprimed ones
and replacing their values. Therefore, extended wpc(τ, ϕ) only computes enabled(τ)
and conjuncts the result with the quantifier eliminated ϕ.

Example:

Given the node label

ϕ ≡ c2 − c1 ≥ 1

and the transition (already conjuncted with idle)

τ ≡ x = 0 ∧ pc1 = 0 ∧ pc′1 = 1 ∧ c′1 = 0 ∧ pc′2 = pc2 ∧ c′2 = c2 ∧ x′ = x.

We now get

enabled(τ) ≡ x = 0 ∧ pc1 = 0

and the quantifier eliminated

ϕ ≡ c2 − 0 ≥ 1.

Finally, the result of extended wpc(τ, ϕ) is

x = 0 ∧ pc1 = 0 ∧ c2 − 0 ≥ 1.

The construction of the formula ¬wpc(τ, φ) is done by the procedure nwpc.
Because we want to avoid the computation of a disjunctive normal form, some
structural details of ¬wpc(τ, φ) are presented first. We know, that a node label
ϕ(~x) always has the form ϕ1(~x) ∧ . . . ∧ ϕk(~x). Then,

wpc(τ, φ) ≡ ∀~x′.(pτ (~x, ~x′) → ϕ(~x′))

=⇒ ¬wpc(τ, φ) ≡ ∃~x′.(pτ (~x, ~x′) ∧ ¬ϕ(~x′))

⇐⇒ ¬wpc(τ, φ) ≡ ∃~x′.(pτ (~x, ~x′) ∧ (¬ϕ1(~x
′) ∨ . . . ∨ ¬ϕk(~x′))

⇐⇒ ¬wpc(τ, φ) ≡ (∃~x′.pτ (~x, ~x
′) ∧ ¬ϕ1(~x

′))
︸ ︷︷ ︸

L1

∨ . . . ∨ (∃~x′.pτ (~x, ~x
′) ∧ ¬ϕk(~x

′))
︸ ︷︷ ︸

Lk

58 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

Algorithm 8 Calculation of ¬wpc(τ, φ)

Input: node label ϕ = ϕ1 ∧ . . . ϕn, transition pτ (~x, ~x
′)

1: negate ϕ /* ¬ϕ = L1 ∨ . . . ∨ Lk */
2: for all Li do
3: apply enabled to pτ (~x, ~x

′) ∧ Li
4: end for

Because every ϕi(~x
′) is an atomic predicate and every pτ (~x, ~x

′) is a conjunction,
all Li are in disjunctive normal form. So, the disjunction of all Li is in disjunc-
tive normal form, too. Note, that every Li is an existential quantified formula.
Therefore, we can use our procedure enabled again.

In line 1 of the algorithm, the node label ϕ is negated. The result is a disjunction
L1 ∨ . . . ∨ Lk, where every Li ≡ ¬ϕi. Because each of these Li may be a potential
new node, if it is satisfiable, we want the Li to be disjoint too. Therefore, the
negation of ϕ is strengthened to

¬ϕ ≡ (¬ϕ1)
︸ ︷︷ ︸

L1

∨ (ϕ1 ∧ ¬ϕ2)
︸ ︷︷ ︸

L2

∨ . . . ∨ (ϕ1 ∧ . . . ∧ ϕk−1 ∧ ¬ϕk)
︸ ︷︷ ︸

Lk

.

Example:

Given the node label

ϕ ≡ c′2 ≥ 0 ∧ c′1 ≥ 0 ∧ x′ ≤ 2 ∧ x′ ≥ 0 ∧ pc′1 = 3 ∧ pc′2 = 3

and the transition

τ ≡ pc1 = 2∧ c1 > 3∧x = 1∧ pc′1 = 3∧ pc′2 = pc2 ∧x′ = x∧ c′1 = c1 ∧ c′2 = c2.

First, ϕ is negated, i. e., it is split into 8 exclusive disjuncts ¬ϕ1 ∨ . . . ∨ ¬ϕ8.

• ¬ϕ1 ≡ pc′2 < 0

• ¬ϕ2 ≡ c′2 ≥ 0 ∧ c′1 < 0

• ¬ϕ3 ≡ c′2 ≥ 0 ∧ c′1 ≥ 0 ∧ x′ > 2

• ¬ϕ4 ≡ c′2 ≥ 0 ∧ c′1 ≥ 0 ∧ x′ ≤ 2 ∧ x′ < 0

• ¬ϕ5 ≡ c′2 ≥ 0 ∧ c′1 ≥ 0 ∧ x′ ≤ 2 ∧ x′ ≥ 0 ∧ pc′1 < 3

• ¬ϕ6 ≡ c′2 ≥ 0 ∧ c′1 ≥ 0 ∧ x′ ≤ 2 ∧ x′ ≥ 0 ∧ pc′1 > 3

• ¬ϕ7 ≡ c′2 ≥ 0 ∧ c′1 ≥ 0 ∧ x′ ≤ 2 ∧ x′ ≥ 0 ∧ pc′1 = 3 ∧ pc′2 < 3

• ¬ϕ8 ≡ c′2 ≥ 0 ∧ c′1 ≥ 0 ∧ x′ ≤ 2 ∧ x′ ≥ 0 ∧ pc′1 = 3 ∧ pc′2 > 3

Now, all ¬ϕi are conjoined with the transition label pτ (~x, ~x
′). The result are 8

existentially quantified formulas L1 ∨ . . . ∨ L8. Finally, the procedure enabled is
applied to every Li to eliminate the quantifiers. The resulting weakest
precondition formula is

(pc1 = 2 ∧ c1 > 3 ∧ x = 1 ∧ c2 < 0)∨

(pc1 = 2 ∧ c1 > 3 ∧ x = 1 ∧ c2 ≥ 0 ∧ c1 ≥ 0 ∧ x ≤ 2 ∧ x ≥ 0 ∧ pc2 < 3)∨

(pc1 = 2 ∧ c1 > 3 ∧ x = 1 ∧ c2 ≥ 0 ∧ c1 ≥ 0 ∧ x ≤ 2 ∧ x ≥ 0 ∧ pc2 > 3)

All other Li have been removed because they could not be satisfied.

5.6. BASIC REFINEMENT TRANSFORMATIONS 59

5.6.4 Structural Decisions

In the following some structural decisions, that have been made to improve the
model checking procedure are presented:

init

ϕ1

error

τ1

τn

τ2

Figure 5.5: Sample error trace

• We never have to split self-loops. To point this intuitively out, assume the
situation given in figure 5.5. For every loop-free path ϕ0

τ1→ ϕ1 . . .
τn→ ϕn

(with ϕ0 initial, ϕn error) we can have two situations:

1. ∀i : ϕi−1 ≡ pre(τi, ϕi) ∧ ϕi ≡ post(τi, ϕi−1)
 We have a concrete failure-path. The failure state will be found with
target enlargement (5.6.4).

2. ∃i : ϕi−1 6≡ pre(τi, ϕi) ∨ ϕi 6≡ post(τi, ϕi−1)
 We can do a pre- or postcondition split.

Thus, we do not need to split self-loops.

• Given an edge e = 〈(N1, f1), (N2, f2)〉 that is labeled with transition τ . It
may happen, that the same edge will be checked several times. To avoid un-
neccessary computation, every edge has arguments presat and postsat. Before
we test for example, if the precondition check f1 ∧¬(enabled(τ)∧wpc(τ, f2))
is satisfiable, we test, if the presat flag of e relative to τ is true. If so, the pro-
cedure continues. If not, e is tested with another transition it is labeled with,
or, if e has no further transition in its label list, another edge is checked.
During the precondition split procedure, the presat flag is set as follows:
Assume, the precondition check f1 ∧ ¬(enabled(τ) ∧ wpc(τ, f2)) could not
be satisfied. Then we set the presat value of this edge, relative to τ , to false.
The same we do in the postcondition split with postsat.

60 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

• We never split outgoing edges from failure nodes. As soon as we have reached
a failure state, all following states have to be failure states too. These states
are not interesting, because we have already reached a failure state and thus, a
counterexample computation still exists. The split of edges from failure nodes
is already avoided, because we never split self-loops and failure states have no
outgoing edges except a self-loop.

ϕ ϕ ψψ
ττ

Figure 5.6: Target Enlargement in Precondition Split

• Assume, the situation on the left in figure 5.6. Given an edge 〈(N1, ϕ), (N2, ψ)〉
that is labeled with transition τ . Now, assume the precondition check ϕ ∧
¬ (enabled(τ) ∧ wpc(τ, ψ)) is not satisfiable. If so, we first know, that ϕ ∧
¬ enabled(τ) is unsatisfiable. Additionally, we know that all nodes that
follow (N1, ϕ) have to be failure states, because the precondition of a
failure state relative to a transition models N1. We know that ϕ∧¬wpc(τ, ψ) is
unsatisfiable 11. Thus, wpc(τ, ψ) is a model for ϕ because:

wpc(τ, ψ) |= ϕ ⇔ ϕ ∧ ¬wpc(τ, ψ) is unsatisfiable.

Therefore, we can throw edge 〈(N1, ϕ), (N2, ψ)〉 away. Finally, node (N1, ϕ) is
marked as a failure state. This method is called target enlargement[BKA02].
A special case of target enlargement is realized on the right in figure 5.6.

• General target enlargement: Assume the situation given on the top in figure
5.7. Additionally, we assume, that ψ := wpc(error, τ1) ≡ ψ1 ∧ ψ2. If ϕ will
be split, we get three new nodes with labels ϕ∧ψ, ϕ∧¬ψ1 and ϕ∧ψ1 ∧¬ψ2.
Because it will always be possible to reach the error node from the node with
label ϕ ∧ ψ, this node’s failure flag can be set to true. We can immediatly
remove all outgoing edges of the node too. The result of the split we see at
the bottom of figure 5.7.

11A disjunction is only unsatisfiable iff all its elements are unsatisfiable.

5.6. BASIC REFINEMENT TRANSFORMATIONS 61

η

η ϕ

error

error
τ1, τ2

ϕ ∧ ψ

ϕ ∧ ¬ψ1

ϕ ∧ ψ1 ∧ ¬ψ2

τ2

τ2

τ3

τ3

τ3

Figure 5.7: General target enlargement

62 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

• Source enlargement: Assume the situation given on the top in figure 5.8.
Additionally, we assume, that ψ := post(init, τ1) ≡ ψ1 ∧ψ2. If ϕ will be split,
we get three new nodes with labels ϕ ∧ ψ, ϕ ∧ ¬ψ1 and ϕ ∧ ψ1 ∧ ¬ψ2.

Because it will always be possible to reach a concrete state that fullfills the
constraint ϕ∧ψ, this node’s init flag can be set to true. We can immediately
remove all incoming edges of the node, too. The result of the split we see at
the bottom of figure 5.8.

init

init ϕ
τ1, τ2

ϕ ∧ ψ

ϕ ∧ ¬ψ1

ϕ ∧ ψ1 ∧ ¬ψ2

τ2

τ2

Figure 5.8: Source enlargement

5.6. BASIC REFINEMENT TRANSFORMATIONS 63

• Assume, the situation on the left in figure 5.9. Given an edge 〈(N1, ϕ), (N2, ψ)〉
that is labeled with transition τ . We define η ≡ enabled(τ) ∧ wpc(τ, ψ).
Now, assume the precondition check ϕ ∧ ¬(enabled(τ) ∧ wpc(τ, ψ)) has been
satisfiable. Therefore, we can split N1 into two new nodes (N1,1, ϕ ∧ η) and
(N1,2, ϕ ∧ ¬η). As already mentioned before, we never create unsatisfiable
nodes. Assume, the node label ϕ ∧ η is not satisfiable. Then, node N1,1 will
not be created. Additionally, we know that ¬ η is redundant, because:

ϕ ∧ η is unsatisfiable ⇔ ϕ |= ¬ η ⇔ ϕ⇒ ¬ η is valid.

Therefore, we also do not create N1,2, because all redundant information is
dropped, before a node is created, and we do not copy nodes, because we want
all nodes to be disjunctive. Since the result of a precondition split generally
is the creation of k + 1 nodes, we have to test if at least two of those nodes
are satisfiable.

ϕ

ψψ

τ
ττ

ϕ ∧ η ϕ ∧ ¬η

Figure 5.9: Removing of redundant nodes

• In the original deductive model checking algorithm we only know, that we have
to split nodes if the basic transformations do not change the graph anymore.
But there is no statement in which order edges have to be checked for a
split. Since we want to throw away all failure states as fast as possible, four
heuristics may be very helpful:

• We prefer edges which have a failure state as goal node. A split on such
an edge may throw away transitions and finally, if all transitions have
been deleted from an edge label, the edge is removed. Additionally, we
can do target enlargement.

• We prefer edges 〈N1, N2〉, if the shortest distance to a failure state of N1

is greater then the shortest distance to a failure state of N2 because it
suffices to concentrate on minimal error-paths.

• Self-edges are not considered at all. When edges are sorted, self-edges
are thrown away.

• We do not want to split with edges that go to an initial state. These
edges are the result of source enlargement. Still, we do not throw them
away, because they are interesting for the correctness proof. So, their
mem value is set to false after a postcondition split.

64 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

5.6.5 Precondition Split

In section 5.6.3, 5.6.1, 4.2 we have already seen, how the weakest precondition and
the enabled formulas are constructed and a node is split by the precondition split
rule. Whereas in the original deductive model checking alogorithm, a node is always
split into two new nodes, the model checking algorithm presented in this thesis splits
a node into k + 1 new nodes.

5.6.5.1 Definition: Precondition Split

Consider an edge 〈(N1, f1), (N2, f2)〉 with node labels f1, f2, that is labeled with
transition τ . First, the following constraint is checked for satisfiability:

f1 ∧ ¬(enabled(τ) ∧ wpc(τ, f2)).

If this constraint is satisfiable, two formulas φ and ψ are constructed:

• φ ≡ f1 ∧ enabled(τ) ∧ wpc(τ, f2))

• ψ ≡ f1 ∧ ¬(enabled(τ) ∧ wpc(τ, f2))

We already know, that ¬(enabled(τ)∧wpc(τ, f2)) is a formula in disjunctive nor-
mal form. After having conjuncted every disjunction in ¬(enabled(τ) ∧ wpc(τ, f2))
with f1, we know that ψ ≡ ψ1 ∨ . . . ∨ ψk. Finally, node (N1, f1) is replaced by the
new nodes (N1,1, φ), (N1,2, ψ1), . . . , (N1,k+1, ψk).

5.6.5.2 Algorithm for Precondition Split

Below, the algorithm that realizes the precondition split and all structural decisions
mentioned in 5.6.4 is presented:

Algorithm 9 Complete algorithm for precondition split

Input: edge list /* the list of all actually existing edges */
1: sorted edge list ⇐ sort edge list relative to structural decisions (5.6.4)
2: repeat
3: prepare triple list /* list of (from, to, (transid, translabel)) elements */
4: break condition ⇐ pre check(triple list)
5: until break condition = true or sorted edge list is empty
6: remove outgoing edges of failure nodes /* constructed by target enlargement */

Algorithm 9 first sorts the list of all actually existing edges relative to the struc-
tural decisions mentioned in 5.6.4. A triple list triple list with elements

(from, to, (transid, translabel))

is constructed from the first edge of the sorted edge list. This triple list contains as
many elements as the edge label contains transitions. from is the origin and to is
the goal node of that edge. transid and translabel are the identifier and the label
of an actual transition. Next, the procedure pre check(triple list) is called. The
procedure’s output is the flag break condition. If this flag is set to true, the main
algorithm stops, because the node from has been split. Otherwise, the algorithm
repeats with the next edge in the sorted edge list. If the sorted edge list is empty,
the algorithm stops too. Target enlargement may set nodes which already have
outgoing edges to failure nodes. All these edges are removed.

5.6. BASIC REFINEMENT TRANSFORMATIONS 65

Algorithm 10 Algorithm that realizes the procedure pre check

Input: triple list /* list of (from, to, (transid, translabel)) elements */
1: repeat
2: if triple list 6= [] then
3: if presat(from, to, transid) = true then
4: if σ ≡ from∧¬(enabled(translabel)∧wpc(translabel, to)) is satisfiable

then
5: simplify σ /* σ my have redundant parts */
6: if from∧enabled(translabel)∧wpc(translabel, to) is satisfiable then
7: satnum ⇐ count satisfiable constraints of simplified σ
8: if to is a failure node then
9: general target enlargement

10: end if
11: if satnum ≥ 1 then
12: split node from
13: set break condition to true
14: else
15: set break condition to false
16: end if
17: else
18: satnum ⇐ count satisfiable constraints of simplified σ
19: if satnum ≥ 2 then
20: split node from
21: set break condition to true
22: else
23: set break condition to false
24: end if
25: end if
26: else
27: set presat(from, to, transid) = false
28: if from is marked as failure node then
29: set enlarge flag to true /* generally, enlarge flag is false */
30: end if
31: if enlarge flag = true then
32: delete edge 〈from, to〉
33: set triple list to empty list
34: set break condition to false
35: end if
36: end if
37: end if
38: else
39: set break condition to false
40: end if
41: until triple list is empty
Output: break condition

66 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

Algorithm 10 realizes the procedure pre check(triple list). This procedure first
tests, if the triple list is empty. If so, the procedure stops. The output break condition
is set to false.

Otherwise, the presat value of the edge relative to the transition with identifier
transid is checked. If the value equals false, the procedure continues with the next
triple.

If the value equals true, the precondition check

σ ≡ from ∧ ¬(enabled(translabel) ∧wpc(translabel, to))

is tested for satisfiablility.

• If σ could have been satisfied, first, all redundant disjuncts of σ relative to
the constraint

η ≡ from ∧ enabled(translabel)∧ wpc(translabel, to)

are removed. σ may contain redundant constraints because the construction of
the weakest precondition can eliminate disjunctive parts of constraints. Given
for example the following disjunctive constraint:

(x = 1 ∧ y′ > 0) ∨ (x = 1 ∧ y′ < 0).

The construction of the weakest precondition throws away the predicates
y′ > 0 and y′ < 0 because they will be satisfiable. Therefore, the
remaining disjunction is not disjoint anymore.
Next, η is checked for satisfiability.

• If it is satisfiable, we count all satisfiable disjuncts of σ. If the goal node
of the edge is a failure node we do general target enlargement (5.6.4).

• If at least one disjunct is satisfiable, the origin node from is split
and the break condition flag is set to true.

• If the number of satisfiable disjuncts, satnum, is smaller than 1, we
do not split that node because the new created node and the old
node to split are redundant. In this case, the break condition flag is
set to false.

• If η is unsatisfiable, we check, if satnum is at least 2.

• If so, from is split and the break condition flag is set to true.

• Otherwise, the break condition flag is set to false.

• If the precondition check σ is not satisfiable, the procedure checks, if the goal
node is a failure node. If so, the origin node is marked as failure node and
the enlarge flag is set to true. This realizes the structural decision of target
enlargement (5.6.4).

Finally, the procedure checks, if the enlarge flag equals true.

• If not, the procedure continues with the next triple element.

• Otherwise, edge 〈from, to〉 is deleted and the break condition flag is set
to false.

5.6.5.3 Example: Fischer’s mutual exclusion problem

In figure 5.2 we have already seen the initial falsification diagram of Fischer’s mutual
exclusion problem. Figure 5.10 shows the phase event automaton after the first
precondition split. The first edge of the sorted edge list is 〈p131, p129〉. This edge
is only labeled with transition τ7. The label of node p131 is

5.6. BASIC REFINEMENT TRANSFORMATIONS 67

ϕ ≡ c2 ≥ 0 ∧ c1 ≥ 0 ∧ x ≤ 2 ∧ x ≥ 0 ∧ pc2 ≤ 3 ∧ pc2 ≥ 0 ∧ pc1 ≥ 1 ∧ pc1 ≤ 2.

The label of node p129 is

ψ ≡ c′2 ≥ 0 ∧ c′1 ≥ 0 ∧ x′ ≤ 2 ∧ x′ ≥ 0 ∧ pc′1 = 3 ∧ pc′2 = 3.

Next, ϕ∧ (¬enabled(τ7))∨ (¬wpc(τ7 , ψ)) is calculated. The result is the disjunction

Ψ = Ψ1 ∨ Ψ2 ∨ Ψ3 ∨ Ψ4 ∨ Ψ5 ∨ Ψ6

with

Ψ1 ≡ c2 ≥ 0∧c1 ≥ 0∧x ≤ 2∧x ≥ 0∧pc2 ≤ 3∧pc2 ≥ 0∧pc1 ≥ 1∧pc1 ≤ 1∧pc1 ≥ 3

Ψ2 ≡ c2 ≥ 0∧c1 ≥ 0∧x ≤ 2∧x ≥ 0∧pc2 ≤ 3∧pc2 ≥ 0∧pc1 ≥ 1∧pc1 ≤ 1∧pc1 ≤ 1

Ψ3 ≡ c2 ≥ 0∧ c1 ≥ 0∧x ≤ 2∧x ≥ 0∧ pc2 ≤ 3∧ pc2 ≥ 0∧ pc1 ≥ 1∧ pc1 ≤ 2∧ c1 ≤ 3

Ψ4 ≡ c2 ≥ 0∧ c1 ≥ 0∧ x ≤ 2∧ x ≥ 0∧ pc2 ≤ 3∧ pc2 ≥ 0∧ pc1 ≥ 1∧ pc1 ≤ 2∧x ≥ 2

Ψ5 ≡ c2 ≥ 0∧ c1 ≥ 0∧ x ≤ 2∧ x ≥ 0∧ pc2 ≤ 3∧ pc2 ≥ 0∧ pc1 ≥ 1∧ pc1 ≤ 2∧x ≤ 0

Ψ6 ≡ c2 ≥ 0 ∧ pc2 ≥ 0 ∧ pc1 = 2 ∧ c1 ≥ 4 ∧ x = 1 ∧ pc2 ≤ 2.

Because Ψ is satisfiable, ϕ ∧ enabled(τ7) ∧ wpc(τ7, ψ) is calculated. The result is:

Φ ≡ pc1 = 2 ∧ c1 ≥ 4 ∧ x = 1 ∧ c2 ≥ 0 ∧ pc2 = 3.

Because Φ is satisfiable too, for every Ψi and Φ, except Ψ1, which is not
satisfiable, a new node is created, i. e. we get new nodes

(p140,Φ), (p141,Ψ2), (p142,Ψ3), (p143,Ψ4), (p144,Ψ5), (p145,Ψ6).

Note, that node (p140,Φ) is marked as failure node because of target enlargement.

6
8

C
H

A
P

T
E

R
5
.

D
M

C
W

IT
H

P
H

A
S
E

E
V

E
N

T
A

U
T

O
M

A
T
A

p129 [15]

p133

[8]

[2,4,6,11,15]

p135

[13]

p137

[13]

p139

[13] [4,8,15]

[6,11,14]

[6,11,14]

p142

[1]

p141

[1]

p144

[1]

p127

[2]

[15]

[1]

[1]

[1][2]

[15]

[1]

[1]

[1]

[2]

[15]

[1]

[1]

[1]

p140 [15]

[5]

[5]

[15]

[2,3,4,6,8,11,14,15]

[2,4,6,8,11,14,15]

p143

[4,6,8,15]

[2,6,11,14,15]

p145

[15]

[5]

[5]

[2,3,4,6,8,11,14,15]

[2,4,6,8,11,14,15]

[4,6,8,15]

[2,6,11,14,15]

[5,10]

[5,10]

[3,4,6,8,14,15]

[4,6,8,14,15]

[4,6,8,15]

[14]

[5,9]

[5,9]

[2,3,4,6,11,14,15]

[2,4,6,11,14,15]

[4]

[2,6,11,14,15][7]

[4]

[6,11,15]

F
ig

u
re

5
.1

0
:
A

fte
r

th
e

fi
rst

p
re

c
o
n
d
itio

n
sp

lit
a
n
d

b
a
sic

tra
n
sfo

rm
a
tio

n
s

5.6. BASIC REFINEMENT TRANSFORMATIONS 69

5.6.6 Postcondition Split

Consider an edge 〈(N1, f1), (N2, f2)〉 with node labels f1, f2, that is labeled with
transition τ . First, the following constraint is checked for satisfiability:

f2 ∧ ¬ post(τ, f1).

If this constraint is satisfiable, two formulas φ and ψ are constructed:

• φ ≡ f2 ∧ post(τ, f1)

• ψ ≡ f2 ∧ ¬ post(τ, f1)

Again, ψ may have the form ψ1 ∨ . . . ∨ ψk. Therefore, node (N1, f1) is replaced
by the new nodes (N1,1, φ), (N1,2, ψ1), . . . , (N1,k+1, ψk).

5.6.6.1 Algorithm for Postcondition Split

Below, the algorithm that realizes the postcondition split and all structural decisions
mentioned in 5.6.4 is presented:

Algorithm 11 Complete algorithm for postcondition split

Input: edge list /* the list of all actually existing edges */
1: sorted edge list ⇐ sort edge list relative to structural decisions (5.6.4)
2: repeat
3: prepare triple list /* list of (from, to, (transid, translabel)) elements */
4: break condition ⇐ post check(triple list)
5: until break condition = true or sorted edge list is empty
6: change mem values of new created edges /* after source enlargement */

Algorithm 11 first sorts the list of all actually existing edges relative to the
structural decisions mentioned in 5.6.4. Again, a triple list is constructed from
the first edge of the sorted edge list. Next, the procedure post check(triple list) is
called. The procedure’s output is the flag break condition. If this flag is true, the
main algorithm stops, because the node to has been split. Otherwise, the algorithm
repeats with the next edge in the sorted edge list. If the sorted edge list is empty,
the algorithm stops too. Finally, the mem flag of all edges, that end in an initial
node, are set to false.

Algorithm 12 realizes the procedure post check(triple list). This procedure
first tests, if the triple list is empty. If so, the procedure stops. The output
break condition is set to false. Next, the postsat value of the edge relative to the
transition is checked. If the value equals false, the procedure continues with the
next triple. If the value equals true, the postcondition check

σ ≡ to ∧ ¬post(translabel, from))

is tested for satisfiablility.

• If σ could have been satisfied, first, all redundant disjuncts of σ relative to
the constraint η ≡ to ∧ post(translabel, from) are removed. σ may contain
redundant constraints because the construction of the strongest postcondi-
tion can eliminate disjunctive parts of constraints. Next, η is checked for
satisfiability.

• If it is satisfiable, we count all satisfiable disjuncts of σ. If at least one
disjunct is satisfiable, we check, if the origin node of the edge is an initial
node. If so, we do source enlargement 5.6.4. Then the goal node to is split

70 CHAPTER 5. DMC WITH PHASE EVENT AUTOMATA

and the break condition flag is set to true. If the number of satisfiable
disjuncts, satnum, is smaller than 1, we do not split that node because
the new created node and the old node to split are redundant. In this
case, the break condition flag is set to false.

• If η is unsatisfiable, we check, if satnum is at least 2. If so, to is split and
the break condition flag is set to true. Otherwise, the break condition flag
is set to false.

• If the postcondition check σ is not satisfiable, the postsat value is set to
false and the procedure continues with the next triple element, because the
break condition flag is set to false.

Algorithm 12 Algorithm that realizes the procedure post check

Input: triple list /* list of (from, to, (transid, translabel)) elements */
1: repeat
2: if triple list 6= [] then
3: if postsat(from, to, transid) = true then
4: if σ ≡ to ∧ ¬ post(translabel, from) is satisfiable then
5: simplify σ /* σ my have redundant parts */
6: if to ∧ post(translabel, from) is satisfiable then
7: satnum ⇐ count satisfiable constraints of simplified σ
8: if from is an initial node then
9: source enlargement

10: end if
11: if satnum ≥ 1 then
12: split node to
13: set break condition to true
14: else
15: set break condition to false
16: end if
17: else
18: satnum ⇐ count satisfiable constraints of simplified σ
19: if satnum ≥ 2 then
20: split node to
21: set break condition to true
22: else
23: set break condition to false
24: end if
25: end if
26: else
27: set postsat(from, to, transid) = false
28: set break condition to false
29: end if
30: end if
31: else
32: set break condition to false
33: end if
34: until triple list is empty
Output: break condition

5.6. BASIC REFINEMENT TRANSFORMATIONS 71

5.6.6.2 Example: Fischers Mutual Exclusion

Figure 5.10 shows the phase event automaton after the first precondition split. The
basic transformation rules have been applied too. Figure 5.11 shows the result
of applying the first postcondition split. The first edge of the sorted edge list is
〈p133, p129〉. This edge is only labeled with transition τ8. The label of node p133 is

ϕ ≡ c2 ≥ 0 ∧ c1 ≥ 0 ∧ x ≤ 2 ∧ x ≥ 0 ∧ pc2 ≤ 2 ∧ pc2 ≥ 0 ∧ pc1 = 3.

The label of node p129 is

ψ ≡ c′2 ≥ 0 ∧ c′1 ≥ 0 ∧ x′ ≤ 2 ∧ x′ ≥ 0 ∧ pc′1 = 3 ∧ pc′2 = 3.

Next, ψ∧¬ post(τ8, ϕ) is calculated. The result is the disjunction Ψ = Ψ1∨Ψ2 with

Ψ1 ≡ c2 ≥ 0 ∧ c1 ≥ 0 ∧ x ≤ 2 ∧ x ≥ 0 ∧ pc2 = 3 ∧ pc1 = 3 ∧ c2 ≤ 3

Ψ2 ≡ c2 ≥ 4 ∧ c1 ≥ 0 ∧ x ≥ 0 ∧ pc1 = 3 ∧ pc2 = 3 ∧ 2 ≥ x+ 1

Because Ψ is satisfiable, ψ ∧ post(τ8, ϕ) is calculated. The result is:

Φ ≡ c2 ≥ 4 ∧ pc2 = 3 ∧ c1 ≥ 0 ∧ pc1 = 3 ∧ x = 2.

Finally, for every Ψi and Φ, a new node is created, i. e. we get new nodes

(p146,Φ), (p147,Ψ1), (p148,Ψ2).

Note, that all new created nodes are marked as failure nodes. In the following basic
transformations, transition τ8 will be removed from both the edgelabel of edge
〈p133, p148〉 and 〈p133, p147〉. Thus, both node (p148,Ψ2) and node (p147,Ψ1) will
be deleted because they are not reachable from an initial state anymore.

7
2

C
H

A
P

T
E

R
5
.

D
M

C
W

IT
H

P
H

A
S
E

E
V

E
N

T
A

U
T

O
M

A
T
A

p133 [2,4,6,11,15]

p135

[13]

p137

[13]

p139

[13]p146

[8]

p147

[8]

p148

[8]

[4,8,15]

[6,11,14]

[6,11,14]

p142

[1]

p141

[1]

p144

[1]

p127

[2]

[15]

[1]

[1]

[1][2]

[15]

[1]

[1]

[1]

[2]

[15]

[1]

[1]

[1]

p140 [15]

[5]

[5]

[15]

[2,3,4,6,8,11,14,15]

[2,4,6,8,11,14,15]

p143

[4,6,8,15]

[2,6,11,14,15]

p145

[15]

[5]

[5]

[2,3,4,6,8,11,14,15]

[2,4,6,8,11,14,15]

[4,6,8,15]

[2,6,11,14,15]

[5,10]

[5,10]

[3,4,6,8,14,15]

[4,6,8,14,15]

[4,6,8,15]

[14]

[5,9]

[5,9]

[2,3,4,6,11,14,15]

[2,4,6,11,14,15]

[4]

[2,6,11,14,15][7]

[4]

[6,11,15]

[15] [15][15]

F
ig

u
re

5
.1

1
:
A

fte
r

th
e

fi
rst

p
o
stc

o
n
d
itio

n
sp

lit

Chapter 6

Analysis

In this chapter, first, the results of the two finite-state verification problems Deque
and Board4 are presented. Then, we see the results of the infinite-state Bakery,
Elevator and Fisher problem.

6.1 Example: Deque

A deque, also called double-ended queue, is an abstract data structure where
elements can be added to or removed from both the beginning and the end. The
deque problem is a finite-state verification problem. Given the initial state Φ ≡
x1 = 1 ∧ x2 = 0 ∧ x3 = 0 ∧ x4 = 0 and the following transitions:

• τ1 ≡ x4 + x2 = 1 ∧ x′1 + x1 = 1

• τ2 ≡ x1 + x3 = 1 ∧ x′2 + x2 = 1

• τ3 ≡ x2 + x4 = 1 ∧ x′3 + x3 = 1

• τ4 ≡ x3 + x1 = 1 ∧ x′4 + x4 = 1

The goal is to show, that starting from the initial state, we can never reach a state
where all variables are set to 1. The transition system has an additional variable
E that signalizes if we are at a failure state (E = 1) or not. Figure 6.1 shows the
result of applying the model checking procedure to the deque problem. The resulting
graph consists of 11 nodes, whereof some nodes can represent several configurations.
State p167 for example restricts x1 to be zero but all other variables are unrestricted.
The resulting graph is a correctness proof because there is no path in the graph in
which a failure state can be reached.

73

74 CHAPTER 6. ANALYSIS

p166 [2]

p167

[4][4]

[2,3]

p168

[4]

p172

[1] p173

[1]

[4]

[2,3]

p171

[1] [1]

[3]

p176

[4]

p164

[2]

[4]

[1]

[3]

[1]

[3]

p174

[4][2]

p177

[2]

p169

[2][4]

[4] [4]

[2]

[4]

[2]

[4]

[2]

[4]

Figure 6.1: Resulting graph of the Deque problem

6.2. EXAMPLE: BOARD4 75

6.2 Example: Board4

The board4 problem is a finite-state verification problem, too. Given a 4 × 4 board,
where only the field in the bottom left corner is occupied with a piece, i. e., given
a matrix with variables x11, x12, . . . , x21, . . . , x44, in the initial state, all xi,j are set
to 0 except x11, which is set to 1 (6.2). Additionally, we have the following set of
transitions:

• Whenever a variable xi,j is set to 1 and xi+1,j , xi,j+1 are set to 0, we set xi,j
to 0 and xi+1,j , xi,j+1 to 1.

The goal is to show, that we never can reach a state, where the variables x11, x12, x13,
x21, x22, x31 are set to 0 1. Below, we see the 9 possible transitions of the board4
problem:

• τ1 ≡ x11 = 1 ∧ x12 = 0 ∧ x21 = 0 ∧ x′11 = 0 ∧ x′12 = 1 ∧ x′21 = 1

• τ2 ≡ x12 = 1 ∧ x13 = 0 ∧ x22 = 0 ∧ x′12 = 0 ∧ x′13 = 1 ∧ x′22 = 1

• τ3 ≡ x13 = 1 ∧ x14 = 0 ∧ x23 = 0 ∧ x′13 = 0 ∧ x′14 = 1 ∧ x′23 = 1

• τ4 ≡ x21 = 1 ∧ x22 = 0 ∧ x31 = 0 ∧ x′21 = 0 ∧ x′22 = 1 ∧ x′31 = 1

• τ5 ≡ x22 = 1 ∧ x23 = 0 ∧ x32 = 0 ∧ x′22 = 0 ∧ x′23 = 1 ∧ x′32 = 1

• τ6 ≡ x23 = 1 ∧ x24 = 0 ∧ x33 = 0 ∧ x′23 = 0 ∧ x′24 = 1 ∧ x′33 = 1

• τ7 ≡ x31 = 1 ∧ x32 = 0 ∧ x41 = 0 ∧ x′31 = 0 ∧ x′32 = 1 ∧ x′41 = 1

• τ8 ≡ x32 = 1 ∧ x33 = 0 ∧ x42 = 0 ∧ x′32 = 0 ∧ x′33 = 1 ∧ x′42 = 1

• τ9 ≡ x33 = 1 ∧ x34 = 0 ∧ x43 = 0 ∧ x′33 = 0 ∧ x′34 = 1 ∧ x′43 = 1

Figure 6.4 shows the resulting graph of the board4 problem. A possible trace is for
example τ1, τ4, τ7, τ8, τ9, τ5, τ6, τ2, τ3

2. The resulting board configuration is given in
figure 6.3.

1 0 0 0

0 0 0 0

0

0 0

0 0 0

0 0

Figure 6.2: Initial state of the board4 problem

1 This is even impossible for a n × n board with n → ∞
2Note, that a path to the graph does not have to correspond to a programm execution. The

resulting graph is an approximation of the system, i. e., to every program execution corresponds
a path in the graph, but not to every path corresponds a program execution.

76 CHAPTER 6. ANALYSIS

0 0 0 1

0 1 1 1

0

1 1

1 1 1

1 0

Figure 6.3: Board configuration after trace τ1, τ4, τ7, τ8, τ9, τ5, τ6, τ2, τ3

6.3 Example: Elevator

In 5.1.6 we have been already presented the specification of the Elevator example.
Figure 6.5 shows the result of applying the model checking procedure to this prob-
lem. The resulting graph is also a correctness proof. So, the automaton can never
reach a state, where Curr < Min or Curr > Max.

From the initial state, i. e. Goal = Curr = Min and Dir = 0, only the first
transition, which sets the variable Goal to the desired floor, is possible. Given a
new Goal, the floor counter of the elvator is increased from state p154 to p140 (by
transition 3) because the value of Goal is greater than the value of Curr. Now, the
floor counter is increased by transition 5 until the desired floor and the actual agree
(i. e. state p128). At this state, three actions are possible. Either the elevator gets
a new goal that is below the actual floor or it gets a goal that is above the actual
floor or it stops with transition 7. Note, that state p128 and p129 are different. If
the automaton is at state p129, the elevator has reached the minimal floor.

6.3. EXAMPLE: ELEVATOR 77

p488 [3,4,5,6,7,8,9]

p498

[2]

p500

[2]

p501

[2]

p507

[2]

p508

[2]

p509

[2]

p510

[2]

p511

[2]

p484

[1]

p492 [5,6,7,8,9]

p517

[4]

p519

[4]

p536

[4]

p537

[4]

p538

[4]

p539

[4]

[4,5,6,7,8,9]

[4,5,7,8,9]

[4,5,7,8]

[4,5,7,9]

[3]

[7,8,9]

[4]

[5]

[5]

[5]

[7,8,9]

[5]

[5]

[3]

[3]

[3][3]

p552

[5]

[4,7,8,9]

[4,7,8,9]

[4,7,8]

[4,7,9]

[4,7,9]

[4,7]

[9] [9]

[9]

[9]

p553

[9]

[4,6,7,8]

[8]

[4,7]

[6]

[8]

[7]

[4]

[6]

[8]

[7]

[7,8,9]

[6]

[6,7]

[6,7,9][7,9]

[9]

p523

[5]

p524

[5]

[7]

[7]

[6,9]

[6,8,9] [6,9]

[6,8,9]

p531

[3]

[3]

[8,9]

p546

[9]

p547

[9]

[9]

[9][9] [9]

[9]

[6]

[6,9]

[8]

[6]

[8]

p545

[3]

[3]

[9]

[9] [9]

[3]

[3]

[9]

[9]

[3]

[3]

[8]

[8]

[6]

[6]

[6]

[6]

Figure 6.4: Resulting graph of the board4 problem

78 CHAPTER 6. ANALYSIS

p128 [7]

p131

[2]

p154

[1]

p129 [7]

[1]

[2]

p147

[4]

[1]

p140

[5]

[5]

[6]

[6]

[6]

p110

[1]

[3]

Figure 6.5: Resulting graph of the Elevator example

6.4. EXAMPLE: BAKERY 79

6.4 Example: Bakery

The bakery algorithm, introduced by Leslie Lamport [Lam74], is an algorithm to
ensure mutual exclusion for multiple threads that try to access a shared resource.

local y1, y2 : integer where y1 = y2 = 0

loop forever do

loop forever do

l0 : noncritical

l1 : y1 := y2 + 1

l2 : await(y2 = 0 ∨ y1 ≤ y2)

l3 : critical

l4 : y1 := 0

m0 : noncritical

m1 : y2 := y1 + 1

m2 : await(y1 = 0 ∨ y2 < y1)

m3 : critical

m4 : y2 := 0

||

Figure 6.6: Program Bakery for mutual exclusion

Figure 6.6 shows a program that implements Lamport’s bakery algorithm for
mutual exclusion. Given the according transitions we want to ensure that we never
reach a state in which both processes are in their critial section. In 6.1, 6.2 we see
the configuration files for the phase event automaton. A failure state is reached,
if both process counters are set to 3. Figure 6.7 shows the resulting graph of the
model checking algorithm for the Bakery problem.

Listing 6.1: Configuration file for Bakery algorithm�
pea :
i n i t : and{and{Y1=0,Y2=0} ,and{Pc1=0,Pc2=0}}
t r a n s i t i o n s : t r ans i t i ona rguments
nodes : (p0 , true , f a l s e) , (p1 , true , t rue)
i n tv a r s :Y1 ,Y2 , Pc1 , Pc2
r e a l v a r s :
n l a b e l s : (p0 , t rue) , (p1 , and{Pc1=3,Pc2=3})
i nva r i a n t s : and{and{and{Pc1>=0,Pc1=<4},and{Pc2>=0,Pc2=<4}},

and{Y1>=0,Y2>=0}}
edges : (p0$true$p0) , (p1$true$p1) , (p0$true$p1)

� �

80 CHAPTER 6. ANALYSIS

Listing 6.2: Transitions in the Bakery configuration file�
(1 , [Pc1] , and{Pc1=0,Pc1 ’=1}) ,
(2 , [Pc2] , and{Pc2=0,Pc2 ’=1}) ,
(3 , [Pc1 ,Y1] , and{Pc1=1,and{Pc1 ’=2 ,Y1’=Y2+1}}) ,
(4 , [Pc2 ,Y2] , and{Pc2=1,and{Pc2 ’=2 ,Y2’=Y1+1}}) ,
(5 , [Pc1] , and{Pc1=2,and{Y2=0,Pc1 ’=3}}) ,
(6 , [Pc2] , and{Pc2=2,and{Y1=0,Pc2 ’=3}}) ,
(7 , [Pc1] , and{Pc1=2,and{Y1=<Y2 , Pc1 ’=3}}) ,
(8 , [Pc2] , and{Pc2=2,and{Y2<Y1 , Pc1 ’=3}}) ,
(9 , [Pc1] , and{Pc1=2,and{and{Y2=/=0,Y1>Y2} ,Pc1 ’=2}}) ,
(1 0 , [Pc2] , and{Pc2=2,and{and{Y1=/=0,Y2>=Y1} ,Pc2 ’=2}}) ,
(1 1 , [Pc1 ,Y1] , and{Pc1=3,and{Pc1 ’=4 ,Y1’=0}}) ,
(1 2 , [Pc1] , and{Pc1=3,Pc1 ’=3}) ,
(1 3 , [Pc2] , and{Pc2=3,Pc2 ’=3}) ,
(1 4 , [Pc2 ,Y2] , and{Pc2=3,and{Pc2 ’=4 ,Y2’=0}}) ,
(1 5 , [Pc1] , and{Pc1=4,Pc1 ’=0}) ,
(1 6 , [Pc2] , and{Pc2=4,Pc2 ’=0})

� �

Note, that the resulting graph contains two nodes, that are marked initial.
Whereas node p222 is the ’real’ initial state of the diagram, node p337 is marked
initial by source enlargement. Again, there are a lot of states in which the domains
of the variables are not exactly determined. Node p340 for example does not restrict
its variable pc2 to be 1 or 0. Therefore, it is still possible to split this node. But,
because the are no nodes left, that are marked as failure states, we do not need to
further split that node. Consequently, a trace τ1, τ3 to node p344 and τ4 to node
p312 is possible, without having ever used transition τ2. Again, i. e., because the
graph is an approximation of the system.

6.4. EXAMPLE: BAKERY 81

p268 [2,4,6,15,18]

p326

[16]

p341

[17]

p312 [2,4,12]

p329

[7]

p330

[7]

p351

[7]

p321 [14]

[13]

p352

[18]

p350

[17]

p358

[18]

[13]

[14]

[4,14][13]

[13]

[14]

[4,12,14]

p222

p337

[2]

p340

[1]

[1]

[4]

[2]

p314

[3]

p342

[4]

p344

[3]

p325

[18]

p355

[3]

[2]

[5]

[2,4,6,15,18]

[1]

[16]

[16]

[2,4,6,15,18]

p347

[3]

[4]

[5]

[4]

[2,10,15,18]

p356

[16]

[1]

[13]

[2]

[2]

[14]

[13]

[2]

[14]

[13]

[5]

[18]

[5]

[18]

[4]

[17]

[2]

Figure 6.7: Resulting graph of the Bakery problem

82 CHAPTER 6. ANALYSIS

6.5 Example: Fischer’s Problem

In 2.5 we have already been presented the Fischer’s problem for mutual exclusion.
All examples of Fischer’s problem that are used so far have been a special version
where the clocks are always incremented by 1. In this section, the resulting graph of
another version where clocks are incremented by a real valued number is presented.
Additionally, the number of consecutive clock ticks is restricted. I. e., we can
simulate the effects of several consecutive ticks in one tick and therefore a clock tick
is only possible if the previous transition was not the tick transition. Below, the
changed transitions and initial state in the configuration file will be presented first.
In figure 6.8 we will finally see the resulting graph of Fischer’s mutual exclusion
problem with real valued clocks.

Listing 6.3: Initial state in the Fischer configuration file

and{Pc1=0,and{Pc2=0,and{D>0,and{C1>=0,and{C2>=0,and{T>=0,
and{T=<1,and{X>=0,X=<2}}}}}}}}

Listing 6.4: Transitions in the Fischer configuration file

(1 , [Pc1 ,C1 ,T] , and{and{and{X=0,Pc1=0} ,and{Pc1 ’=1 ,C1’=0}} ,T’=0}) ,
(2 , [Pc2 ,C2 ,T] , and{and{and{X=0,Pc2=0} ,and{Pc2 ’=1 ,C2’=0}} ,T’=0}) ,
(3 , [X,C1 , Pc1 ,T] , and{and{C1<2,and{Pc1=1,and{X’=1 ,

and{C1’=0 ,Pc1 ’=2}}}} ,T’=0}) ,
(4 , [X,C2 , Pc2 ,T] , and{and{C2<2,and{Pc2=1,and{X’=2 ,

and{C2’=0 ,Pc2 ’=2}}}} ,T’=0}) ,
(5 , [Pc1 ,T] , and{and{Pc1=1,and{C1>=2,Pc1 ’=0}} ,T’=0}) ,
(6 , [Pc2 ,T] , and{and{Pc2=1,and{C2>=2,Pc2 ’=0}} ,T’=0}) ,
(7 , [Pc1 ,T] , and{and{Pc1=2,and{C1>3,and{X=1,Pc1 ’=3}}} ,T’=0}) ,
(8 , [Pc2 ,T] , and{and{Pc2=2,and{C2>3,and{X=2,Pc2 ’=3}}} ,T’=0}) ,
(9 , [Pc1 ,T] , and{and{Pc1=2,and{and{C1>3,X=/=1},Pc1 ’=0}} ,T’=0}) ,
(1 0 , [Pc2 ,T] , and{and{Pc2=2,and{and{C2>3,X=/=2},Pc2 ’=0}} ,T’=0}) ,
(1 1 , [X, Pc1 ,T] , and{and{Pc1=3,and{X’=0 ,Pc1 ’=0}} ,T’=0}) ,
(1 2 , [X, Pc2 ,T] , and{and{Pc2=3,and{X’=0 ,Pc2 ’=0}} ,T’=0}) ,
(1 3 , [C1 ,C2 ,D,T] , and{T=0,and{C1’=C1+D, and{C2’=C2+D,

and{D’>0 ,T’=1}}}})

6
.5

.
E

X
A

M
P

L
E

:
F
IS

C
H

E
R

’S
P

R
O

B
L
E

M
8
3

p136 [2,4,6,11,15]

p138

[13]

[4,8,15]

p141

[1]

p144

[1]

p154

[1]

p130

[2]

[1]

[1]

[1]

[5]

[2,4,6,8,11,14,15]

p143

[4,6,8,15]

[2,6,11,14,15]

p152

[15]

[2,4,6,8,11,14]

p155

[3]

p158

[3]

[5,10]

[4,6,8,14,15]

[4,6,8,15]

[14]

[15]

[4,6,8,14]

[3,4,6,8,14] p156

[14]p157

[4,6,8]

[3]

[5,9]

[2,4,6,11,14,15]

[4]

[2,6,11,14,15]

[15]

[2,4,6,11,14]

[2,3,4,6,11,14]

[2,6,11,14]

[4]

[3]

p145

[7]

[4]

[6,11,15]

[5]

[2,4,6,8,11,14]

[4,6,8]

[2,6,11,14]

[2,4,6,8,11,14]

[2,3,4,6,8,11,14]

[2,6,11,14]

[4,6,8]

[3,6,11]

[5]

[2,4,6,8,11,14,15]

[4,6,8,15]

[2,6,11,14,15]

[15]

[2,4,6,8,11,14]

[3]

[3][4,6,8,15]

[2,6,11,14,15]

[15]

[2,4,6,8,11,14]

[4]

[2,6,11,14,15]

[2,6,11,14]

[4]

[4,6,8,15]

[14]

[14]

[4,6,8]

[4]

[15]

[4]

[6,11]

F
ig

u
re

6
.8

:
R

e
su

ltin
g

g
ra

p
h

o
f
th

e
F
ish

e
r

p
ro

b
le

m

Chapter 7

Conclusion

In this thesis, I introduced an extension of deductive model checking using phase
event automata. The resulting model checking procedure does not need user
guidance to efficiently apply the splitting rules. Auxiliary formulas, like invari-
ants that restrict variable domains, may be provided by the user to speed up the
verification process and reduce the size of the falsification diagram.

Several heuristics, like target enlargement, source enlargement and a rating
function have been added to the original procedure, both to decide which edges
have to be split and to decrease the search space. Structural changes, like the re-
striction of node labels to be conjunctions, failure nodes to have no consecutives
and disjunctiveness of new created nodes, additionally speed up the process and
reduce the size of the diagram.

7.1 Future Work

Currently, the model checking algorithm can only manage linear constraints over
the reals. The extension of the procedure to reason about complex data types like
array, lists and sets could be a further goal (dependent on the availability of suitable
decision procedures).

Additionally, the size of many infinite-state verification problems can be
significantly reduced by augmenting the actual set of heuristicts with new rules.

Currently, the model checking algorithm is restricted to prove safety properties.
Hence, we could extend the procedure by the missing transformation rules given in
[HTZ96] to allow also for the verification of liveness properties.

84

7.1. FUTURE WORK 85

Acknowledgements

I want to thank Klaus Dräger for his inspirative and patient assistance.

Bibliography

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[BAMP81] Mordechai Ben-Ari, Zohar Manna, and Amir Pnueli. The tempo-
ral logic of branching time. In POPL ’81: Proceedings of the 8th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 164–176, New York, NY, USA, 1981. ACM Press.

[BKA02] J. Baumgartner, A. Kuehlmann, and J. Abraham. Property checking
via structural analysis, 2002.

[Bry86] Randal E. Bryant. Graph-based algorithms for Boolean function manip-
ulation. IEEE Transactions on Computers, C-35(8):677–691, August
1986.

[CS01] E.M. Clarke and H. Schlingloff. Model checking. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume II,
chapter 24, pages 1635–1790. Elsevier Science, 2001.

[CWA+96] Edmund M. Clarke, Jeannette M. Wing, Rajeev Alur, Rance Cleave-
land, David Dill, Allen Emerson, Stephen Garland, Steven German,
John Guttag, Anthony Hall, Thomas Henzinger, Gerard Holzmann,
Cliff Jones, Robert Kurshan, Nancy Leveson, Kenneth McMillan,
J. Moore, Doron Peled, Amir Pnueli, John Rushby, Natarajan Shankar,
Joseph Sifakis, Prasad Sistla, Bernhard Steffen, Pierre Wolper, Jim
Woodcock, and Pamela Zave. Formal methods: state of the art and
future directions. ACM Computing Surveys, 28(4):626–643, 1996.

[Hen06] M. Hendriks. Model Checking Timed Automata - Techniques and Appli-
cations. PhD thesis, ICIS, Radboud University Nijmegen, April 2006.

[HM05] Jochen Hoenicke and Patrick Maier. Model-checking of specifications
integrating processes, data and time. In John Fitzgerald, Ian J. Hayes,
and Andrzej Tarlecki, editors, FM 2005: Formal Methods; International
Symposium of Formal Methods Europe, volume 3582 of Lecture Notes in
Computer Science, pages 465–480, Newcastle, UK, July 2005. Formal
Methods Europe (FME), Springer.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, 1978.

[Hoe06] Jochen Hoenicke. Combination of Processes, Data, and Time. PhD
thesis, University of Oldenburg, July 2006.

[HTZ96] H. B. Sipma, T. E. Uribe, and Z. Manna. Deductive model check-
ing. In Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of

86

BIBLIOGRAPHY 87

the Eighth International Conference on Computer Aided Verification
CAV, volume 1102, pages 208–219, New Brunswick, NJ, USA, / 1996.
Springer Verlag.

[KMMP93] Yonit Kesten, Zohar Manna, Hugh McGuire, and Amir Pnueli. A deci-
sion algorithm for full propositional temporal logic. In Computer Aided
Verification, pages 97–109, 1993.

[Lam74] Leslie Lamport. A new solution of dijkstra’s concurrent programming
problem. Commun. ACM, 17(8):453–455, 1974.

[MP95] Zohar Manna and Amir Pnueli. Temporal verification of reactive sys-
tems: safety. Springer-Verlag New York, Inc., New York, NY, USA,
1995.

[Muk97] Madhavan Mukund. Linear-time temporal logic and Büchi automata.
1997.

[MW84] Zohar Manna and Pierre Wolper. Synthesis of communicating processes
from temporal logic specifications. ACM Trans. Program. Lang. Syst.,
6(1):68–93, 1984.

[Pnu97] A. Pnueli. The temporal logic of programs. Technical report, Jerusalem,
Israel, Israel, 1997.

[Smi00] G. Smith. The Object-Z Specification Language. Kluwer Academic
Publishers, 2000.

[ZH04] Chaochen Zhou and Michael R. Hansen. Duration Calculus: A Formal
Approach to Real-Time Systems (Monographs in Theoretical Computer
Science. an Eatcs Seris). SpringerVerlag, 2004.

[ZHR91] Chaochen Zhou, C. A. R. Hoare, and A. P. Ravn. A calculus of dura-
tions. Information Proc. Letters, 40(5), Dec. 1991.

	Introduction
	Preliminaries
	Reactive systems
	Real-time systems
	Model Checking
	Fair Transition Systems
	Example - Fischers' Mutual Exclusion Algorithm
	Linear-time Temporal Logic
	The Formula Tableau
	CSP-OZ-DC
	Communicating Sequential Processes
	Object-Z
	Duration Calculus

	Phase Event Automata
	Timed Automata
	Phase event automata
	Formal Definition
	Parallel Composition of Phase Event Automata

	The DMC Procedure - Safety
	Deductive Model Checking
	The Restricted DMC Procedure

	DMC with Phase Event Automata
	Configuration Files
	Boolean Constraints - Init and Invariants
	Transitions
	Nodes and Nodelabels
	Variables
	Edges
	Example: Elevator Configuration Script

	Phase Event Automata Creation
	The PEA Object
	The Node Object
	The Edge Object
	The Transition Object

	Initial Falsification Diagram
	Initial Falsification Diagram Construction
	Construct New Initial Nodes
	Change Transition Labels
	Basic Transformations
	Change Failure Nodes
	Change Remaining Nodes
	Split With Invariants
	Set Failure Distances
	Examples

	Basic Transformations
	Unreachable Node
	Unsatisfiable Node
	Remove Edge Label
	Empty Edge

	Node Splitting
	Create New Nodes
	Create Edges

	Basic Refinement Transformations
	Construction of the enabled formula
	Construction of the strongest postcondition formula
	Construction of the weakest precondition formula
	Structural Decisions
	Precondition Split
	Definition: Precondition Split
	Algorithm for Precondition Split
	Example: Fischer's mutual exclusion problem

	Postcondition Split
	Algorithm for Postcondition Split
	Example: Fischers Mutual Exclusion

	Analysis
	Example: Deque
	Example: Board4
	Example: Elevator
	Example: Bakery
	Example: Fischer's Problem

	Conclusion
	Future Work

